初三數學(xué)知識點(diǎn)總結集錦
總結是指社會(huì )團體、企業(yè)單位和個(gè)人在自身的某一時(shí)期、某一項目或某些工作告一段落或者全部完成后進(jìn)行回顧檢查、分析評價(jià),從而肯定成績(jì),得到經(jīng)驗,找出差距,得出教訓和一些規律性認識的一種書(shū)面材料,它能夠給人努力工作的動(dòng)力,不妨坐下來(lái)好好寫(xiě)寫(xiě)總結吧。我們該怎么去寫(xiě)總結呢?下面是小編精心整理的初三數學(xué)知識點(diǎn)總結,歡迎大家借鑒與參考,希望對大家有所幫助。
初三數學(xué)知識點(diǎn)總結 1
I.定義與定義表達式
一般地,自變量x和因變量y之間存在如下關(guān)系:y=ax^2+bx+c
a,b,c為常數,a≠0,且a決定函數的開(kāi)口方向,a0時(shí),開(kāi)口方向向上,a0時(shí),開(kāi)口方向向下,IaI還可以決定開(kāi)口大小,IaI越大開(kāi)口就越小,IaI越小開(kāi)口就越大,則稱(chēng)y為x的二次函數。
二次函數表達式的右邊通常為二次三項式。
II.二次函數的`三種表達式
一般式:y=ax^2+bx+c(a,b,c為常數,a≠0)
頂點(diǎn)式:y=a(x-h)^2+k [拋物線(xiàn)的頂點(diǎn)P(h,k)]
交點(diǎn)式:y=a(x-x)(x-x ) [僅限于與x軸有交點(diǎn)A(x ,0)和 B(x,0)的拋物線(xiàn)]
注:在3種形式的互相轉化中,有如下關(guān)系:
h=-b/2a k=(4ac-b^2)/4a x,x=(-b±√b^2-4ac)/2a
III.二次函數的圖像
在平面直角坐標系中作出二次函數y=x^2的圖像,可以看出,二次函數的圖像是一條拋物線(xiàn)。
初三數學(xué)知識點(diǎn)總結 2
直線(xiàn)、相交線(xiàn)、平行線(xiàn)
1、線(xiàn)段、射線(xiàn)、直線(xiàn)三者的區別與聯(lián)系
從圖形、表示法、界限、端點(diǎn)個(gè)數、基本性質(zhì)等方面加以分析。
2、線(xiàn)段的中點(diǎn)及表示
3、直線(xiàn)、線(xiàn)段的基本性質(zhì)(用線(xiàn)段的基本性質(zhì)論證三角形兩邊之和大于第三邊)
4、兩點(diǎn)間的距離(三個(gè)距離:點(diǎn)—點(diǎn);點(diǎn)—線(xiàn);線(xiàn)—線(xiàn))
5、角(平角、周角、直角、銳角、鈍角)
6、互為余角、互為補角及表示方法
7、角的'平分線(xiàn)及其表示
8、垂線(xiàn)及基本性質(zhì)(利用它證明直角三角形中斜邊大于直角邊)
9、對頂角及性質(zhì)
10、平行線(xiàn)及判定與性質(zhì)(互逆)(二者的區別與聯(lián)系)
11、常用定理:
、偻叫杏谝粭l直線(xiàn)的兩條直線(xiàn)平行(傳遞性);
、谕怪庇谝粭l直線(xiàn)的兩條直線(xiàn)平行。
初三數學(xué)知識點(diǎn)總結 3
1、圖形的相似
相似多邊形的對應邊的比值相等,對應角相等;
兩個(gè)多邊形的對應角相等,對應邊的比值也相等,那么這兩個(gè)多邊形相似;
相似比:相似多邊形對應邊的比值。
2、相似三角形
判定:
平行于三角形一邊的直線(xiàn)和其它兩邊相交,所構成的三角形和原三角形相似;
如果兩個(gè)三角形的三組對應邊的比相等,那么這兩個(gè)三角形相似;
如果兩個(gè)三角形的兩組對應邊的'比相等,并且相應的夾角相等,那么兩個(gè)三角形相似;
如果一個(gè)三角形的兩個(gè)角與另一個(gè)三角形的兩個(gè)角對應相等,那么兩個(gè)三角形相似。
3、相似三角形的周長(cháng)和面積
相似三角形(多邊形)的周長(cháng)的比等于相似比;
相似三角形(多邊形)的面積的比等于相似比的平方。
4、位似
位似圖形:兩個(gè)多邊形相似,而且對應頂點(diǎn)的連線(xiàn)相交于一點(diǎn),對應邊互相平行,這樣的兩個(gè)圖形叫位似圖形,相交的點(diǎn)叫位似中心。
初三數學(xué)知識點(diǎn)總結 4
鄰補角:兩條直線(xiàn)相交所構成的四個(gè)角中,有公共頂點(diǎn)且有一條公共邊的兩個(gè)角是鄰補角。
對頂角:一個(gè)角的兩邊分別是另一個(gè)叫的兩邊的反向延長(cháng)線(xiàn),像這樣的兩個(gè)角互為對頂角。
垂線(xiàn):兩條直線(xiàn)相交成直角時(shí),叫做互相垂直,其中一條叫做另一條的垂線(xiàn)。
平行線(xiàn):在同一平面內,不相交的兩條直線(xiàn)叫做平行線(xiàn)。
同位角、內錯角、同旁?xún)冉牵?/p>
