成人免费看黄网站无遮挡,caowo999,se94se欧美综合色,a级精品九九九大片免费看,欧美首页,波多野结衣一二三级,日韩亚洲欧美综合

初三數學(xué)上知識點(diǎn)總結

時(shí)間:2024-04-13 16:44:53 煒亮 總結 我要投稿
  • 相關(guān)推薦

初三數學(xué)上知識點(diǎn)總結(精選12篇)

  數學(xué)是被很多人稱(chēng)之攔路虎的一門(mén)科目,同學(xué)們在掌握數學(xué)知識點(diǎn)方面還很欠缺,下面是小編幫大家整理的初三數學(xué)上知識點(diǎn)總結,希望大家喜歡。

初三數學(xué)上知識點(diǎn)總結(精選12篇)

  初三數學(xué)上知識點(diǎn)總結 1

  不等式的概念

  1、不等式:用不等號表示不等關(guān)系的式子,叫做不等式。

  2、不等式的解集:對于一個(gè)含有未知數的不等式,任何一個(gè)適合這個(gè)不等式的未知數的值,都叫做這個(gè)不等式的解。

  3、對于一個(gè)含有未知數的不等式,它的所有解的集合叫做這個(gè)不等式的`解的集合,簡(jiǎn)稱(chēng)這個(gè)不等式的解集。

  4、求不等式的解集的過(guò)程,叫做解不等式。

  5、用數軸表示不等式的方法。

  不等式基本性質(zhì)

  1、不等式兩邊都加上或減去同一個(gè)數或同一個(gè)整式,不等號的方向不變。

  2、不等式兩邊都乘以或除以同一個(gè)正數,不等號的方向不變。

  3、不等式兩邊都乘以或除以同一個(gè)負數,不等號的方向改變。

  4、說(shuō)明:

 、僭谝辉淮尾坏仁街,不像等式那樣,等號是不變的,是隨著(zhù)加或乘的運算改變。

 、谌绻坏仁匠艘0,那么不等號改為等號所以在題目中,要求出乘以的`數,那么就要看看題中是否出現一元一次不等式,如果出現了,那么不等式乘以的數就不等為0,否則不等式不成立。

  一元一次不等式

  1、一元一次不等式的概念:一般地,不等式中只含有一個(gè)未知數,未知數的次數是1,且不等式的兩邊都是整式,這樣的不等式叫做一元一次不等式。

  2、解一元一次不等式的一般步驟:1去分母2去括號3移項4合并同類(lèi)項5將x項的系數化為1。

  一元一次不等式組

  1、一元一次不等式組的概念:幾個(gè)一元一次不等式合在一起,就組成了一個(gè)一元一次不等式組。

  2、幾個(gè)一元一次不等式的解集的公共部分,叫做它們所組成的一元一次不等式組的解集。

  3、求不等式組的解集的過(guò)程,叫做解不等式組。

  4、當任何數x都不能使不等式同時(shí)成立,我們就說(shuō)這個(gè)不等式組無(wú)解或其解為空集。

  5、一元一次不等式組的解法

  1.分別求出不等式組中各個(gè)不等式的解集。

  2.利用數軸求出這些不等式的解集的公共部分,即這個(gè)不等式組的解集。

  6、不等式與不等式組

  不等式:

 、儆梅枴,=,〈號連接的式子叫不等式。

 、诓坏仁降膬蛇叾技由匣驕p去同一個(gè)整式,不等號的方向不變。

 、鄄坏仁降膬蛇叾汲艘曰蛘叱砸粋(gè)正數,不等號方向不變。

 、懿坏仁降膬蛇叾汲艘曰虺酝粋(gè)負數,不等號方向相反。

  7、不等式的解集:

 、倌苁共坏仁匠闪⒌奈粗獢档闹,叫做不等式的解。

 、谝粋(gè)含有未知數的不等式的所有解,組成這個(gè)不等式的解集。

 、矍蟛坏仁浇饧倪^(guò)程叫做解不等式。

  初三數學(xué)上知識點(diǎn)總結 2

  1、矩形的概念

  有一個(gè)角是直角的平行四邊形叫做矩形。

  2、矩形的性質(zhì)

 。1)具有平行四邊形的一切性質(zhì)。

 。2)矩形的四個(gè)角都是直角。

 。3)矩形的對角線(xiàn)相等。

 。4)矩形是軸對稱(chēng)圖形。

  3、矩形的判定

 。1)定義:有一個(gè)角是直角的平行四邊形是矩形。

 。2)定理1:有三個(gè)角是直角的四邊形是矩形。

 。3)定理2:對角線(xiàn)相等的平行四邊形是矩形。

  4、矩形的.面積:

  S矩形=長(cháng)×寬=ab

  1、正方形的概念

  有一組鄰邊相等并且有一個(gè)角是直角的平行四邊形叫做正方形。

  2、正方形的性質(zhì)

 。1)具有平行四邊形、矩形、菱形的一切性質(zhì);

 。2)正方形的四個(gè)角都是直角,四條邊都相等;

 。3)正方形的兩條對角線(xiàn)相等,并且互相垂直平分,每一條對角線(xiàn)平分一組對角;

 。4)正方形是軸對稱(chēng)圖形,有4條對稱(chēng)軸;

 。5)正方形的.一條對角線(xiàn)把正方形分成兩個(gè)全等的等腰直角三角形,兩條對角線(xiàn)把正方形分成四個(gè)全等的小等腰直角三角形;

