最大公因數教學(xué)反思
身為一名優(yōu)秀的人民教師,教學(xué)是我們的任務(wù)之一,教學(xué)的心得體會(huì )可以總結在教學(xué)反思中,如何把教學(xué)反思做到重點(diǎn)突出呢?以下是小編為大家整理的最大公因數教學(xué)反思,希望對大家有所幫助。
最大公因數教學(xué)反思1
教學(xué)內容:第26~28頁(yè)的例3、例4、“練一練”、“練習五”的第1~5題。
目標預設:
1、理解公因數的含義,掌握求兩個(gè)公因數和最大公因數的方法。
2、經(jīng)歷“猜測——驗證”的數學(xué)學(xué)習過(guò)程,感受科學(xué)探究的一般方法,培養抽象思維能力,積累數學(xué)活動(dòng)經(jīng)驗。
3、感受數學(xué)的奇妙,培養對數學(xué)的積極情感。
教學(xué)重點(diǎn)和難點(diǎn):理解公因數的含義,掌握求兩個(gè)數最大公因數的方法。
課程實(shí)施:
一、自主構建公因數意義
1、出示邊長(cháng)6厘米、邊長(cháng)4厘米的小正方形個(gè)若干以及一個(gè)長(cháng)18厘米、寬12厘米的長(cháng)方形。
猜一猜:你覺(jué)得哪一種正方形可以將這個(gè)正方形鋪滿(mǎn)。
2、組織學(xué)生同桌合作,擺放小正方形,
教師要幫助學(xué)有困難的小組完成活動(dòng)任務(wù)。
3、交流:邊長(cháng)6厘米的正方形紙可以正好鋪滿(mǎn)這個(gè)長(cháng)方形。
為什么邊長(cháng)6厘米的正方形正好鋪滿(mǎn)這個(gè)長(cháng)方形?
結合剛才的操作活動(dòng)體驗,學(xué)生明白:因為12÷6=2(豎排放2行),18÷6=3(橫排放3列),也就是6既是12的因數,也是18的因數,所以可以正好擺滿(mǎn)。
4、討論:還有哪些邊長(cháng)是整厘米的正方形紙片也能正好鋪滿(mǎn)這個(gè)長(cháng)方形?簡(jiǎn)單地解釋自己推測的理由。
5、只要邊長(cháng)的厘米數既是12的因數,又是18的因數,就能正好鋪滿(mǎn)這個(gè)長(cháng)方形嗎?
6、提問(wèn):4是12和18的公因數嗎?
7、通過(guò)剛才的學(xué)習,你有什么話(huà)想說(shuō)嗎?
二、獨立探索找公因數的方法。
1、8和12的公因數有哪些?最大公因數是幾?
放手讓學(xué)生自己探索解決問(wèn)題的方法。
2、交流:學(xué)生出現的方法:
。1)、分別寫(xiě)出8和12的因數,再找一找他們的公因數;
。2)、先找8的因數,再從8的因數中找12的因數;
……
交流時(shí)結合自己的方法說(shuō)說(shuō)這樣找的理由,
3、“集合圈”
我們同樣也可以用集合圈表示8和12的公因數。
出示集合圈,先讓學(xué)生自己填寫(xiě),再說(shuō)說(shuō)每一部分表示的含義。
4、觀(guān)察比較,感受公因數的有限性,
公因數的集合圈與公倍數有什么不同的地方?為什么公因數集合圈中不需要省略號?引導學(xué)生從“因數的有限性”推想出“兩個(gè)數的公因數的個(gè)數是有限的”。
5、練一練
先讓學(xué)生根據要求完成。通過(guò)交流,進(jìn)一步理解找兩個(gè)數公因數和最大公因數的方法,感受兩者的聯(lián)系與區別,
三.促進(jìn)知識向技能的轉化
1、“練習五”第1題
讓學(xué)生獨立完成,進(jìn)一步理解集合圈的表示方法,深化對求兩個(gè)數最大公因數的方法的認識。
2、“練習五”第4題
、畔茸寣W(xué)生自主判斷第一組數,然后交流各自的方法,比較得出“利用2.3.5倍數的特征”進(jìn)行判斷,可以提高正確率。
、瞥鍪酒渌麕捉M讓學(xué)生選擇合理的方法進(jìn)行判斷,同時(shí)提醒兩個(gè)數的公因數可以有2.3.5中的多個(gè),為后面學(xué)習月份積累策略。
3、“練習五”第5題
要啟發(fā)學(xué)生用不同的方法找出每組數的最大公因數,提倡靈活運用各種策略快速解題,
四、通過(guò)本節課的學(xué)習,你有哪些收獲?