同位角:∠1與∠5像這樣具有相同位置關(guān)系的一對角叫做同位角。
內錯角:∠2與∠6像這樣的一對角叫做內錯角。
同旁?xún)冉牵骸?與∠5像這樣的一對角叫做同旁?xún)冉恰?/p>
命題:判斷一件事情的語(yǔ)句叫命題。
平移:在平面內,將一個(gè)圖形沿某個(gè)方向移動(dòng)一定的距離,圖形的.這種移動(dòng)叫做平移平移變換,簡(jiǎn)稱(chēng)平移。
對應點(diǎn):平移后得到的新圖形中每一點(diǎn),都是由原圖形中的某一點(diǎn)移動(dòng)后得到的,這樣的兩個(gè)點(diǎn)叫做對應點(diǎn)。
初三數學(xué)知識點(diǎn)總結 5
一、重要概念
1.數的分類(lèi)及概念數系表:
說(shuō)明:分類(lèi)的原則:
1)相稱(chēng)(不重、不漏)
2)有標準
2.非負數:正實(shí)數與零的統稱(chēng)。(表為:x0)
性質(zhì):若干個(gè)非負數的和為0,則每個(gè)非負數均為0。
3.倒數:
、俣x及表示法
、谛再|(zhì):A.a1/a(a1);B.1/a中,aa1時(shí),1/aD.積為1。
4.相反數:
、俣x及表示法
、谛再|(zhì):A.a0時(shí),aB.a與-a在數軸上的位置;C.和為0,商為-1。
5.數軸:
、俣x(三要素)
、谧饔茫篈.直觀(guān)地比較實(shí)數的大小;B.明確體現絕對值意義;C.建立點(diǎn)與實(shí)數的一一對應關(guān)系。
6.奇數、偶數、質(zhì)數、合數(正整數-自然數)
定義及表示:
奇數:2n-1
偶數:2n(n為自然數)
7.絕對值:
、俣x(兩種):
代數定義:
幾何定義:數a的絕對值頂的幾何意義是實(shí)數a在數軸上所對應的點(diǎn)到原點(diǎn)的距離。
、讴│0,符號││是非負數的標志;
、蹟礱的`絕對值只有一個(gè);
、芴幚砣魏晤(lèi)型的題目,只要其中有││出現,其關(guān)鍵一步是去掉││符號。
二、實(shí)數的運算
1.運算法則(加、減、乘、除、乘方、開(kāi)方)
2.運算定律(五個(gè)-加法[乘法]交換律、結合律;[乘法對加法的]
分配律)
3.運算順序:A.高級運算到低級運算;B.(同級運算)從左
到右(如5 C.(有括號時(shí))由小到中到大。
三、應用舉例(略)
附:典型例題
1.已知:a、b、x在數軸上的位置如下圖,求證:│x-a│+│x-b│=b-a.
2.已知:a-b=-2且ab0,(a0,b0),判斷a、b的符號。
初三數學(xué)知識點(diǎn)總結 6
知識點(diǎn)1、概念
把形狀相同的圖形叫做相似圖形。(即對應角相等、對應邊的比也相等的圖形)
解讀:(1)兩個(gè)圖形相似,其中一個(gè)圖形可以看做由另一個(gè)圖形放大或縮小得到。
。2)全等形可以看成是一種特殊的相似,即不僅形狀相同,大小也相同。
。3)判斷兩個(gè)圖形是否相似,就是看這兩個(gè)圖形是不是形狀相同,與其他因素無(wú)關(guān)。
知識點(diǎn)2、比例線(xiàn)段
對于四條線(xiàn)段a,b,c,d,如果其中兩條線(xiàn)段的長(cháng)度的比與另兩條線(xiàn)段的長(cháng)度的比相等,即(或a:b=c:d)那么這四條線(xiàn)段叫做成比例線(xiàn)段,簡(jiǎn)稱(chēng)比例線(xiàn)段。
知識點(diǎn)3、相似多邊形的性質(zhì)
相似多邊形的性質(zhì):相似多邊形的對應角相等,對應邊的比相等。
解讀:(1)正確理解相似多邊形的定義,明確“對應”關(guān)系。
。2)明確相似多邊形的“對應”來(lái)自于書(shū)寫(xiě),且要明確相似比具有順序性。
知識點(diǎn)4、相似三角形的概念
對應角相等,對應邊之比相等的'三角形叫做相似三角形。
解讀:(1)相似三角形是相似多邊形中的一種;
。2)應結合相似多邊形的性質(zhì)來(lái)理解相似三角形;
。3)相似三角形應滿(mǎn)足形狀一樣,但大小可以不同;
。4)相似用“∽”表示,讀作“相似于”;
。5)相似三角形的對應邊之比叫做相似比。
知識點(diǎn)5、相似三角的判定方法
。1)定義:對應角相等,對應邊成比例的兩個(gè)三角形相似;
。2)平行于三角形一邊的直線(xiàn)截其他兩邊(或其他兩邊的延長(cháng)線(xiàn))所構成的三角形與原三角形相似。
。3)如果一個(gè)三角形的兩個(gè)角分別與另一個(gè)三角形的兩個(gè)角對應相等,那么這兩個(gè)三角形相似。
。4)如果一個(gè)三角的兩條邊與另一個(gè)三角形的兩條邊對應成比例,并且?jiàn)A角相等,那么這兩個(gè)三角形相似。
。5)如果一個(gè)三角形的三條邊分別與另一個(gè)三角形的三條邊對應成比例,那么這兩個(gè)三角形相似。
