關(guān)于數學(xué)的知識點(diǎn)總結
總結是把一定階段內的有關(guān)情況分析研究,做出有指導性結論的書(shū)面材料,它可使零星的、膚淺的、表面的感性認知上升到全面的、系統的、本質(zhì)的理性認識上來(lái),讓我們一起來(lái)學(xué)習寫(xiě)總結吧。但是卻發(fā)現不知道該寫(xiě)些什么,以下是小編為大家整理的關(guān)于數學(xué)的知識點(diǎn)總結,供大家參考借鑒,希望可以幫助到有需要的朋友。
關(guān)于數學(xué)的知識點(diǎn)總結1
動(dòng)點(diǎn)與函數圖象問(wèn)題常見(jiàn)的四種類(lèi)型:
1、三角形中的動(dòng)點(diǎn)問(wèn)題:動(dòng)點(diǎn)沿三角形的邊運動(dòng),根據問(wèn)題中的常量與變量之間的關(guān)系,判斷函數圖象.
2、四邊形中的動(dòng)點(diǎn)問(wèn)題:動(dòng)點(diǎn)沿四邊形的邊運動(dòng),根據問(wèn)題中的常量與變量之間的關(guān)系,判斷函數圖象.
3、圓中的動(dòng)點(diǎn)問(wèn)題:動(dòng)點(diǎn)沿圓周運動(dòng),根據問(wèn)題中的常量與變量之間的關(guān)系,判斷函數圖象.
4、直線(xiàn)、雙曲線(xiàn)、拋物線(xiàn)中的動(dòng)點(diǎn)問(wèn)題:動(dòng)點(diǎn)沿直線(xiàn)、雙曲線(xiàn)、拋物線(xiàn)運動(dòng),根據問(wèn)題中的常量與變量之間的關(guān)系,判斷函數圖象.
圖形運動(dòng)與函數圖象問(wèn)題常見(jiàn)的三種類(lèi)型:
1、線(xiàn)段與多邊形的運動(dòng)圖形問(wèn)題:把一條線(xiàn)段沿一定方向運動(dòng)經(jīng)過(guò)三角形或四邊形,根據問(wèn)題中的常量與變量之間的關(guān)系,進(jìn)行分段,判斷函數圖象.
2、多邊形與多邊形的運動(dòng)圖形問(wèn)題:把一個(gè)三角形或四邊形沿一定方向運動(dòng)經(jīng)過(guò)另一個(gè)多邊形,根據問(wèn)題中的常量與變量之間的關(guān)系,進(jìn)行分段,判斷函數圖象.
3、多邊形與圓的運動(dòng)圖形問(wèn)題:把一個(gè)圓沿一定方向運動(dòng)經(jīng)過(guò)一個(gè)三角形或四邊形,或把一個(gè)三角形或四邊形沿一定方向運動(dòng)經(jīng)過(guò)一個(gè)圓,根據問(wèn)題中的常量與變量之間的關(guān)系,進(jìn)行分段,判斷函數圖象.
動(dòng)點(diǎn)問(wèn)題常見(jiàn)的四種類(lèi)型:
1、三角形中的動(dòng)點(diǎn)問(wèn)題:動(dòng)點(diǎn)沿三角形的邊運動(dòng),通過(guò)全等或相似,探究構成的新圖形與原圖形的邊或角的關(guān)系.
2、四邊形中的動(dòng)點(diǎn)問(wèn)題:動(dòng)點(diǎn)沿四邊形的邊運動(dòng),通過(guò)探究構成的新圖形與原圖形的全等或相似,得出它們的邊或角的關(guān)系.
3、圓中的動(dòng)點(diǎn)問(wèn)題:動(dòng)點(diǎn)沿圓周運動(dòng),探究構成的新圖形的邊角等關(guān)系.
4、直線(xiàn)、雙曲線(xiàn)、拋物線(xiàn)中的動(dòng)點(diǎn)問(wèn)題:動(dòng)點(diǎn)沿直線(xiàn)、雙曲線(xiàn)、拋物線(xiàn)運動(dòng),探究是否存在動(dòng)點(diǎn)構成的三角形是等腰三角形或與已知圖形相似等問(wèn)題.
總結反思:
本題是二次函數的綜合題,考查了待定系數法求二次函數的解析式,一次函數的解析式,三角形全等的判定和性質(zhì),等腰直角三角形的性質(zhì),平行線(xiàn)的性質(zhì)等,數形結合思想的應用是解題的'關(guān)鍵.
解答動(dòng)態(tài)性問(wèn)題通常是對幾何圖形運動(dòng)過(guò)程有一個(gè)完整、清晰的認識,發(fā)掘“動(dòng)”與“靜”的內在聯(lián)系,尋求變化規律,從變中求不變,從而達到解題目的.
解答函數的圖象問(wèn)題一般遵循的步驟:
1、根據自變量的取值范圍對函數進(jìn)行分段.
2、求出每段的解析式.
3、由每段的解析式確定每段圖象的形狀.
