《乘法運算定律》的教學(xué)設計
作為一名無(wú)私奉獻的老師,時(shí)常需要準備好教學(xué)設計,借助教學(xué)設計可以促進(jìn)我們快速成長(cháng),使教學(xué)工作更加科學(xué)化。怎樣寫(xiě)教學(xué)設計才更能起到其作用呢?下面是小編精心整理的《乘法運算定律》的教學(xué)設計,歡迎閱讀與收藏。
《乘法運算定律》的教學(xué)設計1
教學(xué)目標
1、知識與技能:引導學(xué)生探究和理解乘法交換律、結合律,能運用運算定律進(jìn)行一些簡(jiǎn)便運算。
2、過(guò)程與方法:通過(guò)學(xué)生猜想,觀(guān)察、比較、概括、聯(lián)想等方法,使學(xué)生理解并掌握乘法的交換律和結合律,培養學(xué)生的分析推理能力,發(fā)展思維的靈活性。
3、情感態(tài)度與價(jià)值觀(guān):使學(xué)生感受數學(xué)與現實(shí)生活的聯(lián)系,能用所學(xué)知識解決簡(jiǎn)單的實(shí)際問(wèn)題。
教學(xué)重點(diǎn):
學(xué)生發(fā)現乘法交換律和結合律的過(guò)程
教學(xué)難點(diǎn):
驗證乘法交換律和結合律的過(guò)程,能用自己的語(yǔ)言描述乘法交換律和乘法結合律,并會(huì )用字母表示。
教學(xué)過(guò)程:
一、創(chuàng )設情境,生成問(wèn)題
1、我們學(xué)習了哪些運算定律?誰(shuí)能說(shuō)一說(shuō)?什么是加法交換律,用字母應該怎樣表示?加法結合律呢?
a+b=b+a (a+b)+c=a+(b+c)
2、引入新課:同學(xué)們猜一猜:這是我們學(xué)習的加法交換律和加法結合律,那么乘法可能有哪些運算定律呢?
二、自主探究、驗證猜想
1、驗證乘法的交換律
同學(xué)們到底猜得對不對呢,這就需要我們來(lái)驗證
保護環(huán)境對人類(lèi)非常重要,植樹(shù)是一件非常有意義的事,瞧,小明和他的`小伙伴們正在植樹(shù)呢(出示例5主題圖)。
。1)、請同學(xué)們仔細觀(guān)察主題圖。從圖上你發(fā)現了哪些數學(xué)信息?
。2)、根據這些數學(xué)信息你能提出哪些數學(xué)問(wèn)題?
。3)、小組討論,指名匯報并解答
a 、負責挖坑、種樹(shù)的共有多少人?
25×4=100(人)4×25=100(人)
探究、發(fā)現問(wèn)題:
教師提問(wèn):4×25和25×4得數是否相等?都表示什么??jì)蓚(gè)算式之間可以用什么符號連接?(引導學(xué)生回答,明確:4×25=25×4)b 、負責抬水、澆樹(shù)的共有多少人?
25×2=50(人)2×25=50(人)
仔細觀(guān)察這兩人個(gè)算式,你發(fā)現了什么?
C 、每組要澆多少桶水?
5×2=10(桶)2×5=10(桶)
仔細觀(guān)察這兩人個(gè)算式,你發(fā)現了什么?
。4)、仔細觀(guān)察這幾組算式,你有什么發(fā)現?學(xué)生談發(fā)現、
25×4=4×25
25×2=2×25
5×2=2×5
(5) 、請學(xué)生用自己的話(huà)來(lái)敘述發(fā)現的規律?(師根據學(xué)生的回答進(jìn)行匯總)
兩個(gè)數相乘,交換兩個(gè)因數的位置,積不變,這叫做乘法交換律。這就驗證了同學(xué)們的猜想,乘法確實(shí)有交換律。
。6)、你能用自己喜歡的方式表示出乘法的交換律嗎?(學(xué)生獨立完成,指名匯報)
甲數×乙數=乙數×甲數
× = ×
a × b = b × a
。7)、你最喜歡哪一種?
。8)、其實(shí)乘法交換律在我們以前就用到過(guò),同學(xué)們回憶一下在哪些地方用過(guò)(學(xué)生思考后回答),再次證明交換兩人個(gè)因數的位置積不變。
2、驗證乘法結合律
剛才我們通過(guò)自己提出問(wèn)題,解決問(wèn)題,發(fā)現了乘法交換律確實(shí)存在,那乘法結合律是不是也真的存在呢,接下來(lái)我們自己舉例驗證
。1)、學(xué)生自己舉例,小組交流,初步驗證乘法結合律
。2)、指名匯報、
(8×4) ×5= 8×(4×5)
(5×2) ×3= 5×(2×3)
(25×4) ×1= 25×(4×1)
。3)、仔細觀(guān)察這幾組算式,你有什么發(fā)現?學(xué)生談發(fā)現、
。4)、剛才同學(xué)們通過(guò)舉例來(lái)初步驗證了乘法結合律的存在,老師也用了一道應用題來(lái)進(jìn)行驗證,再次驗證乘法的結合律。
a 、出示例6
b 、學(xué)生理解題意,找出已知條件和所求問(wèn)題。
c 、你能用不同的方法解答嗎?學(xué)生獨立列式
。25×5)×2 25×(5×2)
=25×10 =125×2
=250(桶)=250(桶)
d 、仔細觀(guān)察這組算式,你有什么發(fā)現?學(xué)生談發(fā)現、
。25×5)×2 = 25×(5×2)
。5)、通過(guò)剛才解決這道題,我們再一次驗證了乘法結合律的存在,什么叫做乘法的結合律呢?
三個(gè)數相乘,先乘前兩個(gè)數,或者先乘后兩個(gè)數,它們的積不變,這叫做乘法結合律。
。6)、你能用字母表示出乘法結合律嗎?
3、比較加法交換律和乘法交換律,加法結合律和乘法結合律,你有什么發(fā)現(學(xué)生仔細觀(guān)察,談發(fā)現)
三、鞏固與練習。
1、填空。
12×32=32×()
108×75=()×()
。0×()=8×()
。玻怠粒ǎ剑ǎ粒玻
。常啊粒丁粒罚剑常啊粒ǎ丁粒
。保玻怠粒ǎ浮粒矗埃( × ) ×()
2、你能很快算出每組氣球上三個(gè)數的積嗎?
3、你能用簡(jiǎn)便方法計算嗎?
23×15×2 5 ×37×2
492×5×2 25×166×4
8×5×125×40
五、小結。
這節課學(xué)習了什么內容,你有哪些收獲?
