八年級直角三角形全等的判定第三課時(shí)教學(xué)設計
教學(xué)建議
直角三角形全等的判定
知識結構
重點(diǎn)與難點(diǎn)分析:
本節課教學(xué)方法主要是“自學(xué)輔導與發(fā)現探究法”。力求體現知識結構完整、知識理解完整;注重學(xué)生的參與度,在師生共同參與下,探索問(wèn)題、動(dòng)手試驗、發(fā)現規律、做出歸納。讓學(xué)生直接參加課堂活動(dòng),將教與學(xué)融為一體。具體說(shuō)明如下:
(1)由“先教后學(xué)”轉向“先學(xué)后教
本節課開(kāi)始,讓同學(xué)們自己思考問(wèn)題:判定三角形全等的方法有四種,如果這兩個(gè)三角形是直角三角形,那么判定它們全等的方法有哪些呢?學(xué)生展開(kāi)討論,初步形成意見(jiàn),然后由教師答疑。這樣促進(jìn)了學(xué)生學(xué)習,體現了以“學(xué)生為主體”的教育思想。
(2)在層次教學(xué)中培養學(xué)生的思維能力
本節課的層次主要表現為兩個(gè)方面:一是對公理的多層次理解;二是綜合練習的多層次變化。
公理的多層次理解包括:明確公理的條件及結論;公理的文字語(yǔ)言、圖形語(yǔ)言、符號語(yǔ)言的理解及掌握;公理的作用。這里特別強調三個(gè)方面:
1、特殊三角形的`特殊性;
2、歸納總結判定直角三角形全等的方法。
綜合練習的多層次變化:首先給出直接應用公理證明三角形全等的題目;然后給出變式題目;最后給出綜合應用題目。這里注意兩點(diǎn):一是給出題目后先讓學(xué)生獨立思考,并按教材的形式嚴格書(shū)寫(xiě)。二是給出的綜合題目有一定的難度,教學(xué)時(shí),要注意引導學(xué)生分析問(wèn)題解決問(wèn)題的思考方法。
教法建議:
由“先教后學(xué)”轉向“先學(xué)后教”
本節課開(kāi)始,讓同學(xué)們自己思考問(wèn)題:判定三角形全等的方法有四種,如果這兩個(gè)三角形是直角三角形,那么判定它們全等的方法有哪些呢?學(xué)生展開(kāi)討論,初步形成意見(jiàn),然后由教師答疑。這樣促進(jìn)了學(xué)生學(xué)習,體現了以“學(xué)生為主體”的教育思想。
(2)在層次教學(xué)中培養學(xué)生的思維能力
本節課的層次主要表現為兩個(gè)方面:一是對公理的多層次理解;二是綜合練習的多層次變化。
公理的多層次理解包括:明確公理的條件及結論;公理的文字語(yǔ)言、圖形語(yǔ)言、符號語(yǔ)言的理解及掌握;公理的作用。這里特別強調三個(gè)方面:
1、特殊三角形的特殊性;
2、歸納總結判定直角三角形全等的方法。
綜合練習的多層次變化:首先給出直接應用公理證明三角形全等的題目;然后給出變式題目;最后給出綜合應用題目。這里注意兩點(diǎn):一是給出題目后先讓學(xué)生獨立思考,并按教材的形式嚴格書(shū)寫(xiě)。二是給出的綜合題目有一定的難度,教學(xué)時(shí),要注意引導學(xué)生分析問(wèn)題解決問(wèn)題的思考方法。
教學(xué)目標:
1、知識目標:
(1)掌握已知斜邊、直角邊畫(huà)直角三角形的畫(huà)圖方法;
(2)掌握斜邊、直角邊公理;
(3)能夠運用HL公理及其他三角形全等的判定方法進(jìn)行證明和計算.
2、能力目標:
(1)通過(guò)尺規作圖使學(xué)生得到技能的訓練;
(2)通過(guò)公理的初步應用,初步培養學(xué)生的邏輯推理能力.