。6)直角三角形被斜邊上的高分成的兩個(gè)直角三角形與原三角形都相似。
知識點(diǎn)6、相似三角形的性質(zhì)
。1)對應角相等,對應邊的比相等;
。2)對應高的比,對應中線(xiàn)的比,對應角平分線(xiàn)的比都等于相似比;
。3)相似三角形周長(cháng)之比等于相似比;面積之比等于相似比的平方。
。4)射影定理
初三數學(xué)知識點(diǎn)總結 7
三角形的外心定義:
外心:是三角形三條邊的垂直平分線(xiàn)的交點(diǎn),即外接圓的圓心。
外心定理:三角形的三邊的垂直平分線(xiàn)交于一點(diǎn)。該點(diǎn)叫做三角形的外心。
三角形的外心的`性質(zhì):
1、三角形三條邊的垂直平分線(xiàn)的交于一點(diǎn),該點(diǎn)即為三角形外接圓的圓心;
2、三角形的外接圓有且只有一個(gè),即對于給定的三角形,其外心是的,但一個(gè)圓的內接三角形卻有無(wú)數個(gè),這些三角形的外心重合;
3、銳角三角形的外心在三角形內;
鈍角三角形的外心在三角形外;
直角三角形的外心與斜邊的中點(diǎn)重合。
在△ABC中
4、OA=OB=OC=R
5、∠BOC=2∠BAC,∠AOB=2∠ACB,∠COA=2∠CBA
6、S△ABC=abc/4R
初三數學(xué)知識點(diǎn)總結 8
1.不在同一直線(xiàn)上的三點(diǎn)確定一個(gè)圓。
2.垂徑定理垂直于弦的直徑平分這條弦并且平分弦所對的兩條弧
推論1 ①平分弦不是直徑的直徑垂直于弦,并且平分弦所對的兩條弧
、谙业拇怪逼椒志(xiàn)經(jīng)過(guò)圓心,并且平分弦所對的兩條弧
、燮椒窒宜鶎Φ囊粭l弧的直徑,垂直平分弦,并且平分弦所對的另一條弧
推論2圓的兩條平行弦所夾的弧相等
3.圓是以圓心為對稱(chēng)中心的中心對稱(chēng)圖形
4.圓是定點(diǎn)的距離等于定長(cháng)的點(diǎn)的集合
5.圓的內部可以看作是圓心的距離小于半徑的點(diǎn)的集合
6.圓的外部可以看作是圓心的距離大于半徑的點(diǎn)的集合
7.同圓或等圓的半徑相等
8.到定點(diǎn)的距離等于定長(cháng)的點(diǎn)的軌跡,是以定點(diǎn)為圓心,定長(cháng)為半徑的圓
9.定理在同圓或等圓中,相等的圓心角所對的弧相等,所對的弦相等,所對的弦的弦心距相等
10.推論在同圓或等圓中,如果兩個(gè)圓心角、兩條弧、兩條弦或兩弦的弦心距中有一組量相等那么它們所對應的其余各組量都相等。
11定理圓的內接四邊形的對角互補,并且任何一個(gè)外角都等于它的內對角
12.①直線(xiàn)L和⊙O相交d
、谥本(xiàn)L和⊙O相切d=r
、壑本(xiàn)L和⊙O相離d>r
13.切線(xiàn)的判定定理經(jīng)過(guò)半徑的外端并且垂直于這條半徑的直線(xiàn)是圓的切線(xiàn)
14.切線(xiàn)的性質(zhì)定理圓的切線(xiàn)垂直于經(jīng)過(guò)切點(diǎn)的半徑
15.推論1經(jīng)過(guò)圓心且垂直于切線(xiàn)的直線(xiàn)必經(jīng)過(guò)切點(diǎn)
16.推論2經(jīng)過(guò)切點(diǎn)且垂直于切線(xiàn)的直線(xiàn)必經(jīng)過(guò)圓心
17.切線(xiàn)長(cháng)定理從圓外一點(diǎn)引圓的兩條切線(xiàn),它們的切線(xiàn)長(cháng)相等,圓心和這一點(diǎn)的連線(xiàn)平分兩條切線(xiàn)的夾角
18.圓的外切四邊形的兩組對邊的和相等外角等于內對角
19.如果兩個(gè)圓相切,那么切點(diǎn)一定在連心線(xiàn)上
20.①兩圓外離d>R+r ②兩圓外切d=R+r
、.兩圓相交R-rr
、.兩圓內切d=R-rR>r ⑤兩圓內含dr
21.定理相交兩圓的連心線(xiàn)垂直平分兩圓的`公共弦
22.定理把圓分成nn≥3:
、乓来芜B結各分點(diǎn)所得的多邊形是這個(gè)圓的內接正n邊形
、平(jīng)過(guò)各分點(diǎn)作圓的切線(xiàn),以相鄰切線(xiàn)的交點(diǎn)為頂點(diǎn)的多邊形是這個(gè)圓的外切正n邊形
23.定理任何正多邊形都有一個(gè)外接圓和一個(gè)內切圓,這兩個(gè)圓是同心圓
24.正n邊形的每個(gè)內角都等于n-2×180°/n
25.定理正n邊形的半徑和邊心距把正n邊形分成2n個(gè)全等的直角三角形
26.正n邊形的面積Sn=pnrn/2 p表示正n邊形的周長(cháng)
27.正三角形面積√3a/4 a表示邊長(cháng)
28.如果在一個(gè)頂點(diǎn)周?chē)衚個(gè)正n邊形的角,由于這些角的和應為360°,因此k×n-2180°/n=360°化為n-2k-2=4