六、作業(yè)布置。
教材27頁(yè)的第2、3題。
《乘法運算定律》的教學(xué)設計2
教學(xué)內容:
義務(wù)教育課程標準實(shí)驗教科書(shū)四年級數學(xué)下冊第三單元頁(yè)
教學(xué)目標:
1:使學(xué)生認識并掌握乘法交換律、結合律,在理解的基礎上靈活運用。
2:使學(xué)生親歷“回顧再現——觀(guān)察比較——遷移類(lèi)推——歸納概括”的數學(xué)思維過(guò)程,培養學(xué)生的各種能力,從而初步形成適應終身學(xué)習的技能基礎。 3:在探究問(wèn)題的過(guò)程中感受數學(xué)知識之間的內在聯(lián)系,培養學(xué)生的數學(xué)情趣。
教學(xué)重點(diǎn):
使學(xué)生理解并掌握乘法交換律、乘法結合律。
【設計意圖】學(xué)生剛剛學(xué)習了加法交換律、加法結合律,而乘法交換律、乘法結合律與之有很大相同之處。為了充分發(fā)揮學(xué)生已有的認知水平,運用已有的知識經(jīng)驗,我設計了以遷移類(lèi)推為主的《乘法交換律、結合律》一課的教學(xué),其目的是:使學(xué)生在老師的引導下,學(xué)會(huì )探究新知的方法,并在探究新知的過(guò)程中使學(xué)生的各種能力得到形成和發(fā)展。為學(xué)生的終身學(xué)習與發(fā)展奠定基礎。教學(xué)過(guò)程:
一、復習鋪墊
1:回答:前面我們學(xué)習了什么定律?請你用語(yǔ)言描述,用字母表示好嗎?師:從剛才同學(xué)們的回答中可以看出來(lái)對加法交換律、加法結合律的掌握較好。我相信你們對于乘法一定學(xué)得也不錯,下面的題目你們一定覺(jué)得很輕松。 2:舊知回顧
師:根據“七八五十六”這句口訣,請你寫(xiě)出兩道乘法算式來(lái)。
師:你還能說(shuō)出這樣的口訣并寫(xiě)出相應的算式嗎?(學(xué)生口答板書(shū)如下)7×8﹦56 6×7﹦42 3×7﹦21
8×7﹦56 7×6﹦42 7×3﹦21
【設計意圖】通過(guò)引領(lǐng)學(xué)生再現舊知(加法運算定律、乘法口訣)為學(xué)生探索新知搭建知識的橋梁。
二:探索新知
。ㄒ唬┨剿鞒朔ń粨Q律
1:觀(guān)察上面每組算式,你有什么發(fā)現?用你自己的話(huà)說(shuō)一說(shuō)。兩個(gè)(數相乘,交換位置,積不變)
2:引領(lǐng)驗證
師:不是乘法口訣會(huì )不會(huì )也像你發(fā)現的那樣呢?算了下面的兩組題你會(huì )明白的。
25×4﹦17×23﹦
4×25﹦23×17﹦
3:概括乘法交換律
師:根據計算結果,你能再概括乘法運算中的這種規律嗎?你認為怎樣稱(chēng)呼這一規律?(乘法交換律)你怎么會(huì )想到這樣的稱(chēng)呼?(有加法交換律想到的.)師:正如你們說(shuō)的,這就叫“乘法交換律”你們真會(huì )推想。請你們試著(zhù)用字母表示它。(隨機板書(shū)a ×b﹦b ×a)
【設計意圖】在學(xué)生獲得大量感性認識的基礎上,通過(guò)引領(lǐng),使學(xué)生運用遷移類(lèi)推的方法輕松而自然地獲取乘法交換律。
4:鞏固知識
。1)口答:15×23﹦8×125﹦
。2)口答:17×()﹦36×()()×126﹦()×37
。3)下面每組算式同桌比一比,看誰(shuí)算得快。換過(guò)來(lái)試一試,你對乘法交換律有什么更深的認識?
25×126×4﹦
。4)組織反饋交流
【設計意圖】通過(guò)層層遞進(jìn)和開(kāi)放性題目的練習,使學(xué)生進(jìn)一步理解,共苦乘法交換律。通過(guò)比一比使學(xué)生感受乘法交換律在計算中的應用價(jià)值,初步建立簡(jiǎn)便計算的理念。
師:剛才,同學(xué)們的表現太棒了,簡(jiǎn)單的計算卻蘊含著(zhù)如此奧妙,希望同學(xué)們繼續發(fā)揮潛能探索更加深奧的數學(xué)奧秘。
。ǘ┨剿鞒朔ńY合律
師:同學(xué)們知道每年的3月12日是什么節嗎?你了解植樹(shù)的重大意義嗎?有一所學(xué)校組織了一批學(xué)生正在進(jìn)行植樹(shù)活動(dòng),同學(xué)們干得很起勁,我們一起去現場(chǎng)看看吧。(四年級的同學(xué)參加植樹(shù)活動(dòng),一共有25個(gè)小組,每組里4人負責種樹(shù),2人負責澆水。)小組內說(shuō)一說(shuō)你了解到的信息。
師:根據現有的數學(xué)信息你能提出哪些數學(xué)問(wèn)題?
【設計意圖】有時(shí)候提出問(wèn)題比解決問(wèn)題更重要,通過(guò)課本的主題情境圖,培養學(xué)生了解數學(xué)信息并能根據信息提出問(wèn)題,在提出問(wèn)題的過(guò)程中,學(xué)生的思維得到了鍛煉。
2:解決問(wèn)題初步建立乘法結合律感念
師:剛才同學(xué)們提出很多很有價(jià)值的問(wèn)題,從中可以看出同學(xué)們發(fā)現問(wèn)題的能力很強,相信你們解決問(wèn)題的能力也一定很強。(1)請回答:負責挖坑、種樹(shù)的一共有多少人?怎樣列式解答?(指名口
答,板書(shū):25×4﹦或者4×25﹦體現了什么定律?(乘法交換律)
。2)請同學(xué)們筆答:一共要澆多少桶水?(學(xué)生獨立解答,同桌可以交流
意見(jiàn))
。3)組織反饋交流(請學(xué)生上臺來(lái)展示,要求不同列式的學(xué)生。)25×2×5 5×2×25 25×5×2
。25×2)×5(25×5)×2 25×(2×5)
。4)引導概括,初步建立乘法結合律概念
師:從上面算式和結果中,你又有什么新發(fā)現?(三個(gè)數相乘,無(wú)論哪兩個(gè)先乘,積不變。)
【設計意圖】在解決問(wèn)題,合作交流的過(guò)程中,使學(xué)生感受到數學(xué)與生活的緊密聯(lián)系和應用價(jià)值,這里既有乘法交換律的理解與應用,又讓學(xué)生初步建立乘法結合律的概念,從而為進(jìn)一步探索乘法結合律做好充分的準備。 3:引導概括,形成乘法結合律
。1)激發(fā)引導
師:你們的發(fā)現非常符合上面算式的實(shí)際,很有發(fā)展性,這些算式中又蘊含著(zhù)乘法一運算定律,請你們會(huì )想一下加法結合律,然后對上面的算式做出選擇,寫(xiě)成兩組等式,以小組為單位開(kāi)始吧!
。2)(25×2)×5﹦(25×5)×2
。25×5)×2﹦25×(2×5)
。3)觀(guān)察概括
師:通過(guò)觀(guān)察說(shuō)一說(shuō)你的發(fā)現(指名說(shuō)一說(shuō))
生:三個(gè)數相乘,先乘前兩個(gè)數或者先乘后兩個(gè)數,積不變師:說(shuō)得太好了!你們知道該怎么稱(chēng)呼這一規律嗎?(乘法結合律)我想你們一定是由加法結合律想到的,這種思考問(wèn)題的方法叫遷移類(lèi)推,在今后的學(xué)習中會(huì )不斷的用到,下面我們共同的用字母表示乘法結合律(a ×b)×c﹦a ×(b×c)
【設計意圖】通過(guò)引領(lǐng)學(xué)生繼續運用遷移類(lèi)推的方法探索乘法結合律,使學(xué)生在探索中能力得到提高,技能得到發(fā)展,從而形成適應終身學(xué)習的方法基礎。
。4)鞏固運用,提升乘法結合律(1)填□
5×(14×9)=(5×□)×14
125×(8×13)=(□×□)×13
a ×25×4=□×(□×□)
6×13×5=13×(□×□)
。2)算一算,比一比,想一想,你有什么感受?