五.作業(yè)布置
“練習五”第2.3題
課后反思:
這部分內容的結構與“公倍數和最小公倍數”基本相同,結合具體的情境,引導學(xué)生通過(guò)觀(guān)察、操作、分析、比較、抽象和概括等活動(dòng),探索并理解公因數、最大公因數的含義,掌握求兩個(gè)數的最大公因數的方法。
1、我讓學(xué)生依托動(dòng)手操作,加強對比觀(guān)察,溝通新舊知識的聯(lián)系,優(yōu)化概念引進(jìn)的過(guò)程。在教學(xué)例3時(shí),我分四步組織學(xué)生
的活動(dòng)。第一步,讓學(xué)生“分別用邊長(cháng)6厘米和4厘米的正方形紙片鋪長(cháng)18厘米、寬12厘米的長(cháng)方形”,鋪前先思考:邊長(cháng)是多少的正方形可以鋪滿(mǎn)這個(gè)長(cháng)方形?通過(guò)操作,學(xué)生都知道邊長(cháng)6厘米的正方形可以鋪滿(mǎn)長(cháng)18厘米、寬12厘米的長(cháng)方形。引導學(xué)生具體感知公因數的含義。第二步,組織討論“還有哪些邊長(cháng)是整厘米數的正方形紙片也能正好鋪滿(mǎn)這個(gè)長(cháng)方形”,通過(guò)思考,學(xué)生明白:“只要邊長(cháng)的厘米數既是12的因數,又是18的因數,就能正好鋪滿(mǎn)”這個(gè)長(cháng)方形。第三步,可以先讓學(xué)生說(shuō)一說(shuō)1、2、3和6的共同特征,再告訴學(xué)生1、2、3和6的共同特征,再告訴學(xué)生“1、2、3和6既是12的因數,又是18的因數,它們是12和18的公因數。第四步,讓學(xué)生說(shuō)一說(shuō)4為什么不是12和18的公因數,使學(xué)生加深對公因數含義的理解,知道4是12的因數,但不是18的因數,所以4就不是12和18的公因數。通過(guò)正、反兩方面的比較,優(yōu)化概念的形成。
2、著(zhù)眼于問(wèn)題的'解決,鼓勵學(xué)生自主探索,逐步形成概念結構。教學(xué)例4是,我讓學(xué)生先獨立思考,用自己的方法找出8和12的公因數和最大的公因數。再通過(guò)交流,使學(xué)生在相互啟發(fā)的過(guò)程中進(jìn)一步打開(kāi)思路,明確方法。由于學(xué)生已經(jīng)積累了較為豐富的求兩個(gè)數的最小公倍數的方法,因而這里的重點(diǎn)是讓學(xué)生在自主探索的基礎上合乎邏輯地表達自己的思考過(guò)程,并體會(huì )不同方法的內在一致性。這時(shí),我適時(shí)引導學(xué)生建立概念結構:因數——公因數——最大公因數,并且辨析這些概念的聯(lián)系與區別。此外,考慮到學(xué)生也已經(jīng)初步認識了用集合圖表示兩個(gè)相交的集合圈,所以我讓學(xué)生根據對有關(guān)概念的理解,獨立把8和12的因數分別填在集合圖中的合適部分,然后再看圖說(shuō)說(shuō)各自的想法,說(shuō)說(shuō)每一個(gè)區域內的數分別表示什么,把靜態(tài)的集合圖轉化成動(dòng)態(tài)的探索對象,讓學(xué)生加深對集合圖的理解,也使集合思想的滲透落到實(shí)處。
3、練習的重點(diǎn)是讓學(xué)生通過(guò)操作和填空,進(jìn)一步理解求公因數和最大公因數的方法。讓學(xué)生在解決問(wèn)題的過(guò)程中提煉解題策略,優(yōu)化概念應用的過(guò)程。
最大公因數教學(xué)反思2
【多問(wèn)幾個(gè)為什么】
1、出差兩天,今日回來(lái),與孩子們繼續暢游《公倍數和公因數》單元。
思維一旦被激發(fā),就有點(diǎn)一發(fā)不可收拾。
從第一課時(shí)開(kāi)始,孩子們與我是完全浸潤在了公倍數與公因數的歡樂(lè )中。我的態(tài)度也從一開(kāi)始對教材安排的質(zhì)疑,到現在極力擁護教材的安排。
只有放手給孩子們一個(gè)構建的機會(huì ),孩子們才能在構建過(guò)程中頻頻發(fā)起智慧的邀請。
在學(xué)習公倍數的時(shí)候,課上巧遇“思維定勢”,孩子們以為兩個(gè)數的公倍數就是它們的乘積;但是在解決書(shū)本上的6和9的公倍數是多少時(shí),猛然發(fā)現,這個(gè)方法不能次次實(shí)施。孩子們提出了一系列猜想。其中小彧發(fā)現,如果將錯就錯,把6和9相乘,也可以,但是要除以它們的最大公因數。并且,小彧通過(guò)舉例,把這個(gè)發(fā)現從特殊上升到了一般。
因為當時(shí)還未學(xué)習公因數,我就躲避了問(wèn)題的內里。
小何在備學(xué)中說(shuō),我最大的.問(wèn)題是,我知道小彧的說(shuō)法是對的,但是為何6和9兩個(gè)數相乘,再除以最大公因數,得到的就是最小公倍數,其中的道理是什么?
呵呵,好家伙,知道了是什么,自覺(jué)追問(wèn)了為什么?
明天我們要對本章節的內容做個(gè)整體梳理,我準備結合短除法,讓孩子們意識到小何追問(wèn)思想的可貴,以及這個(gè)方法可行之處究竟是什么。
2、孩子們很愛(ài)思考,從第一課時(shí)的下課時(shí)間開(kāi)始,就發(fā)現兩個(gè)數若有倍數關(guān)系,它們的最小公倍數很奇妙,就是較大的數。
第二課時(shí),我們通過(guò)教材上的習題,一起說(shuō)了這個(gè)規律,即訴說(shuō)了看到的表面現象。
孩子們還不甘心,提出了問(wèn)題,為什么兩個(gè)數是倍數關(guān)系,最小公倍數就是大的那個(gè)數呢?
一時(shí)安靜后,好幾個(gè)孩子舉高手,并說(shuō)清了原因:大數本身是小數的倍數,大數又是自己最小的倍數,理所應當是兩數的最小公倍數。
3、公倍數的種種猜想,在學(xué)習公因數的時(shí)候,思想方法得到了遷移。
第一課時(shí),孩子們提出各種猜想,求最大公因數,會(huì )不會(huì )也像公倍數中兩個(gè)數有特殊關(guān)系,就能輕松的求出結果?
【孩子們+數學(xué)=好玩!
要做找公倍數的上本子作業(yè)了,我板書(shū)給孩子們看書(shū)寫(xiě)格式,他們拉著(zhù)臉。
我說(shuō),我小時(shí)候,就是寫(xiě)這么多字的。不過(guò),我可以介紹你們寫(xiě)一種簡(jiǎn)單的,用“【】”包住兩個(gè)數,中間用逗號隔開(kāi),這樣就能代替寫(xiě)這么多字。孩子們一看,多方便呀!居然都“啪啪啪”鼓起掌來(lái),哈!
我滿(mǎn)懷愜意的說(shuō),你們的掌聲與微笑中包含著(zhù)對數學(xué)簡(jiǎn)潔美的追求!
孩子們爽歪歪了。
不過(guò)事后,一個(gè)資深老師告訴我,這個(gè)環(huán)節,如果讓孩子們創(chuàng )造一下,如何追求簡(jiǎn)潔。也許,這樣對于孩子們的思維發(fā)展更有效。一想,我也同意這般。
一節課,只要知識目標達成,那么,過(guò)程方法與情意目標是不可分割的。學(xué)生在達成過(guò)程方法目標的旅程中,豈有不快樂(lè ),不感受到豐富體驗的?