29.弧長(cháng)計算公式:L=n兀R/180
30.扇形面積公式:S扇形=n兀R^2/360=LR/2
31.內公切線(xiàn)長(cháng)= d-R-r外公切線(xiàn)長(cháng)= d-R+r
32.定理一條弧所對的圓周角等于它所對的圓心角的一半
33.推論1同弧或等弧所對的圓周角相等;同圓或等圓中,相等的圓周角所對的弧也相等
34.推論2半圓或直徑所對的圓周角是直角;90°的圓周角所對的弦是直徑
35.弧長(cháng)公式l=ar a是圓心角的弧度數r >0扇形面積公式s=1/2lr
初三數學(xué)知識點(diǎn)總結 9
單項式與多項式
僅含有一些數和字母的乘法包括乘方運算的式子叫做單項式單獨的一個(gè)數或字母也是單項式。
單項式中的數字因數叫做這個(gè)單項式或字母因數的數字系數,簡(jiǎn)稱(chēng)系數。
當一個(gè)單項式的系數是1或—1時(shí),“1”通常省略不寫(xiě)。
一個(gè)單項式中,所有字母的指數的和叫做這個(gè)單項式的次數。
如果在幾個(gè)單項式中,不管它們的系數是不是相同,只要他們所含的字母相同,并且相同字母的指數也分別相同,那么,這幾個(gè)單項式就叫做同類(lèi)單項式,簡(jiǎn)稱(chēng)同類(lèi)項所有的常數都是同類(lèi)項。
1、多項式
有有限個(gè)單項式的代數和組成的式子,叫做多項式。
多項式里每個(gè)單項式叫做多項式的項,不含字母的項,叫做常數項。
單項式可以看作是多項式的特例
把同類(lèi)單項式的系數相加或相減,而單項式中的字母的乘方指數不變。
在多項式中,所含的不同未知數的個(gè)數,稱(chēng)做這個(gè)多項式的元數經(jīng)過(guò)合并同類(lèi)項后,多項式所含單項式的個(gè)數,稱(chēng)為這個(gè)多項式的項數所含個(gè)單項式中次項的次數,就稱(chēng)為這個(gè)多項式的次數。
2、多項式的值
任何一個(gè)多項式,就是一個(gè)用加、減、乘、乘方運算把已知數和未知數連接起來(lái)的式子。
3、多項式的恒等
對于兩個(gè)一元多項式fx、gx來(lái)說(shuō),當未知數x同取任一個(gè)數值a時(shí),如果它們所得的值都是相等的,即fa=ga,那么,這兩個(gè)多項式就稱(chēng)為是恒等的記為fx==gx,或簡(jiǎn)記為fx=gx。
性質(zhì)1如果fx==gx,那么,對于任一個(gè)數值a,都有fa=ga。
性質(zhì)2如果fx==gx,那么,這兩個(gè)多項式的`個(gè)同類(lèi)項系數就一定對應相等。
4、一元多項式的根
一般地,能夠使多項式fx的值等于0的未知數x的值,叫做多項式fx的根。
多項式的加、減法,乘法
1、多項式的加、減法
2、多項式的乘法
單項式相乘,用它們系數作為積的系數,對于相同的字母因式,則連同它的指數作為積的一個(gè)因式。
3、多項式的乘法
多項式與多項式相乘,先用一個(gè)多項式等每一項乘以另一個(gè)多項式的各項,再把所得的積相加。
常用乘法公式
公式I平方差公式
a+ba—b=a^2—b^2
兩個(gè)數的和與這兩個(gè)數的差的積等于這兩個(gè)數的平方差。
初三數學(xué)知識點(diǎn)總結 10
一.有理數的運算
1.加法:
、偻栂嗉,取相同的符號,把絕對值相加。
、诋愄栂嗉,絕對值相等時(shí)和為0;絕對值不等時(shí),取絕對值較大的數的符號,并用較大的絕對值減去較小的絕對值。
、垡粋(gè)數與0相加不變。
2.減法:減去一個(gè)數,等于加上這個(gè)數的相反數。
3.乘法:
、賰蓴迪喑,同號得正,異號得負,絕對值相乘。
、谌魏螖蹬c0相乘得0。
、鄢朔e為1的兩個(gè)有理數互為倒數。
4.除法:
、俪砸粋(gè)數等于乘以一個(gè)數的倒數。
、0不能作除數。
5.乘方:求N個(gè)相同因數A的積的運算叫做乘方,乘方的結果叫冪,A叫底數,N叫次數。
6.混合順序:先算乘法,再算乘除,最后算加減,有括號要先算括號里的。
二.代數式
代數式:?jiǎn)为氁粋(gè)數或者一個(gè)字母也是代數式。
合并同類(lèi)項:
、偎帜赶嗤,并且相同字母的指數也相同的項,叫做同類(lèi)項。
、诎淹(lèi)項合并成一項就叫做合并同類(lèi)項。
、墼诤喜⑼(lèi)項時(shí),我們把同類(lèi)項的系數相加,字母和字母的指數不變。
三.整式
1.整式的定義:
、贁蹬c字母的乘積的代數式叫單項式,幾個(gè)單項式的和叫多項式,單項式和多項式統稱(chēng)整式。
、谝粋(gè)單項式中,所有字母的指數和叫做這個(gè)單項式的次數。
、垡粋(gè)多項式中,次數最高的項的次數叫做這個(gè)多項式的次數。
2.整式的.除法:
、賳雾検较喑,把系數,同底數冪分別相除后,作為商的因式;對于只在被除式里含有的字母,則連同他的指數一起作為商的一個(gè)因式。
