初三數學(xué)上冊知識點(diǎn)總結
總結是對過(guò)去一定時(shí)期的工作、學(xué)習或思想情況進(jìn)行回顧、分析,并做出客觀(guān)評價(jià)的書(shū)面材料,通過(guò)它可以全面地、系統地了解以往的學(xué)習和工作情況,不妨讓我們認真地完成總結吧。我們該怎么去寫(xiě)總結呢?以下是小編精心整理的初三數學(xué)上冊知識點(diǎn)總結,希望對大家有所幫助。
初三數學(xué)上冊知識點(diǎn)總結 1
第21章二次根式
1、二次根式:一般地,式子叫做二次根式。
注意:
。1)若這個(gè)條件不成立,則不是二次根式;
。2)是一個(gè)重要的非負數,即;≥0。
2、重要公式:
3、積的算術(shù)平方根:
積的算術(shù)平方根等于積中各因式的算術(shù)平方根的積;
4、二次根式的乘法法則:。
5、二次根式比較大小的方法:
。1)利用近似值比大;
。2)把二次根式的系數移入二次根號內,然后比大;
。3)分別平方,然后比大小。
6、商的算術(shù)平方根:,
商的算術(shù)平方根等于被除式的算術(shù)平方根除以除式的算術(shù)平方根。
7、二次根式的除法法則:
分母有理化的方法是:分式的分子與分母同乘分母的有理化因式,使分母變?yōu)檎健?/p>
8、最簡(jiǎn)二次根式:
。1)滿(mǎn)足下列兩個(gè)條件的二次根式,叫做最簡(jiǎn)二次根式,
、俦婚_(kāi)方數的因數是整數,因式是整式,
、诒婚_(kāi)方數中不含能開(kāi)的盡的因數或因式;
。2)最簡(jiǎn)二次根式中,被開(kāi)方數不能含有小數、分數,字母因式次數低于2,且不含分母;
。3)化簡(jiǎn)二次根式時(shí),往往需要把被開(kāi)方數先分解因數或分解因式;
。4)二次根式計算的最后結果必須化為最簡(jiǎn)二次根式。
9、同類(lèi)二次根式:幾個(gè)二次根式化成最簡(jiǎn)二次根式后,如果被開(kāi)方數相同,這幾個(gè)二次根式叫做同類(lèi)二次根式。
10、二次根式的混合運算:
。1)二次根式的混合運算包括加、減、乘、除、乘方、開(kāi)方六種代數運算,以前學(xué)過(guò)的,在有理數范圍內的一切公式和運算律在二次根式的混合運算中都適用;
。2)二次根式的運算一般要先把二次根式進(jìn)行適當化簡(jiǎn),例如:化為同類(lèi)二次根式才能合并;除法運算有時(shí)轉化為分母有理化或約分更為簡(jiǎn)便;使用乘法公式等。
第22章一元二次方程
1、一元二次方程的一般形式:
a≠0時(shí),ax2+bx+c=0叫一元二次方程的一般形式,研究一元二次方程的有關(guān)問(wèn)題時(shí),多數習題要先化為一般形式,目的是確定一般形式中的a、 b、 c;其中a 、 b,、c可能是具體數,也可能是含待定字母或特定式子的代數式。
2、一元二次方程的解法:一元二次方程的四種解法要求靈活運用,其中直接開(kāi)平方法雖然簡(jiǎn)單,但是適用范圍較;公式法雖然適用范圍大,但計算較繁,易發(fā)生計算錯誤;因式分解法適用范圍較大,且計算簡(jiǎn)便,是首選方法;配方法使用較少。
3。一元二次方程根的判別式:當ax2+bx+c=0
。╝≠0)時(shí),Δ=b2—4ac叫一元二次方程根的判別式。請注意以下等價(jià)命題:
Δ>0 <=>有兩個(gè)不等的實(shí)根;
4。平均增長(cháng)率問(wèn)題————————應用題的類(lèi)型題之一(設增長(cháng)率為x):
。1)第一年為a,第二年為a(1+x),第三年為a(1+x)2。
。2)常利用以下相等關(guān)系列方程:第三年=第三年或第一年+第二年+第三年=總和。
第23章旋轉
1、概念:
把一個(gè)圖形繞著(zhù)某一點(diǎn)O轉動(dòng)一個(gè)角度的圖形變換叫做旋轉,點(diǎn)O叫做旋轉中心,轉動(dòng)的角叫做旋轉角。
旋轉三要素:旋轉中心、旋轉方面、旋轉角
2、旋轉的性質(zhì):
。1)旋轉前后的兩個(gè)圖形是全等形;
。2)兩個(gè)對應點(diǎn)到旋轉中心的距離相等
。3)兩個(gè)對應點(diǎn)與旋轉中心的連線(xiàn)段的夾角等于旋轉角
3、中心對稱(chēng):
把一個(gè)圖形繞著(zhù)某一個(gè)點(diǎn)旋轉180°,如果它能夠與另一個(gè)圖形重合,那么就說(shuō)這兩個(gè)圖形關(guān)于這個(gè)點(diǎn)對稱(chēng)或中心對稱(chēng),這個(gè)點(diǎn)叫做對稱(chēng)中心。
這兩個(gè)圖形中的對應點(diǎn)叫做關(guān)于中心的對稱(chēng)點(diǎn)。
4、中心對稱(chēng)的性質(zhì):
。1)關(guān)于中心對稱(chēng)的兩個(gè)圖形,對稱(chēng)點(diǎn)所連線(xiàn)段都經(jīng)過(guò)對稱(chēng)中心,而且被對稱(chēng)中心所平分。
。2)關(guān)于中心對稱(chēng)的兩個(gè)圖形是全等圖形。
5、中心對稱(chēng)圖形:
把一個(gè)圖形繞著(zhù)某一個(gè)點(diǎn)旋轉180°,如果旋轉后的圖形能夠與原來(lái)的圖形重合,那么這個(gè)圖形叫做中心對稱(chēng)圖形,這個(gè)點(diǎn)就是它的對稱(chēng)中心。
初三數學(xué)上冊知識點(diǎn)總結 2
單項式與多項式
僅含有一些數和字母的乘法包括乘方運算的式子叫做單項式單獨的一個(gè)數或字母也是單項式。
單項式中的數字因數叫做這個(gè)單項式或字母因數的數字系數,簡(jiǎn)稱(chēng)系數。
當一個(gè)單項式的系數是1或—1時(shí),“1”通常省略不寫(xiě)。
一個(gè)單項式中,所有字母的指數的和叫做這個(gè)單項式的次數。
如果在幾個(gè)單項式中,不管它們的系數是不是相同,只要他們所含的字母相同,并且相同字母的指數也分別相同,那么,這幾個(gè)單項式就叫做同類(lèi)單項式,簡(jiǎn)稱(chēng)同類(lèi)項所有的常數都是同類(lèi)項。
1、多項式
有有限個(gè)單項式的代數和組成的式子,叫做多項式。
多項式里每個(gè)單項式叫做多項式的項,不含字母的項,叫做常數項。
單項式可以看作是多項式的特例
把同類(lèi)單項式的系數相加或相減,而單項式中的字母的乘方指數不變。
在多項式中,所含的不同未知數的個(gè)數,稱(chēng)做這個(gè)多項式的元數經(jīng)過(guò)合并同類(lèi)項后,多項式所含單項式的個(gè)數,稱(chēng)為這個(gè)多項式的項數所含個(gè)單項式中次項的次數,就稱(chēng)為這個(gè)多項式的次數。
2、多項式的值
任何一個(gè)多項式,就是一個(gè)用加、減、乘、乘方運算把已知數和未知數連接起來(lái)的式子。
3、多項式的恒等
對于兩個(gè)一元多項式fx、gx來(lái)說(shuō),當未知數x同取任一個(gè)數值a時(shí),如果它們所得的值都是相等的,即fa=ga,那么,這兩個(gè)多項式就稱(chēng)為是恒等的記為fx==gx,或簡(jiǎn)記為fx=gx。
性質(zhì)1如果fx==gx,那么,對于任一個(gè)數值a,都有fa=ga。
性質(zhì)2如果fx==gx,那么,這兩個(gè)多項式的個(gè)同類(lèi)項系數就一定對應相等。
4、一元多項式的根
一般地,能夠使多項式fx的值等于0的未知數x的值,叫做多項式fx的根。
多項式的加、減法,乘法
1、多項式的加、減法
2、多項式的乘法
單項式相乘,用它們系數作為積的系數,對于相同的字母因式,則連同它的指數作為積的一個(gè)因式。
3、多項式的乘法
多項式與多項式相乘,先用一個(gè)多項式等每一項乘以另一個(gè)多項式的各項,再把所得的積相加。
常用乘法公式
公式I平方差公式
a+ba—b=a^2—b^2
兩個(gè)數的和與這兩個(gè)數的差的積等于這兩個(gè)數的平方差。
初三數學(xué)上冊知識點(diǎn)總結 3
第21章二次根式知識框圖
理解并掌握下列結論:
。1)是非負數;
。2);
。3);
I.二次根式的定義和概念:
1、定義:一般地,形如√。╝≥0)的代數式叫做二次根式。當a>0時(shí),√a表示a的算數平方根,√0=0
2、概念:式子√。╝≥0)叫二次根式!台。╝≥0)是一個(gè)非負數。
II.二次根式√ā的簡(jiǎn)單性質(zhì)和幾何意義
1)a≥0;√ā≥0[雙重非負性]
2)(√。2=a(a≥0)[任何一個(gè)非負數都可以寫(xiě)成一個(gè)數的平方的形式]3)√(a^2+b^2)表示平面間兩點(diǎn)之間的距離,即勾股定理推論。
IV.二次根式的乘法和除法
1運算法則
√a√b=√ab(a≥0,b≥0)