 。6)正方形的一條對角線(xiàn)上的一點(diǎn)到另一條對角線(xiàn)的兩端點(diǎn)的距離相等。

  3、正方形的判定

 。1)判定一個(gè)四邊形是正方形的主要依據是定義,途徑有兩種:

  先證它是矩形,再證有一組鄰邊相等。

  先證它是菱形,再證有一個(gè)角是直角。

 。2)判定一個(gè)四邊形為正方形的一般順序如下:

  先證明它是平行四邊形;

  再證明它是菱形(或矩形);

  最后證明它是矩形(或菱形)。

  初三數學(xué)上知識點(diǎn)總結 3

  1.不在同一直線(xiàn)上的三點(diǎn)確定一個(gè)圓。

  2.垂徑定理垂直于弦的直徑平分這條弦并且平分弦所對的兩條弧

  推論1

 、倨椒窒也皇侵睆降闹睆酱怪庇谙,并且平分弦所對的兩條弧

 、谙业拇怪逼椒志(xiàn)經(jīng)過(guò)圓心,并且平分弦所對的兩條弧

 、燮椒窒宜鶎Φ囊粭l弧的直徑,垂直平分弦,并且平分弦所對的另一條弧

  推論2圓的兩條平行弦所夾的弧相等

  3.圓是以圓心為對稱(chēng)中心的中心對稱(chēng)圖形

  4.圓是定點(diǎn)的距離等于定長(cháng)的點(diǎn)的集合

  5.圓的內部可以看作是圓心的距離小于半徑的點(diǎn)的集合

  6.圓的外部可以看作是圓心的距離大于半徑的點(diǎn)的集合

  7.同圓或等圓的半徑相等

  8.到定點(diǎn)的距離等于定長(cháng)的點(diǎn)的軌跡,是以定點(diǎn)為圓心,定長(cháng)為半徑的圓

  9.定理在同圓或等圓中,相等的圓心角所對的弧相等,所對的弦相等,所對的弦的弦心距相等

  10.推論在同圓或等圓中,如果兩個(gè)圓心角、兩條弧、兩條弦或兩弦的弦心距中有一組量相等那么它們所對應的其余各組量都相等。

  11定理圓的內接四邊形的對角互補,并且任何一個(gè)外角都等于它的內對角

  12.①直線(xiàn)L和⊙O相交d

 、谥本(xiàn)L和⊙O相切d=r

 、壑本(xiàn)L和⊙O相離d>r

  13.切線(xiàn)的判定定理經(jīng)過(guò)半徑的外端并且垂直于這條半徑的直線(xiàn)是圓的切線(xiàn)

  14.切線(xiàn)的性質(zhì)定理圓的切線(xiàn)垂直于經(jīng)過(guò)切點(diǎn)的半徑

  15.推論1經(jīng)過(guò)圓心且垂直于切線(xiàn)的直線(xiàn)必經(jīng)過(guò)切點(diǎn)

  16.推論2經(jīng)過(guò)切點(diǎn)且垂直于切線(xiàn)的直線(xiàn)必經(jīng)過(guò)圓心

  17.切線(xiàn)長(cháng)定理從圓外一點(diǎn)引圓的兩條切線(xiàn),它們的切線(xiàn)長(cháng)相等,圓心和這一點(diǎn)的連線(xiàn)平分兩條切線(xiàn)的夾角

  18.圓的外切四邊形的兩組對邊的和相等外角等于內對角

  19.如果兩個(gè)圓相切,那么切點(diǎn)一定在連心線(xiàn)上

  20.①兩圓外離d>R+r

 、趦蓤A外切d=R+r

 、.兩圓相交R-rr

 、.兩圓內切d=R-rR>r

 、輧蓤A內含dr

  21.定理相交兩圓的連心線(xiàn)垂直平分兩圓的公共弦

  22.定理把圓分成nn≥3:

 、乓来芜B結各分點(diǎn)所得的多邊形是這個(gè)圓的內接正n邊形

 、平(jīng)過(guò)各分點(diǎn)作圓的切線(xiàn),以相鄰切線(xiàn)的交點(diǎn)為頂點(diǎn)的多邊形是這個(gè)圓的外切正n邊形

  23.定理任何正多邊形都有一個(gè)外接圓和一個(gè)內切圓,這兩個(gè)圓是同心圓

  24.正n邊形的每個(gè)內角都等于n-2×180°/n

  25.定理正n邊形的半徑和邊心距把正n邊形分成2n個(gè)全等的直角三角形

  26.正n邊形的面積Sn=pnrn/2 p表示正n邊形的周長(cháng)

  27.正三角形面積√3a/4 a表示邊長(cháng)

  28.如果在一個(gè)頂點(diǎn)周?chē)衚個(gè)正n邊形的角,由于這些角的和應為360°,因此k×n-2180°/n=360°化為n-2k-2=4