、诙囗検匠詥雾検,先把這個(gè)多項式的每一項分別除以單項式,再把所得的商相加。
3.整式的乘法:
、賳雾検脚c單項式相乘,把他們的系數,相同字母的冪分別相乘,其余字母連同他的指數不變,作為積的因式。
、趩雾検脚c多項式相乘,就是根據分配律用單項式去乘多項式的每一項,再把所得的積相加。
、鄱囗検脚c多項式相乘,先用一個(gè)多項式的每一項乘另外一個(gè)多項式的每一項,再把所得的積相加。
四.圓周角定理及其推論
1.圓周角
頂點(diǎn)在圓上,并且兩邊都和圓相交的角叫做圓周角。
2.圓周角定理
一條弧所對的圓周角等于它所對的圓心角的一半。
推論1:同弧或等弧所對的圓周角相等;同圓或等圓中,相等的圓周角所對的弧也相等。
推論2:半圓(或直徑)所對的圓周角是直角;90°的圓周角所對的弦是直徑。
推論3:如果三角形一邊上的中線(xiàn)等于這邊的一半,那么這個(gè)三角形是直角三角形。
五.一些基本公式
三倍角的正弦、余弦和正切公式
sin3α=3sinα-4sin^3(α)
cos3α=4cos^3(α)-3cosα
tan3α=[3tanα-tan^3(α)]/[1-3tan^2(α)]
六.二元一次方程組
1.二元一次方程
含有兩個(gè)未知數,并且未知項的最高次數是1的整式方程叫做二元一次方程。
2.二元一次方程的解
使二元一次方程左右兩邊的值相等的一對未知數的值,叫做二元一次方程的一個(gè)解。
3.二元一次方程組
兩個(gè)(或兩個(gè)以上)二元一次方程合在一起,就組成了一個(gè)二元一次方程組。一般形式:(不全為0)
4.二元一次方程組的解
使二元一次方程組的兩個(gè)方程左右兩邊的值都相等的兩個(gè)未知數的值,叫做二元一次方程組的解。
5.二元一次方程組的解法
基本思想:"消元"
解法:(1)代入法(2)加減法(3)二元一次方程組一元一次方程組.
6.三元一次方程
把含有三個(gè)未知數,并且含有未知數的項的次數都是1的整式方程。
七.列方程(組)解應用題
注意:千萬(wàn)不要死記硬背例題的類(lèi)型及其解法,要具體問(wèn)題具體分析,一般來(lái)講,應按下面的步驟進(jìn)行:
1.審題:弄清題意和題目中的已知量、未知量,并能找出能夠表示應用問(wèn)題的全部含義的等量關(guān)系。
2.設未知數:選擇一個(gè)或幾個(gè)適當的未知量,用字母表示,并根據題目的數量關(guān)系,用含未知數的代數式表示相關(guān)的未知量。
3.列方程(組):根據等量關(guān)系列出方程(組)。
4.解方程(組):其過(guò)程可以省略,但要注意技巧和方法。
5.檢驗:首先檢查所列方程(組)是否正確,然后檢驗所得方程的解是否符合題意。
6.寫(xiě)答:不要忘記單位名稱(chēng)。
7.分式方程的解法
、僖话憬夥ǎ喝シ帜阜,即方程兩邊同乘以最簡(jiǎn)公分母。
、谔厥饨夥ǎ簱Q元法。
(2)驗根:由于在去分母過(guò)程中,當未知數的取值范圍擴大而有可能產(chǎn)生增根.因此,驗根是解分式方程必不可少的步驟,一般把整式方程的根的值代人最簡(jiǎn)公分母,看結果是不是零,使最簡(jiǎn)公分母為零的根是原方程的增根,必須舍去。
說(shuō)明:解分式方程,一般先考慮換元法,再考慮去分母法。
八.相交線(xiàn)中的角
兩條直線(xiàn)相交,可以得到四個(gè)角,我們把兩條直線(xiàn)相交所構成的四個(gè)角中,有公共頂點(diǎn)但沒(méi)有公共邊的兩個(gè)角叫做對頂角。我們把兩條直線(xiàn)相交所構成的四個(gè)角中,有公共頂點(diǎn)且有一條公共邊的兩個(gè)角叫做臨補角。
臨補角互補,對頂角相等。
直線(xiàn)AB,CD與EF相交(或者說(shuō)兩條直線(xiàn)AB,CD被第三條直線(xiàn)EF所截),構成八個(gè)角。其中∠1與∠5這兩個(gè)角分別在A(yíng)B,CD的上方,并且在EF的同側,像這樣位置相同的一對角叫做同位角;∠3與∠5這兩個(gè)角都在A(yíng)B,CD之間,并且在EF的異側,像這樣位置的兩個(gè)角叫做內錯角;∠3與∠6在直線(xiàn)AB,CD之間,并側在EF的同側,像這樣位置的兩個(gè)角叫做同旁?xún)冉恰?/p>
九.線(xiàn)段的性質(zhì)
1.線(xiàn)段公理:所有連接兩點(diǎn)的線(xiàn)中,線(xiàn)段最短。也可簡(jiǎn)單說(shuō)成:兩點(diǎn)之間線(xiàn)段最短。
2.連接兩點(diǎn)的線(xiàn)段的長(cháng)度,叫做這兩點(diǎn)的距離。
3.線(xiàn)段的中點(diǎn)到兩端點(diǎn)的距離相等。
4.線(xiàn)段的大小關(guān)系和它們的長(cháng)度的大小關(guān)系是一致的。