最大公因數教學(xué)反思3
“因數和倍數”的知識,向來(lái)是小學(xué)數學(xué)教學(xué)的難點(diǎn)!白畲蠊驍怠边@節課是在學(xué)生掌握了因數、倍數、找因數的基礎上進(jìn)行的,通過(guò)這節課的學(xué)習,學(xué)生會(huì )說(shuō)出兩個(gè)數的公因數和最大公因數,會(huì )求兩個(gè)數的`最大公因數,并為后面學(xué)習分數的約分打好基礎。反思這節課我認為有以下幾點(diǎn):
一、精心設計數學(xué)活動(dòng),讓學(xué)生大膽探究。
1、通過(guò)找8和12的因數,引出公因數的概念。
教師引導學(xué)生先寫(xiě)出8和12的因數,再觀(guān)察發(fā)現8和12有公有的因數,自然引出了公因數的概念。然后通過(guò)集合圈的形式,直觀(guān)呈現什么是公因數,什么又是最大公因數。促進(jìn)學(xué)生建立”公因數和最大公因數”的概念。
2、通過(guò)找18和27的最大公因數,掌握找最大公因數的方法。
掌握了公因數的概念之后,教師放手給予學(xué)生足夠的時(shí)間,讓學(xué)生自主探究找最大公因數的方法。交流反饋時(shí),考慮到中下水平的學(xué)生,教師只匯報了書(shū)本中的三種基本方法,并沒(méi)有提到短除法。
二、思路清晰,環(huán)環(huán)相扣。
本節課,教師從認識公因數——理解最大公因數——探究找最大公因數的方法——相應的練習鞏固這幾個(gè)環(huán)節入手,每個(gè)環(huán)節都是層層遞進(jìn),環(huán)環(huán)相扣,促進(jìn)了學(xué)生對概念的理解。
《數學(xué)課程標準》指出:“學(xué)生是學(xué)習的主人,教師是數學(xué)學(xué)習的組織者、引導者與合作者!痹诒竟澱n中,我努力將找最大公因數的概念教學(xué)課,設計成為學(xué)生探索問(wèn)題,解決問(wèn)題的過(guò)程,各個(gè)環(huán)節的學(xué)習流程,體現了教師是組織者——提供數學(xué)學(xué)習的材料;引導者——引導學(xué)生利用各種途徑找到公因數,最大公因數;合作者——與學(xué)生共同探討規律。在整個(gè)教學(xué)的過(guò)程中,學(xué)生真正成了課堂學(xué)習的主人,尋找最大公因數的方法是通過(guò)學(xué)生積極主動(dòng)地探索以及不斷地中驗證得到的,所以整節課學(xué)生個(gè)性得到發(fā)揮。
最大公因數教學(xué)反思4
一、,找一個(gè)數的因數
要成對找,這在教學(xué)因數時(shí)就是一個(gè)難點(diǎn)。
二、教學(xué)例題3時(shí),應先組織學(xué)生大膽猜測:“哪種紙片能正好鋪滿(mǎn)這個(gè)長(cháng)方形?”再讓學(xué)生實(shí)踐驗證。
猜測、驗證的過(guò)程是學(xué)生進(jìn)行探究活動(dòng)的必要途徑。在實(shí)踐驗證的過(guò)程中,我緊扣用邊長(cháng)( )厘米的正方形鋪長(cháng)方形,能鋪( )層,每層鋪( )個(gè)。并與其中有兩種正方形不能正好鋪滿(mǎn)長(cháng)方形的情況作比較,組織學(xué)生交流:“怎樣的正方形才能正好鋪滿(mǎn)這個(gè)長(cháng)方形?”由于前面鋪墊充分,學(xué)生很順利地得出了結論。例題3的'教學(xué), “哪種哪種紙片能正好鋪滿(mǎn)這個(gè)長(cháng)方形?”“還有哪些邊長(cháng)整厘米數的正方形能正好鋪滿(mǎn)這個(gè)長(cháng)方形?”“任何兩個(gè)數的公因數個(gè)數都是有限的嗎?”將學(xué)生的思維一步步引向深入,就能激發(fā)學(xué)生自主探究的熱情。
三、教學(xué)例4時(shí),應充分放手讓學(xué)生探索8和12的公因數以及最大公因數。
交流中,應充分肯定學(xué)生的方法,學(xué)生在交流中出現問(wèn)題時(shí),應讓他們自我修正,自我完善。并對四種方法進(jìn)行比較“看哪種方法更便捷”。最大公因數的概念也要通過(guò)練習,讓學(xué)生自己談對最大公因數的感悟。
最大公因數教學(xué)反思5
公因數和最大公因數這一課應注重引導學(xué)生體驗“概念形成”的過(guò)程,讓學(xué)生“研究學(xué)習”、“自主探索”,學(xué)生不應是被動(dòng)接受知識的容器,而應是在學(xué)習過(guò)程中主動(dòng)積極的參與者,是認知過(guò)程的探索者,是學(xué)習活動(dòng)的主體。
我是這樣組織教學(xué)的:
在教學(xué)過(guò)程中,我們不僅要求學(xué)生掌握抽象的數學(xué)結論,更應注重學(xué)生概念形成的過(guò)程。應引導學(xué)生參與探討知識的`形成過(guò)程,盡可能挖掘學(xué)生潛能,能讓學(xué)生通過(guò)努力,自己解決問(wèn)題,形成概念。通過(guò)創(chuàng )設生活情境,幫助王叔叔鋪地裝,將學(xué)生自然地帶入求知的情境中去,在學(xué)生已有知識經(jīng)驗的基礎上放手讓學(xué)生去交流、探索!澳囊粋(gè)正方形紙片能正好鋪滿(mǎn)長(cháng)16厘米寬12厘米的長(cháng)方形,為什么?”這樣更利于培養學(xué)生自主探索、提出問(wèn)題和解決問(wèn)題的能力。接著(zhù)進(jìn)一步引導學(xué)生思考“還有哪些正方形紙片也能正好鋪滿(mǎn)長(cháng)16厘米寬12厘米的長(cháng)方形?”“為什么邊長(cháng)是1厘米、2厘米、4厘米的地磚可以正好鋪滿(mǎn)?而邊長(cháng)是3厘米的正方形地磚不能正好鋪滿(mǎn)?”讓學(xué)生在反復地思考和交流中加深對公因數這一概念的理解。
教師拋出問(wèn)題后,讓學(xué)生獨立探究。為了解決問(wèn)題,學(xué)生充分調動(dòng)了已有知識經(jīng)驗、方法、技能,找出“16和12的公因數和最大公因數”。在這個(gè)過(guò)程中,由學(xué)生自己建構了公因數和最大公因數的概念,是真正主動(dòng)探索知識的建構者,而不是模仿者,充分的發(fā)掘了學(xué)生的自主意識。