√a/b=√a/√b(a≥0,b>0)
二數二次根之積,等于二數之積的二次根。2共軛因式
如果兩個(gè)含有根式的代數式的積不再含有根式,那么這兩個(gè)代數式叫做共軛因式,也稱(chēng)互為有理化根式。
V.二次根式的加法和減法
1同類(lèi)二次根式
一般地,把幾個(gè)二次根式化為最簡(jiǎn)二次根式后,如果它們的被開(kāi)方數相同,就把這幾個(gè)二次根式叫做同類(lèi)二次根式。2合并同類(lèi)二次根式
把幾個(gè)同類(lèi)二次根式合并為一個(gè)二次根式就叫做合并同類(lèi)二次根式。
3二次根式加減時(shí),可以先將二次根式化為最簡(jiǎn)二次根式,再將被開(kāi)方數相同的進(jìn)行合并
、.二次根式的混合運算
1確定運算順序2靈活運用運算定律3正確使用乘法公式4大多數分母有理化要及時(shí)
5在有些簡(jiǎn)便運算中也許可以約分,不要盲目有理化
VII.分母有理化
分母有理化有兩種方法I.分母是單項式
如:√a/√b=√a×√b/√b×√b=√ab/b
II.分母是多項式要利用平方差公式
如1/√a+√b=√a-√b/(√a+√b)(√a-√b)=√a-√b/a-bIII.分母是多項式要利用平方差公式
如1/√a+√b=√a-√b/(√a+√b)(√a-√b)=√a-√b/a-b第22章一元二次方程知識框圖
旋轉的定義
旋轉對稱(chēng)中心
大于360°)。
把一個(gè)圖形繞著(zhù)一個(gè)定點(diǎn)旋轉一個(gè)角度后,與初始圖形重合,這種
圖形叫做旋轉對稱(chēng)圖形,這個(gè)定點(diǎn)叫做旋轉對稱(chēng)中心,旋轉的角度叫做旋轉角(旋轉角小于0°,
也就是說(shuō):
、僦行膶ΨQ(chēng)圖形:如果把一個(gè)圖形繞著(zhù)某一點(diǎn)旋轉180度后能與自身重合,那么我們就說(shuō),這個(gè)圖形成中心對稱(chēng)圖形。
、谥行膶ΨQ(chēng):如果把一個(gè)圖形繞著(zhù)某一點(diǎn)旋轉180度后能與另一個(gè)圖形重合,那么我們就說(shuō),這兩個(gè)圖形成中心對稱(chēng)。
中心對稱(chēng)圖形
正(2N)邊形(N為大于1的正整數),線(xiàn)段,矩形,菱形,圓
只是中心對稱(chēng)圖形
平行四邊形等.第24章圓知識框圖
圓和點(diǎn)的位置關(guān)系:以點(diǎn)P與圓O的為例(設P是一點(diǎn),則PO是點(diǎn)到圓心的距離),P在⊙O外,PO>r;P在⊙O上,PO=r;P在⊙O內,PO<r。
直線(xiàn)與圓有3種位置關(guān)系:無(wú)公共點(diǎn)為相離;有兩個(gè)公共點(diǎn)為相交,這條直線(xiàn)叫做圓的割線(xiàn);圓與直線(xiàn)有唯一公共點(diǎn)為相切,這條直線(xiàn)叫做圓的切線(xiàn),這個(gè)唯一的公共點(diǎn)叫做切點(diǎn)。以直線(xiàn)AB與圓O為例(設OP⊥AB于P,則PO是AB到圓心的距離):AB與⊙O相離,PO>r;AB與⊙O相切,PO=r;AB與⊙O相交,PO<r。
兩圓之間有5種位置關(guān)系:無(wú)公共點(diǎn)的,一圓在另一圓之外叫外離,在之內叫內含;有唯一公共點(diǎn)的,一圓在另一圓之外叫外切,在之內叫內切;有兩個(gè)公共點(diǎn)的叫相交。兩圓圓心之間的距離叫做圓心距。兩圓的半徑分別為R和r,且R≥r,圓心距為P:外離P>R+r;外切P=R+r;相交R-r<P<R+r;內切P=R-r;內含P<R-r。
圓的平面幾何性質(zhì)和定理
一有關(guān)圓的基本性質(zhì)與定理
、艌A的確定:不在同一直線(xiàn)上的三個(gè)點(diǎn)確定一個(gè)圓。
圓的對稱(chēng)性質(zhì):圓是軸對稱(chēng)圖形,其對稱(chēng)軸是任意一條通過(guò)圓心的直線(xiàn)。圓也是中心對稱(chēng)圖形,其對稱(chēng)中心是圓心。垂徑定理:垂直于弦的直徑平分這條弦,并且平分弦所對的2條弧。逆定理:平分弦(不是直徑)的直徑垂直于弦,并且平分弦所對的2條弧。
、朴嘘P(guān)圓周角和圓心角的性質(zhì)和定理在同圓或等圓中,如果兩個(gè)圓心角,兩個(gè)圓周角,兩組弧,兩條弦,兩條弦心距中有一組量相等,那么他們所對應的其余各組量都分別相等。一條弧所對的圓周角等于它所對的圓心角的一半。直徑所對的圓周角是直角。90度的圓周角所對的弦是直徑。
、怯嘘P(guān)外接圓和內切圓的性質(zhì)和定理
、僖粋(gè)三角形有唯一確定的外接圓和內切圓。外接圓圓心是三角形各邊垂直平分線(xiàn)的交點(diǎn),到三角形三個(gè)頂點(diǎn)距離相等;
、趦惹袌A的圓心是三角形各內角平分線(xiàn)的交點(diǎn),到三角形三邊距離相等。③S三角=1/2*△三角形周長(cháng)*內切圓半徑
、軆上嗲袌A的連心線(xiàn)過(guò)切點(diǎn)(連心線(xiàn):兩個(gè)圓心相連的線(xiàn)段)
、輬AO中的弦PQ的中點(diǎn)M,過(guò)點(diǎn)M任作兩弦AB,CD,弦AD與BC分別交PQ于X,Y,則M為XY之中點(diǎn)。
〖有關(guān)切線(xiàn)的性質(zhì)和定理〗
圓的切線(xiàn)垂直于過(guò)切點(diǎn)的半徑;經(jīng)過(guò)半徑的一端,并且垂直于這條半徑的直線(xiàn),是這個(gè)圓的切線(xiàn)。
切線(xiàn)的判定方法:經(jīng)過(guò)半徑外端并且垂直于這條半徑的直線(xiàn)是圓的切線(xiàn)。
切線(xiàn)的性質(zhì):(1)經(jīng)過(guò)切點(diǎn)垂直于這條半徑的直線(xiàn)是圓的切線(xiàn)。(2)經(jīng)過(guò)切點(diǎn)垂直于切線(xiàn)的直線(xiàn)必經(jīng)過(guò)圓心。(3)圓的切線(xiàn)垂直于經(jīng)過(guò)切點(diǎn)的半徑。
切線(xiàn)長(cháng)定理:從圓外一點(diǎn)到圓的兩條切線(xiàn)的長(cháng)相等,那點(diǎn)與圓心的連線(xiàn)平分切線(xiàn)的夾角!加嘘P(guān)圓的計算公式〗
1.圓的周長(cháng)C=2πr=πd2.圓的面積S=πr^2;3.扇形弧長(cháng)l=nπr/1804.扇形面積S=π(R^2-r^2)5.圓錐側面積S=πrl
第25章概率初步知識框圖
第26章二次函數
知識框圖
定義與定義表達式
一般地,自變量x和因變量y之間存在如下關(guān)系:
一般式:y=ax^2+bx+c(a≠0,a、b、c為常數),則稱(chēng)y為x的二次函數。頂點(diǎn)式:y=a(x-h)^2+k
交點(diǎn)式(與x軸):y=a(x-x1)(x-x2)
重要概念:(a,b,c為常數,a≠0,且a決定函數的開(kāi)口方向,a>0時(shí),開(kāi)口方向向上,a
1.拋物線(xiàn)是軸對稱(chēng)圖形。對稱(chēng)軸為直線(xiàn)x=-b/2a。
對稱(chēng)軸與拋物線(xiàn)唯一的交點(diǎn)為拋物線(xiàn)的頂點(diǎn)P。
特別地,當b=0時(shí),拋物線(xiàn)的對稱(chēng)軸是y軸(即直線(xiàn)x=0)2.拋物線(xiàn)有一個(gè)頂點(diǎn)P,坐標為P(-b/2a,(4ac-b)/4a)當-b/2a=0時(shí),P在y軸上;當Δ=b-4ac=0時(shí),P在x軸上。3.二次項系數a決定拋物線(xiàn)的開(kāi)口方向和大小。
當a>0時(shí),拋物線(xiàn)向上開(kāi)口;當a<0時(shí),拋物線(xiàn)向下開(kāi)口。|a|越大,則拋物線(xiàn)的開(kāi)口越小。
4.一次項系數b和二次項系數a共同決定對稱(chēng)軸的位置。
當a與b同號時(shí)(即ab>0),對稱(chēng)軸在y軸左;因為若對稱(chēng)軸在左邊則對稱(chēng)軸小于0,也就是-b/2a0,所以b/2a要小于0,所以a、b要異號
事實(shí)上,b有其自身的幾何意義:拋物線(xiàn)與y軸的交點(diǎn)處的該拋物線(xiàn)切線(xiàn)的函數解析式(一次函數)的斜率k的值?赏ㄟ^(guò)對二次函數求導得到。5.常數項c決定拋物線(xiàn)與y軸交點(diǎn)。拋物線(xiàn)與y軸交于(0,c)6.拋物線(xiàn)與x軸交點(diǎn)個(gè)數
Δ=b-4ac>0時(shí),拋物線(xiàn)與x軸有2個(gè)交點(diǎn)。Δ=b-4ac=0時(shí),拋物線(xiàn)與x軸有1個(gè)交點(diǎn)。_______