  29.弧長(cháng)計算公式:L=n兀R/180

  30.扇形面積公式:S扇形=n兀R^2/360=LR/2

  31.內公切線(xiàn)長(cháng)= d-R-r外公切線(xiàn)長(cháng)= d-R+r

  32.定理一條弧所對的圓周角等于它所對的圓心角的一半

  33.推論1同弧或等弧所對的.圓周角相等;同圓或等圓中,相等的圓周角所對的弧也相等

  34.推論2半圓或直徑所對的圓周角是直角;90°的圓周角所對的弦是直徑

  35.弧長(cháng)公式l=ar a是圓心角的弧度數r >0扇形面積公式s=1/2lr

  初三數學(xué)復習方法

  一、回歸課本,夯實(shí)基礎,做好預習。

  數學(xué)的基本概念、定義、公式,數學(xué)知識點(diǎn)之間的內在聯(lián)系,基本的數學(xué)解題思路與方法,是復習的重中之重;貧w課本,要先對知識點(diǎn)進(jìn)行梳理,把教材上的每一個(gè)例題、習題再做一遍,確;靖拍、公式等牢固掌握,要穩扎穩打,不要盲目攀高,欲速則不達。復習課的內容多、時(shí)間緊。要提高復習效率,必須使自己的思維與老師的思維同步。而預習則是達到這一目的的重要途徑。沒(méi)有預習,聽(tīng)老師講課,會(huì )感到老師講的都重要,抓不住老師講的重點(diǎn);而預習了之后,再聽(tīng)老師講課,就會(huì )在記憶上對老師講的內容有所取舍,把重點(diǎn)放在自己還未掌握的內容上,提高學(xué)習效率。

  二、提高課堂聽(tīng)課效率,多動(dòng)腦,勤動(dòng)手

  初三的課只有兩種形式:復習課和評講課,到初三所有課都進(jìn)入復習階段,通過(guò)復習,學(xué)生要知道自己哪些知識點(diǎn)掌握的'比較好,哪些知識點(diǎn)有待提高,因此在復習課之前一定要有自己的思考,這樣聽(tīng)課的目的就明確了,F在學(xué)生手中都會(huì )有一些復習資料,在老師講課之前,要把例題做一遍,做題中發(fā)現的難點(diǎn),就是聽(tīng)課的重點(diǎn);對預習中遇到的沒(méi)有掌握好的舊知識,可進(jìn)行查漏補缺,以減少聽(tīng)課過(guò)程中的困難,自己理解了的東西與老師的講解進(jìn)行比較、分析即可提高自己的數學(xué)思維;體會(huì )分析問(wèn)題的思路和解決問(wèn)題的思想方法,堅持下去,就一定能舉一反三,事半功倍。此外對于老師講課中的難點(diǎn),重點(diǎn)要作好筆記,筆記不是記錄而是將上述聽(tīng)課中的要點(diǎn),思維方法等作出簡(jiǎn)單扼要的記錄,以便復習,消化,思考。

  三、建立錯題本,查漏補缺

  初三復習,各類(lèi)試題要做幾十套,甚至上百套。特級教師提醒學(xué)生可以建立一個(gè)錯題本,把平時(shí)做錯的題系統的整理好,在上面寫(xiě)上評析和做錯的原因,每過(guò)一段時(shí)間,就把“錯題筆記”拿出來(lái)看一看。在看參考書(shū)時(shí),也可以把精彩之處或做錯的題目做上標記,以后再看這本書(shū)時(shí)就會(huì )有所側重。查漏補缺的過(guò)程就是反思的過(guò)程。除了把不同的問(wèn)題弄懂以外,還要學(xué)會(huì )“舉一反三,融會(huì )貫通”,及時(shí)歸納總結。每次訂正試卷或作業(yè)時(shí),在錯題旁邊要寫(xiě)明做錯的原因。

  初三數學(xué)學(xué)習建議

  培養良好的學(xué)習習慣

  1.制定計劃。從而使學(xué)習目的明確,時(shí)間安排合理,不慌不忙,穩打穩扎,它是推動(dòng)學(xué)生主動(dòng)學(xué)習和克服困難的內在動(dòng)力。但計劃一定要切實(shí)可行,既有長(cháng)遠打算,又有短期安排,執行過(guò)程中嚴格要求自己,磨練學(xué)習意志。

  2.課前自學(xué)。這是上好新課,取得較好學(xué)習效果的基礎。課前自學(xué)不僅能培養自學(xué)能力,而且能提高學(xué)習新課的興趣,掌握學(xué)習的主動(dòng)權。自學(xué)不能搞走過(guò)場(chǎng),要講究質(zhì)量,力爭在課前把教材弄懂,上課著(zhù)重聽(tīng)老師講思路,把握重點(diǎn),突破難點(diǎn),盡可能把問(wèn)題解決在課堂上。

  3.專(zhuān)心上課!皩W(xué)然后知不足”,這是理解和掌握基本知識、基本技能和基本方法的關(guān)鍵環(huán)節。課前自學(xué)過(guò)的學(xué)生上課更能專(zhuān)心聽(tīng)課,他們知道什么地方該詳細聽(tīng),什么地方可以一帶而過(guò),該記的地方才記下來(lái),而不是全盤(pán)抄錄,顧此失彼。

  4.及時(shí)復習。這是高效率學(xué)習的重要一環(huán)。通過(guò)反復閱讀教材,多方面查閱有關(guān)資料,強化對基本概念知識體系的理解與記憶,將所學(xué)的新知識與有關(guān)舊知識聯(lián)系起來(lái),進(jìn)行分析比效,一邊復習一邊將復習成果整理在筆記本上,使對所學(xué)的新知識由“懂”到“會(huì )”。

  5.獨立作業(yè)。這是掌握獨立思考,分析問(wèn)題、解決問(wèn)題,進(jìn)一步加深對所學(xué)新知識的理解和對新技能的必要過(guò)程。這一過(guò)程也是對學(xué)生意志毅力的考驗,通過(guò)作業(yè)練習使學(xué)生對所學(xué)知識由“會(huì )”到“熟”。