思考:
1.增強師生和生生之間的互動(dòng)
在教學(xué)過(guò)程中各個(gè)環(huán)節的銜接不夠緊湊,本課時(shí)的教學(xué)內容比較枯燥,在課堂上如何調動(dòng)學(xué)生的積極性,活躍課堂氣氛,使學(xué)生學(xué)的輕松、扎實(shí)。今后的教學(xué)中,在這一點(diǎn)上要都多下功夫。本課時(shí)的教學(xué)中,在組織學(xué)生交流找“16和12的公因數”的方法時(shí),指名回答的形式過(guò)于單調,有的同學(xué)沒(méi)有選著(zhù)擺一擺的方法,而是直接用邊長(cháng)去除以小正方形邊長(cháng)來(lái)判斷,我沒(méi)有很好利用學(xué)生生成的資源,幫助學(xué)生理解,局限學(xué)生的思維發(fā)展。
2.方法多樣化和方法優(yōu)化
在組織學(xué)生進(jìn)行交流時(shí),應該注重引導學(xué)生有層次地介紹各種不同的方法。同時(shí)還要引導學(xué)生進(jìn)行方法的比較和優(yōu)化。
最大公因數教學(xué)反思6
一、我認為,這節課的閃光點(diǎn)有以下幾個(gè)方面:
1、在復習的過(guò)程中,引導學(xué)生復習用多種方法找每個(gè)數的因數,豐富學(xué)生解決問(wèn)題的多樣性。
2、通過(guò)復習、發(fā)現、總結,什么是公因數及最大公因數,在研究的過(guò)程中交流、總結自己的發(fā)現。
3、通過(guò)填寫(xiě)集合圖,使學(xué)生了解集合的思想,并進(jìn)一步體會(huì )公因數和最大公因數的關(guān)系。
4、通過(guò)練一練活動(dòng),引導學(xué)生獨立發(fā)現并總結出:(1)倍數關(guān)系的兩個(gè)數,最大的數就是這兩個(gè)數的最大公因數;(2)公因數只有“1”的兩個(gè)數(互質(zhì)數),它們的最大公因數就是這兩個(gè)數的乘積。
5、在進(jìn)一步的練習中,在學(xué)生獨立解決問(wèn)題的基礎上,讓學(xué)生說(shuō)出自己的思考方法,進(jìn)行集體交流,相互學(xué)習,豐富學(xué)生解決問(wèn)題的策略。
二、這節課的不足,有以下幾方面:
1、教學(xué)過(guò)程中,缺少對學(xué)生學(xué)習情況的評價(jià)特別是鼓勵性的評價(jià)。
2、教學(xué)思想“由一般到抽象”的過(guò)程體現的.不夠明了。
3、對于教材的拓展不夠深入。
三、改進(jìn)措施:
1、加強和提高對學(xué)生評價(jià)的意識,重視評價(jià)的功能。
2、在備課時(shí),要清楚把握教學(xué)內容的梯度,使教學(xué)思想融入教學(xué)過(guò)程之中。
3、加強對教材的拓展,切實(shí)做到以教材為載體,以教學(xué)內容為導向,發(fā)展學(xué)生的數學(xué)能力。
最大公因數教學(xué)反思7
教材共提供了三種不同的方式求兩個(gè)數的最大公因數,方法一:分別寫(xiě)出兩個(gè)數的因數,再找最大公因數;方法二:先找出一個(gè)數的所有因數,再看哪些因數是另一個(gè)數的因數,最后從中找出最大的;方法三:用分解質(zhì)因數的方法找兩個(gè)數的最大公因數。我還給學(xué)生補充了用短除法求最大公因數。這么多方法,教師應該向學(xué)生重點(diǎn)推薦哪種呢?教材中補充拓展的分解質(zhì)因數方法學(xué)生是否都應掌握呢?短除法是否都應掌握呢?方法一與方法二相比,由于第一種方法便于觀(guān)察比較,十分直觀(guān)。因此,在課堂教學(xué)中許多學(xué)生暗暗地就選擇了它。方法二與方法三相比,在數據偏大且因數較多時(shí),如果用分解質(zhì)因數的方法來(lái)求最大公因數不僅正確率高,而且速度也會(huì )大幅提高。但是用分解質(zhì)因數的方法來(lái)求最大公因數對一些學(xué)生來(lái)說(shuō)又有相當的難度,至于為什么要把兩個(gè)數全部公有的質(zhì)因數相乘,一些學(xué)生還不太明白。
在教學(xué)中,我認為教師不能僅僅只是介紹,還有必要讓學(xué)生們掌握這種方法技能。用短除法求最大公因數我感覺(jué)比較簡(jiǎn)單,學(xué)生好接受,好理解。但是短除法求最大公因數一直要除到所得的'商是互質(zhì)數時(shí)為止。如果用此法,學(xué)生必須首先認識“互質(zhì)數”,并能正確判斷。雖然有關(guān)“互質(zhì)數”的內容教材83頁(yè)“你知道嗎”中有所涉及,相應知識的考查在練習十五第6題中也有所體現。至于學(xué)生選用哪種策略找兩個(gè)數的最大公因數,我并不強求。從作業(yè)反饋情況來(lái)看,多數學(xué)生更喜歡方法一,但是我們要提醒學(xué)生養成先觀(guān)察數據特點(diǎn),然后再動(dòng)筆的習慣。如兩個(gè)數正好成倍數關(guān)系或互質(zhì)數關(guān)系時(shí),許多學(xué)生仍舊按部就班地采用一般策略來(lái)解決,全班只有少數的學(xué)生能夠根據“當兩個(gè)數成倍數關(guān)系時(shí),較小數就是它們的最大公因數”的規律快速找到最大公因數。在這一方面,教師在教學(xué)中要率先垂范,做好榜樣。在鞏固練習過(guò)程中,也應加強訓練,每次動(dòng)筆練習之前補充一個(gè)環(huán)節——觀(guān)察與思考。使學(xué)生除了掌握基本策略方法外,還能靈活快捷地求出一些特例來(lái)。
這節課本來(lái)想把教材練習十五的習題講解完,但是時(shí)間不夠用了,只好下節課再講。
最大公因數教學(xué)反思8