Δ=b-4ac<0時(shí),拋物線(xiàn)與x軸沒(méi)有交點(diǎn)。X的取值是虛數(x=-b±√b-4ac的值的相反數,乘上虛數i,整個(gè)式子除以2a)
當a>0時(shí),函數在x=-b/2a處取得最小值f(-b/2a)=4ac-b/4a;在{x|x-b/2a}上是增函數;拋物線(xiàn)的開(kāi)口向上;函數的值域是{y|y≥4ac-b/4a}相反不變
當b=0時(shí),拋物線(xiàn)的對稱(chēng)軸是y軸,這時(shí),函數是偶函數,解析式變形為y=ax+c(a≠0)解析式:
第27章相似知識框圖
相似三角形的認識
對應角相等,對應邊成比例的兩個(gè)三角形叫做相似三角形。(similartriangles);橄嗨菩蔚娜切谓凶鱿嗨迫切
相似三角形的判定方法
根據相似圖形的特征來(lái)判斷。(對應邊成比例,對應角相等)
1.平行于三角形一邊的直線(xiàn)(或兩邊的延長(cháng)線(xiàn))和其他兩邊相交,所構成的三角形與原三角形相似;
。ㄟ@是相似三角形判定的引理,是以下判定方法證明的基礎。這個(gè)引理的證明方法需要平行線(xiàn)分線(xiàn)段成比例的證明)
2.如果一個(gè)三角形的兩個(gè)角與另一個(gè)三角形的兩個(gè)角對應相等,那么這兩個(gè)三角形相似;
直角三角形相似判定定理
1.斜邊與一條直角邊對應成比例的兩直角三角形相似。
2.直角三角形被斜邊上的高分成的兩個(gè)直角三角形與原直角三角形相似,并且分成的兩個(gè)直角三角形也相似。射影定理
三角形相似的判定定理推論
推論一:頂角或底角相等的那個(gè)的兩個(gè)等腰三角形相似。推論二:腰和底對應成比例的兩個(gè)等腰三角形相似。推論三:有一個(gè)銳角相等的兩個(gè)直角三角形相似。
推論四:直角三角形被斜邊上的高分成的兩個(gè)直角三角形和原三角形都相似。
推論五:如果一個(gè)三角形的兩邊和其中一邊上的中線(xiàn)與另一個(gè)三角形的對應部分成比例,那么這兩個(gè)三角形相似。
推論六:如果一個(gè)三角形的兩邊和第三邊上的中線(xiàn)與另一個(gè)三角形的對應部分成比例,那么這兩個(gè)三角形相似。
相似三角形的性質(zhì)
1.相似三角形的一切對應線(xiàn)段(對應高、對應中線(xiàn)、對應角平分線(xiàn)、外接圓半徑、內切圓半徑等)的比等于相似比。
2.相似三角形周長(cháng)的比等于相似比。3.相似三角形面積的比等于相似比的平方。
相似三角形的特例
能夠完全重合的兩個(gè)三角形叫做全等三角形。(congruenttriangles)全等三角形是相似三角形的特例。全等三角形的特征:1.形狀完全相同,相似比是k=1。
全等三角形一定是相似三角形,而相似三角形不一定是全等三角形。
因此,相似三角形包括全等三角形。全等三角形的定義
能夠完全重合的兩個(gè)三角形稱(chēng)為全等三角形。(注:全等三角形是相似三角形中的特殊情況)當兩個(gè)三角形完全重合時(shí),互相重合的頂點(diǎn)叫做對應頂點(diǎn),互相重合的邊叫做對應邊,互相重合的角叫做對應角。
由此,可以得出:全等三角形的對應邊相等,對應角相等。
(1)全等三角形對應角所對的邊是對應邊,兩個(gè)對應角所夾的邊是對應邊;(2)全等三角形對應邊所對的角是對應角,兩條對應邊所夾的角是對應角;(3)有公共邊的,公共邊一定是對應邊;(4)有公共角的,角一定是對應角;(5)有對頂角的,對頂角一定是對應角;三角形全等的判定公理及推論
1、三組對應邊分別相等的兩個(gè)三角形全等(簡(jiǎn)稱(chēng)SSS或“邊邊邊”),這一條也說(shuō)明了三角形具有穩定性的原因。
2、有兩邊及其夾角對應相等的兩個(gè)三角形全等(SAS或“邊角邊”)。3、有兩角及其夾邊對應相等的兩個(gè)三角形全等(ASA或“角邊角”)。由3可推到
4、有兩角及一角的對邊對應相等的兩個(gè)三角形全等(AAS或“角角邊”)
5、直角三角形全等條件有:斜邊及一直角邊對應相等的兩個(gè)直角三角形全等(HL或“斜邊,直角邊”)
所以,SSS,SAS,ASA,AAS,HL均為判定三角形全等的定理。
注意:在全等的判定中,沒(méi)有AAA和SSA,這兩種情況都不能唯一確定三角形的形狀。A是英文角的縮寫(xiě)(angle),S是英文邊的縮寫(xiě)(side)。全等三角形的性質(zhì)
1、全等三角形的對應角相等、對應邊相等。2、全等三角形的對應邊上的高對應相等。3、全等三角形的對應角平分線(xiàn)相等。4、全等三角形的對應中線(xiàn)相等。5、全等三角形面積相等。6、全等三角形周長(cháng)相等。
7、三邊對應相等的兩個(gè)三角形全等。(SSS)
8、兩邊和它們的夾角對應相等的兩個(gè)三角形全等。(SAS)9、兩角和它們的夾邊對應相等的兩個(gè)三角形全等。(ASA)
10、兩個(gè)角和其中一個(gè)角的對邊對應相等的兩個(gè)三角形全等。(AAS)11、斜邊和一條直角邊對應相等的兩個(gè)直角三角形全等。(HL)全等三角形的運用
1、性質(zhì)中三角形全等是條件,結論是對應角、對應邊相等。而全等的判定卻剛好相反。2、利用性質(zhì)和判定,學(xué)會(huì )準確地找出兩個(gè)全等三角形中的對應邊與對應角是關(guān)鍵。在寫(xiě)兩個(gè)三角形全等時(shí),一定把對應的頂點(diǎn),角、邊的順序寫(xiě)一致,為找對應邊,角提供方便。3,當圖中出現兩個(gè)以上等邊三角形時(shí),應首先考慮用SAS找全等三角形。
第28章銳角三角函數
知識框圖
第29章投影與視圖知識框圖
代數重點(diǎn)難點(diǎn)總結
方程(組)
一、基本概念
1.方程、方程的解(根)、方程組的解、解方程(組)二、一元二次方程1.定義及一般形式:
2.解法:⑴直接開(kāi)平方法(注意特征)⑵配方法(注意步驟推倒求根公式)⑶公式法:⑷因式分解法(特征:左邊=0)3.根的判別式:b24ac
bc4.根與系數的關(guān)系(韋達定理):x1+x2=,x1x2=
aa逆定理:若,則以x1,x2為根的一元二次方程是:a(x-x1)(x-x2)=0。5.常用等式:
三、可化為一元二次方程的方程1.分式方程⑴定義
、苹舅枷耄喝シ帜
、腔窘夥ǎ孩偃シ帜阜á趽Q元法(如,)⑷驗根及方法2.無(wú)理方程⑴定義
、苹舅枷耄悍帜赣欣砘
、腔窘夥ǎ孩俪朔椒ǎㄗ⒁饧记桑。。趽Q元法(例,)⑷驗根及方法
3.簡(jiǎn)單的二元二次方程組
由一個(gè)二元一次方程和一個(gè)二元二次方程組成的二元二次方程組都可用代入法解。四、列方程解應用題一概述
列方程(組)解應用題是中學(xué)數學(xué)聯(lián)系實(shí)際的一個(gè)重要方面。其具體步驟是:
、艑忣}。理解題意。弄清問(wèn)題中已知量是什么,未知量是什么,問(wèn)題給出和涉及的相等關(guān)系是什么。
、圃O元(未知數)。①直接未知數②間接未知數(往往二者兼用)。一般來(lái)說(shuō),未知數越多,方程越易列,但越難解。
、怯煤粗獢档拇鷶凳奖硎鞠嚓P(guān)的量。
、葘ふ蚁嗟汝P(guān)系(有的由題目給出,有的由該問(wèn)題所涉及的等量關(guān)系給出),列方程。一般地,未知數個(gè)數與方程個(gè)數是相同的。⑸解方程及檢驗。⑹答案。
綜上所述,列方程解應用題實(shí)質(zhì)是先把實(shí)際問(wèn)題轉化為數學(xué)問(wèn)題(設元、列方程),在由數學(xué)問(wèn)題的解決而導致實(shí)際問(wèn)題的解決(列方程、寫(xiě)出答案)。在這個(gè)過(guò)程中,列方程起著(zhù)承前啟后的作用。因此,列方程是解應用題的關(guān)鍵。
函數及其圖象
★重難點(diǎn)★二次函數的圖象和性質(zhì)。一、平面直角坐標系
1.各象限內點(diǎn)的坐標的特點(diǎn)2.坐標軸上點(diǎn)的坐標的特點(diǎn)
3.關(guān)于坐標軸、原點(diǎn)對稱(chēng)的點(diǎn)的坐標的特點(diǎn)4.坐標平面內點(diǎn)與有序實(shí)數對的對應關(guān)系二、函數
1.表示方法:⑴解析法;⑵列表法;⑶圖象法。
2.確定自變量取值范圍的原則:⑴使代數式有意義;⑵使實(shí)際問(wèn)題有意義。
3.畫(huà)函數圖象:⑴列表;⑵描點(diǎn);⑶連線(xiàn)。三、二次函數(定義→圖象→性質(zhì))⑴定義:
、茍D象:拋物線(xiàn)(用描點(diǎn)法畫(huà)出:先確定頂點(diǎn)、對稱(chēng)軸、開(kāi)口方向,再對稱(chēng)地描點(diǎn))。用配方法變?yōu),則頂點(diǎn)為(h,k);對稱(chēng)軸為直線(xiàn)x=h;a>0時(shí),開(kāi)口向上;a0時(shí),在對稱(chēng)軸左側,右側;a