5.線(xiàn)段垂直平分線(xiàn)的性質(zhì)定理及逆定理
垂直于一條線(xiàn)段并且平分這條線(xiàn)段的直線(xiàn)是這條線(xiàn)段的垂直平分線(xiàn)。
線(xiàn)段垂直平分線(xiàn)的性質(zhì)定理:線(xiàn)段垂直平分線(xiàn)上的點(diǎn)和這條線(xiàn)段兩個(gè)端點(diǎn)的距離相等。
逆定理:和一條線(xiàn)段兩個(gè)端點(diǎn)距離相等的點(diǎn),在這條線(xiàn)段的垂直平分線(xiàn)上。
初三數學(xué)知識點(diǎn)總結 11
一元一次方程:
、僭谝粋(gè)方程中,只含有一個(gè)未知數,并且未知數的指數是
1、這樣的方程叫一元一次方程。
、诘仁絻蛇呁瑫r(shí)加上或減去或乘以或除以(不為0)一個(gè)代數式,所得結果仍是等式。
解一元一次方程的步驟:
去分母,移項,合并同類(lèi)項,未知數系數化為1。
二元一次方程:含有兩個(gè)未知數,并且所含未知數的項的次數都是1的方程叫做二元一次方程。
二元一次方程組:兩個(gè)二元一次方程組成的方程組叫做二元一次方程組。適合一個(gè)二元一次方程的一組未知數的值,叫做這個(gè)二元一次方程的一個(gè)解。二元一次方程組中各個(gè)方程的公共解,叫做這個(gè)二元一次方程的解。
解二元一次方程組的方法:代入消元法/加減消元法。
2、不等式與不等式組
不等式:
、儆梅枴=“號連接的式子叫不等式。
、诓坏仁降膬蛇叾技由匣驕p去同一個(gè)整式,不等號的方向不變。
、鄄坏仁降膬蛇叾汲艘曰蛘叱砸粋(gè)正數,不等號方向不變。
、懿坏仁降膬蛇叾汲艘曰虺酝粋(gè)負數,不等號方向相反。
不等式的解集:
、倌苁共坏仁匠闪⒌奈粗獢档闹,叫做不等式的解。
、谝粋(gè)含有未知數的不等式的所有解,組成這個(gè)不等式的解集。
、矍蟛坏仁浇饧倪^(guò)程叫做解不等式。
一元一次不等式:左右兩邊都是整式,只含有一個(gè)未知數,且未知數的次數是1的不等式叫一元一次不等式。
一元一次不等式組:
、訇P(guān)于同一個(gè)未知數的幾個(gè)一元一次不等式合在一起,就組成了一元一次不等式組。
、谝辉淮尾坏仁浇M中各個(gè)不等式的解集的公共部分,叫做這個(gè)一元一次不等式組的解集。
、矍蟛坏仁浇M解集的過(guò)程,叫做解不等式組。
3、函數
變量:因變量,自變量。在用圖象表示變量之間的關(guān)系時(shí),通常用水平方向的數軸上的點(diǎn)自變量,用豎直方向的數軸上的點(diǎn)表示因變量。
一次函數:
、偃魞蓚(gè)變量X,Y間的關(guān)系式可以表示成Y=KX+B(B為常數,K不等于0)的形式,則稱(chēng)Y是X的一次函數。
、诋擝=0時(shí),稱(chēng)Y是X的正比例函數。
一次函數的圖象:
、侔岩粋(gè)函數的自變量X與對應的因變量Y的值分別作為點(diǎn)的橫坐標與縱坐標,在直角坐標系內描出它的對應點(diǎn),所有這些點(diǎn)組成的圖形叫做該函數的圖象。
、谡壤瘮礩=KX的圖象是經(jīng)過(guò)原點(diǎn)的一條直線(xiàn)。
、墼谝淮魏瘮抵,當K〈0,B〈O,則經(jīng)234象限;當K〈0,B〉0時(shí),則經(jīng)124象限;當K〉0,B〈0時(shí),則經(jīng)134象限;當K〉0,B〉0時(shí),則經(jīng)123象限。
、墚擪〉0時(shí),Y的值隨X值的增大而增大,當X〈0時(shí),Y的值隨X值的增大而減少。
空間與圖形
圖形的認識:
1、點(diǎn),線(xiàn),面
點(diǎn),線(xiàn),面:
、賵D形是由點(diǎn),線(xiàn),面構成的。
、诿媾c面相交得線(xiàn),線(xiàn)與線(xiàn)相交得點(diǎn)。
、埸c(diǎn)動(dòng)成線(xiàn),線(xiàn)動(dòng)成面,面動(dòng)成體。
展開(kāi)與折疊:
、僭诶庵,任何相鄰的兩個(gè)面的交線(xiàn)叫做棱,側棱是相鄰兩個(gè)側面的交線(xiàn),棱柱的所有側棱長(cháng)相等,棱柱的上下底面的形狀相同,側面的形狀都是長(cháng)方體。
、贜棱柱就是底面圖形有N條邊的棱柱。
截一個(gè)幾何體:用一個(gè)平面去截一個(gè)圖形,截出的面叫做截面。
視圖:主視圖,左視圖,俯視圖。
多邊形:他們是由一些不在同一條直線(xiàn)上的線(xiàn)段依次首尾相連組成的封閉圖形。
弧,扇形:
、儆梢粭l弧和經(jīng)過(guò)這條弧的端點(diǎn)的兩條半徑所組成的圖形叫扇形。
、趫A可以分割成若干個(gè)扇形。
角線(xiàn):
、倬(xiàn)段有兩個(gè)端點(diǎn)。