對于用圖象描述分段函數的實(shí)際問(wèn)題,要抓住以下幾點(diǎn):
1、自變量變化而函數值不變化的圖象用水平線(xiàn)段表示.
2、自變量變化函數值也變化的增減變化情況.
3、函數圖象的最低點(diǎn)和最高點(diǎn).
關(guān)于數學(xué)的知識點(diǎn)總結2
一、重要概念
1.總體:考察對象的全體。
2.個(gè)體:總體中每一個(gè)考察對象。
3.樣本:從總體中抽出的一部分個(gè)體。
4.樣本容量:樣本中個(gè)體的數目。
5.眾數:一組數據中,出現次數最多的數據。
6.中位數:將一組數據按大小依次排列,處在最中間位置的一個(gè)數(或最中間位置的兩個(gè)數據的平均數)
二、計算方法
1.樣本平均數:⑴;⑵若,…,,則(a—常數,…,接近較整的常數a);⑶加權平均數:;⑷平均數是刻劃數據的集中趨勢(集中位置)的特征數。通常用樣本平均數去估計總體平均數,樣本容量越大,估計越準確。
2.樣本方差:⑴;⑵若,,…,,則(a—接近、、…、的平均數的較“整”的常數);若、、…、較“小”較“整”,則;⑶樣本方差是刻劃數據的離散程度(波動(dòng)大小)的特征數,當樣本容量較大時(shí),樣本方差非常接近總體方差,通常用樣本方差去估計總體方差。
3.樣本標準差:
三、應用舉例(略)
初三數學(xué)知識點(diǎn):第四章直線(xiàn)形
★重點(diǎn)★相交線(xiàn)與平行線(xiàn)、三角形、四邊形的有關(guān)概念、判定、性質(zhì)。
☆內容提要☆
一、直線(xiàn)、相交線(xiàn)、平行線(xiàn)
1.線(xiàn)段、射線(xiàn)、直線(xiàn)三者的區別與聯(lián)系
從“圖形”、“表示法”、“界限”、“端點(diǎn)個(gè)數”、“基本性質(zhì)”等方面加以分析。
2.線(xiàn)段的中點(diǎn)及表示
3.直線(xiàn)、線(xiàn)段的基本性質(zhì)(用“線(xiàn)段的基本性質(zhì)”論證“三角形兩邊之和大于第三邊”)
4.兩點(diǎn)間的距離(三個(gè)距離:點(diǎn)-點(diǎn);點(diǎn)-線(xiàn);線(xiàn)-線(xiàn))
5.角(平角、周角、直角、銳角、鈍角)
6.互為余角、互為補角及表示方法
7.角的`平分線(xiàn)及其表示
8.垂線(xiàn)及基本性質(zhì)(利用它證明“直角三角形中斜邊大于直角邊”)
9.對頂角及性質(zhì)
10.平行線(xiàn)及判定與性質(zhì)(互逆)(二者的區別與聯(lián)系)
11.常用定理:①同平行于一條直線(xiàn)的兩條直線(xiàn)平行(傳遞性);②同垂直于一條直線(xiàn)的兩條直線(xiàn)平行。
12.定義、命題、命題的組成
13.公理、定理
14.逆命題
二、三角形
分類(lèi):⑴按邊分;
、瓢唇欠
1.定義(包括內、外角)
2.三角形的邊角關(guān)系:⑴角與角:①內角和及推論;②外角和;③n邊形內角和;④n邊形外角和。⑵邊與邊:三角形兩邊之和大于第三邊,兩邊之差小于第三邊。⑶角與邊:在同一三角形中
3.三角形的主要線(xiàn)段
討論:①定義②x線(xiàn)的交點(diǎn)—三角形的×心③性質(zhì)
、俑呔(xiàn)②中線(xiàn)③角平分線(xiàn)④中垂線(xiàn)⑤中位線(xiàn)
、乓话闳切微铺厥馊切危褐苯侨切、等腰三角形、等邊三角形
4.特殊三角形(直角三角形、等腰三角形、等邊三角形、等腰直角三角形)的判定與性質(zhì)
5.全等三角形
、乓话闳切稳鹊呐卸(sas、asa、aas、sss)
、铺厥馊切稳鹊呐卸ǎ孩僖话惴椒á趯(zhuān)用方法
6.三角形的面積
、乓话阌嬎愎舰菩再|(zhì):等底等高的三角形面積相等。
7.重要輔助線(xiàn)
、胖悬c(diǎn)配中點(diǎn)構成中位線(xiàn);⑵加倍中線(xiàn);⑶添加輔助平行線(xiàn)
8.證明方法
、胖苯幼C法:綜合法、分析法
、崎g接證法—反證法:①反設②歸謬③結論
、亲C線(xiàn)段相等、角相等常通過(guò)證三角形全等
、茸C線(xiàn)段倍分關(guān)系:加倍法、折半法
、勺C線(xiàn)段和差關(guān)系:延結法、截余法
、首C面積關(guān)系:將面積表示出來(lái)
三、四邊形
分類(lèi)表:
1.一般性質(zhì)(角)
、艃冉呛停360°