四邊形
★重難點(diǎn)★相交線(xiàn)與平行線(xiàn)、三角形、四邊形的有關(guān)概念、判定、性質(zhì)。分類(lèi)表:
1.一般性質(zhì)(角)⑴內角和:360°
、祈槾芜B結各邊中點(diǎn)得平行四邊形。
推論1:順次連結對角線(xiàn)相等的四邊形各邊中點(diǎn)得菱形。
推論2:順次連結對角線(xiàn)互相垂直的四邊形各邊中點(diǎn)得矩形。⑶外角和:360°2.特殊四邊形
、叛芯克鼈兊囊话惴椒:
、破叫兴倪呅、矩形、菱形、正方形;梯形、等腰梯形的定義、性質(zhì)和判定⑶判定步驟:四邊形→平行四邊形→矩形→正方形┗→菱形↑
、葘蔷(xiàn)的紐帶作用:3.對稱(chēng)圖形
、泡S對稱(chēng)(定義及性質(zhì));⑵中心對稱(chēng)(定義及性質(zhì))4.有關(guān)定理:①平行線(xiàn)等分線(xiàn)段定理及其推論1、2②三角形、梯形的中位線(xiàn)定理
、燮叫芯(xiàn)間的距離處處相等。(如,找下圖中面積相等的三角形)
5.重要輔助線(xiàn):①常連結四邊形的對角線(xiàn);②梯形中!捌揭埔谎、“平移對角線(xiàn)”、“作高”、“連結頂點(diǎn)和對腰中點(diǎn)并延長(cháng)與底邊相交”轉化為三角形。6.作圖:任意等分線(xiàn)段。
第十章圓
★重難點(diǎn)★①圓的重要性質(zhì);②直線(xiàn)與圓、圓與圓的位置關(guān)系;③與圓有關(guān)的角的定理;④與圓有關(guān)的比例線(xiàn)段定理。一、圓的基本性質(zhì)1.圓的定義
2.有關(guān)概念:弦、直徑;弧、等弧、優(yōu)弧、劣弧、半圓;弦心距;等圓、同圓、同心圓。3.“三點(diǎn)定圓”定理4.垂徑定理及其推論
5.“等對等”定理及其推論
5.與圓有關(guān)的角:⑴圓心角定義(等對等定理)⑵圓周角定義(圓周角定理,與圓心角的關(guān)系)⑶弦切角定義(弦切角定理)二、直線(xiàn)和圓的位置關(guān)系
1.三種位置及判定與性質(zhì):相離、相切、相交2.切線(xiàn)的性質(zhì)(重點(diǎn))
3.切線(xiàn)的判定定理(重點(diǎn))。圓的切線(xiàn)的判定有⑴⑵
4.切線(xiàn)長(cháng)定理
三、圓換圓的位置關(guān)系
1.五種位置關(guān)系及判定與性質(zhì):(重點(diǎn):相切)外離、外切、相交、內切、內含
2.相切(交)兩圓連心線(xiàn)的性質(zhì)定理3.兩圓的公切線(xiàn):⑴定義⑵性質(zhì)四、與圓有關(guān)的比例線(xiàn)段1.相交弦定理2.切割線(xiàn)定理
五、與和正多邊形
1.圓的內接、外切多邊形(三角形、四邊形)2.三角形的外接圓、內切圓及性質(zhì)3.圓的外切四邊形、內接四邊形的性質(zhì)4.正多邊形及計算中心角:
內角的一半:(解Rt△OAM可求出相關(guān)元素等)六、一組計算公式1.圓周長(cháng)公式2.圓面積公式3.扇形面積公式4.弧長(cháng)公式
5.弓形面積的計算方法
6.圓柱、圓錐的側面展開(kāi)圖及相關(guān)計算七、點(diǎn)的軌跡六條基本軌跡八、有關(guān)作圖
1.作三角形的外接圓、內切圓2.平分已知弧
3.作已知兩線(xiàn)段的比例中項4.等分圓周:4、8;6、3等分九、基本圖形十、重要輔助線(xiàn)1.作半徑
2.見(jiàn)弦往往作弦心距
3.見(jiàn)直徑往往作直徑上的圓周角4.切點(diǎn)圓心莫忘連
5.兩圓相切公切線(xiàn)(連心線(xiàn))6.兩圓相交公共弦
初三數學(xué)上冊知識點(diǎn)總結 4
第1章二次根式
學(xué)生已經(jīng)學(xué)過(guò)整式與分式,知道用式子可以表示實(shí)際問(wèn)題中的數量關(guān)系。解決與數量關(guān)系有關(guān)的問(wèn)題還會(huì )遇到二次根式。二次根式一章就來(lái)認識這種式子,探索它的性質(zhì),掌握它的運算。
在這一章,首先讓學(xué)生了解二次根式的概念,并掌握以下重要結論:
注:關(guān)于二次根式的運算,由于二次根式的乘除相對于二次根式的加減來(lái)說(shuō)更易于掌握,教科書(shū)先安排二次根式的乘除,再安排二次根式的加減。二次根式的乘除一節的內容有兩條發(fā)展的線(xiàn)索。一條是用具體計算的例子體會(huì )二次根式乘除法則的合理性,并運用二次根式的乘除法則進(jìn)行運算;一條是由二次根式的乘除法則得到
并運用它們進(jìn)行二次根式的化簡(jiǎn)。
二次根式的加減一節先安排二次根式加減的內容,再安排二次根式加減乘除混合運算的內容。在本節中,注意類(lèi)比整式運算的有關(guān)內容。例如,讓學(xué)生比較二次根式的加減與整式的加減,又如,通過(guò)例題說(shuō)明在二次根式的運算中,多項式乘法法則和乘法公式仍然適用。這些處理有助于學(xué)生掌握本節內容。
第2章一元二次方程
學(xué)生已經(jīng)掌握了用一元一次方程解決實(shí)際問(wèn)題的方法。在解決某些實(shí)際問(wèn)題時(shí)還會(huì )遇到一種新方程一元二次方程。一元二次方程一章就來(lái)認識這種方程,討論這種方程的解法,并運用這種方程解決一些實(shí)際問(wèn)題。
本章首先通過(guò)雕像設計、制作方盒、排球比賽等問(wèn)題引出一元二次方程的概念,給出一元二次方程的一般形式。然后讓學(xué)生通過(guò)數值代入的方法找出某些簡(jiǎn)單的一元二次方程的解,對一元二次方程的解加以體會(huì ),并給出一元二次方程的根的概念,
22.2降次解一元二次方程一節介紹配方法、公式法、因式分解法三種解一元二次方程的方法。下面分別加以說(shuō)明。
(1)在介紹配方法時(shí),首先通過(guò)實(shí)際問(wèn)題引出形如的方程。這樣的方程可以化為更為簡(jiǎn)單的形如的方程,由平方根的概念,可以得到這個(gè)方程的解。進(jìn)而舉例說(shuō)明如何解形如的方程。然后舉例說(shuō)明一元二次方程可以化為形如的方程,引出配方法。最后安排運用配方法解一元二次方程的例題。在例題中,涉及二次項系數不是1的一元二次方程,也涉及沒(méi)有實(shí)數根的一元二次方程。對于沒(méi)有實(shí)數根的一元二次方程,學(xué)了公式法以后,學(xué)生對這個(gè)內容會(huì )有進(jìn)一步的理解。
(2)在介紹公式法時(shí),首先借助配方法討論方程的解法,得到一元二次方程的求根公式。然后安排運用公式法解一元二次方程的例題。在例題中,涉及有兩個(gè)相等實(shí)數根的一元二次方程,也涉及沒(méi)有實(shí)數根的一元二次方程。由此引出一元二次方程的解的三種情況。
(3)在介紹因式分解法時(shí),首先通過(guò)實(shí)際問(wèn)題引出易于用因式分解法的一元二次方程,引出因式分解法。然后安排運用因式分解法解一元二次方程的例題。最后對配方法、公式法、因式分解法三種解一元二次方程的方法進(jìn)行小結。
22.3實(shí)際問(wèn)題與一元二次方程一節安排了四個(gè)探究欄目,分別探究傳播、成本下降率、面積、勻變速運動(dòng)等問(wèn)題,使學(xué)生進(jìn)一步體會(huì )方程是刻畫(huà)現實(shí)世界的一個(gè)有效的數學(xué)模型。
初三數學(xué)上冊知識點(diǎn)總結 5
初三數學(xué)知識點(diǎn)第一章二次根式
1二次根式:形如a(a0)的式子為二次根式;性質(zhì):a(a0)是一個(gè)非負數;aaa0;
2a2aa0。
2二次根式的乘除:ababa0,b0;
aaa0,b0。bb3二次根式的加減:二次根式加減時(shí),先將二次根式華為最簡(jiǎn)二次根式,再將被開(kāi)方數相同的二次根式進(jìn)行合并。
4海倫-秦九韶公式:S是三角形的面積,Sp(p)(pb)(pc),p為pabc。2第二章一元二次方程
1一元二次方程:等號兩邊都是整式,且只有一個(gè)未知數,未知數的最高次是2的方程。
2一元二次方程的解法
配方法:將方程的一邊配成完全平方式,然后兩邊開(kāi)方;
bb24ac公式法:x
2a因式分解法:左邊是兩個(gè)因式的乘積,右邊為零。3一元二次方程在實(shí)際問(wèn)題中的應用
4韋達定理:設x1,x2是方程ax2bxc0的兩個(gè)根,那么有x1x2,x1x2第三章旋轉1圖形的旋轉
旋轉:一個(gè)圖形繞某一點(diǎn)轉動(dòng)一個(gè)角度的圖形變換性質(zhì):對應點(diǎn)到旋轉中心的距離相等;
對應點(diǎn)與旋轉中心所連的線(xiàn)段的夾角等于旋轉角旋轉前后的圖形全等。