15×12???15×2×6
36×25???9×(4×25)
【設計意圖】在層次分明循序漸進(jìn)并有開(kāi)放性的練習中,使學(xué)生進(jìn)一步鞏固和理解乘法結合律。
三:新知推廣,內化提高
29×4×5 4×(35×25)125×23×8
40×52×25 4×8×25×125 16×17×5
【設計意圖】通過(guò)此環(huán)節,使學(xué)生進(jìn)一步理解并鞏固乘法交換律、乘法結合律,在解決問(wèn)題的過(guò)程中靈活運用,使學(xué)生的知識,技能得到進(jìn)一步的鍛煉和發(fā)展。
四:回顧反思,拓展延伸
1:回顧反思
。1)知識回答:請你說(shuō)說(shuō)你收獲了哪些知識?
。2)方法回顧:
師:看來(lái)你們的收獲還真不少,你能和加法交換律、加法結合律比較一下,有什么新的想法?
2:拓展延伸
師:前面有同學(xué)提出“一共有多少同學(xué)參加了這次植樹(shù)活動(dòng)?”你想不想解決這個(gè)問(wèn)題?你能想到幾種列式方法?你一定會(huì )有新的發(fā)現,祝你成功!
【設計意圖】通過(guò)對本節課知識、情感、方法的問(wèn)題、梳理,使之內化為能力,通過(guò)課外延伸,激發(fā)學(xué)生進(jìn)一步探究新知的欲望,為學(xué)習乘法分配律打下基礎。
《乘法運算定律》的教學(xué)設計3
教學(xué)目標:
1、經(jīng)歷乘法運算定律的猜想、驗證過(guò)程。理解和掌握乘法交換律、乘法結合律(含用字母表示);
2、能靈活應用乘法交換律和結合律進(jìn)行簡(jiǎn)便計算,解決實(shí)際問(wèn)題;
3、猜想、驗證、應用的過(guò)程中,培養學(xué)生自主學(xué)習的能力,發(fā)展學(xué)生學(xué)以致用的意識。使學(xué)生受到科學(xué)方法的啟蒙教育。
教學(xué)過(guò)程:
一、比賽激趣,引發(fā)猜想
1、談話(huà):在數學(xué)課堂中,大家都非常欣賞思維敏捷,反應快的同學(xué),下面就給大家一個(gè)機會(huì ),我們進(jìn)行一次計算比賽,看哪位同學(xué)最先博得大家的欣賞!
2、教師報題,學(xué)生起立搶答。
。、大家的速度都很快,很難分出高下,下面換一種比賽形式。
。ㄕn件演示:一次性計算兩道題,看誰(shuí)算得既對又快。)
。、啟發(fā)猜想:這幾天我們在學(xué)什么計算題,(筆算乘法)感覺(jué)怎樣?聯(lián)系剛才我們做的兩題加法,你想到了什么?
。、引導猜想:a、乘法中可能也有交換律和結合律;
b、猜想怎么用字母來(lái)表示它們。
{板書(shū)猜想結果:乘法交換律乘法結合律
二、合作探究,舉例驗證
。、引導驗證方法:老師為什么要在等號上加“?”!誰(shuí)有辦法把問(wèn)號去掉?
請學(xué)生當即舉一個(gè)乘法交換律的例子。(板書(shū):學(xué)生所舉例子,注:舉例證明)
質(zhì)疑:舉一個(gè)例子能證明這個(gè)運算定律的正確性嗎?(可能是巧合)
那怎么辦?需要凝聚大家的力量一起舉例!
。、小組合作驗證
。、歸納兩條乘法運算定律的文字敘述內容,揭示課題。
三、學(xué)以致用,加強鞏固
四、課堂小結,拓展延伸
本課的設計體現了以下幾個(gè)特點(diǎn):
。、創(chuàng )造性地運用教材,落實(shí)“三維”教學(xué)目標。
按照教參中的教學(xué)進(jìn)程安排,乘法交換律和結合律需要分兩課時(shí)完成。筆者認為將兩課時(shí)合并為一課時(shí),可以達到事半功倍的效果。首先,加法的交換律和結合律與乘法的交換律和結合律比較相似,由兩條加法定律猜想到兩條乘法定律,難度不大,十分自然。其次,兩條乘法定律一起學(xué),一方面有利于比較區分;另一方面,更利于實(shí)際應用,事實(shí)上在計算應用中,這兩條定律通常是結合在一起應用的。
。、經(jīng)歷過(guò)程,強化體驗,落實(shí)“三維”教學(xué)目標。
從猜想→驗證→應用的整個(gè)教學(xué)過(guò)程中,教師只是適當的啟發(fā)、引導、參與。更多的`是學(xué)生自發(fā)的學(xué)習,是學(xué)生感覺(jué)學(xué)習知識的需要而展開(kāi)學(xué)習。如:由加法的簡(jiǎn)算快捷而受啟發(fā)聯(lián)想到乘法要是也有運算定律進(jìn)行簡(jiǎn)算該多好!從而激起探索新知的渴望。再如:當體會(huì )到舉一個(gè)例子無(wú)法驗證說(shuō)明問(wèn)題,需要舉更多的例子時(shí),讓學(xué)生考慮怎么辦?從而討論解決方法:大家一起舉例。再如:得出結論后,當然想到拿學(xué)習成果應用于實(shí)際。這比由老師步步安排好學(xué)習步驟要好得多,不僅培養了學(xué)生的自主學(xué)習意識,而且學(xué)生的參與積極性也會(huì )高漲。
3、科學(xué)思想和方法的滲透,落實(shí)“三維”教學(xué)目標。
在數學(xué)知識領(lǐng)域內,“猜想→驗證→結論”是十分有效的思考研究方法。有利于學(xué)生思維的發(fā)展和今后的學(xué)習。同時(shí),在驗證環(huán)節中涉及到常見(jiàn)的證明方法——舉例證明。同時(shí)滲透了偶然和必然之間的辨證關(guān)系?傮w上說(shuō):這節課的設計很好地體現了學(xué)生的自主性,給學(xué)生較大的自主探索空間,體現了數學(xué)邏輯思維的嚴謹美,訓練了學(xué)生的思維。
《乘法運算定律》的教學(xué)設計4
學(xué)習目標
1、知道乘法結合律,能運用運算定律進(jìn)行一些簡(jiǎn)便運算。
2、培養學(xué)生根據具體情況,選擇算法的意識與能力,發(fā)展思維的靈活性
3、能用所學(xué)知識解決簡(jiǎn)單的實(shí)際問(wèn)題。
學(xué)習難點(diǎn):探究和理解結合律,能運用運算定律進(jìn)行一些簡(jiǎn)便運算。
學(xué)習重點(diǎn):探究和理解結合律,能運用運算定律進(jìn)行一些簡(jiǎn)便運算。
教學(xué)流程:
一、 出示課題
板書(shū):探究和理解結合律,能運用運算定律進(jìn)行一些簡(jiǎn)便運算。
二、出示學(xué)習目標
1、知道乘法結合律,能運用運算定律進(jìn)行一些簡(jiǎn)便運算。
2、培養學(xué)生根據具體情況,選擇算法的意識與能力,發(fā)展思維的靈活性
3、能用所學(xué)知識解決簡(jiǎn)單的實(shí)際問(wèn)題。
三、自學(xué)指導
自學(xué)書(shū)本第25頁(yè)的內容,自己完成以下的問(wèn)題:
主題圖引入(觀(guān)察主題圖,根據條件提出問(wèn)題。)
一、自學(xué)提綱
1、針對上面的.問(wèn)題1列出算式,有幾種列法。
2、為什么列的式子不同,它們的計算結果是怎樣的。
3、兩個(gè)算式有什么特點(diǎn)?你還能舉出其他這樣的例子嗎?