  6.解決疑難。這是指對獨立完成作業(yè)過(guò)程中暴露出來(lái)對知識理解的錯誤,或由于思維受阻遺漏解答,通過(guò)點(diǎn)撥使思路暢通,補遺解答的過(guò)程。解決疑難一定要有鍥而不舍的精神,做錯的作業(yè)再做一遍。對錯誤的地方?jīng)]弄清楚要反復思考,實(shí)在解決不了的要請教老師和同學(xué),并經(jīng)常把容易錯的地方拿來(lái)復習強化,作適當的重復性練習,把從老師、同學(xué)處獲得的東西消化變成自己的知識,長(cháng)期堅持使對所學(xué)知識由“熟”到“活”。

  7.系統小結。這是通過(guò)積極思考,達到全面系統深刻地掌握知識和發(fā)展認識能力的重要環(huán)節。小結要在系統復習的基礎上以教材為依據,參照筆記與資料,通過(guò)分析、綜合、類(lèi)比、概括,揭示知識間的內在聯(lián)系,以達到對所學(xué)知識融會(huì )貫通的目的。經(jīng)常進(jìn)行多層次小結,能對所學(xué)知識由“活”到“悟”。

  8.課外學(xué)習。課外學(xué)習是課內學(xué)習的補充和繼續,包括閱讀課外書(shū)籍與報刊,參加學(xué)科競賽與講座,走訪(fǎng)高年級同學(xué)或老師交流學(xué)習心得等。它不僅能豐富學(xué)生的文化科學(xué)知識,加深和鞏固課內所學(xué)的知識,而且能夠滿(mǎn)足和發(fā)展學(xué)生的興趣愛(ài)好,培養獨立學(xué)習和工作的能力,激發(fā)求知欲與學(xué)習熱情。

  初三數學(xué)上知識點(diǎn)總結 4

 。ㄈ切沃形痪(xiàn)的定理)

  三角形的中位線(xiàn)平行于三角形的第三邊,并且等于第三邊的一半。

 。ㄆ叫兴倪呅蔚男再|(zhì))

 、倨叫兴倪呅蔚膶呄嗟;

 、谄叫兴倪呅蔚膶窍嗟;

 、燮叫兴倪呅蔚膶蔷(xiàn)互相平分。

 。ň匦蔚腵性質(zhì))

 、倬匦尉哂衅叫兴倪呅蔚腵一切性質(zhì);

 、诰匦蔚乃膫(gè)角都是直角;

 、劬匦蔚膶蔷(xiàn)相等。

  正方形的判定與性質(zhì)

  1、判定方法:

  1.鄰邊相等的矩形;

  2.鄰邊垂直的菱形;

  3.對角線(xiàn)垂直的矩形;

  4.對角線(xiàn)相等的菱形;

  2、性質(zhì):

  1.邊:四邊相等,對邊平行;

  2.角:四個(gè)角都相等都是直角,鄰角互補;

  3.對角線(xiàn)互相平分、垂直、相等,且每長(cháng)對角線(xiàn)平分一組內角。

  等腰三角形的判定定理

 。ǖ妊切蔚呐卸ǚ椒ǎ

  1、有兩條邊相等的三角形是等腰三角形。

  2、判定定理:如果一個(gè)三角形有兩個(gè)角相等,那么這個(gè)三角形是等腰三角形簡(jiǎn)稱(chēng):等角對等邊。

  角平分線(xiàn):把一個(gè)角平分的射線(xiàn)叫該角的角平分線(xiàn)。

  定義中有幾個(gè)要點(diǎn)要注意一下的,學(xué)習方法,就是角的角平分線(xiàn)是一條射線(xiàn),不是線(xiàn)段也不是直線(xiàn),很多時(shí),在題目中會(huì )出現直線(xiàn),這是角平分線(xiàn)的對稱(chēng)軸才會(huì )用直線(xiàn)的,這也涉及到軌跡的問(wèn)題,一個(gè)角個(gè)角平分線(xiàn)就是到角兩邊距離相等的點(diǎn)

  性質(zhì)定理:角平分線(xiàn)上的點(diǎn)到該角兩邊的距離相等

  判定定理:到角的兩邊距離相等的點(diǎn)在該角的角平分線(xiàn)上

  標準差與方差

  極差是什么:一組數據中數據與最小數據的差叫做極差,即極差=值—最小值。

  計算器——求標準差與方差的一般步驟:

  1、打開(kāi)計算器,按“ON”鍵,按“MODE”“2”進(jìn)入統計SD狀態(tài)。

  2、在開(kāi)始數據輸入之前,請務(wù)必按“SHIFT”“CLR”“1”“=”鍵清除統計存儲器。

  3、輸入數據:按數字鍵輸入數值,然后按“M+”鍵,就能完成一個(gè)數據的輸入。如果想對此輸入同樣的數據時(shí),還可在步驟3后按“SHIET”“;”,后輸入該數據出現的頻數,再按“M+”鍵。

  4、當所有的數據全部輸入結束后,按“SHIFT”“2”,選擇的是“標準差”,就可以得到所求數據的標準差;

  5、標準差的平方就是方差。

  初三數學(xué)上知識點(diǎn)總結 5

  單項式與多項式

  僅含有一些數和字母的乘法包括乘方運算的式子叫做單項式單獨的一個(gè)數或字母也是單項式。

  單項式中的數字因數叫做這個(gè)單項式或字母因數的數字系數,簡(jiǎn)稱(chēng)系數。

  當一個(gè)單項式的系數是1或—1時(shí),“1”通常省略不寫(xiě)。

  一個(gè)單項式中,所有字母的指數的和叫做這個(gè)單項式的次數。

  如果在幾個(gè)單項式中,不管它們的系數是不是相同,只要他們所含的字母相同,并且相同字母的指數也分別相同,那么,這幾個(gè)單項式就叫做同類(lèi)單項式,簡(jiǎn)稱(chēng)同類(lèi)項所有的常數都是同類(lèi)項。