、祈槾芜B結各邊中點(diǎn)得平行四邊形。
推論1:順次連結對角線(xiàn)相等的四邊形各邊中點(diǎn)得菱形。
推論2:順次連結對角線(xiàn)互相垂直的四邊形各邊中點(diǎn)得矩形。
、峭饨呛停360°
2.特殊四邊形
、叛芯克鼈兊囊话惴椒:
、破叫兴倪呅、矩形、菱形、正方形;梯形、等腰梯形的定義、性質(zhì)和判定
、桥卸ú襟E:四邊形→平行四邊形→矩形→正方形
┗→菱形——↑
、葘蔷(xiàn)的紐帶作用:
3.對稱(chēng)圖形
、泡S對稱(chēng)(定義及性質(zhì));⑵中心對稱(chēng)(定義及性質(zhì))
4.有關(guān)定理:①平行線(xiàn)等分線(xiàn)段定理及其推論1、2
、谌切、梯形的中位線(xiàn)定理
、燮叫芯(xiàn)間的距離處處相等。(如,找下圖中面積相等的三角形)
5.重要輔助線(xiàn):①常連結四邊形的對角線(xiàn);②梯形中!捌揭埔谎、“平移對角線(xiàn)”、“作高”、“連結頂點(diǎn)和對腰中點(diǎn)并延長(cháng)與底邊相交”轉化為三角形。
6.作圖:任意等分線(xiàn)段。
關(guān)于數學(xué)的知識點(diǎn)總結3
一、直線(xiàn)與方程
(1)直線(xiàn)的傾斜角
定義:x軸正向與直線(xiàn)向上方向之間所成的角叫直線(xiàn)的傾斜角。特別地,當直線(xiàn)與x軸平行或重合時(shí),我們規定它的傾斜角為0度。因此,傾斜角的取值范圍是0180
(2)直線(xiàn)的斜率
、俣x:傾斜角不是90的直線(xiàn),它的傾斜角的正切叫做這條直線(xiàn)的斜率。直線(xiàn)的斜率常用k表示。即。斜率反映直線(xiàn)與軸的傾斜程度。當時(shí),。當時(shí),;當時(shí),不存在。
、谶^(guò)兩點(diǎn)的直線(xiàn)的斜率公式:
注意下面四點(diǎn):
(1)當時(shí),公式右邊無(wú)意義,直線(xiàn)的斜率不存在,傾斜角為90
(2)k與P1、P2的順序無(wú)關(guān);
(3)以后求斜率可不通過(guò)傾斜角而由直線(xiàn)上兩點(diǎn)的坐標直接求得;
(4)求直線(xiàn)的傾斜角可由直線(xiàn)上兩點(diǎn)的坐標先求斜率得到。
(3)直線(xiàn)方程
、冱c(diǎn)斜式:直線(xiàn)斜率k,且過(guò)點(diǎn)
注意:當直線(xiàn)的斜率為0時(shí),k=0,直線(xiàn)的方程是y=y1。當直線(xiàn)的斜率為90時(shí),直線(xiàn)的斜率不存在,它的方程不能用點(diǎn)斜式表示.但因l上每一點(diǎn)的橫坐標都等于x1,所以它的方程是x=x1。
、谛苯厥剑,直線(xiàn)斜率為k,直線(xiàn)在y軸上的截距為b
、蹆牲c(diǎn)式:()直線(xiàn)兩點(diǎn),
、芙鼐厥剑浩渲兄本(xiàn)與軸交于點(diǎn),與軸交于點(diǎn),即與軸、軸的截距分別為。
、菀话闶剑(A,B不全為0)
、菀话闶剑(A,B不全為0)
注意:○1各式的適用范圍
○2特殊的方程如:平行于x軸的直線(xiàn):(b為常數);平行于y軸的直線(xiàn):(a為常數);
(4)直線(xiàn)系方程:即具有某一共同性質(zhì)的'直線(xiàn)
(一)平行直線(xiàn)系
平行于已知直線(xiàn)(是不全為0的常數)的直線(xiàn)系:(C為常數)
(二)過(guò)定點(diǎn)的直線(xiàn)系
(ⅰ)斜率為k的直線(xiàn)系:直線(xiàn)過(guò)定點(diǎn);
(ⅱ)過(guò)兩條直線(xiàn),的交點(diǎn)的直線(xiàn)系方程為(為參數),其中直線(xiàn)不在直線(xiàn)系中。
(5)兩直線(xiàn)平行與垂直;
注意:利用斜率判斷直線(xiàn)的平行與垂直時(shí),要注意斜率的存在與否。
(6)兩條直線(xiàn)的交點(diǎn)
相交:交點(diǎn)坐標即方程組的一組解。方程組無(wú)解;方程組有無(wú)數解與重合
(7)兩點(diǎn)間距離公式:設是平面直角坐標系中的兩個(gè)點(diǎn),則
(8)點(diǎn)到直線(xiàn)距離公式:一點(diǎn)到直線(xiàn)的距離
(9)兩平行直線(xiàn)距離公式:在任一直線(xiàn)上任取一點(diǎn),再轉化為點(diǎn)到直線(xiàn)的距離進(jìn)行求解。