2中心對稱(chēng):一個(gè)圖形繞一個(gè)點(diǎn)旋轉180度,和另一個(gè)圖
形重合,則兩個(gè)圖形關(guān)于這個(gè)點(diǎn)中心對稱(chēng);
中心對稱(chēng)圖形:一個(gè)圖形繞某一點(diǎn)旋轉180度后得到的
圖形能夠和原來(lái)的圖形重合,則說(shuō)這個(gè)圖形是中心對稱(chēng)圖形;
3關(guān)于原點(diǎn)對稱(chēng)的點(diǎn)的坐標第四章圓
1圓、圓心、半徑、直徑、圓弧、弦、半圓的定義2垂直于弦的直徑
圓是軸對稱(chēng)圖形,任何一條直徑所在的直線(xiàn)都是它
的對稱(chēng)軸;
垂直于弦的直徑平分弦,并且平方弦所對的兩條;平分弦的直徑垂直弦,并且平分弦所對的兩條弧。3弧、弦、圓心角
在同圓或等圓中,相等的圓心角所對的弧相等,所
baca對的弦也相等。
4圓周角
在同圓或等圓中,同弧或等弧所對的圓周角相等,都等
于這條弧所對的圓心角的一半;
半圓(或直徑)所對的圓周角是直角,90度的圓周角
所對的弦是直徑。
5點(diǎn)和圓的位置關(guān)系點(diǎn)在
dr
點(diǎn)在圓上d=r點(diǎn)在圓內d相等,這一點(diǎn)和圓心的連線(xiàn)平分兩條切線(xiàn)的夾角。
三角形的內切圓:和三角形各邊都相切的圓為它的內切圓,
圓心是三角形的三條角平分線(xiàn)的交點(diǎn),為三角形的內心。
7圓和圓的位置關(guān)系
外離d>R+r外切d=R+r相交R-r第五章概率初步
1概率意義:在大量重復試驗中,事件A發(fā)生的頻率某個(gè)常數p附近,則常數p叫做事件A的概率。
2用列舉法求概率
一般的,在一次試驗中,有n中可能的結果,并且它們發(fā)生的概率相等,事件A包含其中的m中結果,那么事件A發(fā)生的概率就是p(A)=
mnm穩定在n3用頻率去估計概率
初三數學(xué)上冊知識點(diǎn)總結 6
直角三角形的判定方法:
判定1:定義,有一個(gè)角為90°的三角形是直角三角形。
判定2:判定定理:以a、b、c為邊的三角形是以c為斜邊的直角三角形。如果三角形的三邊a,b,c滿(mǎn)足a2+b2=c2,那么這個(gè)三角形就是直角三角形。(勾股定理的逆定理)。
判定3:若一個(gè)三角形30°內角所對的邊是某一邊的一半,則這個(gè)三角形是以這條長(cháng)邊為斜邊的直角三角形。
判定4:兩個(gè)銳角互為余角(兩角相加等于90°)的三角形是直角三角形。
判定5:若兩直線(xiàn)相交且它們的斜率之積互為負倒數,則兩直線(xiàn)互相垂直。那么
判定6:若在一個(gè)三角形中一邊上的中線(xiàn)等于其所在邊的一半,那么這個(gè)三角形為直角三角形。
判定7:一個(gè)三角形30°角所對的邊等于這個(gè)三角形斜邊的一半,則這個(gè)三角形為直角三角形。(與判定3不同,此定理用于已知斜邊的三角形。)
初三數學(xué)上冊知識點(diǎn)總結 7
1二次根式:形如a(a0)的式子為二次根式;性質(zhì):a(a0)是一個(gè)非負數;
a2aa0。
2二次根式的乘除:ababa0,b0;
aaa0,b0。bb3二次根式的加減:二次根式加減時(shí),先將二次根式華為最簡(jiǎn)二次根式,再將被開(kāi)方數相同的二次根式進(jìn)行合并。
4海倫-秦九韶公式:S是三角形的面積,Sp(p)(pb)(pc),p為pabc。2第二章一元二次方程
1一元二次方程:等號兩邊都是整式,且只有一個(gè)未知數,未知數的最高次是2的方程。
2一元二次方程的解法
配方法:將方程的一邊配成完全平方式,然后兩邊開(kāi)方;
bb24ac公式法:x2a因式分解法:左邊是兩個(gè)因式的乘積,右邊為零。
3一元二次方程在實(shí)際問(wèn)題中的應用
4韋達定理:設x1,x2是方程ax2bxc0的兩個(gè)根,那么有x1x2,x1x2第三章旋轉
1圖形的旋轉旋轉:一個(gè)圖形繞某一點(diǎn)轉動(dòng)一個(gè)角度的圖形變換性質(zhì):對應點(diǎn)到旋轉中心的距離相等;
對應點(diǎn)與旋轉中心所連的線(xiàn)段的夾角等于旋轉角旋轉前后的圖形全等。
2中心對稱(chēng):一個(gè)圖形繞一個(gè)點(diǎn)旋轉180度,和另一個(gè)圖形重合,則兩個(gè)圖形關(guān)于這個(gè)點(diǎn)中心對稱(chēng);
中心對稱(chēng)圖形:一個(gè)圖形繞某一點(diǎn)旋轉180度后得到的圖形能夠和原來(lái)的圖形重合,則說(shuō)這個(gè)圖形是中心對稱(chēng)圖形;
3關(guān)于原點(diǎn)對稱(chēng)的點(diǎn)的坐標第四章圓
1圓、圓心、半徑、直徑、圓弧、弦、半圓的定義
2垂直于弦的直徑
圓是軸對稱(chēng)圖形,任何一條直徑所在的直線(xiàn)都是它的對稱(chēng)軸;
垂直于弦的直徑平分弦,并且平方弦所對的兩條;平分弦的直徑垂直弦,并且平分弦所對的兩條弧。
3弧、弦、圓心角
在同圓或等圓中,相等的圓心角所對的弧相等,所baca對的弦也相等。
4圓周角
在同圓或等圓中,同弧或等弧所對的圓周角相等,都等于這條弧所對的圓心角的一半;
半圓(或直徑)所對的圓周角是直角,90度的圓周角所對的弦是直徑。
5點(diǎn)和圓的位置關(guān)系點(diǎn)在dr點(diǎn)在圓上d=r點(diǎn)在圓內d相等,這一點(diǎn)和圓心的連線(xiàn)平分兩條切線(xiàn)的夾角。
三角形的內切圓:和三角形各邊都相切的圓為它的內切圓,圓心是三角形的三條角平分線(xiàn)的交點(diǎn),為三角形的內心。
6圓和圓的位置關(guān)系
外離d>R+r外切d=R+r相交R-r第五章概率初步
1概率意義:在大量重復試驗中,事件A發(fā)生的頻率某個(gè)常數p附近,則常數p叫做事件A的概率。
2用列舉法求概率
一般的,在一次試驗中,有n中可能的結果,并且它們發(fā)生的概率相等,事件A包含其中的m中結果,那么事件A發(fā)生的概率就是p(A)=mnm穩定在n3用頻率去估計概率
初三數學(xué)上冊知識點(diǎn)總結 8
不等式的概念
1、不等式:用不等號表示不等關(guān)系的式子,叫做不等式。
2、不等式的解集:對于一個(gè)含有未知數的不等式,任何一個(gè)適合這個(gè)不等式的未知數的值,都叫做這個(gè)不等式的解。
3、對于一個(gè)含有未知數的不等式,它的所有解的集合叫做這個(gè)不等式的解的集合,簡(jiǎn)稱(chēng)這個(gè)不等式的解集。
4、求不等式的解集的過(guò)程,叫做解不等式。
5、用數軸表示不等式的方法。
不等式基本性質(zhì)
1、不等式兩邊都加上或減去同一個(gè)數或同一個(gè)整式,不等號的方向不變。
2、不等式兩邊都乘以或除以同一個(gè)正數,不等號的方向不變。
3、不等式兩邊都乘以或除以同一個(gè)負數,不等號的方向改變。
4、說(shuō)明:①在一元一次不等式中,不像等式那樣,等號是不變的,是隨著(zhù)加或乘的運算改變。②如果不等式乘以0,那么不等號改為等號所以在題目中,要求出乘以的數,那么就要看看題中是否出現一元一次不等式,如果出現了,那么不等式乘以的數就不等為0,否則不等式不成立。
一元一次不等式
1、一元一次不等式的概念:一般地,不等式中只含有一個(gè)未知數,未知數的次數是1,且不等式的兩邊都是整式,這樣的不等式叫做一元一次不等式。
2、解一元一次不等式的一般步驟:1去分母2去括號3移項4合并同類(lèi)項5將x項的系數化為1。
一元一次不等式組
1、一元一次不等式組的概念:幾個(gè)一元一次不等式合在一起,就組成了一個(gè)一元一次不等式組。
2、幾個(gè)一元一次不等式的解集的公共部分,叫做它們所組成的一元一次不等式組的解集。
3、求不等式組的解集的過(guò)程,叫做解不等式組。
4、當任何數x都不能使不等式同時(shí)成立,我們就說(shuō)這個(gè)不等式組無(wú)解或其解為空集。
5、一元一次不等式組的解法
1分別求出不等式組中各個(gè)不等式的解集。
2利用數軸求出這些不等式的解集的公共部分,即這個(gè)不等式組的解集。
6、不等式與不等式組
不等式:①用符號〉,=,〈號連接的式子叫不等式。②不等式的兩邊都加上或減去同一個(gè)整式,不等號的方向不變。③不等式的兩邊都乘以或者除以一個(gè)正數,不等號方向不變。④不等式的兩邊都乘以或除以同一個(gè)負數,不等號方向相反。
7、不等式的解集:
、倌苁共坏仁匠闪⒌奈粗獢档闹,叫做不等式的解。
、谝粋(gè)含有未知數的不等式的所有解,組成這個(gè)不等式的解集。
、矍蟛坏仁浇饧倪^(guò)程叫做解不等式。
初三數學(xué)上冊知識點(diǎn)總結 9
。ㄈ切沃形痪(xiàn)的定理)