4、能給乘法的這種規律起個(gè)名字嗎?能試著(zhù)用字母表示嗎?
5、乘法結合律有什么作用。
6、根據前面的加法結合律的方法,你們能試著(zhù)自己學(xué)習乘法中的另一個(gè)規律嗎?
7、這組算式發(fā)現了什么?
二、 小組合作學(xué)習
根據自學(xué)指導,交流匯報,驗證。
1、小組討論乘法的結合律、結合律用字母怎樣表示。
2、各小組展示自己小組記定律的方法。
3、分別說(shuō)說(shuō)是用什么方法記住這些運算定律的。
4、討論為什么要學(xué)習運算定律。
先乘前兩個(gè)數,或者先乘后兩個(gè)數,積不變。這叫做乘法結合律。
三、 交流匯報,集體訂正
四、 當堂訓練
1、下面的算式用了什么定律
(60×25)×8=60×(25×8)
2、 27/2—4 P25/做一做2
3、在□里填上合適的數。
30×6×7 = 30×(□×□) 125×8×40 =(□×□)×□
《乘法運算定律》的教學(xué)設計5
教學(xué)目標:
1.理解整數的運算定律對于分數乘法同樣適應。
2.能靈活掌握分數簡(jiǎn)便計算的方法。
3.能正確計算.
單元知識結構圖
分數乘以整數(求幾個(gè)幾是多少)
分數意義
一個(gè)數乘以分數(求一個(gè)數的幾分之幾是多少)
分數乘以整數計算法則(整數看作:)
分數乘法:分數計算法則分數計算法則的統一
一個(gè)數乘以分數計算法則
分數乘加、乘減的混合運算(計算順序與整數相同)
分數混合運算
分數乘法的簡(jiǎn)便計算(運用整數乘法運算定律簡(jiǎn)算)
教學(xué)重點(diǎn)、難點(diǎn)剖析
重點(diǎn):
1.掌握分數乘以整數、一個(gè)數乘分數的意義和計算法則,以及運用分數乘法的意義解答有關(guān)的文字題。
2.靈活掌握計算方法,計算時(shí),分子與分母能約分的要先約分,再相乘。
3.掌握分數乘加與乘減混合運算的運算順序。
4.掌握分數簡(jiǎn)便計算的方法。
難點(diǎn):
1.分數乘以整數和一個(gè)數乘分數的計算法則的推導。
2.為什么可以把分數乘以整數和一個(gè)數乘分數的計算法則統一起來(lái)。
3.正確判斷混合運算的運算順序。
4.正確運用乘法分配率靈活地進(jìn)行簡(jiǎn)便計算。
子課題教學(xué)重點(diǎn)、難點(diǎn):
課題一:分數乘以整數
教學(xué)重點(diǎn):分數乘以整數的意義及計算方法。
教學(xué)難點(diǎn):分數乘以整數法則的推導,能正確計算分數乘整數的題目。
課題二:一個(gè)數乘以分數
教學(xué)重點(diǎn):一個(gè)數乘以分數的意義,掌握計算法則。
教學(xué)難點(diǎn):一個(gè)數乘分數的計算法則的推導。
課題三:分數混合運算
教學(xué)重點(diǎn):運算順序。
教學(xué)難點(diǎn):正確判斷混合運算的運算順序。
課題四:整數乘法運算定律推廣到分數乘法
教學(xué)重點(diǎn):運用定律進(jìn)行一些簡(jiǎn)便計算。
教學(xué)難點(diǎn):正確運用分配率運用定律。
課題一:分數乘以整數
教材分析:
本課時(shí)關(guān)鍵在于如何推導出計算法則。至于意義的歸納總結不存在問(wèn)題。但無(wú)論是意義的總結還是法則的推導,難度都不大,學(xué)生很容易接受。本節課存在的問(wèn)題是:計算法則中提出:用分數的分子與整數相乘的積作分子。接著(zhù)才強調:為了計算簡(jiǎn)便,能約分的要先約分,然后再乘。因為很多人都有先入為主的基因存在,因此,有不少的學(xué)生都是按照法則進(jìn)行,用分子與整數乘得的積再與分母約分,從而降低了計算的速度與準確度。所以在總結完法則后,要重點(diǎn)強調能約分的一定要先約分。
重點(diǎn)突破策略:
1.做好鋪墊:為學(xué)習分數乘整數的意義和法則的推導做準備。
(1)復習2+2+2+2=()()與5個(gè)12是多少?的題型,小結出整數乘法的意義。
(2)復習++=()++=()=(),然后小結同分母分數加法的計算方法,特別強調:結果不是最簡(jiǎn)分數的,一定要約分成最簡(jiǎn)分數。
2.歸納意義:
在學(xué)生列出加法算式:后,讓學(xué)生觀(guān)察3個(gè)加數的特點(diǎn)(3個(gè)加數相同),接著(zhù)引導學(xué)生:求幾個(gè)相同加數的和還可以列式為:3,與整數乘法的意義比較,3的意義就是求3個(gè)的和是多少,是的簡(jiǎn)便計算。由此歸納出分數乘整數的意義:分數乘整數的意義與整數乘法的意義相同,就是求幾個(gè)相同加數和的簡(jiǎn)便運算。3就是求3個(gè)是多少。
3.推導法則:
根據3===3=
推出分數乘整數的計算法則:分數的分子和整數相乘的積作分子,分母不變。
4.強調計算的方法:
(1)分子可以與分母約分的一定要先約分,使計算簡(jiǎn)便.
(2)用適當的練習強化能約分的一定要先約分的算理.