本課是在學(xué)生掌握了因數、倍數、找因數的基礎上進(jìn)行教學(xué),通過(guò)找公因數的過(guò)程,讓學(xué)生懂得找公因數的基本方法。在此基礎上,引出公因數和最大公因數的概念,為了加深理解,可以進(jìn)一步引導學(xué)生觀(guān)察分析、討論,讓學(xué)生明確找兩個(gè)數公因數的方法,并對找有特征的數字的最大公因數的特殊方法有所體驗。在此過(guò)程中要注意鼓勵每一個(gè)學(xué)生參與探索,重視引發(fā)學(xué)生思考,注重學(xué)生間的交流,讓學(xué)生用自己的語(yǔ)言表述自己的發(fā)現,但不要歸納成固定的模式讓學(xué)生記憶。對于找公因數有困難的學(xué)生,教師要從方法上作進(jìn)一步指導!稊祵W(xué)課程標準》指出:“學(xué)生是學(xué)習的主人,教師是數學(xué)學(xué)習的組織者、引導者與合作者!痹诒竟澱n中,我努力將找最大公因數的概念教學(xué)課,設計成為學(xué)生探索問(wèn)題,解決問(wèn)題的.過(guò)程,這樣設計各個(gè)環(huán)節的教學(xué)流程,體現了教師是組織者——提供數學(xué)學(xué)習的材料;引導者——引導學(xué)生利用各種途徑找到公因數,最大公因數;合作者——與學(xué)生共同探討規律。在整個(gè)教學(xué)的過(guò)程中,學(xué)生真正成了課堂學(xué)習的主人,尋找最大公因數的方法是通過(guò)學(xué)生積極主動(dòng)地探索以及不斷地中驗證得到的,所以整節課學(xué)生個(gè)性得到發(fā)揮,課堂成了學(xué)習的天地。
最大公因數教學(xué)反思9
對于本節課,我覺(jué)得有以下需要解決和認識。
1.復習尋找因數的方法。
2.聯(lián)系實(shí)際體會(huì )學(xué)習尋找公因數的必要性。
3.探索尋找2個(gè)數的'公因數和最大公因數的方法。
4.結合集合方法直觀(guān)顯示公因數和最大公因數。
5.理解學(xué)習公因數和最大公因數的意義以及應用。
6.結合短除法尋找最大公因數的方法。(這個(gè)在人教版中作為了解,在本課中,我向孩子們了解介紹,但未做要求)
在課上,我以為長(cháng)16dm寬12dm的客廳鋪上正方形方磚,剛好鋪滿(mǎn),能選用集中方磚,這在無(wú)形中蘊含這尋找16和12的因數,這樣能夠孩子們體會(huì )尋找公因數的必要性,引起探究欲望。
孩子們有不同的方法和方式去表示公因數的方式,在最后介紹集合方式,在交集中更直觀(guān)現實(shí)公因數,這樣更直觀(guān)的顯示,初步滲透集合思想。
學(xué)習短除法也為后面教學(xué)約分做好先知鋪墊,也為孩子們介紹一種尋找最大公因數的簡(jiǎn)便方法,滿(mǎn)足不同水平學(xué)生學(xué)習的需要。
最大公因數教學(xué)反思10
一.教學(xué)設計學(xué)科名稱(chēng):
北師大版數學(xué)五年級上冊《找最大公因數》
二.所在班級情況,學(xué)生特點(diǎn)分析:
我校地處城郊,所帶班級學(xué)生共25人,學(xué)生的思維比較活躍,比較善于提出數學(xué)問(wèn)題,能在小組合作學(xué)習中主動(dòng)探究知識。本冊一單元,學(xué)生已經(jīng)理解了因數和倍數的意義,能用乘法算式、集合等方式列舉出一個(gè)數的因數。因此用列舉法找最大公因數沒(méi)有困難。而利用因數關(guān)系、互質(zhì)數關(guān)系找還有一定的難度。因為學(xué)生不易發(fā)現這兩個(gè)數具有這些關(guān)系。
三.教學(xué)內容分析:
教材直接呈現了找公因數的一般方法:先用想乘法算式的方式分別找出12和18 的因數,再找出公因數和最大公因數。在此基礎上,引出公因數與最大公因數的概念。教材用集合的方式呈現探索的過(guò)程。在練習1、2中引出了用因數關(guān)系、互質(zhì)數關(guān)系找最大公因數,教師要引導學(xué)生發(fā)現這個(gè)方法并會(huì )運用。教師要注意讓學(xué)生經(jīng)歷知識的形成過(guò)程,要重視引發(fā)學(xué)生的數學(xué)思考。
四.教學(xué)目標:
知識與技能:探索找兩個(gè)數的公因數的方法,會(huì )用列舉法找出兩個(gè)數的公因數和最大公因數。
過(guò)程與方法:經(jīng)歷找兩個(gè)數的公因數的過(guò)程,理解公因數和最大公因數的意義。
情感、態(tài)度與價(jià)值:培養學(xué)生對學(xué)習數學(xué)的興趣。通過(guò)觀(guān)察、分析、歸納等數學(xué)活動(dòng),體驗數學(xué)問(wèn)題的探索性和挑戰性,感受數學(xué)思考的條理性。
五.教學(xué)難點(diǎn)分析:
教學(xué)重點(diǎn):探索找兩個(gè)數的公因數的方法,會(huì )用列舉法找出兩個(gè)數的公因數和最大公因數。
教學(xué)難點(diǎn):經(jīng)歷找兩個(gè)數的公因數的過(guò)程,理解公因數和最大公因數的意義。
六.教學(xué)課時(shí):
一課時(shí)
七.教學(xué)過(guò)程:
(一)復習
師:出示3×4=12,( )是12的因數。
生:3和4是12的因數。
(二)探究新知
1、認識公因數和最大公因數
。1)師:除了3和4是12的因數,12的因數還有哪些?
生獨立完成后匯報,板書(shū) 12的因數有:1、2、3、4、6、12。
師:要找出一個(gè)數的全部因數,需要注意什么?
生:要一對一對有序地寫(xiě),這樣才不會(huì )遺漏。
師:照這樣的方法,請你寫(xiě)出18的全部因數。
生獨立寫(xiě)后匯報:18的因數有:1、2、3、6、9、18
。ù藭r(shí)出示集合圖)
師:在這兩個(gè)圈里,應該填上什么數?請大家完成正在書(shū)45頁(yè)上。
生做后匯報師板書(shū)于圈中。
。2)師:請大家找一找在12和18的因數中,有沒(méi)有相同的因數,相同的因數有哪幾個(gè)。
生找出12和18相同的因數有:1、2、3、6
師:像這樣,既是12的因數,又是18的因數,我們就說(shuō)這些數都是12和18的公因數。
師:這里最大的公因數是幾?