三角形的中位線(xiàn)平行于三角形的第三邊,并且等于第三邊的一半。
。ㄆ叫兴倪呅蔚男再|(zhì))
、倨叫兴倪呅蔚膶呄嗟;
、谄叫兴倪呅蔚膶窍嗟;
、燮叫兴倪呅蔚膶蔷(xiàn)互相平分。
。ň匦蔚男再|(zhì))
、倬匦尉哂衅叫兴倪呅蔚囊磺行再|(zhì);
、诰匦蔚乃膫(gè)角都是直角;
、劬匦蔚膶蔷(xiàn)相等。
正方形的判定與性質(zhì)
1、判定方法:
1鄰邊相等的矩形;
2鄰邊垂直的菱形;
3對角線(xiàn)垂直的矩形;
4對角線(xiàn)相等的菱形;
2、性質(zhì):
1邊:四邊相等,對邊平行;
2角:四個(gè)角都相等都是直角,鄰角互補;
3對角線(xiàn)互相平分、垂直、相等,且每長(cháng)對角線(xiàn)平分一組內角。
等腰三角形的判定定理
。ǖ妊切蔚呐卸ǚ椒ǎ
1、有兩條邊相等的三角形是等腰三角形。
2、判定定理:如果一個(gè)三角形有兩個(gè)角相等,那么這個(gè)三角形是等腰三角形簡(jiǎn)稱(chēng):等角對等邊。
角平分線(xiàn):把一個(gè)角平分的射線(xiàn)叫該角的角平分線(xiàn)。
定義中有幾個(gè)要點(diǎn)要注意一下的,學(xué)習方法,就是角的角平分線(xiàn)是一條射線(xiàn),不是線(xiàn)段也不是直線(xiàn),很多時(shí),在題目中會(huì )出現直線(xiàn),這是角平分線(xiàn)的對稱(chēng)軸才會(huì )用直線(xiàn)的,這也涉及到軌跡的問(wèn)題,一個(gè)角個(gè)角平分線(xiàn)就是到角兩邊距離相等的點(diǎn)
性質(zhì)定理:角平分線(xiàn)上的點(diǎn)到該角兩邊的距離相等
判定定理:到角的兩邊距離相等的點(diǎn)在該角的角平分線(xiàn)上
標準差與方差
極差是什么:一組數據中數據與最小數據的差叫做極差,即極差=值—最小值。
計算器——求標準差與方差的一般步驟:
1、打開(kāi)計算器,按“ON”鍵,按“MODE”“2”進(jìn)入統計SD狀態(tài)。
2、在開(kāi)始數據輸入之前,請務(wù)必按“SHIFT”“CLR”“1”“=”鍵清除統計存儲器。
3、輸入數據:按數字鍵輸入數值,然后按“M+”鍵,就能完成一個(gè)數據的輸入。如果想對此輸入同樣的數據時(shí),還可在步驟3后按“SHIET”“;”,后輸入該數據出現的頻數,再按“M+”鍵。
4、當所有的數據全部輸入結束后,按“SHIFT”“2”,選擇的是“標準差”,就可以得到所求數據的標準差;
5、標準差的平方就是方差。
初三數學(xué)上冊知識點(diǎn)總結 10
一、重要概念
1.數的分類(lèi)及概念數系表:
說(shuō)明:分類(lèi)的原則:1)相稱(chēng)(不重、不漏) 2)有標準
2.非負數:正實(shí)數與零的統稱(chēng)。(表為:x0)
性質(zhì):若干個(gè)非負數的和為0,則每個(gè)非負數均為0。
3.倒數:
、俣x及表示法
、谛再|(zhì):A.a1/a(a1);B.1/a中,aa1時(shí),1/aD.積為1。
4.相反數:
、俣x及表示法
、谛再|(zhì):A.a0時(shí),aB.a與-a在數軸上的位置;C.和為0,商為-1。
5.數軸:
、俣x(三要素)
、谧饔茫篈.直觀(guān)地比較實(shí)數的大小;B.明確體現絕對值意義;C.建立點(diǎn)與實(shí)數的一一對應關(guān)系。
6.奇數、偶數、質(zhì)數、合數(正整數-自然數)
定義及表示:
奇數:2n-1
偶數:2n(n為自然數)
7.絕對值:
、俣x(兩種):
代數定義:
幾何定義:數a的絕對值頂的幾何意義是實(shí)數a在數軸上所對應的點(diǎn)到原點(diǎn)的距離。
、讴│0,符號││是非負數的標志;
、蹟礱的絕對值只有一個(gè);
、芴幚砣魏晤(lèi)型的題目,只要其中有││出現,其關(guān)鍵一步是去掉││符號。
二、實(shí)數的運算
1.運算法則(加、減、乘、除、乘方、開(kāi)方)
2.運算定律(五個(gè)-加法[乘法]交換律、結合律;[乘法對加法的]
分配律)
3.運算順序:A.高級運算到低級運算;B.(同級運算)從左
到右(如5 C.(有括號時(shí))由小到中到大。
三、應用舉例(略)
附:典型例題
1.已知:a、b、x在數軸上的位置如下圖,求證:│x-a│+│x-b│=b-a.
2.已知:a-b=-2且ab0,(a0,b0),判斷a、b的符號。
初三數學(xué)上冊知識點(diǎn)總結 11
三角形的外心定義:
外心:是三角形三條邊的垂直平分線(xiàn)的交點(diǎn),即外接圓的圓心。
外心定理:三角形的三邊的垂直平分線(xiàn)交于一點(diǎn)。該點(diǎn)叫做三角形的外心。
三角形的外心的性質(zhì):
1、三角形三條邊的垂直平分線(xiàn)的交于一點(diǎn),該點(diǎn)即為三角形外接圓的圓心;
2、三角形的外接圓有且只有一個(gè),即對于給定的三角形,其外心是的,但一個(gè)圓的內接三角形卻有無(wú)數個(gè),這些三角形的外心重合;
3、銳角三角形的外心在三角形內;
鈍角三角形的外心在三角形外;
直角三角形的外心與斜邊的中點(diǎn)重合。
在△ABC中
4、OA=OB=OC=R
5、∠BOC=2∠BAC,∠AOB=2∠ACB,∠COA=2∠CBA
6、S△ABC=abc/4R
初三數學(xué)上冊知識點(diǎn)總結 12
一.有理數的運算
1.加法:①同號相加,取相同的符號,把絕對值相加。②異號相加,絕對值相等時(shí)和為0;絕對值不等時(shí),取絕對值較大的數的符號,并用較大的絕對值減去較小的絕對值。③一個(gè)數與0相加不變。
2.減法:減去一個(gè)數,等于加上這個(gè)數的相反數。
3.乘法:①兩數相乘,同號得正,異號得負,絕對值相乘。②任何數與0相乘得0。③乘積為1的兩個(gè)有理數互為倒數。
4.除法:①除以一個(gè)數等于乘以一個(gè)數的倒數。②0不能作除數。
5.乘方:求N個(gè)相同因數A的積的運算叫做乘方,乘方的結果叫冪,A叫底數,N叫次數。
6.混合順序:先算乘法,再算乘除,最后算加減,有括號要先算括號里的。
二.代數式
代數式:?jiǎn)为氁粋(gè)數或者一個(gè)字母也是代數式。
合并同類(lèi)項:①所含字母相同,并且相同字母的指數也相同的項,叫做同類(lèi)項。②把同類(lèi)項合并成一項就叫做合并同類(lèi)項。③在合并同類(lèi)項時(shí),我們把同類(lèi)項的系數相加,字母和字母的指數不變。
三.整式
1.整式的定義:①數與字母的乘積的代數式叫單項式,幾個(gè)單項式的和叫多項式,單項式和多項式統稱(chēng)整式。②一個(gè)單項式中,所有字母的指數和叫做這個(gè)單項式的次數。③一個(gè)多項式中,次數最高的項的次數叫做這個(gè)多項式的次數。
2.整式的除法:①單項式相除,把系數,同底數冪分別相除后,作為商的因式;對于只在被除式里含有的字母,則連同他的指數一起作為商的一個(gè)因式。②多項式除以單項式,先把這個(gè)多項式的每一項分別除以單項式,再把所得的商相加。
3.整式的乘法:①單項式與單項式相乘,把他們的系數,相同字母的冪分別相乘,其余字母連同他的指數不變,作為積的因式。②單項式與多項式相乘,就是根據分配律用單項式去乘多項式的每一項,再把所得的積相加。③多項式與多項式相乘,先用一個(gè)多項式的每一項乘另外一個(gè)多項式的每一項,再把所得的積相加。
四.圓周角定理及其推論
1.圓周角
頂點(diǎn)在圓上,并且兩邊都和圓相交的角叫做圓周角。
2.圓周角定理
一條弧所對的圓周角等于它所對的圓心角的一半。
推論1:同弧或等弧所對的圓周角相等;同圓或等圓中,相等的圓周角所對的弧也相等。
推論2:半圓(或直徑)所對的圓周角是直角;90°的圓周角所對的弦是直徑。
推論3:如果三角形一邊上的中線(xiàn)等于這邊的一半,那么這個(gè)三角形是直角三角形。
五.一些基本公式
三倍角的正弦、余弦和正切公式
sin3α=3sinα-4sin^3(α)
cos3α=4cos^3(α)-3cosα
tan3α=[3tanα-tan^3(α)]/[1-3tan^2(α)]
六.二元一次方程組
1.二元一次方程
含有兩個(gè)未知數,并且未知項的最高次數是1的整式方程叫做二元一次方程。
2.二元一次方程的解
使二元一次方程左右兩邊的值相等的一對未知數的值,叫做二元一次方程的一個(gè)解。
3.二元一次方程組
兩個(gè)(或兩個(gè)以上)二元一次方程合在一起,就組成了一個(gè)二元一次方程組。一般形式:(不全為0)
4.二元一次方程組的解
使二元一次方程組的兩個(gè)方程左右兩邊的值都相等的兩個(gè)未知數的值,叫做二元一次方程組的解。
5.二元一次方程組的解法
基本思想:"消元"
解法:(1)代入法(2)加減法(3)二元一次方程組一元一次方程組.