課題二:一個(gè)數乘以分數
教材分析:
這部分內容是學(xué)生在學(xué)過(guò)分數乘整數的意義和計算方法的基礎上進(jìn)行教學(xué)的。它是后面學(xué)習分數除法的意義以及分數乘除法應用題的基礎。所以這部分內容是教學(xué)的重點(diǎn)。
一個(gè)數乘分數,包括整數乘分數和分數乘分數。但它們的意義都可以概
括為求一個(gè)數的幾分之幾是多少。這是對整數乘法意義的擴展,因此是教學(xué)的一個(gè)重點(diǎn)。本節的難點(diǎn)在于:推導一個(gè)數乘以分數的計算法則,所以一定要將推導過(guò)程分析清楚,擊破難點(diǎn)。
由于整數可以看成分母是1的假分數,所以不管是分數乘整數還是整數乘分數都可以轉化為分數乘分數,因此分數乘分數的計算法則對于分數乘整數和整數乘分數都適用。這部分的內容表面看不難,但學(xué)生開(kāi)始做分數乘整數()和整數乘分數()的題目時(shí),往往會(huì )將整數與分子約分,建議在講例題時(shí)要加以強調約分的方法。
重、難點(diǎn)突破策略:
1.意義的教學(xué):
。1)鋪墊,建立模型:
第4頁(yè)圖(1)教學(xué)建議:
在學(xué)生求出3杯的重量后,再多列舉幾道類(lèi)型題,
求千克的3倍是多少?(3)
如求5杯、2杯重幾千克?實(shí)質(zhì)就是:求千克的5倍是多少?(5)
求千克的2倍是多少?(2)
使學(xué)生的腦里形成:求一個(gè)數的幾倍是多少,用乘法計算的模型。
。2)導出意義:
、俚4頁(yè)圖(2)教學(xué)建議:
求杯水的重量,就是求1杯水重量的半倍是多少,即求千克
半倍是多少?根據圖(1)的模型類(lèi)推可以列式:半倍,這里的半倍即杯,那么,半倍就相當于。
因此求的是多少?用乘法列式就是:
、诘4頁(yè)圖(3)的教學(xué)可仿照圖(2)的教學(xué)。
、蹖С鲆饬x:一個(gè)數與分數相乘就是求這個(gè)數的幾分之幾是多少。
、芤饬x的運用:求一個(gè)數的幾分之幾是多少用乘法。(一個(gè)數=多少)
。3)意義的應用:做練習第4頁(yè)的文字題,鞏固一個(gè)數成分數的意義.
2.推導出計算法則:
。ǎ。┙虒W(xué)公頃的是多少的計算方法
聯(lián)系分數乘法的意義,著(zhù)重說(shuō)明就是求的是多少。第一步先出示1小時(shí)耕地公頃的圖示。第二步分析求公頃的是多少的算理,就是把公頃平均分成5份,取其中的.1份,也就是把1公頃平均分成(25)份,每份是1公頃的,取其中的1份,就是1。所以:
=1(根據分數乘整數的法則計算)
=
=
(2)教學(xué)公頃的是多少的計算方法
求小時(shí)耕地多少公頃,就是求公頃的是多少?算式是:。第一步先出1小時(shí)耕地公頃的圖示。第二步分析求公頃的是多少,就是把公頃平均分成5份,也就是把1公頃平均分成(25)份,每份就是,取其中的1份是1,取3份就是3所以:
=3(根據分數乘整數的法則計算)
=
=
(3)推導出計算法則:
==
由
==
推出一個(gè)數乘以分數的計算法則:分數乘分數,用分子相乘的積做分子,用分母相乘的積做分母。
(4)強調:為了計算簡(jiǎn)便,能先約分的一定要先約分再乘。
3.分數計算法則的統一:
因為整數看作:,所以分數乘整數也可以轉化為分數乘分數的形式.所以分數乘分數的計算法則對于分數乘整數和整數乘分數都適用?梢灾苯訉⒄麛悼醋鞣肿优c分母進(jìn)行約分。但開(kāi)始做分數乘整數或整數乘分數的題型時(shí),有的學(xué)生經(jīng)常會(huì )將整數與分子約分造成錯誤,所以教學(xué)時(shí)要加以強調,多做練習鞏固。
課題三:分數的乘加、乘減混合運算
教材分析:
分數乘加、乘減混合運算,是在分數乘法的基礎上進(jìn)行教學(xué)的,它本身屬于分
數四則混合運算的一部分內容。便于更好地區分分數乘法與分數加、減法的計算方法,提高計算的熟練程度。
分數乘加、乘減的混合運算的運算順序和整數乘加、乘減的混合運算的運算順序相同,教學(xué)中可以通過(guò)復習整數乘加、乘減的混合運算的運算順序,采取以舊帶新的方法理解分數乘加、乘減的混合運算的運算順序.此內容難度不大,完全可以放手讓學(xué)生自習完成。
教學(xué)策略:
教學(xué)程序可設計為:自習--討論--教師點(diǎn)撥
關(guān)鍵是確定順序:理解分數乘加、乘減混合運算的運算順序與整數的運算順序相同:含有兩極運算,要先算第二級,再算第一級.
課題四:整數乘法運算定律對分數同樣適應
教材分析:
整數乘法運算定律對分數乘法同樣適應,但要讓學(xué)生明白:整數利用乘法運算定律計算時(shí),目的是為了湊整數,使計算簡(jiǎn)便;而分數利用乘法運算定律計算時(shí),目的是為了約分使它變成整數或變成比較簡(jiǎn)單的分數,使計算簡(jiǎn)便。本節的教學(xué)重點(diǎn)應放在讓學(xué)生多觀(guān)察題型的特征,分析是否可以運用定律進(jìn)行簡(jiǎn)便計算,使學(xué)生在實(shí)際計算中領(lǐng)會(huì )應用運算定律進(jìn)行簡(jiǎn)便計算的方法,達到提高學(xué)生計算的熟練度和準確度。
教材第9頁(yè)的3組題型只是起到說(shuō)明左右兩邊的算式相等的作用,并不能起到說(shuō)明使計算簡(jiǎn)便的作用。建議補充能夠反映利用乘法結合律和分配律使計算簡(jiǎn)便的題型。
教材第10頁(yè)例5、例6只是一般的簡(jiǎn)便計算題型,而課后的練習和單元卷或其它的書(shū)籍,卻經(jīng)常出現象87和99+的類(lèi)型題,諸如此類(lèi)題目,對于部分學(xué)生來(lái)說(shuō),是存在一定難度的,建議教學(xué)時(shí)補充適當的例題,幫助學(xué)生擊破難點(diǎn)。
重、難點(diǎn)突破策略:
。保ㄟ^(guò)課本3組算式和以下的幾組算式,說(shuō)明整數乘法運算定律對分數乘法同樣適應。
。
。15)=(15)
。ǎ13)=+13
。玻畯土暢朔ㄟ\算定律,同時(shí)說(shuō)明整數運用定律目的是為了湊成整數使計算簡(jiǎn)便,而分數利用定律目的是為了約分使得到的積變成整數或變成較簡(jiǎn)單的分數,使計算簡(jiǎn)便。
ab=ba
(ab)c=a(bc)
(a+b)c=ac+bc
。常虒W(xué)例5、6(可由學(xué)生合作完成)
。矗a充例題:
。ǎ保8785怎樣簡(jiǎn)便計算?