關(guān)于數學(xué)的知識點(diǎn)總結4
1.萬(wàn)能公式令tan(a/2)=t sina=2t/(1+t^2) cosa=(1-t^2)/(1+t^2) tana=2t/(1-t^2)
2.輔助角公式 asint+bcost=(a^2+b^2)^(1/2)sin(t+r) cosr=a/[(a^2+b^2)^(1/2)] sinr=b/[(a^2+b^2)^(1/2)] tanr=b/a
3.三倍角公式 sin(3a)=3sina-4(sina)^3 cos(3a)=4(cosa)^3-3cosa tan(3a)=[3tana-(tana)^3]/[1-3(tana^2)] sina*cosb=[sin(a+b)+sin(a-b)]/2cosa*sinb=[sin(a+b)-sin(a-b)]/2 cosa*cosb=[cos(a+b)+cos(a-b)]/2 sina*sinb=-[cos(a+b)-cos(a-b)]/2 sina+sinb=2sin[(a+b)/2]cos[(a-b)/2]sina-sinb=2sin[(a-b)/2]cos[(a+b)/2] cosa+cosb=2cos[(a+b)/2]cos[(a-b)/2] cosa-cosb=-2sin[(a+b)/2]sin[(a-b)/2] 向量公式: 1.單位向量:?jiǎn)挝幌蛄縜0=向量a/|向量a| 2.P(x,y) 那么 向量OP=x 向量i+y 向量j |向量OP|=根號(x 平方+y 平方) 3.P1(x1,y1) P2(x2,y2) 那么向量P1P2={x2-x1,y2-y1} |向量P1P2|=根號[(x2-x1)平方+(y2-y1)平方]
4.向量a={x1,x2}向量b={x2,y2} 向量a*向量b=|向量a|*|向量b|*Cosα=x1x2+y1y2 Cosα=向量a*向量b/|向量a|*|向量b| (x1x2+y1y2) 根號(x1平方+y1 平方)*根號(x2 平方+y2 平方)
5.空間向量:同上推論 (提示:向量a={x,y,z})
6.充要條件: 如果向量a向量b 那么向量a*向量b=0 如果向量a//向量b 那么向量a*向量b=|向量a|*|向量b| 或者x1/x2=y1/y2
7.|向量a向量b|平方 =|向量a|平方+|向量b|平方2 向量a*向量b =(向量a向量b)平方
關(guān)于數學(xué)的知識點(diǎn)總結5
一、代數式
1. 概念:用基本的運算符號(加、減、乘、除、乘方、開(kāi)方)把數與字母連接而成的式子叫做代數式。單獨的一個(gè)數或字母也是代數式。
2. 代數式的值:用數代替代數式里的字母,按照代數式的運算關(guān)系,計算得出的結果。
二、整式
單項式和多項式統稱(chēng)為整式。
1. 單項式:1)數與字母的乘積這樣的代數式叫做單項式。單獨的一個(gè)數或字母(可以是兩個(gè)數字或字母相乘)也是單項式。
2) 單項式的系數:?jiǎn)雾検街械?數字因數及性質(zhì)符號叫做單項式的系數。
3) 單項式的次數:一個(gè)單項式中,所有字母的指數的和叫做這個(gè)單項式的次數。
2. 多項式:1)幾個(gè)單項式的和叫做多項式。在多項式中,每個(gè)單項式叫做多項式的項,其中不含字母的項叫做常數項。一個(gè)多項式有幾項就叫做幾項式。
2)多項式的次數:多項式中,次數最高的項的次數,就是這個(gè)多項式的次數。
3. 多項式的排列:
1).把一個(gè)多項式按某一個(gè)字母的指數從大到小的順序排列起來(lái),叫做把多項式按這個(gè)字母降冪排列。
2).把一個(gè)多項式按某一個(gè)字母的指數從小到大的順序排列起來(lái),叫做把多項式按這個(gè)字母升冪排列。
由于單項式的項,包括它前面的性質(zhì)符號,因此在排列時(shí),仍需把每一項的性質(zhì)符號看作是這一項的一部分,一起移動(dòng)。
三、整式的運算
1. 同類(lèi)項——所含字母相同,并且相同字母的次數也相同的項叫做同類(lèi)項,幾個(gè)常數項也叫同類(lèi)項。同類(lèi)項與系數無(wú)關(guān),與字母排列的順序也無(wú)關(guān)。
2. 合并同類(lèi)項:把多項式中的同類(lèi)項合并成一項叫做合并同類(lèi)項。即同類(lèi)項的系數相加,所得結果作為系數,字母和字母的指數不變。
3. 整式的加減:有括號的先算括號里面的,然后再合并同類(lèi)項。