生:最大是6。
師:6就是12和18的最大公因數。這就是我們這節課學(xué)習的內容——找最大公因數。
板書(shū)課題:找最大公因數
。ù藭r(shí)出示集合圖)
師:中間這一區域有什么特征?應該填什么數字?獨立思考后小組討論
。ㄉ纸M討論)
匯報:中間區域是12的.因數和18的因數的交叉區域,所填的數應該既是12的因數又是18的因數,也就是12和18的公因數填在這里。
師:請大家完成這個(gè)題。(生做后訂正)
2、探索找最大公因數的方法
(1)列舉法
剛才我們找最大公因數的方法叫做列舉法。(板書(shū):列舉法)
請大家用這種方法找出下面每組數的最大公因數。 9和15
(2)利用因數關(guān)系找
師:請大家翻到書(shū)第45頁(yè),獨立完成第一題。
生匯報:
8的因數: 1、2、4、8
16的因數: 1、2、4、8、16
8和16的公因數: 1、2、4、8
8和16的最大公因數是 8
師引導學(xué)生觀(guān)察最后一句,想想8和16之間是什么關(guān)系,與他們的最大公因數有什么關(guān)系?
生獨立思考后分組討論。
生匯報:8是16的因數,所以8和16的最大公因數就是8。
師引導生歸納并板書(shū):如果較小數是較大數的因數,那么較小數就是這兩個(gè)數的最大公因數。(板書(shū):用因數關(guān)系找)
練習:找出下面每組數的最大公因數。 4和12 28和7 54和9
(3)利用互質(zhì)數關(guān)系找
師:請大家獨立完成第二題。
生匯報:
5的因數: 1、5
7的因數: 1、7
5和7的最大公因數是 1
師引導學(xué)生觀(guān)察最后一句5和7之間是什么關(guān)系,與他們的最大公因數有什么關(guān)系?
生獨立思考后分組討論。
生匯報:5和7都是質(zhì)數,所以5和7的最大公因數就是1。
師:像這樣只有公因數1的兩個(gè)數叫互質(zhì)數。如果兩個(gè)數是互質(zhì)數,那么它們的公因數只有1。(板書(shū):用互質(zhì)數關(guān)系找)
練習:找出下面每組數的最大公因數。 4和5 11和7 8和9
(4)整理找最大公因數的方法
師:今天我們學(xué)習了用哪些方法找最大公因數?
生:列舉法,用因數關(guān)系找,用互質(zhì)數關(guān)系找。
師:我們在做題時(shí),要觀(guān)察給出的數字的特征選用不同的方法。
(三)練習
書(shū)46頁(yè)3、4、5題。生獨立完成,師巡視指導。
(四)全課小結
這節課你有什么收獲?
八.課堂練習:
在括號里填寫(xiě)每組數的最大公因數
6和18( ) 14和21( ) 15和25( )
12和8( ) 16和24( ) 18和27( )
9和10( ) 17和18( ) 24和25( )
九.作業(yè)安排:
完成練習冊上的習題
十. 附錄(教學(xué)資料及資源):
1、教師用書(shū):北師大版五年級數學(xué)上冊
2、數字卡片
十一. 自我問(wèn)答:
短除法求最大公因數在書(shū)中暫時(shí)沒(méi)有出現,只在求最小公倍數后以“你知道嗎”的形式出現,但這種方法我覺(jué)得很實(shí)用,不知教材的意圖是什么?究竟怎樣處理?
教學(xué)反思:
本節課是在學(xué)生掌握了因數、倍數、找因數的基礎上進(jìn)行教學(xué),通過(guò)解決故事中的問(wèn)題,讓學(xué)生逐層深入地懂得找公因數的基本方法。在此基礎上,引出公因數和最大公因數的概念,在填寫(xiě)公因數時(shí),學(xué)生往往容易出現重復的現象。
在教學(xué)過(guò)程中,我鼓勵孩子歸納總結找最大公因數特征和方法。先看兩個(gè)數是不是倍數關(guān)系,如果是倍數關(guān)系,那么小的那個(gè)數就是最大公因數。如果兩個(gè)數是互質(zhì)數或者是相鄰的兩個(gè)自然數,那么這兩個(gè)數的最大公因數就是1。
找最大公因數時(shí),我向學(xué)生介紹了短除法,當數字比較大時(shí),用短除法比較簡(jiǎn)單。
最大公因數教學(xué)反思11
本課是在學(xué)生已經(jīng)理解和掌握倍數、因數的含義,初步學(xué)會(huì )找一個(gè)數的倍數和因數,知道一個(gè)數的倍數和因數的特點(diǎn)的基礎上進(jìn)行教學(xué)的。這部分內容既是“數與代數”領(lǐng)域基礎知識的重要組成部分,又是進(jìn)一步學(xué)習約分和通分以及分數四則計算的基礎。
第一節課,根據教材是以鋪地磚的生活實(shí)際作為切入點(diǎn),要鋪整分米數的地磚而且要求要整數塊,引入了求兩個(gè)數的公因數的必要性。教材主要的教學(xué)方法是先分別求出兩個(gè)數的因數,并按照從大到小的順序排列出來(lái),從而找出兩個(gè)數的'公有因數,稱(chēng)為這兩個(gè)數的公因數,其中最大的數就是這兩個(gè)數的最大公因數。通過(guò)例1的教學(xué)后,我引導學(xué)生總結出求兩數的公因數以及最大公因數的方法。練習時(shí)發(fā)現部分學(xué)生還是容易在找一個(gè)數的因數的有疏漏,導致求出來(lái)的公因數和最大公因數出錯。
第二節課,我引入了求最大公因數的另一種方法,分解質(zhì)因數法,介紹用短除法求兩個(gè)數的最大公因數。這種方法學(xué)生掌握起來(lái)比較容易,但也發(fā)現部分學(xué)生沒(méi)有除盡,最后的商不是互質(zhì)數,導致找錯最大公因數。
不過(guò)相對于第一鐘方法,第二種方法在書(shū)寫(xiě)上更簡(jiǎn)便,學(xué)生解題時(shí)還是比較容易理解,寫(xiě)起來(lái)也比較簡(jiǎn)潔,大部分學(xué)生在求幾個(gè)數的最大公因數時(shí)還會(huì )選擇第二種方法。當然,我還是鼓勵學(xué)生選擇自己喜歡的方法,關(guān)鍵是能理解,懂應用。
最大公因數教學(xué)反思12