此類(lèi)題目有些學(xué)生往往不知道拆哪一個(gè)數,教學(xué)時(shí)要把重點(diǎn)放在為什么要拆87為(86+1)、變85為(86-1)的算理上。
。ǎ玻梗梗
、僦v明白如何將原題變成兩個(gè)積的和:99+1
、趯φ粘朔ǚ峙渎晒,講明白如何提取相同因數(只提取一個(gè))(因為有的學(xué)生會(huì )提出兩個(gè),造成錯誤),如何把剩下的兩個(gè)因數相加的算理。
錯例分析:
。保s分時(shí)找錯對象,出現了內戰--分子殺分子。
。3(1)
例如:=6(21)3=
對于這類(lèi)癥狀的治療方法難度不大,只要叫患者在做題時(shí),花多一點(diǎn)時(shí)間,將整數幾寫(xiě)成,再運用分數計算法則計算,訓練一段時(shí)間后應該會(huì )有好轉。
。玻贸朔ǚ峙渎蛇M(jìn)行分配時(shí)出現了分配不公平的弊端。
例如:(+)12
。12+
。9+
。9
此類(lèi)題是學(xué)生經(jīng)常做錯的題,做題時(shí)可以讓學(xué)生添加弧線(xiàn)來(lái)強調分配的原則,一定要使到分配公平公正。
如:(+)12
特別是象(86+1)的題型,由于第二個(gè)加數是1,學(xué)生經(jīng)常沒(méi)有將1乘上外面的因數。如果使用了上面的弧線(xiàn)記號就會(huì )大大降低了錯誤律。
《乘法運算定律》的教學(xué)設計6
使用說(shuō)明及學(xué)法指導:
1、結合問(wèn)題自學(xué)課本第12頁(yè),用紅筆勾畫(huà)出疑惑點(diǎn);獨立思考完成書(shū)上填空,并發(fā)現理解簡(jiǎn)算方法。
2、針對自主學(xué)習中找出的疑惑點(diǎn),課上小組討論交流,答疑解惑。
學(xué)習目標:
1、使學(xué)生理解整數乘法的運算定律對于小數同樣適用;
2、并會(huì )運用乘法的運算定律進(jìn)行一些小數的簡(jiǎn)便計算。
3、在自主探究、合作學(xué)習中體驗成長(cháng)樂(lè )趣。
學(xué)習重點(diǎn):乘法運算定律中數(包括整數和小數)的適用范圍。
學(xué)習難點(diǎn):運用乘法的.運算定律進(jìn)行小數乘法的的簡(jiǎn)便運算。
一、自主學(xué)習
任務(wù):整數乘法運算定律推廣到小數乘法的簡(jiǎn)便算法
1、想一想,我們學(xué)過(guò)哪些乘法運算定律?請用字母表示出來(lái)。
乘法交換律 ab=ba
乘法結合律 a(bc)=(ab)c
乘法分配律 a(b+c)=ab+ac
2、認真觀(guān)察P.12三組中的每?jì)蓚(gè)算式,在書(shū)上填出左右兩邊的關(guān)系。
3、上面的算式,應用了哪些運算定律?
4、試著(zhù)在書(shū)上完成例8,想一想,每一步應用了哪些運算定律?
5、練一練:P.12頁(yè)的“做一做”。
任務(wù):探究小數乘整數的計算方法(課內):
1、你會(huì )填嗎?根據什么定律填的?
4.2×1.69=□×□
2.5×(0.77×0.4)=(□×□)×□
6.1×3.6+3.9×3.6=(□+□)×□
2、閱讀教材第12頁(yè)例8。理解:計算0.25×4.78×4時(shí),先將4.78和4交換位置,計算出0.25×4的積后,將積與4.78相乘得4.78較簡(jiǎn)便。這是根據 ;065×(200+1)=0.65×200+0.65×1這是根據 。
3計算2.5×18時(shí),先把18寫(xiě)成 + ,再根據乘法分配律得出2.5×18= × + × 。就得到2.5×18= 較簡(jiǎn)便。
3、簡(jiǎn)算:4.8×0.25 7.5×104 2.33×1.25×8
二、合作探究、歸納展示(小組合作完成下列各題,一組展示,其余補充、評價(jià))
1、小數乘整數乘法的 ,對于小數乘 法 。
2、簡(jiǎn)算:
2.5×33×4 3.6×0.8+0.8×6.4
12.7×10.8-2.7×10.8
3、簡(jiǎn)算出35.62+35.62×99時(shí),要注意把前一個(gè)35.62看成( )×( )
過(guò)關(guān)檢測:
1、簡(jiǎn)算;
6×5.68+5.68×94 7.5×33×4 4.33×12.5×8
2、下面各題怎樣算簡(jiǎn)便就怎樣算
(9.275+0.725)×0.59 33.2-2.64×0.5 0.67×8.3+2.7×0.67-0.67
《乘法運算定律》的教學(xué)設計7
一、學(xué)習目標
1、初步體會(huì )整數的運算定律在小數中仍然適用。
2、能運用乘法運算定律使小數計算簡(jiǎn)便。
3、培養學(xué)生獨立思考、認真審題靈活運用運算定律簡(jiǎn)算的習慣和能力。
二、復習鋪墊
1、算一算
。1)5×2=(2)50×2=(3)500×2=(4)25×4=(5)250×4=
。6)25×40=(7)125×8=(8)125×80=(9)125×800=
2、乘法有哪些運算定律?怎樣用字母式子表示?你能寫(xiě)下來(lái)嗎?
乘法()律:()
乘法()律:()
乘法()律:()
3、用簡(jiǎn)便方法計算
125×25×825×15×462×38+38×38
25×(40+4)15×(20+3)95×71+95×29
三、自主探究
1、比一比,看誰(shuí)算得又對又快!
0.7×1.2=(0.8×0.5)×0.4=(2.4+3.6)×0.5=
1.2×0.7=0.8×(0.5×0.4)=2.4×0.5+3.6×0.5=
由此我們可以推想:小數四則運算的順序跟()的順序是一樣的。
2、觀(guān)察每組的.兩個(gè)算式,它們有什么關(guān)系?
0.7×1.2○1.2×0.7(0.8×0.5)×0.4○0.8×(0.5×0.4)
。2.4+3.6)×0.5○2.4×0.5+3.6×0.5
3、由此我們可以推想:
。1)整數乘法的()、()和(),對于()乘法也適用。
。2)應用乘法的運算定律,可以使一些小數乘法計算較()。
4、看一看、想一想、試一試,怎樣簡(jiǎn)便就怎樣算:
0.25×4.78×40.65×202
四、探究發(fā)現
比較剛才做的整數乘法的簡(jiǎn)便計算和小數乘法的簡(jiǎn)便計算,請同學(xué)們想一想整數乘法的簡(jiǎn)便計算和小數乘法的簡(jiǎn)便計算有什么相同點(diǎn)和不同點(diǎn)?(可尋求家長(cháng)和同學(xué)的幫助)
四、鞏固測評
1、在□里填上適當的數。
25×(0.75×0.4)=□×(□×□)6.3×2.4+2.4×3.7=□×(□+□)
。8-0.8)×1.25=□×□-□×□
2、試著(zhù)用簡(jiǎn)便方法計算
3.45×0.25×40.45×202
3、解決問(wèn)題(怎樣簡(jiǎn)便就怎樣做)
食堂買(mǎi)茄子和西紅柿各25千克,每千克茄子4.6元,每千克西紅柿5.4元。買(mǎi)這兩種蔬菜共用多少錢(qián)?