、趯⒕(xiàn)段向一個(gè)方向無(wú)限延長(cháng)就形成了射線(xiàn)。射線(xiàn)只有一個(gè)端點(diǎn)。
、蹖⒕(xiàn)段的兩端無(wú)限延長(cháng)就形成了直線(xiàn)。直線(xiàn)沒(méi)有端點(diǎn)。
、芙(jīng)過(guò)兩點(diǎn)有且只有一條直線(xiàn)。
比較長(cháng)短:
、賰牲c(diǎn)之間的`所有連線(xiàn)中,線(xiàn)段最短。
、趦牲c(diǎn)之間線(xiàn)段的長(cháng)度,叫做這兩點(diǎn)之間的距離。
角的度量與表示:
、俳怯蓛蓷l具有公共端點(diǎn)的射線(xiàn)組成,兩條射線(xiàn)的公共端點(diǎn)是這個(gè)角的頂點(diǎn)。
、谝欢鹊1/60是一分,一分的1/60是一秒。
角的比較:
、俳且部梢钥闯墒怯梢粭l射線(xiàn)繞著(zhù)他的端點(diǎn)旋轉而成的。
、谝粭l射線(xiàn)繞著(zhù)他的端點(diǎn)旋轉,當終邊和始邊成一條直線(xiàn)時(shí),所成的角叫做平角。始邊繼續旋轉,當他又和始邊重合時(shí),所成的角叫做周角。
、蹚囊粋(gè)角的頂點(diǎn)引出的一條射線(xiàn),把這個(gè)角分成兩個(gè)相等的角,這條射線(xiàn)叫做這個(gè)角的平分線(xiàn)。
平行:
、偻黄矫鎯,不相交的兩條直線(xiàn)叫做平行線(xiàn)。
、诮(jīng)過(guò)直線(xiàn)外一點(diǎn),有且只有一條直線(xiàn)與這條直線(xiàn)平行。
、廴绻麅蓷l直線(xiàn)都與第3條直線(xiàn)平行,那么這兩條直線(xiàn)互相平行。
垂直:
、偃绻麅蓷l直線(xiàn)相交成直角,那么這兩條直線(xiàn)互相垂直。
、诨ハ啻怪钡膬蓷l直線(xiàn)的交點(diǎn)叫做垂足。
、燮矫鎯,過(guò)一點(diǎn)有且只有一條直線(xiàn)與已知直線(xiàn)垂直。
2、相交線(xiàn)與平行線(xiàn)
角:
、偃绻麅蓚(gè)角的和是直角,那么稱(chēng)和兩個(gè)角互為余角;如果兩個(gè)角的和是平角,那么稱(chēng)這兩個(gè)角互為補角。
、谕腔虻冉堑挠嘟/補角相等。
、蹖斀窍嗟。
、芡唤窍嗟/內錯角相等/同旁?xún)冉腔パa,兩直線(xiàn)平行,反之亦然。
初三數學(xué)知識點(diǎn)總結 12
1、矩形的概念
有一個(gè)角是直角的平行四邊形叫做矩形。
2、矩形的性質(zhì)
(1)具有平行四邊形的一切性質(zhì)
(2)矩形的四個(gè)角都是直角
(3)矩形的對角線(xiàn)相等
(4)矩形是軸對稱(chēng)圖形
3、矩形的'判定
(1)定義:有一個(gè)角是直角的平行四邊形是矩形
(2)定理1:有三個(gè)角是直角的四邊形是矩形
(3)定理2:對角線(xiàn)相等的平行四邊形是矩形
4、矩形的面積:S矩形=長(cháng)×寬=ab
初三數學(xué)知識點(diǎn)總結 13
1、正方形的概念
有一組鄰邊相等并且有一個(gè)角是直角的平行四邊形叫做正方形。
2、正方形的性質(zhì)
(1)具有平行四邊形、矩形、菱形的一切性質(zhì);
(2)正方形的四個(gè)角都是直角,四條邊都相等;
(3)正方形的兩條對角線(xiàn)相等,并且互相垂直平分,每一條對角線(xiàn)平分一組對角;
(4)正方形是軸對稱(chēng)圖形,有4條對稱(chēng)軸;
(5)正方形的一條對角線(xiàn)把正方形分成兩個(gè)全等的等腰直角三角形,兩條對角線(xiàn)把正方形分成四個(gè)全等的小等腰直角三角形;
(6)正方形的一條對角線(xiàn)上的一點(diǎn)到另一條對角線(xiàn)的.兩端點(diǎn)的距離相等。
3、正方形的判定
(1)判定一個(gè)四邊形是正方形的主要依據是定義,途徑有兩種:
先證它是矩形,再證有一組鄰邊相等。
先證它是菱形,再證有一個(gè)角是直角。
(2)判定一個(gè)四邊形為正方形的一般順序如下:
先證明它是平行四邊形;
再證明它是菱形(或矩形);
最后證明它是矩形(或菱形)。
初三數學(xué)知識點(diǎn)總結 14
1、絕對值
一個(gè)數的絕對值就是表示這個(gè)數的點(diǎn)與原點(diǎn)的距離,|a|≥0。零的絕對值時(shí)它本身,也可看成它的相反數,若|a|=a,則a≥0;若|a|=-a,則a≤0。正數大于零,負數小于零,正數大于一切負數,兩個(gè)負數,絕對值大的反而小。
(1)一個(gè)正實(shí)數的絕對值是它本身;一個(gè)負實(shí)數的絕對值是它的相反數;0的絕對值是0.即:﹝另有兩種寫(xiě)法﹞
(2)實(shí)數的絕對值是一個(gè)非負數,從數軸上看,一個(gè)實(shí)數的絕對值就是數軸上表示這個(gè)數的點(diǎn)到原點(diǎn)的距離.