  1、多項式

  有有限個(gè)單項式的代數和組成的式子,叫做多項式。

  多項式里每個(gè)單項式叫做多項式的項,不含字母的項,叫做常數項。

  單項式可以看作是多項式的特例

  把同類(lèi)單項式的系數相加或相減,而單項式中的字母的乘方指數不變。

  在多項式中,所含的不同未知數的個(gè)數,稱(chēng)做這個(gè)多項式的元數經(jīng)過(guò)合并同類(lèi)項后,多項式所含單項式的個(gè)數,稱(chēng)為這個(gè)多項式的項數所含個(gè)單項式中次項的次數,就稱(chēng)為這個(gè)多項式的次數。

  2、多項式的值

  任何一個(gè)多項式,就是一個(gè)用加、減、乘、乘方運算把已知數和未知數連接起來(lái)的式子。

  3、多項式的恒等

  對于兩個(gè)一元多項式fx、gx來(lái)說(shuō),當未知數x同取任一個(gè)數值a時(shí),如果它們所得的值都是相等的,即fa=ga,那么,這兩個(gè)多項式就稱(chēng)為是恒等的記為fx==gx,或簡(jiǎn)記為fx=gx。

  性質(zhì)1如果fx==gx,那么,對于任一個(gè)數值a,都有fa=ga。

  性質(zhì)2如果fx==gx,那么,這兩個(gè)多項式的個(gè)同類(lèi)項系數就一定對應相等。

  4、一元多項式的根

  一般地,能夠使多項式fx的值等于0的未知數x的值,叫做多項式fx的根。

  多項式的加、減法,乘法

  1、多項式的.加、減法

  2、多項式的乘法

  單項式相乘,用它們系數作為積的系數,對于相同的字母因式,則連同它的指數作為積的一個(gè)因式。

  3、多項式的乘法

  多項式與多項式相乘,先用一個(gè)多項式等每一項乘以另一個(gè)多項式的各項,再把所得的積相加。

  常用乘法公式

  公式I平方差公式

  a+ba—b=a^2—b^2

  兩個(gè)數的和與這兩個(gè)數的差的積等于這兩個(gè)數的平方差。

  初三數學(xué)上知識點(diǎn)總結 6

  定義

  只含有一個(gè)未知數,且未知數的最高次數是2次的整式方程叫做一元二次方程(quadratice quation of one variable或asingle―variable quadratice quation)。

  一元二次方程有三個(gè)特點(diǎn):

 。1)含有一個(gè)未知數;

 。2)且未知數的`最高次數是2;

 。3)是整式方程。要判斷一個(gè)方程是否為一元二次方程,先看它是否為整式方程,若是,再對它進(jìn)行整理。如果能整理為ax2+bx+c=0(a0)的形式,則這個(gè)方程就為一元二次方程。里面要有等號,且分母里不含未知數。

  補充說(shuō)明

  1、方程的`兩根與方程中各數有如下關(guān)系:X1+X2=―b/a,X1X2=c/a(也稱(chēng)韋達定理)。

  2、方程兩根為x1,x2時(shí),方程為:x2―(x1+x2)X+x1x2=0(根據韋達定理逆推而得)。

  3、在系數a0的情況下,b2―4ac0時(shí)有2個(gè)不相等的實(shí)數根,b2―4ac=0時(shí)有兩個(gè)相等的實(shí)數根,b2―4ac0時(shí)無(wú)實(shí)數根。(在復數范圍內有兩個(gè)復數根)。

  一般式

  ax2+bx+c=0(a、b、c是實(shí)數,a0)

  例如:x2+2x+1=0

  配方式

  a(x+b/2a)2=(b2―4ac)/4a

  兩根式(交點(diǎn)式)

  a(x―x1)(x―x2)=0

  初三數學(xué)上知識點(diǎn)總結 7

  三角形的外心定義:

  外心:是三角形三條邊的垂直平分線(xiàn)的交點(diǎn),即外接圓的圓心。

  外心定理:三角形的三邊的垂直平分線(xiàn)交于一點(diǎn)。該點(diǎn)叫做三角形的外心。

  三角形的外心的性質(zhì):

  1、三角形三條邊的垂直平分線(xiàn)的交于一點(diǎn),該點(diǎn)即為三角形外接圓的.圓心;

  2、三角形的外接圓有且只有一個(gè),即對于給定的三角形,其外心是的,但一個(gè)圓的內接三角形卻有無(wú)數個(gè),這些三角形的外心重合;

  3、銳角三角形的外心在三角形內;

  鈍角三角形的外心在三角形外;

  直角三角形的外心與斜邊的中點(diǎn)重合。

  在△ABC中

  4、OA=OB=OC=R

  5、∠BOC=2∠BAC,∠AOB=2∠ACB,∠COA=2∠CBA

  6、S△ABC=abc/4R

  初三數學(xué)上知識點(diǎn)總結 8

  1、弧長(cháng)公式

  n°的圓心角所對的弧長(cháng)l的計算公式為L(cháng)=nπr/180

  2、扇形面積公式,其中n是扇形的圓心角度數,R是扇形的半徑,l是扇形的弧長(cháng).

  S=﹙n/360﹚πR2=1/2×lR

  3、圓錐的側面積,其中l是圓錐的母線(xiàn)長(cháng),r是圓錐的地面半徑.