五、學(xué)習收獲
通過(guò)探究學(xué)習,我的收獲(體會(huì ))是
《乘法運算定律》的教學(xué)設計8
一、教學(xué)內容
人教版新課標教材小學(xué)數學(xué)四年級下冊33頁(yè)-35頁(yè)內容,《乘法運算定律》第一課時(shí)。
二、教學(xué)目標
、艑W(xué)生經(jīng)歷乘法交換律和結合律的總結過(guò)程,感知“猜想----驗證”這一總結規律的方法。
、茖W(xué)生理解掌握乘法交換律和結合律,會(huì )用不同方式表示運算定律,以及利用運算定律解決簡(jiǎn)單的問(wèn)題。
、菍W(xué)生感受解決問(wèn)題的過(guò)程和策略,提高解決問(wèn)題能力。對數學(xué)有新的理解和認識。
三、教學(xué)重點(diǎn)
學(xué)生理解掌握乘法交換律和結合律,會(huì )用不同方式表示運算定律,以及利用運算定律解決簡(jiǎn)單的問(wèn)題。
四、教學(xué)難點(diǎn)
學(xué)生經(jīng)歷乘法交換律和結合律的總結過(guò)程,感知“猜想----驗證”這一總結規律的方法。
五、教法和學(xué)法
由于本節課教學(xué)內容具有較強的問(wèn)題性和可探究性,所以,我采用了以組織探究學(xué)習活動(dòng)為主的教學(xué)策略。力求在通過(guò)“猜想----驗證”的方式總結運算定律的同時(shí),培養學(xué)生解決問(wèn)題的意識和能力。
六、教學(xué)過(guò)程
(一)創(chuàng )設情境,呈現問(wèn)題;
“同學(xué)們,你們知道3月12日是什么日子嗎?”
說(shuō)一說(shuō)植樹(shù)有什么好處嗎?
今天這節課,我們就通過(guò)解決與植樹(shù)有關(guān)的問(wèn)題去發(fā)現、總結乘法中的運算定律。
(二)猜想驗證,總結規律;
1、引導為主探索乘法交換律
、盘岢霾孪
。ǔ鍪局黝}圖)“請同學(xué)們仔細觀(guān)察圖上的數學(xué)信息,你能提出一個(gè)用一步乘法解決的數學(xué)問(wèn)題嗎? ”(學(xué)生提,師板書(shū))
“你們還有不一樣的算式嗎?”(板書(shū)兩個(gè)算式。)
“同樣的問(wèn)題我們列出了兩個(gè)不同的算式,但結果是一樣的。那我們可以說(shuō)25×4=4×25!保ò鍟(shū)算式)
觀(guān)察這個(gè)算式,用自己的話(huà)說(shuō)一說(shuō)你發(fā)現了什么?
“通過(guò)這樣一個(gè)式子,我們發(fā)現兩個(gè)因數交換位置,積不變。那么,我們只是提出了一個(gè)猜想,這個(gè)規律能否試用于所有的乘法呢?我們還需要進(jìn)一步的驗證。
、乞炞C猜想
說(shuō)一說(shuō),你們打算怎樣驗證這個(gè)規律呢?
、堑贸鼋Y論
匯報。
小結:通過(guò)剛才的猜想、驗證,可以證實(shí)我們發(fā)現的規律不是偶然的,它可以應用于所有的乘法。
。ò鍟(shū):乘法交換律)
“你們能用字母來(lái)表示乘法交換律嗎?”
、刃〗Y:我們已經(jīng)探索出了乘法交換律。請同學(xué)們回憶一下,剛才我們是按怎樣的'過(guò)程總結出乘法交換律的呢?
引導學(xué)生回答:先解決實(shí)際問(wèn)題——發(fā)現規律——猜想——舉例驗證——得出結論
2、自主探索乘法結合律
按《友情提示單》自主探究學(xué)習。
(1) 提出活動(dòng)要求。
(2) 學(xué)生活動(dòng)。
(3) 匯報總結并板書(shū)。
(4) 用字母表示乘法結合律并板書(shū)。
三、鞏固應用,拓展總結
(一)基本練習
1、書(shū)后做一做第1題
2、你根據乘法運算定律,猜一猜小貓背后的數。37頁(yè)2題(猜數、說(shuō)說(shuō)用了哪條運算定律。)
(二) 綜合練習
課件出示小精靈的問(wèn)題,說(shuō)說(shuō)你們的發(fā)現。(交流、匯報)
小結:交換律是兩個(gè)數相加交換位置、兩個(gè)數相乘交換位置的規律。結合律是三個(gè)數相加、或三個(gè)數相乘,改變運算順序的規律。
(三)拓展練習
完成做一做第2題。
1.提出一個(gè)用兩步乘法計算的數學(xué)問(wèn)題并獨立解決?
2.匯報
小結:計算三個(gè)數相乘時(shí),乘積是整十、整百、整千的數先相乘,這樣計算簡(jiǎn)便。
四、課堂小結
回憶一下這節課內容,說(shuō)說(shuō)你有什么收獲?(重點(diǎn)說(shuō)你學(xué)會(huì )了什么?怎么得到的和怎么發(fā)現的。)
《乘法運算定律》的教學(xué)設計9
教學(xué)目標:
1、通過(guò)探索乘法分配律中的活動(dòng),學(xué)生進(jìn)一步體驗探索規律的過(guò)程,初步學(xué)習體會(huì )提出猜想的方法及類(lèi)比,說(shuō)理,舉例論證的方式,發(fā)展學(xué)生的思維力,創(chuàng )造力。
2、引導學(xué)生在探索的過(guò)程中,自主發(fā)現乘法分配律,并能用字母表示。
3、能夠運用乘法的分配律進(jìn)行簡(jiǎn)便計算。
重點(diǎn)、難點(diǎn):
重點(diǎn):學(xué)生參與推導乘法分配律的過(guò)程。
難點(diǎn):乘法分配律的推理及運用。
教學(xué)過(guò)程:
一、回顧激趣,提出猜想、
。1)同學(xué)們,學(xué)習新課前,我們先來(lái)回顧學(xué)過(guò)的運算定律。找出共同點(diǎn)?和或積同。
乘法交換律的字母公式()。乘法結合律的字母公式()……、
。ㄔO計意圖:四個(gè)公式板書(shū)在黑板,以便與乘法分配律對比)
。2)利用學(xué)過(guò)的長(cháng)方形周長(cháng)內容得出兩種不同解題方法。剛才的計算中你發(fā)現這兩道題有什么關(guān)系嗎?2×(37+63)2×37 + 2×63
教師讓學(xué)生比較兩個(gè)算式的異同點(diǎn),并指名說(shuō)一說(shuō)自己找出的規律。
引導學(xué)生發(fā)現:這兩個(gè)算式的運算順序不同,但結果相同,兩道題其實(shí)可以互相轉化,可以用一個(gè)等式表示:2×(37+63)=2×37 + 2×63
。3)將學(xué)生的知識遷移到本節課新授內容,在課的開(kāi)始,積極調動(dòng)學(xué)生學(xué)習積極性。
二、引導探究,發(fā)現規律。
1、(我們下面就一起來(lái)驗證一下這位同學(xué)的猜想在其它的題里也是否成立?請看大屏幕。)
我班同學(xué)男生27人,女生25人,每人植樹(shù)3棵,共植樹(shù)?棵(植樹(shù)節3、12)
。1)全班同學(xué)獨立完成。
。2)誰(shuí)愿意把自己的方法說(shuō)給大家聽(tīng)聽(tīng)。(生回答,師板書(shū))
還有不一樣的方法嗎?誰(shuí)來(lái)說(shuō)說(shuō)看?(生回答,師板書(shū))
板書(shū):(27+25)×3 27×3+25×3
評講:算式(27+25)×3和27×3+25×3的每一步各表示什么?誰(shuí)能說(shuō)給大家聽(tīng)聽(tīng)?