6.三元一次方程
把含有三個(gè)未知數,并且含有未知數的項的次數都是1的整式方程。
七.列方程(組)解應用題
注意:千萬(wàn)不要死記硬背例題的類(lèi)型及其解法,要具體問(wèn)題具體分析,一般來(lái)講,應按下面的步驟進(jìn)行:
1.審題:弄清題意和題目中的已知量、未知量,并能找出能夠表示應用問(wèn)題的全部含義的等量關(guān)系。
2.設未知數:選擇一個(gè)或幾個(gè)適當的未知量,用字母表示,并根據題目的數量關(guān)系,用含未知數的代數式表示相關(guān)的未知量。
3.列方程(組):根據等量關(guān)系列出方程(組)。
4.解方程(組):其過(guò)程可以省略,但要注意技巧和方法。
5.檢驗:首先檢查所列方程(組)是否正確,然后檢驗所得方程的解是否符合題意。
6.寫(xiě)答:不要忘記單位名稱(chēng)。
7.分式方程的解法
、僖话憬夥ǎ喝シ帜阜,即方程兩邊同乘以最簡(jiǎn)公分母。
、谔厥饨夥ǎ簱Q元法。
(2)驗根:由于在去分母過(guò)程中,當未知數的取值范圍擴大而有可能產(chǎn)生增根.因此,驗根是解分式方程必不可少的步驟,一般把整式方程的根的值代人最簡(jiǎn)公分母,看結果是不是零,使最簡(jiǎn)公分母為零的根是原方程的增根,必須舍去。
說(shuō)明:解分式方程,一般先考慮換元法,再考慮去分母法。
八.相交線(xiàn)中的角
兩條直線(xiàn)相交,可以得到四個(gè)角,我們把兩條直線(xiàn)相交所構成的四個(gè)角中,有公共頂點(diǎn)但沒(méi)有公共邊的兩個(gè)角叫做對頂角。我們把兩條直線(xiàn)相交所構成的四個(gè)角中,有公共頂點(diǎn)且有一條公共邊的兩個(gè)角叫做臨補角。
臨補角互補,對頂角相等。
直線(xiàn)AB,CD與EF相交(或者說(shuō)兩條直線(xiàn)AB,CD被第三條直線(xiàn)EF所截),構成八個(gè)角。其中∠1與∠5這兩個(gè)角分別在A(yíng)B,CD的上方,并且在EF的同側,像這樣位置相同的一對角叫做同位角;∠3與∠5這兩個(gè)角都在A(yíng)B,CD之間,并且在EF的異側,像這樣位置的兩個(gè)角叫做內錯角;∠3與∠6在直線(xiàn)AB,CD之間,并側在EF的同側,像這樣位置的兩個(gè)角叫做同旁?xún)冉恰?/p>
九.線(xiàn)段的性質(zhì)
1.線(xiàn)段公理:所有連接兩點(diǎn)的線(xiàn)中,線(xiàn)段最短。也可簡(jiǎn)單說(shuō)成:兩點(diǎn)之間線(xiàn)段最短。
2.連接兩點(diǎn)的線(xiàn)段的長(cháng)度,叫做這兩點(diǎn)的距離。
3.線(xiàn)段的中點(diǎn)到兩端點(diǎn)的距離相等。
4.線(xiàn)段的大小關(guān)系和它們的長(cháng)度的大小關(guān)系是一致的。
5.線(xiàn)段垂直平分線(xiàn)的性質(zhì)定理及逆定理
垂直于一條線(xiàn)段并且平分這條線(xiàn)段的直線(xiàn)是這條線(xiàn)段的垂直平分線(xiàn)。
線(xiàn)段垂直平分線(xiàn)的性質(zhì)定理:線(xiàn)段垂直平分線(xiàn)上的點(diǎn)和這條線(xiàn)段兩個(gè)端點(diǎn)的距離相等。
逆定理:和一條線(xiàn)段兩個(gè)端點(diǎn)距離相等的點(diǎn),在這條線(xiàn)段的垂直平分線(xiàn)上。
初三數學(xué)上冊知識點(diǎn)總結 13
一元一次方程:
、僭谝粋(gè)方程中,只含有一個(gè)未知數,并且未知數的指數是
1、這樣的方程叫一元一次方程。
、诘仁絻蛇呁瑫r(shí)加上或減去或乘以或除以(不為0)一個(gè)代數式,所得結果仍是等式。
解一元一次方程的步驟:
去分母,移項,合并同類(lèi)項,未知數系數化為1。
二元一次方程:含有兩個(gè)未知數,并且所含未知數的項的次數都是1的方程叫做二元一次方程。
二元一次方程組:兩個(gè)二元一次方程組成的方程組叫做二元一次方程組。適合一個(gè)二元一次方程的一組未知數的值,叫做這個(gè)二元一次方程的一個(gè)解。二元一次方程組中各個(gè)方程的公共解,叫做這個(gè)二元一次方程的解。
解二元一次方程組的方法:代入消元法/加減消元法。
2、不等式與不等式組
不等式:
、儆梅枴=“號連接的式子叫不等式。
、诓坏仁降膬蛇叾技由匣驕p去同一個(gè)整式,不等號的方向不變。
、鄄坏仁降膬蛇叾汲艘曰蛘叱砸粋(gè)正數,不等號方向不變。
、懿坏仁降膬蛇叾汲艘曰虺酝粋(gè)負數,不等號方向相反。
不等式的解集:
、倌苁共坏仁匠闪⒌奈粗獢档闹,叫做不等式的解。
、谝粋(gè)含有未知數的不等式的所有解,組成這個(gè)不等式的解集。
、矍蟛坏仁浇饧倪^(guò)程叫做解不等式。
一元一次不等式:左右兩邊都是整式,只含有一個(gè)未知數,且未知數的次數是1的不等式叫一元一次不等式。
一元一次不等式組:
、訇P(guān)于同一個(gè)未知數的幾個(gè)一元一次不等式合在一起,就組成了一元一次不等式組。
、谝辉淮尾坏仁浇M中各個(gè)不等式的解集的公共部分,叫做這個(gè)一元一次不等式組的解集。
、矍蟛坏仁浇M解集的過(guò)程,叫做解不等式組。
3、函數
變量:因變量,自變量。在用圖象表示變量之間的關(guān)系時(shí),通常用水平方向的數軸上的點(diǎn)自變量,用豎直方向的數軸上的點(diǎn)表示因變量。
一次函數:
、偃魞蓚(gè)變量X,Y間的關(guān)系式可以表示成Y=KX+B(B為常數,K不等于0)的形式,則稱(chēng)Y是X的一次函數。
、诋擝=0時(shí),稱(chēng)Y是X的正比例函數。
一次函數的圖象:
、侔岩粋(gè)函數的自變量X與對應的因變量Y的值分別作為點(diǎn)的橫坐標與縱坐標,在直角坐標系內描出它的對應點(diǎn),所有這些點(diǎn)組成的圖形叫做該函數的圖象。
、谡壤瘮礩=KX的圖象是經(jīng)過(guò)原點(diǎn)的一條直線(xiàn)。
、墼谝淮魏瘮抵,當K〈0,B〈O,則經(jīng)234象限;當K〈0,B〉0時(shí),則經(jīng)124象限;當K〉0,B〈0時(shí),則經(jīng)134象限;當K〉0,B〉0時(shí),則經(jīng)123象限。
、墚擪〉0時(shí),Y的值隨X值的增大而增大,當X〈0時(shí),Y的值隨X值的增大而減少。
空間與圖形
圖形的認識:
1、點(diǎn),線(xiàn),面
點(diǎn),線(xiàn),面:
、賵D形是由點(diǎn),線(xiàn),面構成的。
、诿媾c面相交得線(xiàn),線(xiàn)與線(xiàn)相交得點(diǎn)。
、埸c(diǎn)動(dòng)成線(xiàn),線(xiàn)動(dòng)成面,面動(dòng)成體。
展開(kāi)與折疊:
、僭诶庵,任何相鄰的兩個(gè)面的交線(xiàn)叫做棱,側棱是相鄰兩個(gè)側面的交線(xiàn),棱柱的所有側棱長(cháng)相等,棱柱的上下底面的形狀相同,側面的形狀都是長(cháng)方體。
、贜棱柱就是底面圖形有N條邊的棱柱。
截一個(gè)幾何體:用一個(gè)平面去截一個(gè)圖形,截出的面叫做截面。
視圖:主視圖,左視圖,俯視圖。
多邊形:他們是由一些不在同一條直線(xiàn)上的線(xiàn)段依次首尾相連組成的封閉圖形。
弧,扇形:
、儆梢粭l弧和經(jīng)過(guò)這條弧的端點(diǎn)的兩條半徑所組成的圖形叫扇形。
、趫A可以分割成若干個(gè)扇形。
角
線(xiàn):
、倬(xiàn)段有兩個(gè)端點(diǎn)。
、趯⒕(xiàn)段向一個(gè)方向無(wú)限延長(cháng)就形成了射線(xiàn)。射線(xiàn)只有一個(gè)端點(diǎn)。
、蹖⒕(xiàn)段的兩端無(wú)限延長(cháng)就形成了直線(xiàn)。直線(xiàn)沒(méi)有端點(diǎn)。
、芙(jīng)過(guò)兩點(diǎn)有且只有一條直線(xiàn)。
比較長(cháng)短:
、賰牲c(diǎn)之間的所有連線(xiàn)中,線(xiàn)段最短。
、趦牲c(diǎn)之間線(xiàn)段的長(cháng)度,叫做這兩點(diǎn)之間的距離。
角的度量與表示:
、俳怯蓛蓷l具有公共端點(diǎn)的射線(xiàn)組成,兩條射線(xiàn)的公共端點(diǎn)是這個(gè)角的頂點(diǎn)。
、谝欢鹊1/60是一分,一分的1/60是一秒。
角的比較:
、俳且部梢钥闯墒怯梢粭l射線(xiàn)繞著(zhù)他的端點(diǎn)旋轉而成的。
、谝粭l射線(xiàn)繞著(zhù)他的端點(diǎn)旋轉,當終邊和始邊成一條直線(xiàn)時(shí),所成的角叫做平角。始邊繼續旋轉,當他又和始邊重合時(shí),所成的角叫做周角。
、蹚囊粋(gè)角的頂點(diǎn)引出的一條射線(xiàn),把這個(gè)角分成兩個(gè)相等的角,這條射線(xiàn)叫做這個(gè)角的平分線(xiàn)。
平行:
、偻黄矫鎯,不相交的兩條直線(xiàn)叫做平行線(xiàn)。
、诮(jīng)過(guò)直線(xiàn)外一點(diǎn),有且只有一條直線(xiàn)與這條直線(xiàn)平行。
、廴绻麅蓷l直線(xiàn)都與第3條直線(xiàn)平行,那么這兩條直線(xiàn)互相平行。
垂直:
、偃绻麅蓷l直線(xiàn)相交成直角,那么這兩條直線(xiàn)互相垂直。
、诨ハ啻怪钡膬蓷l直線(xiàn)的交點(diǎn)叫做垂足。
、燮矫鎯,過(guò)一點(diǎn)有且只有一條直線(xiàn)與已知直線(xiàn)垂直。
2、相交線(xiàn)與平行線(xiàn)
角:
、偃绻麅蓚(gè)角的和是直角,那么稱(chēng)和兩個(gè)角互為余角;如果兩個(gè)角的和是平角,那么稱(chēng)這兩個(gè)角互為補角。
、谕腔虻冉堑挠嘟/補角相等。
、蹖斀窍嗟。
、芡唤窍嗟/內錯角相等/同旁?xún)冉腔パa,兩直線(xiàn)平行,反之亦然。