  S=1/2×l×2πr=πrl

  4、弦切角定理

  弦切角:圓的切線(xiàn)與經(jīng)過(guò)切點(diǎn)的弦所夾的角,叫做弦切角.

  弦切角定理:弦切角等于弦與切線(xiàn)夾的`弧所對的圓周角.

  一、選擇題

  1.(20xxo珠海,第4題3分)已知圓柱體的底面半徑為3cm,髙為4cm,則圓柱體的側面積為()

  A.24πcm2B.36πcm2C.12cm2D.24cm2

  考點(diǎn):圓柱的計算.

  分析:圓柱的側面積=底面周長(cháng)×高,把相應數值代入即可求解.

  解答:解:圓柱的側面積=2π×3×4=24π.

  故選A.

  點(diǎn)評:本題考查了圓柱的計算,解題的關(guān)鍵是弄清圓柱的側面積的計算方法.

  2.(20xxo廣西賀州,第11題3分)如圖,以AB為直徑的⊙O與弦CD相交于點(diǎn)E,且AC=2,AE=,CE=1.則弧BD的.長(cháng)是()

  A.B.C.D.

  考點(diǎn):垂徑定理;勾股定理;勾股定理的逆定理;弧長(cháng)的計算.

  分析:連接OC,先根據勾股定理判斷出△ACE的形狀,再由垂徑定理得出CE=DE,故=,由銳角三角函數的定義求出∠A的度數,故可得出∠BOC的度數,求出OC的長(cháng),再根據弧長(cháng)公式即可得出結論.

  解答:解:連接OC,∵△ACE中,AC=2,AE=,CE=1,∴AE2+CE2=AC2,∴△ACE是直角三角形,即AE⊥CD,∵sinA==,∴∠A=30°,∴∠COE=60°,∴=sin∠COE,即=,解得OC=,∵AE⊥CD,∴=,∴===.

  故選B.

  初三數學(xué)上知識點(diǎn)總結 9

  直角三角形的判定方法:

  判定1:定義,有一個(gè)角為90°的三角形是直角三角形。

  判定2:判定定理:以a、b、c為邊的三角形是以c為斜邊的直角三角形。如果三角形的三邊a,b,c滿(mǎn)足a2+b2=c2,那么這個(gè)三角形就是直角三角形。(勾股定理的逆定理)。

  判定3:若一個(gè)三角形30°內角所對的邊是某一邊的一半,則這個(gè)三角形是以這條長(cháng)邊為斜邊的直角三角形。

  判定4:兩個(gè)銳角互為余角(兩角相加等于90°)的三角形是直角三角形。

  判定5:若兩直線(xiàn)相交且它們的'斜率之積互為負倒數,則兩直線(xiàn)互相垂直。那么

  判定6:若在一個(gè)三角形中一邊上的中線(xiàn)等于其所在邊的一半,那么這個(gè)三角形為直角三角形。

  判定7:一個(gè)三角形30°角所對的邊等于這個(gè)三角形斜邊的一半,則這個(gè)三角形為直角三角形。(與判定3不同,此定理用于已知斜邊的三角形。)

  初三數學(xué)上知識點(diǎn)總結 10

  1、概念:

  把一個(gè)圖形繞著(zhù)某一點(diǎn)O轉動(dòng)一個(gè)角度的圖形變換叫做旋轉,點(diǎn)O叫做旋轉中心,轉動(dòng)的角叫做旋轉角。

  旋轉三要素:旋轉中心、旋轉方面、旋轉角。

  2、旋轉的性質(zhì):

 。1)旋轉前后的兩個(gè)圖形是全等形;

 。2)兩個(gè)對應點(diǎn)到旋轉中心的距離相等。

 。3)兩個(gè)對應點(diǎn)與旋轉中心的連線(xiàn)段的`夾角等于旋轉角。

  3、中心對稱(chēng):

  把一個(gè)圖形繞著(zhù)某一個(gè)點(diǎn)旋轉180,如果它能夠與另一個(gè)圖形重合,那么就說(shuō)這兩個(gè)圖形關(guān)于這個(gè)點(diǎn)對稱(chēng)或中心對稱(chēng),這個(gè)點(diǎn)叫做對稱(chēng)中心。

  這兩個(gè)圖形中的對應點(diǎn)叫做關(guān)于中心的對稱(chēng)點(diǎn)。

  4、中心對稱(chēng)的性質(zhì):

 。1)關(guān)于中心對稱(chēng)的兩個(gè)圖形,對稱(chēng)點(diǎn)所連線(xiàn)段都經(jīng)過(guò)對稱(chēng)中心,而且被對稱(chēng)中心所平分。

 。2)關(guān)于中心對稱(chēng)的`兩個(gè)圖形是全等圖形。

  5、中心對稱(chēng)圖形:

  把一個(gè)圖形繞著(zhù)某一個(gè)點(diǎn)旋轉180,如果旋轉后的圖形能夠與原來(lái)的圖形重合,那么這個(gè)圖形叫做中心對稱(chēng)圖形,這個(gè)點(diǎn)就是它的對稱(chēng)中心。

  6、坐標系中的中心對稱(chēng)

  兩個(gè)點(diǎn)關(guān)于原點(diǎn)對稱(chēng)時(shí),它們的坐標符號相反,即點(diǎn)P(x,y)關(guān)于原點(diǎn)O的對稱(chēng)點(diǎn)P(―x,―y)。