“公因數和最大公因數”是第三單元第三課時(shí)的內容,在此之前,已經(jīng)學(xué)過(guò)了公倍數和最小公倍數,掌握了公倍數和最小公倍數的概念和求法,這節課的教學(xué)過(guò)程與公倍數的教學(xué)非常相似,吸取了公倍數教學(xué)時(shí)的教訓,本節課教學(xué)公因數概念的時(shí)候,我先讓學(xué)生讀題,說(shuō)清題意,再進(jìn)行操作,這樣以來(lái)學(xué)生是帶著(zhù)問(wèn)題去操作的,不像公倍數時(shí)部分學(xué)生題目都理解不了就開(kāi)始動(dòng)手操作,不能完全達到本題操作的目的。在教學(xué)求公因數方法的時(shí)候,我也讓學(xué)生與公倍數求法進(jìn)行了比較,通過(guò)比較學(xué)生發(fā)現了公倍數是無(wú)限的',沒(méi)有給定范圍時(shí)要寫(xiě)省略號,而公因數是有限個(gè)的,要寫(xiě)好句號,表示書(shū)寫(xiě)完成;還發(fā)現找公倍數時(shí)是找最小公倍數,而找公因數是最大公因數;還發(fā)現求公因數的方法中是先找小數的因數再從其中找大數的因數,而求公倍數卻是利用大數翻倍法,找出來(lái)的是大數的倍數,再從其中找出小數的倍數。不僅兩個(gè)例題的教學(xué)過(guò)程相似,連練習的設計也是相似的,所以學(xué)生在完成練習的時(shí)候,已經(jīng)對練習的形式較為熟悉,練習完成的較好。正因為兩節課太相似,所以小部分學(xué)生已經(jīng)有些混淆了,分不清怎么求公倍數,怎么求公因數,這個(gè)是在以后教學(xué)中要避免的。
這節課的作業(yè)也能反映一些本節課上的問(wèn)題,在教學(xué)公倍數的時(shí)候,我沒(méi)有強調集合中元素的互異性,作業(yè)中不少學(xué)生在公倍數一欄填寫(xiě)的數字,同時(shí)出現在左右部分的集合中,在這節課練習時(shí),我特意強調了這一點(diǎn),希望學(xué)生們能記住,在完成練習五的時(shí)候還發(fā)現,部分學(xué)生對于2、3、的倍數的特征記得不清楚了,所以在判斷是不是它們的倍數的時(shí)候還有一些人用大數去除以2、3、5的方法來(lái)判斷,耽誤了很多的時(shí)間,這是我上課之前沒(méi)有想到的,要是在做這一題之前先讓學(xué)生回憶2、3、5的倍數的特征,想必他們會(huì )節省更多的時(shí)間。
最大公因數教學(xué)反思13
本節課教學(xué)的內容是認識公因數、最大因數以及求兩個(gè)數的最大公因數的方法,這些知識是在學(xué)生掌握了因數、倍數、找因數的基礎上教學(xué)的。結合本節課的特點(diǎn),聯(lián)系本班學(xué)生的實(shí)際情況,教師在教學(xué)過(guò)程中做了如下的嘗試
一、適時(shí)地滲透集合思想。在教學(xué)例1時(shí),解題過(guò)程不僅呈現了用列舉法解決問(wèn)題。還引導學(xué)生用集合圖來(lái)表示答案,從而滲透了集合思想,為后續的學(xué)習奠定感性認識。
二、關(guān)注學(xué)生探究活動(dòng)的空間,將自主探究活動(dòng)貫徹始終。在教學(xué)中,教師為學(xué)生創(chuàng )設了三次自主探究的'機會(huì )。即一在情境中通過(guò)動(dòng)手操作認識公因數,二用集合圖表示因數之間的關(guān)系,三用自己的方法求出兩個(gè)數的最大公因數。在這幾次的探究活動(dòng)中,教師始終積極地調動(dòng)學(xué)生的情感,啟發(fā)他們主動(dòng)參與,引導學(xué)生感知、理解,從而在腦中形成系統的知識體系。
本節課是教學(xué)運用最大公因數的有關(guān)知識來(lái)解決生活中的實(shí)際問(wèn)題。通過(guò)創(chuàng )設生活情境,讓學(xué)生借助學(xué)具擺一擺,算一算或在紙上用彩筆畫(huà)一畫(huà)的方法把出現的幾種情況記錄下來(lái),既提高學(xué)生的學(xué)習積極性,也讓學(xué)生體會(huì )到新知與生活的密切聯(lián)系。同時(shí),通過(guò)引導學(xué)生自主探索、組織交流并驗證結論,讓學(xué)生體會(huì )獲得成功的喜悅,更加積極地探索新知,掌握所學(xué)知識。
本節課的不足之處在于練習部分時(shí)間過(guò)于倉促,沒(méi)有足夠的時(shí)間讓學(xué)生交流與理解,部分學(xué)困生掌握不夠到位。這需要教師在今后教堂中合理安排時(shí)間,避免時(shí)間過(guò)于緊迫。
最大公因數教學(xué)反思14
1、創(chuàng )設情境引入新知。
我在教學(xué)時(shí),改變教材中從單調的計算引出概念的做法,而是創(chuàng )設情景,通過(guò)生動(dòng)有趣的畫(huà)面,吸引學(xué)生積極思維,其特有的感染力和表現力,能直觀(guān)生動(dòng)地對學(xué)生心理起到催化作用,有效地激發(fā)了學(xué)生探究新知識的興趣,使教與學(xué)始終處于活化狀態(tài)。
2、合理利用教材。
“循環(huán)小數”是學(xué)生較難準確地掌握和表述的一個(gè)概念,特別是表述其意義的“從某一位起”、“依次”、“不斷”、“重復出現”等抽象說(shuō)法,學(xué)生難以理解。這節課的內容也較多,我打破教材編排順序,將教學(xué)內容重新整合,靈活處理教材,先以王鵬喜歡跑步引入計算400÷75讓學(xué)生計算發(fā)現商中重復出現一個(gè)相同的數字,再以王鵬喜歡游泳引出計算25÷22讓學(xué)生計算發(fā)現商中有兩個(gè)不斷重復出現的數字。從而引導學(xué)生發(fā)現發(fā)現商的.特點(diǎn),引出“循環(huán)小數”。這樣可以將難點(diǎn)分散,各個(gè)擊破。
3、引導學(xué)生探索,讓學(xué)生成為真正的參與者。