4. 冪的運算:
5. 整式的乘法:
1) 單項式與單項式相乘法則:把它們的系數、同底數冪分別相乘,其余只在一個(gè)單項式里含有的.字母連同它的指數作為積的因式。
2) 單項式與多項式相乘法則:用單項式去乘多項式的每一項,再把所得的積相加。
3) 多項式與多項式相乘法則:先用一個(gè)多項式的每一項乘另一個(gè)多項式的每一項,再把所得的積相加。
6. 整式的除法
1) 單項式除以單項式:把系數與同底數冪分別相除作為上的因式,對于只在被除式里含有的字母,則連同它的指數作為商的一個(gè)因式。
2) 多項式除以單項式:把這個(gè)多項式的每一項除以單項式,再把所得的商相加。
四、因式分解——把一個(gè)多項式化成幾個(gè)整式的積的形式
1) 提公因式法:(公因式——多項式各項都含有的公共因式)吧公因式提到括號外面,將多項式寫(xiě)成因式乘積的形式。 取各項系數的最大公約數作為因式的系數,取相同字母最低次冪的積。公因式可以是單項式,也可以是多項式。
2) 公式法:A.平方差公式; B.完全平方公式
關(guān)于數學(xué)的知識點(diǎn)總結6
一、填空題。
1、看誰(shuí)算的又快又準。
05=
354=
3006=
6307=
0+7=
165=
323=
777=
2、計算25(6+3)時(shí),先算法,再算()法。
3、長(cháng)方形的周長(cháng)= ()
正方形的周長(cháng)= ()
4、小丑表演節目時(shí)有2頂不同的.帽子可戴,有3條不同的褲子可穿,他共有()種搭配穿法。
5、今年有()天,其中2月有()天,3月有()天,24個(gè)月是()年。
6、小兔上午拔了15根蘿卜,下午拔了20根蘿卜。如果每筐裝5根蘿卜,裝這些蘿卜需要( )個(gè)筐。
7、1角=()元,6角就是6個(gè)()元,是()元,1分米=()米,12個(gè)1分米就是12個(gè)()米,就是()米。
8、通過(guò)學(xué)習,我們發(fā)現0乘任何數都得(),0加任何數都得(),任何數減0都得()。
9、下午5時(shí)是()時(shí),14時(shí)20分是下午() 。
10、一家服裝店,早晨8時(shí)開(kāi)始營(yíng)業(yè),一直到下午7時(shí)30分關(guān)門(mén),這一天總共營(yíng)業(yè)時(shí)間是() 。
二、判斷題。
1、北京奧運會(huì )于8月8日在北京開(kāi)幕,其中20是閏年。( )
2、周長(cháng)相等的兩個(gè)長(cháng)方形,它們的長(cháng)和寬也一定相等。 ( )
3、今年是中華人民共和國成立70周年。 ( )
4、長(cháng)方形的周長(cháng)=邊長(cháng)4。 ( )
5、在50米賽跑中小明成績(jì)是9.4秒,小亮是10.5秒,小亮快。 ( )
三、選擇題。
1、一個(gè)長(cháng)方形的長(cháng)是6厘米,款是4厘米,周長(cháng)是( )。
A、12厘米
B、24厘米
C、20厘米
D、10厘米
2、站在一個(gè)立方體的邊上,最多能看到幾個(gè)面? ( )
A、一個(gè)
B、兩個(gè)
C、三個(gè)
D、四個(gè)
3、淘氣下午17:50放學(xué),16:10到餐廳吃晚飯,路上他走了多長(cháng)時(shí)間?( )
A、10分
B、20分
C、40分
D、1時(shí)40分
4、在一百米短跑比賽中,小新的成績(jì)是17.4秒,小亮20.5秒,小軍20.1秒,小海22.4秒。他們的成績(jì)從快到慢依次是( )。
A、小新、小亮、小軍、小海
B、小新、小軍、小亮、小海
C、小海、小軍、小亮、小新
D、小海、小亮、小軍、小新
5、小數30.50讀作( )。
A、三十點(diǎn)五零
B、三零點(diǎn)五零
C、三十點(diǎn)五十
D、三零點(diǎn)五十
四、計算題。
1、豎式計算。
618+269
840-805
344
2036
7.2+2.6
6.5-4.6
2、計算(注意:要有步驟)。
74-(100-48)
81(72-63)
(23+25)6
7208-56
五、解決問(wèn)題。
1、三年級(1)班有男生和女生各18人參加隊列和團體操表演,隊列表演時(shí)每4人站一行,能站幾行?
2、亮亮有200元錢(qián),奶奶有800元錢(qián),亮亮和奶奶八月花了745元,八月節余了多少元?