  初三數學(xué)上知識點(diǎn)總結 11

  全套教科書(shū)包含了課程標準(實(shí)驗稿)規定的“數與代數”“空間與圖形”“統計與概率”“實(shí)踐與綜合應用”四個(gè)領(lǐng)域的內容,在體系結構的設計上力求反映這些內容之間的聯(lián)系與綜合,使它們形成一個(gè)有機的整體。

  九年級上冊包括二次根式、一元二次方程、旋轉、圓、概率初步五章內容,學(xué)習內容涉及到了《課程標準》的四個(gè)領(lǐng)域。本冊書(shū)內容分析如下:

  第21章二次根式

  學(xué)生已經(jīng)學(xué)過(guò)整式與分式,知道用式子可以表示實(shí)際問(wèn)題中的數量關(guān)系。解決與數量關(guān)系有關(guān)的問(wèn)題還會(huì )遇到二次根式!岸胃健币徽戮蛠(lái)認識這種式子,探索它的性質(zhì),掌握它的運算。

  在這一章,首先讓學(xué)生了解二次根式的概念,并掌握以下重要結論:

  注:關(guān)于二次根式的運算,由于二次根式的乘除相對于二次根式的加減來(lái)說(shuō)更易于掌握,教科書(shū)先安排二次根式的乘除,再安排二次根式的加減!岸胃降某顺币还澋膬热萦袃蓷l發(fā)展的線(xiàn)索。一條是用具體計算的例子體會(huì )二次根式乘除法則的合理性,并運用二次根式的乘除法則進(jìn)行運算;一條是由二次根式的乘除法則得到

  并運用它們進(jìn)行二次根式的化簡(jiǎn)。

  “二次根式的加減”一節先安排二次根式加減的內容,再安排二次根式加減乘除混合運算的內容。在本節中,注意類(lèi)比整式運算的有關(guān)內容。例如,讓學(xué)生比較二次根式的加減與整式的加減,又如,通過(guò)例題說(shuō)明在二次根式的運算中,多項式乘法法則和乘法公式仍然適用。這些處理有助于學(xué)生掌握本節內容。

  第22章一元二次方程

  學(xué)生已經(jīng)掌握了用一元一次方程解決實(shí)際問(wèn)題的方法。在解決某些實(shí)際問(wèn)題時(shí)還會(huì )遇到一種新方程——一元二次方程!耙辉畏匠獭币徽戮蛠(lái)認識這種方程,討論這種方程的解法,并運用這種方程解決一些實(shí)際問(wèn)題。

  本章首先通過(guò)雕像設計、制作方盒、排球比賽等問(wèn)題引出一元二次方程的概念,給出一元二次方程的一般形式。然后讓學(xué)生通過(guò)數值代入的方法找出某些簡(jiǎn)單的一元二次方程的解,對一元二次方程的解加以體會(huì ),并給出一元二次方程的根的概念,“22.2降次——解一元二次方程”一節介紹配方法、公式法、因式分解法三種解一元二次方程的方法。下面分別加以說(shuō)明。

  (1)在介紹配方法時(shí),首先通過(guò)實(shí)際問(wèn)題引出形如的方程。這樣的方程可以化為更為簡(jiǎn)單的`形如的方程,由平方根的概念,可以得到這個(gè)方程的解。進(jìn)而舉例說(shuō)明如何解形如的方程。然后舉例說(shuō)明一元二次方程可以化為形如的方程,引出配方法。最后安排運用配方法解一元二次方程的例題。在例題中,涉及二次項系數不是1的一元二次方程,也涉及沒(méi)有實(shí)數根的一元二次方程。對于沒(méi)有實(shí)數根的一元二次方程,學(xué)了“公式法”以后,學(xué)生對這個(gè)內容會(huì )有進(jìn)一步的理解。

  (2)在介紹公式法時(shí),首先借助配方法討論方程的解法,得到一元二次方程的求根公式。然后安排運用公式法解一元二次方程的例題。在例題中,涉及有兩個(gè)相等實(shí)數根的一元二次方程,也涉及沒(méi)有實(shí)數根的一元二次方程。由此引出一元二次方程的解的三種情況。

  (3)在介紹因式分解法時(shí),首先通過(guò)實(shí)際問(wèn)題引出易于用因式分解法的一元二次方程,引出因式分解法。然后安排運用因式分解法解一元二次方程的例題。最后對配方法、公式法、因式分解法三種解一元二次方程的方法進(jìn)行小結。

  “22.3實(shí)際問(wèn)題與一元二次方程”一節安排了四個(gè)探究欄目,分別探究傳播、成本下降率、面積、勻變速運動(dòng)等問(wèn)題,使學(xué)生進(jìn)一步體會(huì )方程是刻畫(huà)現實(shí)世界的一個(gè)有效的數學(xué)模型。

  第23章旋轉

  學(xué)生已經(jīng)認識了平移、軸對稱(chēng),探索了它們的性質(zhì),并運用它們進(jìn)行圖案設計。本書(shū)中圖形變換又增添了一名新成員――旋轉!靶D”一章就來(lái)認識這種變換,探索它的性質(zhì)。在此基礎上,認識中心對稱(chēng)和中心對稱(chēng)圖形。

  “23.1旋轉”一節首先通過(guò)實(shí)例介紹旋轉的概念。然后讓學(xué)生探究旋轉的性質(zhì)。在此基礎上,通過(guò)例題說(shuō)明作一個(gè)圖形旋轉后的圖形的方法。最后舉例說(shuō)明用旋轉可以進(jìn)行圖案設計。