《數學(xué)課程標準》指出:“教師應激發(fā)學(xué)生的學(xué)習積極性,向學(xué)生提供充分從事數學(xué)活動(dòng)的機會(huì ),幫助他們在自主探索和合作交流的過(guò)程中真正理解和掌握基本的數學(xué)知識與技能、數學(xué)思想和方法,獲得廣泛的數學(xué)活動(dòng)經(jīng)驗!睌祵W(xué)學(xué)習不應是簡(jiǎn)單個(gè)體接受知識的過(guò)程,而是一個(gè)主體對自己感興趣的且是現實(shí)的生活性主題的探究與發(fā)展的過(guò)程。在新課中,我首先從生活中的現象入手,再引導學(xué)生主動(dòng)探究數學(xué)中的問(wèn)題,通過(guò)讓學(xué)生選擇自己感興趣的信息試算、觀(guān)察、分析、比較、討論等學(xué)習方式充分調動(dòng)學(xué)生多種感官的參與,給學(xué)生提供自主合作探究的空間,讓學(xué)生全面參與新知的發(fā)生、發(fā)展和形成過(guò)程,使學(xué)生真正體驗到探究的樂(lè )趣和做數學(xué)的價(jià)值。
當然,在這節課中也有很多不足之處。如我在教學(xué)中過(guò)多地注意預設,使教學(xué)放不開(kāi)手腳,環(huán)節安排趨于飽和,這樣壓縮了學(xué)生思維空間,在今后的教學(xué)中,特別是環(huán)節預設應在于精、在于厚實(shí)。
最大公因數教學(xué)反思15
教學(xué) 例3時(shí)先用邊長(cháng)6厘米和4厘米的正方形紙片,分別鋪長(cháng)18厘米、寬12厘米的長(cháng)方形,教師選擇正方形紙片鋪長(cháng)方形的活動(dòng)教學(xué)公因數,是因為這一活動(dòng)能吸引學(xué)生發(fā)現和提出問(wèn)題,能引導學(xué)生思考。學(xué)生用同兩張正方形紙片分別鋪一個(gè)不同的長(cháng)方形,面對出現的兩種結果,會(huì )發(fā)現“為什么有時(shí)正好鋪滿(mǎn)、有時(shí)不能”,“什么時(shí)候正好鋪滿(mǎn)、什么時(shí)候不能”這些有研究?jì)r(jià)值的問(wèn)題。他們沿著(zhù)長(cháng)方形的邊鋪正方形紙片,就會(huì )想到正好鋪滿(mǎn)與不能正好鋪滿(mǎn)的原因可能和邊長(cháng)有關(guān),于是產(chǎn)生進(jìn)一步研究長(cháng)方形邊長(cháng)和正方形邊長(cháng)關(guān)系的愿望。分析長(cháng)方形的長(cháng)、寬和正方形邊長(cháng)之間的關(guān)系,按學(xué)生的認知規律,設計成兩個(gè)層次: 第一個(gè)層次聯(lián)系鋪的過(guò)程與結果,從長(cháng)方形的長(cháng)、寬除以正方形的邊長(cháng)沒(méi)有余數和有余數的層面上,體會(huì )正好鋪滿(mǎn)與不能正好鋪滿(mǎn)的原因。第二個(gè)層次根據邊長(cháng)6厘米的正方形正好鋪滿(mǎn)長(cháng)18厘米、寬12厘米的長(cháng)方形、而邊長(cháng)4厘米的正方形不能正好鋪滿(mǎn)長(cháng)18厘米、寬12厘米的長(cháng)方形的經(jīng)驗,聯(lián)想邊長(cháng)幾厘米的正方形還能正好鋪滿(mǎn)長(cháng)18厘米、寬12厘米的長(cháng)方形。先找到這些正方形,把它們邊長(cháng)從小到大排列,知道這樣的正方形的個(gè)數是有限的。再用“既是12的因數,又是18的因數”概括地描述這些正方形邊長(cháng)的特征。顯然,前一層次形象思維的成分較大,思考難度較小,對后一層次的抽象認識有重要的支持作用。
反思:突出概念的內涵、外延,讓學(xué)生準確理解概念。
我用“既是……又是……”的描述,讓學(xué)生理解“公有”的意思。例3先聯(lián)系用邊長(cháng)1、2、3、6厘米的正方形正好能鋪滿(mǎn)長(cháng)18厘米、寬12厘米的長(cháng)方形紙片的現象,從長(cháng)方形的長(cháng)、寬分別除以正方形邊長(cháng)都沒(méi)有余數,得出正方形的邊長(cháng)“既是12的因數,又是18的因數”,一方面概括了這些正方形邊長(cháng)的特點(diǎn),另一方面讓學(xué)生體會(huì )“既是……又是……”的意思。然后進(jìn)一步概括 “1、2、3、6既是12的因數,又是18的因數,它們是12和18的'公因數”,形成公因數的概念。
由于知識的遷移,學(xué)生很容易想到用集合圖直觀(guān)形象地顯示公因數的含義。第27頁(yè)把8的因數和12的因數分別寫(xiě)到兩個(gè)集合圈里,這兩個(gè)集合圈有一部分重疊,在重疊部分里寫(xiě)的數既是8的因數,也是12的因數,是8和12的公因數。先觀(guān)察這個(gè)集合圖,再填寫(xiě)第28頁(yè)的集合圖,學(xué)生能進(jìn)一步體會(huì )公因數的含義。概念的外延是指這個(gè)概念包括的一切對象。
運用數學(xué)概念,讓學(xué)生探索找兩個(gè)數的最大公因數的方法。
例4教學(xué)求兩個(gè)數的最大公因數,出現了兩種解決問(wèn)題的方法。學(xué)生有的先分別寫(xiě)出8和12的因數,再找出它們的公因數和最大公因數。有的在8的因數里找12的因數,這樣操作比較方便,但容易遺漏。我有意引導學(xué)生選擇第一種。練習五的第3題就是這種方法的應用。
充分利用教育資源,自制課件,協(xié)助教學(xué)。
限于操作的局部性,我認真制作了實(shí)用的課件,讓直觀(guān)、清晰的頁(yè)面直接輔助我教學(xué),學(xué)生表現積極,課堂氣氛比較活躍,提問(wèn)、釋疑、解惑,練習的熱情很高。
本課設計目的是使學(xué)生學(xué)習公因數、最大公因數的意義,并學(xué)會(huì )找兩個(gè)數的最大公因數的方法,從整節課學(xué)生表現情況和課后作業(yè)反饋來(lái)看,學(xué)生對本部分知識知識掌握較好,學(xué)習積極并具有熱情,就實(shí)效性講很令人滿(mǎn)意。
【最大公因數教學(xué)反思】相關(guān)文章:
《最大公因數》教學(xué)反思07-01
《最大公因數》的教學(xué)反思07-01
《最大公因數》教學(xué)反思10-21
《最大公因數》教學(xué)反思01-15
《最大公因數》教學(xué)反思01-15
《最大公因數》教學(xué)反思01-15
公因數和最大公因數教學(xué)反思09-29
公因數和最大公因數的教學(xué)反思11-24