關(guān)于數學(xué)的知識點(diǎn)總結7
特殊平行四邊形
1、菱形的性質(zhì)與判定
、倭庑蔚亩x:
一組鄰邊相等的平行四邊形叫做菱形。
、诹庑蔚男再|(zhì):
具有平行四邊形的性質(zhì),且四條邊都相等,兩條對角線(xiàn)互相垂直平分,每一條對角線(xiàn)平分一組對角。
菱形是軸對稱(chēng)圖形,每條對角線(xiàn)所在的直線(xiàn)都是對稱(chēng)軸。
、哿庑蔚呐袆e方法:
一組鄰邊相等的平行四邊形是菱形。
對角線(xiàn)互相垂直的平行四邊形是菱形。
四條邊都相等的四邊形是菱形。
2、矩形的性質(zhì)與判定
、倬匦蔚亩x:
有一個(gè)角是直角的平行四邊形叫矩形。矩形是特殊的平行四邊形。
、诰匦蔚男再|(zhì):
具有平行四邊形的性質(zhì),且對角線(xiàn)相等,四個(gè)角都是直角。(矩形是軸對稱(chēng)圖形,有兩條對稱(chēng)軸)
、劬匦蔚呐卸ǎ
有一個(gè)內角是直角的平行四邊形叫矩形(根據定義)。
對角線(xiàn)相等的平行四邊形是矩形。
四個(gè)角都相等的四邊形是矩形。
、芡普摚褐苯侨切涡边吷系.中線(xiàn)等于斜邊的一半。
3、正方形的性質(zhì)與判定
、僬叫蔚亩x:
一組鄰邊相等的矩形叫做正方形。
、谡叫蔚男再|(zhì):
正方形具有平行四邊形、矩形、菱形的一切性質(zhì)。(正方形是軸對稱(chēng)圖形,有兩條對稱(chēng)軸)
、壅叫纬S玫呐卸ǎ
有一個(gè)內角是直角的菱形是正方形;
鄰邊相等的矩形是正方形;
對角線(xiàn)相等的菱形是正方形;
對角線(xiàn)互相垂直的矩形是正方形。
、苷叫、矩形、菱形和平行邊形四者之間的關(guān)系
、萏菪味x:
一組對邊平行且另一組對邊不平行的四邊形叫做梯形。
兩條腰相等的梯形叫做等腰梯形。
一條腰和底垂直的梯形叫做直角梯形。
、薜妊菪蔚男再|(zhì):
等腰梯形同一底上的兩個(gè)內角相等,對角線(xiàn)相等。
同一底上的兩個(gè)內角相等的梯形是等腰梯形。
三角形的中位線(xiàn)平行于第三邊,并且等于第三邊的一半。
夾在兩條平行線(xiàn)間的平行線(xiàn)段相等。
在直角三角形中,斜邊上的中線(xiàn)等于斜邊的一半
關(guān)于數學(xué)的知識點(diǎn)總結8
數級分類(lèi)
(1)四位分級法:即以四位數為一個(gè)數級的分級方法。
我國讀數的習慣,就是按這種方法讀的。如:萬(wàn)(數字后面4個(gè)0)、億(數字后面8個(gè)0)、兆(數字后面12個(gè)0,這是中法計數)……。這些級分別叫做個(gè)級,萬(wàn)級,億級……。
(2)三位分級法:即以三位數為一個(gè)數級的分級方法。
這西方的分級方法,這種分級方法也是國際通行的分級方法。如:千,數字后面3個(gè)0、百萬(wàn),數字后面6個(gè)0、十億,數字后面9個(gè)0……。
4.數位:數位是指寫(xiě)數時(shí),把數字并列排成橫列,一個(gè)數字占有一個(gè)位置,這些位置,都叫做數位。
從右端算起,第一位是“個(gè)位”,第二位是“十位”,第三位是“百位”,第四位是“千位”,第五位是“萬(wàn)位”,等等。
數的產(chǎn)生:
阿拉伯數字的由來(lái):古代印度人創(chuàng )造了阿拉伯數字后,大約到了公元7世紀的時(shí)候,這些數字傳到了阿拉伯地區。到13世紀時(shí),意大利數學(xué)家斐波那契寫(xiě)出了《算盤(pán)書(shū)》,在這本書(shū)里,他對阿拉伯數字做了詳細的介紹。后來(lái),這些數字又從阿拉伯地區傳到了歐洲,歐洲人只知道這些數字是從阿拉伯地區傳入的,所以便把這些數字叫做阿拉伯數字。以后,這些數字又從歐洲傳到世界各國。
阿拉伯數字傳入我國,大約是13到14世紀。由于我國古代有一種數字叫“籌碼”,寫(xiě)起來(lái)比較方便,所以阿拉伯數字當時(shí)在我國沒(méi)有得到及時(shí)的推廣運用。本世紀初,隨著(zhù)我國對外國數學(xué)成就的吸收和引進(jìn),阿拉伯數字在我國才開(kāi)始慢慢使用,阿拉伯數字在我國推廣使用才有100多年的歷史。阿拉伯數字現在已成為人們學(xué)習、生活和交往中最常用的數字了。
角的種類(lèi)
角的大小與邊的長(cháng)短沒(méi)有關(guān)系;角的大小決定于角的兩條邊張開(kāi)的程度,張開(kāi)的越大,角就越大,相反,張開(kāi)的越小,角則越小。