  “23.2中心對稱(chēng)”一節首先通過(guò)實(shí)例介紹中心對稱(chēng)的概念。然后讓學(xué)生探究中心對稱(chēng)的性質(zhì)。在此基礎上,通過(guò)例題說(shuō)明作與一個(gè)圖形成中心對稱(chēng)的圖形的方法。這些內容之后,通過(guò)線(xiàn)段、平行四邊形引出中心對稱(chēng)圖形的概念。最后介紹關(guān)于原點(diǎn)對稱(chēng)的點(diǎn)的坐標的關(guān)系,以及利用這一關(guān)系作與一個(gè)圖形成中心對稱(chēng)的圖形的方法。

  “23.3課題學(xué)習圖案設計”一節讓學(xué)生探索圖形之間的變換關(guān)系(平移、軸對稱(chēng)、旋轉及其組合),靈活運用平移、軸對稱(chēng)、旋轉的組合進(jìn)行圖案設計。

  第24章圓

  圓是一種常見(jiàn)的圖形。在“圓”這一章,學(xué)生將進(jìn)一步認識圓,探索它的性質(zhì),并用這些知識解決一些實(shí)際問(wèn)題。通過(guò)這一章的學(xué)習,學(xué)生的解決圖形問(wèn)題的能力將會(huì )進(jìn)一步提高。

  “24.1圓”一節首先介紹圓及其有關(guān)概念。然后讓學(xué)生探究與垂直于弦的直徑有關(guān)的結論,并運用這些結論解決問(wèn)題。接下來(lái),讓學(xué)生探究弧、弦、圓心角的關(guān)系,并運用上述關(guān)系解決問(wèn)題。最后讓學(xué)生探究圓周角與圓心角的關(guān)系,并運用上述關(guān)系解決問(wèn)題。

  “24.2與圓有關(guān)的位置關(guān)系”一節首先介紹點(diǎn)和圓的三種位置關(guān)系、三角形的外心的概念,并通過(guò)證明“在同一直線(xiàn)上的三點(diǎn)不能作圓”引出了反證法。然后介紹直線(xiàn)和圓的三種位置關(guān)系、切線(xiàn)的概念以及與切線(xiàn)有關(guān)的結論。最后介紹圓和圓的位置關(guān)系。

  “24.3正多邊形和圓”一節揭示了正多邊形和圓的關(guān)系,介紹了等分圓周得到正多邊形的方法。

  “24.4弧長(cháng)和扇形面積”一節首先介紹弧長(cháng)公式。然后介紹扇形及其面積公式。最后介紹圓錐的側面積公式。

  第25章概率初步

  將一枚硬幣拋擲一次,可能出現正面也可能出現反面,出現正面的可能性大還是出現反面的可能性大呢?學(xué)了“概率”一章,學(xué)生就能更好地認識這個(gè)問(wèn)題了。掌握了概率的初步知識,學(xué)生還會(huì )解決更多的實(shí)際問(wèn)題。

  “25.1概率”一節首先通過(guò)實(shí)例介紹隨機事件的概念,然后通過(guò)擲幣問(wèn)題引出概率的概念。

  “25.2用列舉法求概率”一節首先通過(guò)具體試驗引出用列舉法求概率的方法。然后安排運用這種方法求概率的例題。在例題中,涉及列表及畫(huà)樹(shù)形圖。

  “25.3利用頻率估計概率”一節通過(guò)幼樹(shù)成活率和柑橘損壞率等問(wèn)題介紹了用頻率估計概率的方法。

  “25.4課題學(xué)習鍵盤(pán)上字母的排列規律”一節讓學(xué)生通過(guò)這一課題的研究體會(huì )概率的廣泛應用。

  初三數學(xué)上知識點(diǎn)總結 12

  1、圖形的相似

  相似多邊形的對應邊的比值相等,對應角相等;

  兩個(gè)多邊形的對應角相等,對應邊的比值也相等,那么這兩個(gè)多邊形相似;

  相似比:相似多邊形對應邊的比值。

  2、相似三角形

  判定:

  平行于三角形一邊的直線(xiàn)和其它兩邊相交,所構成的三角形和原三角形相似;

  如果兩個(gè)三角形的三組對應邊的比相等,那么這兩個(gè)三角形相似;

  如果兩個(gè)三角形的兩組對應邊的比相等,并且相應的.夾角相等,那么兩個(gè)三角形相似;

  如果一個(gè)三角形的兩個(gè)角與另一個(gè)三角形的兩個(gè)角對應相等,那么兩個(gè)三角形相似。

  3、相似三角形的周長(cháng)和面積

  相似三角形(多邊形)的周長(cháng)的比等于相似比;

  相似三角形(多邊形)的面積的比等于相似比的平方。

  4、位似

  位似圖形:兩個(gè)多邊形相似,而且對應頂點(diǎn)的連線(xiàn)相交于一點(diǎn),對應邊互相平行,這樣的兩個(gè)圖形叫位似圖形,相交的點(diǎn)叫位似中心。

【初三數學(xué)上知識點(diǎn)總結】相關(guān)文章:

初三數學(xué)知識點(diǎn)總結06-08

初三數學(xué)圓的知識點(diǎn)總結12-06

初三數學(xué)知識點(diǎn)總結12-07

初三數學(xué)中考知識點(diǎn)總結09-21

初三數學(xué)知識點(diǎn)的歸納總結03-21

初三數學(xué)上冊知識點(diǎn)總結03-19

關(guān)于初三數學(xué)知識點(diǎn)總結12-01

初三數學(xué)上冊知識點(diǎn)總結11-18

初三數學(xué)上冊知識點(diǎn)總結08-07

初三數學(xué)上冊的知識點(diǎn)總結12-20