初三數學(xué)上冊知識點(diǎn)總結 14
矩形知識點(diǎn)
1、矩形的概念
有一個(gè)角是直角的平行四邊形叫做矩形。
2、矩形的性質(zhì)
(1)具有平行四邊形的一切性質(zhì)
(2)矩形的四個(gè)角都是直角
(3)矩形的對角線(xiàn)相等
(4)矩形是軸對稱(chēng)圖形
3、矩形的判定
(1)定義:有一個(gè)角是直角的平行四邊形是矩形(2)定理1:有三個(gè)角是直角的四邊形是矩形
(3)定理2:對角線(xiàn)相等的平行四邊形是矩形
4、矩形的面積:S矩形=長(cháng)×寬=ab
正方形知識點(diǎn)
1、正方形的概念
有一組鄰邊相等并且有一個(gè)角是直角的平行四邊形叫做正方形。
2、正方形的性質(zhì)
(1)具有平行四邊形、矩形、菱形的一切性質(zhì);
(2)正方形的四個(gè)角都是直角,四條邊都相等;
(3)正方形的兩條對角線(xiàn)相等,并且互相垂直平分,每一條對角線(xiàn)平分一組對角;
(4)正方形是軸對稱(chēng)圖形,有4條對稱(chēng)軸;
(5)正方形的一條對角線(xiàn)把正方形分成兩個(gè)全等的等腰直角三角形,兩條對角線(xiàn)把正方形分成四個(gè)全等的小等腰直角三角形;
(6)正方形的一條對角線(xiàn)上的一點(diǎn)到另一條對角線(xiàn)的兩端點(diǎn)的距離相等。
3、正方形的判定
(1)判定一個(gè)四邊形是正方形的主要依據是定義,途徑有兩種:
先證它是矩形,再證有一組鄰邊相等。
先證它是菱形,再證有一個(gè)角是直角。
(2)判定一個(gè)四邊形為正方形的一般順序如下:
先證明它是平行四邊形;
再證明它是菱形(或矩形);
最后證明它是矩形(或菱形)。
圓知識點(diǎn)
圓的面積s=π×r×r
其中,π是周?chē),約等于3.14
r是圓的半徑。
圓的周長(cháng)計算公式為:C=2πR.C代表圓的周長(cháng),r代表圓的半徑。圓的面積公式為:S=πR2(R的平方).S代表圓的面積,r為圓的半徑。
橢圓周長(cháng)計算公式
橢圓周長(cháng)公式:L=2πb+4(a-b)
橢圓周長(cháng)定理:橢圓的周長(cháng)等于該橢圓短半軸長(cháng)為半徑的圓周長(cháng)(2πb)加上四倍的該橢圓長(cháng)半軸長(cháng)(a)與短半軸長(cháng)(b)的差。
橢圓面積計算公式
橢圓面積公式:S=πab
橢圓面積定理:橢圓的面積等于圓周率(π)乘該橢圓長(cháng)半軸長(cháng)(a)與短半軸長(cháng)(b)的乘積。
以上橢圓周長(cháng)、面積公式中雖然沒(méi)有出現橢圓周率T,但這兩個(gè)公式都是通過(guò)橢圓周率T推導演變而來(lái)。常數為體,公式為用。
對數公式
對數公式是數學(xué)中的一種常見(jiàn)公式,如果a^x=N(a>0,且a≠1),則x叫做以a為底N的對數,記做x=log(a)(N),其中a要寫(xiě)于log右下。其中a叫做對數的底,N叫做真數。通常我們將以10為底的對數叫做常用對數,以e為底的對數稱(chēng)為自然對數。
數學(xué)學(xué)習技巧
1.求教與自學(xué)相結合
在學(xué)習過(guò)程中,即要爭取教師的指導和幫助,但是又不能過(guò)分依賴(lài)教師, 必須自己主動(dòng)地去學(xué)習、去探索、去獲取,應該在自己認真學(xué)習和研究的基礎上去尋求教師和同學(xué)的幫助。
2.學(xué)習與思考相結合
在學(xué)習過(guò)程中,對課本的內容要認真研究,提出疑問(wèn),追本究源。對每一個(gè)概念、公式、定理都要弄清其來(lái)龍去脈、前因后果、內在聯(lián)系,以及蘊含于推導過(guò)程中的數學(xué)思想和方法。在解決問(wèn)題時(shí),要盡量采用不同的途徑和方法,要克服那種死守書(shū)本、機械呆板、不知變通的學(xué)習方法。
3.學(xué)用結合,勤于實(shí)踐
在學(xué)習過(guò)程中,要準確地掌握抽象概念的本質(zhì)含義,了解從實(shí)際模型中抽象為理論的演變過(guò)程。對所學(xué)理論知識,要在更大范圍內尋求它的具體實(shí)例,使之具體化,盡量將所學(xué)的理論知識和思維方法應用于實(shí)踐。
4.博觀(guān)約取,由博返約
課本是獲得知識的主要來(lái)源,但不是唯一的來(lái)源。在學(xué)習過(guò)程中,除了認真研究課本以外,還要閱讀有關(guān)的課外資料,來(lái)擴大知識領(lǐng)域。同時(shí)在廣泛閱讀的基礎上,進(jìn)行認真研究,掌握其知識結構。
5.既有模仿,又有創(chuàng )新
模仿是數學(xué)學(xué)習中不可缺少的學(xué)習方法,但是決不能機械地模仿,應該在消化理解的基礎上,開(kāi)動(dòng)腦筋,提出自己的見(jiàn)解和看法,而不拘泥于已有的框框,不囿于現成的模式。
6.及時(shí)復習增強記憶
課堂上學(xué)習的內容,必須當天消化,要先復習,后做練習,復習工作必須經(jīng)常進(jìn)行,每一單元結束后,應將所學(xué)知識進(jìn)行概括整理,使之系統化、深刻化。
7.總結學(xué)習經(jīng)驗,評價(jià)學(xué)習效果
學(xué)習中的總結和評價(jià)有利于知識體系的建立、解題規律的掌握、學(xué)習方法與態(tài)度的調整和評判能力的提高。在學(xué)習過(guò)程中,應注意總結聽(tīng)課、閱讀和解題中的收獲和體會(huì )。
初三數學(xué)上冊知識點(diǎn)總結 15
1、弧長(cháng)公式
n°的圓心角所對的弧長(cháng)l的計算公式為L(cháng)=nπr/180
2、扇形面積公式,其中n是扇形的圓心角度數,R是扇形的半徑,l是扇形的弧長(cháng).
S=﹙n/360﹚πR2=1/2×lR
3、圓錐的側面積,其中l是圓錐的母線(xiàn)長(cháng),r是圓錐的地面半徑.
S=1/2×l×2πr=πrl
4、弦切角定理
弦切角:圓的切線(xiàn)與經(jīng)過(guò)切點(diǎn)的弦所夾的角,叫做弦切角.
弦切角定理:弦切角等于弦與切線(xiàn)夾的弧所對的圓周角.
一、選擇題
1.(2014o珠海,第4題3分)已知圓柱體的底面半徑為3cm,髙為4cm,則圓柱體的側面積為()
A.24πcm2B.36πcm2C.12cm2D.24cm2
考點(diǎn):圓柱的計算.
分析:圓柱的側面積=底面周長(cháng)×高,把相應數值代入即可求解.
解答:解:圓柱的側面積=2π×3×4=24π.
故選A.
點(diǎn)評:本題考查了圓柱的計算,解題的關(guān)鍵是弄清圓柱的側面積的計算方法.
2.(2014o廣西賀州,第11題3分)如圖,以AB為直徑的⊙O與弦CD相交于點(diǎn)E,且AC=2,AE=,CE=1.則弧BD的長(cháng)是()
A.B.C.D.
考點(diǎn):垂徑定理;勾股定理;勾股定理的逆定理;弧長(cháng)的計算.
分析:連接OC,先根據勾股定理判斷出△ACE的形狀,再由垂徑定理得出CE=DE,故=,由銳角三角函數的定義求出∠A的度數,故可得出∠BOC的度數,求出OC的長(cháng),再根據弧長(cháng)公式即可得出結論.
解答:解:連接OC,
∵△ACE中,AC=2,AE=,CE=1,
∴AE2+CE2=AC2,
∴△ACE是直角三角形,即AE⊥CD,
∵sinA==,
∴∠A=30°,
∴∠COE=60°,
∴=sin∠COE,即=,解得OC=,
∵AE⊥CD,
∴=,
∴===.
故選B.
初三數學(xué)上冊知識點(diǎn)總結 16
1、概念:
把一個(gè)圖形繞著(zhù)某一點(diǎn)O轉動(dòng)一個(gè)角度的圖形變換叫做旋轉,點(diǎn)O叫做旋轉中心,轉動(dòng)的角叫做旋轉角.
旋轉三要素:旋轉中心、旋轉方面、旋轉角
2、旋轉的性質(zhì):
(1)旋轉前后的兩個(gè)圖形是全等形;
(2)兩個(gè)對應點(diǎn)到旋轉中心的距離相等
(3)兩個(gè)對應點(diǎn)與旋轉中心的連線(xiàn)段的夾角等于旋轉角
3、中心對稱(chēng):
把一個(gè)圖形繞著(zhù)某一個(gè)點(diǎn)旋轉180,如果它能夠與另一個(gè)圖形重合,那么就說(shuō)這兩個(gè)圖形關(guān)于這個(gè)點(diǎn)對稱(chēng)或中心對稱(chēng),這個(gè)點(diǎn)叫做對稱(chēng)中心.
這兩個(gè)圖形中的對應點(diǎn)叫做關(guān)于中心的對稱(chēng)點(diǎn).
4、中心對稱(chēng)的性質(zhì):
(1)關(guān)于中心對稱(chēng)的兩個(gè)圖形,對稱(chēng)點(diǎn)所連線(xiàn)段都經(jīng)過(guò)對稱(chēng)中心,而且被對稱(chēng)中心所平分.
(2)關(guān)于中心對稱(chēng)的兩個(gè)圖形是全等圖形.
5、中心對稱(chēng)圖形:
把一個(gè)圖形繞著(zhù)某一個(gè)點(diǎn)旋轉180,如果旋轉后的圖形能夠與原來(lái)的圖形重合,那么這個(gè)圖形叫做中心對稱(chēng)圖形,這個(gè)點(diǎn)就是它的對稱(chēng)中心.
6、坐標系中的中心對稱(chēng)
兩個(gè)點(diǎn)關(guān)于原點(diǎn)對稱(chēng)時(shí),它們的坐標符號相反,
即點(diǎn)P(x,y)關(guān)于原點(diǎn)O的對稱(chēng)點(diǎn)P(-x,-y)。
【初三數學(xué)上冊知識點(diǎn)總結】相關(guān)文章:
最新初三數學(xué)上冊的知識點(diǎn)總結12-20
初三數學(xué)上冊知識點(diǎn)總結(9篇)11-18
初三數學(xué)上冊章節重要知識點(diǎn)總結01-20
初三數學(xué)上冊知識點(diǎn)總結歸納集錦02-11
初三數學(xué)上冊知識點(diǎn)總結(10篇)12-16