在動(dòng)態(tài)定義中,取決于旋轉的方向與角度。
角可以分為銳角、直角、鈍角、平角、周角、負角、正角、優(yōu)角、劣角、0角這10種。
以度、分、秒為單位的角的度量制稱(chēng)為角度制。此外,還有密位制、弧度制等。
(1)銳角:大于0°,小于90°的角叫做銳角。
(2)直角:等于90°的`角叫做直角。
(3)鈍角:大于90°而小于180°的角叫做鈍角。
數學(xué)100以?xún)鹊募臃ê蜏p法知識點(diǎn)
一、兩位數加兩位數
1、兩位數加兩位數不進(jìn)位加法的計算法則:把相同數位對齊列豎式,在把相同數位上的數相加。
2、兩位數加兩位數進(jìn)位加法的計算法則:
、傧嗤瑪滴粚R;
、趶膫(gè)位加起;
、蹅(gè)位滿(mǎn)十向十位進(jìn)1。
3、筆算兩位數加兩位數時(shí),相同數位要對齊,從個(gè)位加起,個(gè)位滿(mǎn)十要向十位進(jìn)“1”,十位上的數相加時(shí),不要遺漏進(jìn)上來(lái)的“1”。
4、和=加數+加數
一個(gè)加數=和-另一個(gè)加數
二、兩位數減兩位數
1、兩位數減兩位數不退位減的筆算:相同數位對齊列豎式,再把相同數位上的數相減
2、兩位數減兩位數退位減的筆算法則:①相同數位對齊;②從個(gè)位減起;③個(gè)位不夠減,從十位退1,在個(gè)位上加10再減。
3、筆算兩位數減兩位數時(shí),相同數位要對齊,從個(gè)位減起,個(gè)位不夠減,從十位退1,個(gè)位加10再減,十位計算時(shí)要先減去退走的1再算。
4、差=被減數-減數
被減數=減數+差
減數=被減數+差
三、連加、連減和加減混合
1、連加、連減
連加、連減的筆算順序和連加、連減的口算順序一樣,都是從左往右依次計算。
、龠B加計算可以分步計算,也可以寫(xiě)成一個(gè)豎式計算,計算方法與兩個(gè)數相加一樣,都要把相同數位對齊,從個(gè)位加起。
、谶B減運算可以分步計算,也可以寫(xiě)成一個(gè)豎式計算,計算方法與兩個(gè)數相減一樣,都要把相同數位對齊,從個(gè)位減起。
2、加減混合
加、減混合算式,其運算順序、豎式寫(xiě)法都與連加、連減相同。
3、加減混合運算寫(xiě)豎式時(shí)可以分步計算,方法與兩個(gè)數相加(減)一樣,要把相同數位對齊,從個(gè)位算起;也可以用簡(jiǎn)便的寫(xiě)法,列成一個(gè)豎式,先完成第一步計算,再用第一步的結果加(減)第二個(gè)數。
關(guān)于四年級數學(xué)上冊知識點(diǎn)總結
關(guān)于數學(xué)的知識點(diǎn)總結9
分解因式
分解因式:把一個(gè)多項式化成幾個(gè)整式的積的形式,這種變化叫做把這個(gè)多項式分解因式。
方法:提公因式法、運用公式法、分組分解法、十字相乘法。
以上對分解因式知識點(diǎn)的總結學(xué)習,相信同學(xué)們對此知識點(diǎn)可以很熟練的掌握了,希望能很好的幫助同學(xué)們的考試工作。
初中數學(xué)知識點(diǎn)總結:平面直角坐標系
下面是對平面直角坐標系的內容學(xué)習,希望同學(xué)們很好的掌握下面的內容。
平面直角坐標系
平面直角坐標系:在平面內畫(huà)兩條互相垂直、原點(diǎn)重合的數軸,組成平面直角坐標系。
水平的.數軸稱(chēng)為x軸或橫軸,豎直的數軸稱(chēng)為y軸或縱軸,兩坐標軸的交點(diǎn)為平面直角坐標系的原點(diǎn)。
平面直角坐標系的要素:①在同一平面②兩條數軸③互相垂直④原點(diǎn)重合
三個(gè)規定:
、僬较虻囊幎M軸取向右為正方向,縱軸取向上為正方向
、趩挝婚L(cháng)度的規定;一般情況,橫軸、縱軸單位長(cháng)度相同;實(shí)際有時(shí)也可不同,但同一數軸上必須相同。
、巯笙薜囊幎ǎ河疑蠟榈谝幌笙、左上為第二象限、左下為第三象限、右下為第四象限。
相信上面對平面直角坐標系知識的講解學(xué)習,同學(xué)們已經(jīng)能很好的掌握了吧,希望同學(xué)們都能考試成功。
關(guān)于數學(xué)的知識點(diǎn)總結10
(1)線(xiàn)
直線(xiàn):直線(xiàn)沒(méi)有端點(diǎn);長(cháng)度無(wú)限;過(guò)一點(diǎn)可以畫(huà)無(wú)數條,過(guò)兩點(diǎn)只能畫(huà)一條直線(xiàn)。
射線(xiàn):射線(xiàn)只有一個(gè)端點(diǎn);長(cháng)度無(wú)限。