。3)觀(guān)察這兩個(gè)算式,你有什么發(fā)現?
引導學(xué)生比較兩個(gè)算式異同點(diǎn),并指名學(xué)生說(shuō)一說(shuō)自己想法,思路。
生:這兩個(gè)算式的得數是一樣的。
師:是的,雖然他們的格式不同,但他們的得數相同,所以我們可以用一個(gè)符號把這兩個(gè)算式聯(lián)系起來(lái)。
生:等于號
師:對,用等于號相連,表示這兩個(gè)式子是相等的,一起讀一讀,認識這兩種方法的結果是一樣的`,師:再和前面的一組式子一起觀(guān)察,
。ㄗ寣W(xué)生通過(guò)讀,感悟到左邊是兩個(gè)數的和乘一個(gè)數,右邊的兩個(gè)數的積加上兩個(gè)數的積)
2、舉例驗證,進(jìn)一步感受
認真觀(guān)察屏幕上的這個(gè)等式,你還能舉出幾個(gè)類(lèi)似的例子來(lái)驗證嗎?(板書(shū):舉例)
。1)驗證方法:要求每人出兩組算式,數字隨意舉例,進(jìn)行計算,驗證你舉的例子是否相等。然后拿到小組內交流(學(xué)生小組合作交流,教師巡視指導。)
。2)學(xué)生回報:誰(shuí)來(lái)說(shuō)一說(shuō)自己舉的例子。
。3)同學(xué)們,請看一看這三個(gè)同學(xué)舉的例子,每組的結果都是相同的,我們就可以用等號把它們連接起來(lái)。(板書(shū))
。4)輕聲讀這些等式,你發(fā)現了什么?
。ㄔO計意圖:通過(guò)多個(gè)例子,揭示乘法分配律的普遍規律)
3、歸納總結,概括規律。
。1)現在誰(shuí)能說(shuō)一說(shuō)這些等式有什么共同特點(diǎn)?(板書(shū):總結)(運算順序不同但結果相同)
。2)從剛才的舉例過(guò)程中,你能發(fā)現乘法運算中的規律嗎?
學(xué)生回報。
。ǔ鍪荆簝蓚(gè)數的和與一個(gè)數相乘,可以用兩個(gè)加數分別與這個(gè)數相乘,再把兩個(gè)積相加,結果不變。這叫做乘法的分配律。)
同學(xué)們發(fā)現的這個(gè)知識規律,叫做乘法分配律。(板書(shū):乘法分配律)
。3)如果用a、b、c分別表示三個(gè)數,你會(huì )用字母表示乘法分配律嗎?
結合學(xué)生回答,教師板書(shū):(a+b)×c=a×c+b×c齊聲讀兩遍。
。4)對于乘法分配律,用字母來(lái)表示,感覺(jué)怎樣。
與乘法交換律、結合律想對照:a×b=b×a(a×b)×c=a×(b×c)
。╝+b)×c=a×c+b×c比較有什么不同?
。ㄔO計意圖:增強學(xué)生對乘法分配律涉及到加法的運算難點(diǎn)的理解)
三、加強應用、深化理解
1、根據運算定律,在()填上適當的數。
(10+7) ×6=()×6+7×()8×(125+9)=()×125+()×9
7×48+7×52=()×(48+52)(7×48+7×52中有相同因數嗎?)
。ㄔO計意圖:通過(guò)具體的練習理解乘法分配律)
2、火眼金睛看一看:判斷下面算式是否正確?并說(shuō)明理由?
56×(19+28)= 56×19+28 ( )
32×(7×3)= 32×7+32×3 ( )
25×12+12×75 = 12×(25+75)( )
25×99+25 =(99+1)×25 ( )
3、利用乘法分配律,計算下列各題。
( 80 + 4 ) ×25 34 ×72 + 34 ×28 88×125試做
師小結:通過(guò)前兩道題的計算,我們可以看出,乘法分配律是互逆的。為了使計算簡(jiǎn)便,我們既可以從左邊算式得到右邊算式,又可以從右邊算式得到左邊算式。但遇到實(shí)際計算時(shí),要因題而異。
4、34×10+27×10+39×10可不可以用乘法分配律
師:說(shuō)明乘法分配律,不僅僅只適用于兩個(gè)數的和,也可以三個(gè)數的和,四個(gè)數的和可以嗎?說(shuō)明也可以是:幾個(gè)數的和與一個(gè)數相乘,可以先把它們分別與這個(gè)數相乘,再相加。(修改乘法分配律的板書(shū))
5、找朋友
師:如果一個(gè)同學(xué)說(shuō)出乘法分配律的左邊部分,那你就說(shuō)出它的右邊部分,如果他說(shuō)出的是右邊部分,你就對出左邊部分?凑l(shuí)反應快。
6、24×8—4×8=(24—4)×8嗎?
師:說(shuō)明乘法分配律,不僅僅只適用于兩個(gè)數的和,也可以是兩個(gè)數的差,三個(gè)數的差可以嗎?說(shuō)明也可以是:幾個(gè)數的和(或差)與一個(gè)數相乘,可以先把它們分別與這個(gè)數相乘,再相加(或相減)。(設計意圖:拓展書(shū)本上乘法分配律的概念)
7、用簡(jiǎn)便方法計算下列各題。(8+4)×25 34×72+34×28
。ㄔO計意圖:概念只有在具體的練習中才能逐步理解,概念教學(xué)必須當堂采用講練相結合的方法,學(xué)生才能消化抽象的概念)
四、總結:
1、這節課你的收獲是什么?什么叫做乘法分配律?(設計意圖:不能讓總結性提問(wèn)只是走了過(guò)場(chǎng),通過(guò)這個(gè)環(huán)節切實(shí)起到梳理知識,提高學(xué)生總結能力)
2、如果把乘法分配律中的加法改成減號,等式是否依然成立?根據乘法分配律,你能把下列等式填寫(xiě)完整嗎?同學(xué)們課后交流一下,下節數學(xué)課我們再繼續研究。
教師激發(fā)學(xué)生好勝心:在乘法分配律中有許多變化,題里辨別出用乘法分配律簡(jiǎn)算的題呢?36×99+36 73×31+28×31—31
3、思考:填寫(xiě)完整:
a×(m-n)= a×125+b×125-c×125。
【《乘法運算定律》的教學(xué)設計】相關(guān)文章:
乘法運算定律教學(xué)設計05-26
《乘法運算定律 》 教學(xué)設計07-04
乘法運算定律的教學(xué)設計07-02
乘法運算定律教學(xué)反思06-19
關(guān)于《整數乘法運算定律推廣到分數乘法》的教學(xué)設計06-30
《整數乘法運算定律推廣到小數乘法》優(yōu)秀教學(xué)設計07-03
乘法運算定律教學(xué)設想與反思06-18