(3)幾個(gè)非負數的和等于零則每個(gè)非負數都等于零。
注意:│a│≥0,符號"││"是"非負數"的標志;數a的絕對值只有一個(gè);處理任何類(lèi)型的題目,只要其中有"││"出現,其關(guān)鍵一步是去掉"││"符號。
2、解一元二次方程
解一元二次方程的基本思想方法是通過(guò)“降次”將它化為兩個(gè)一元一次方程。
(1)直接開(kāi)平方法:
用直接開(kāi)平方法解形如(x-m)2=n(n≥0)的方程,其解為x=±m.
直接開(kāi)平方法就是平方的逆運算.通常用根號表示其運算結果.
(2)配方法
通過(guò)配成完全平方式的方法,得到一元二次方程的根的方法。這種解一元二次方程的方法稱(chēng)為配方法,配方的依據是完全平方公式。
1)轉化:將此一元二次方程化為ax^2+bx+c=0的.形式(即一元二次方程的一般形式)
2)系數化1:將二次項系數化為1
3)移項:將常數項移到等號右側
4)配方:等號左右兩邊同時(shí)加上一次項系數一半的平方
5)變形:將等號左邊的代數式寫(xiě)成完全平方形式
6)開(kāi)方:左右同時(shí)開(kāi)平方
7)求解:整理即可得到原方程的根
(3)公式法
公式法:把一元二次方程化成一般形式,然后計算判別式△=b2-4ac的值,當b2-4ac≥0時(shí),把各項系數a,b,c的值代入求根公式x=(b2-4ac≥0)就可得到方程的根。
3、圓的必考知識點(diǎn)
(1)圓
在一個(gè)平面內,一動(dòng)點(diǎn)以一定點(diǎn)為中心,以一定長(cháng)度為距離旋轉一周所形成的封閉曲線(xiàn)叫做圓。圓有無(wú)數條對稱(chēng)軸。
(2)圓的相關(guān)特點(diǎn)
1)徑
連接圓心和圓上的任意一點(diǎn)的線(xiàn)段叫做半徑,字母表示為r
通過(guò)圓心并且兩端都在圓上的線(xiàn)段叫做直徑,字母表示為d
直徑所在的直線(xiàn)是圓的對稱(chēng)軸。在同一個(gè)圓中,圓的直徑d=2r
2)弦
連接圓上任意兩點(diǎn)的線(xiàn)段叫做弦.在同一個(gè)圓內最長(cháng)的弦是直徑。直徑所在的直線(xiàn)是圓的對稱(chēng)軸,因此,圓的對稱(chēng)軸有無(wú)數條。
3)弧
圓上任意兩點(diǎn)間的部分叫做圓弧,簡(jiǎn)稱(chēng)弧,以“⌒”表示。
大于半圓的弧稱(chēng)為優(yōu)弧,小于半圓的弧稱(chēng)為劣弧,所以半圓既不是優(yōu)弧,也不是劣弧。優(yōu)弧一般用三個(gè)字母表示,劣弧一般用兩個(gè)字母表示。優(yōu)弧是所對圓心角大于180度的弧,劣弧是所對圓心角小于180度的弧。
在同圓或等圓中,能夠互相重合的兩條弧叫做等弧。
4)角
頂點(diǎn)在圓心上的角叫做圓心角。
頂點(diǎn)在圓周上,且它的兩邊分別與圓有另一個(gè)交點(diǎn)的角叫做圓周角。圓周角等于相同弧所對的圓心角的一半。
初三數學(xué)知識點(diǎn)總結 15
銳角三角函數公式
sin α=∠α的對邊 / 斜邊
cos α=∠α的鄰邊 / 斜邊
tan α=∠α的對邊 / ∠α的鄰邊
cot α=∠α的鄰邊 / ∠α的`對邊
倍角公式
Sin2A=2SinA?CosA
Cos2A=CosA^2-SinA^2=1-2SinA^2=2CosA^2-1
tan2A=(2tanA)/(1-tanA^2)
(注:SinA^2 是sinA的平方 sin2(A) )
三倍角公式
sin3α=4sinα·sin(π/3+α)sin(π/3-α)
cos3α=4cosα·cos(π/3+α)cos(π/3-α)
tan3a = tan a · tan(π/3+a)· tan(π/3-a)
三倍角公式推導
sin3a
=sin(2a+a)
=sin2acosa+cos2asina(1)特殊角三角函數值
sin0=0
sin30=0.5
sin45=0.7071 二分之根號2
sin60=0.8660 二分之根號3
sin90=1
cos0=1
cos30=0.866025404 二分之根號3
cos45=0.707106781 二分之根號2
cos60=0.5
cos90=0
tan0=0
tan30=0.577350269 三分之根號3
tan45=1
tan60=1.732050808 根號3
tan90=無(wú)
cot0=無(wú)
cot30=1.732050808 根號3
cot45=1
cot60=0.577350269 三分之根號3
cot90=0
【初三數學(xué)知識點(diǎn)總結】相關(guān)文章:
初三數學(xué)知識點(diǎn)總結12-07
初三數學(xué)知識點(diǎn)總結05-16