3、情感目標:
(1)在公理的形成過(guò)程中滲透:實(shí)驗、觀(guān)察、歸納;
(2)通過(guò)知識的縱橫遷移感受數學(xué)的系統特征。
教學(xué)重點(diǎn):SSS公理、靈活地應用學(xué)過(guò)的各種判定方法判定三角形全等。
教學(xué)難點(diǎn):靈活應用五種方法(SAS、ASA、AAS、SSS、HL)來(lái)判定直角三角形全等。
教學(xué)用具:直尺,微機
教學(xué)方法:自學(xué)輔導
教學(xué)過(guò)程:
1、新課引入
投影顯示
問(wèn)題:判定三角形全等的方法有四種,若這兩個(gè)三角形是直角三角形,那么判定它們全等的方法有哪些呢?
這個(gè)問(wèn)題讓學(xué)生思考分析討論后回答,教師補充完善。
2、公理的獲得
讓學(xué)生概括出HL公理。然后和學(xué)生一起畫(huà)圖做實(shí)驗,根據三角形全等定義對公理進(jìn)行驗證。(這里用尺規畫(huà)圖法)
公理:有斜邊和一條直角邊對應相等的兩個(gè)直角三角形全等。
應用格式: (略)
強調說(shuō)明:
(1)、格式要求:先指出在哪兩個(gè)三角形中證全等;再按公理順序列出三個(gè)條件,并用括號把它們括在一起;寫(xiě)出結論。
(2)、判定兩個(gè)直角三角形全等的方法。
(3)特殊三角形研究思想。
3、公理的應用
(1)講解例1(投影例1)
例1求證:有一條直角邊和斜邊上的高對應相等的兩個(gè)直角三角形全等。
學(xué)生思考、分析、討論,教師巡視,適當參與討論。找學(xué)生代表口述證明思路。
分析:首先要分清題設和結論,然后按要求畫(huà)出圖形,根據題意寫(xiě)出、已知求證后,再寫(xiě)出證明過(guò)程。
證明:(略)
(2)講解例2。學(xué)生分析完成,教師注重完成后的點(diǎn)評。)
例2:如圖2,△ABC中,AD是它的角平分線(xiàn),且BD=CD,DE、DF分別垂直于A(yíng)B、AC,垂足為E、F.
求證:BE=CF
分析: BE和CF分別在△BDE和△CDF中,由條件不能直接證其全等,但可先證明△AED≌△AFD,由此得到DE=DF
證明:(略)
(3)講解例3(投影例3)
例3:如圖3,已知△ABC中,∠BAC=,AB=AC,AE是過(guò)A的一條直線(xiàn),且B、C在A(yíng)E的異側,BD⊥AE于D,CE⊥AE于E,求證:
(1)BD=DE+CE
(2)若直線(xiàn)AE繞A點(diǎn)旋轉到圖4位置時(shí)(BD(3)若直線(xiàn)AE繞A點(diǎn)旋轉到圖5時(shí)(BDCE),其余條件不變,BD與DE、CE的關(guān)系怎樣?請直接寫(xiě)出結果,不須證明
學(xué)生口述證明思路,教師強調說(shuō)明:閱讀問(wèn)題的思考方法及思想。
4、課堂小結:
(1)判定直角三角形全等的方法:5個(gè)(SAS、ASA、AAS、SSS、HL)在這些方法的條件中都至少包含一條邊。
(2)直角三角形判定方法的綜合運用
讓學(xué)生自由表述,其它學(xué)生補充,自己將知識系統化,以自己的方式進(jìn)行建構。
5、布置作業(yè):
a、書(shū)面作業(yè)P79#7、9
b、上交作業(yè)P80#5、6
板書(shū)設計:
探究活動(dòng)
直角形全等的判定
如圖(1)A、E、F、C在一條直線(xiàn)上,AE=CF,過(guò)E、F分別作DE⊥AC,BF⊥AC,
若AB=CD求證:BD平分EF。若將△DEC的邊EC沿AC方向移動(dòng)變?yōu)槿鐖D(2)時(shí),其余條件不變,上述結論是否成立,請說(shuō)明理由。
【八年級直角三角形全等的判定第三課時(shí)教學(xué)設計】相關(guān)文章:
直角三角形全等的判定說(shuō)課稿11-02
三角形全等的判定2教學(xué)設計05-16
八年級上冊數學(xué)直角三角形全等的判定教學(xué)計劃03-07
《全等三角形的判定》教案設計06-15
三角形全等的判定教學(xué)反思12-18
《三角形全等的判定》教學(xué)反思08-29
三角形全等的判定教學(xué)反思08-11
《三角形全等的判定》教學(xué)反思07-30