線(xiàn)段:線(xiàn)段有兩個(gè)端點(diǎn),它是直線(xiàn)的一部分;長(cháng)度有限;兩點(diǎn)的連線(xiàn)中,線(xiàn)段為最短。
平行線(xiàn):在同一平面內,不相交的兩條直線(xiàn)叫做平行線(xiàn)。
兩條平行線(xiàn)之間的垂線(xiàn)長(cháng)度都相等。
垂線(xiàn):兩條直線(xiàn)相交成直角時(shí),這兩條直線(xiàn)叫做互相垂直,其中一條直線(xiàn)叫做另一條直線(xiàn)的垂線(xiàn),相交的點(diǎn)叫做垂足。
從直線(xiàn)外一點(diǎn)到這條直線(xiàn)所畫(huà)的垂線(xiàn)的長(cháng)叫做這點(diǎn)到直線(xiàn)的距離。
(2)角
(1)從一點(diǎn)引出兩條射線(xiàn),所組成的圖形叫做角。這個(gè)點(diǎn)叫做角的頂點(diǎn),這兩條射線(xiàn)叫做角的邊。
(2)角的分類(lèi)
銳角:小于90°的角叫做銳角。
直角:等于90°的'角叫做直角。
鈍角:大于90°而小于180°的角叫做鈍角。
平角:角的兩邊成一條直線(xiàn),這時(shí)所組成的角叫做平角。平角180°。
周角:角的一邊旋轉一周,與另一邊重合。周角是360°。
關(guān)于數學(xué)的知識點(diǎn)總結11
學(xué)生已經(jīng)掌握了用一元一次方程解決實(shí)際問(wèn)題的方法。在解決某些實(shí)際問(wèn)題時(shí)還會(huì )遇到一種新方程 一元二次方程。一元二次方程一章就來(lái)認識這種方程,討論這種方程的解法,并運用這種方程解決一些實(shí)際問(wèn)題。
本章首先通過(guò)雕像設計、制作方盒、排球比賽等問(wèn)題引出一元二次方程的概念,給出一元二次方程的一般形式。然后讓學(xué)生通過(guò)數值代入的方法找出某些簡(jiǎn)單的一元二次方程的解,對一元二次方程的解加以體會(huì ),并給出一元二次方程的根的概念,
22.2降次解一元二次方程一節介紹配方法、公式法、因式分解法三種解一元二次方程的方法。下面分別加以說(shuō)明。
(1)在介紹配方法時(shí),首先通過(guò)實(shí)際問(wèn)題引出形如 的方程。這樣的方程可以化為更為簡(jiǎn)單的形如 的方程,由平方根的概念,可以得到這個(gè)方程的解。進(jìn)而舉例說(shuō)明如何解形如 的方程。然后舉例說(shuō)明一元二次方程可以化為形如 的.方程,引出配方法。最后安排運用配方法解一元二次方程的例題。在例題中,涉及二次項系數不是1的一元二次方程,也涉及沒(méi)有實(shí)數根的一元二次方程。對于沒(méi)有實(shí)數根的一元二次方程,學(xué)了公式法以后,學(xué)生對這個(gè)內容會(huì )有進(jìn)一步的理解。
(2)在介紹公式法時(shí),首先借助配方法討論方程 的解法,得到一元二次方程的求根公式。然后安排運用公式法解一元二次方程的例題。在例題中,涉及有兩個(gè)相等實(shí)數根的一元二次方程,也涉及沒(méi)有實(shí)數根的一元二次方程。由此引出一元二次方程的解的三種情況。
(3)在介紹因式分解法時(shí),首先通過(guò)實(shí)際問(wèn)題引出易于用因式分解法的一元二次方程,引出因式分解法。然后安排運用因式分解法解一元二次方程的例題。最后對配方法、公式法、因式分解法三種解一元二次方程的方法進(jìn)行小結。
22.3實(shí)際問(wèn)題與一元二次方程一節安排了四個(gè)探究欄目,分別探究傳播、成本下降率、面積、勻變速運動(dòng)等問(wèn)題,使學(xué)生進(jìn)一步體會(huì )方程是刻畫(huà)現實(shí)世界的一個(gè)有效的數學(xué)模型。
關(guān)于數學(xué)的知識點(diǎn)總結12
第一章圖形的變換
考點(diǎn)一、平移(3~5分)
1、定義
把一個(gè)圖形整體沿某一方向移動(dòng),會(huì )得到一個(gè)新的圖形,新圖形與原圖形的形狀和大小完全相同,圖形的這種移動(dòng)叫做平移變換,簡(jiǎn)稱(chēng)平移。
2、性質(zhì)
(1)平移不改變圖形的大小和形狀,但圖形上的每個(gè)點(diǎn)都沿同一方向進(jìn)行了移動(dòng)
(2)連接各組對應點(diǎn)的線(xiàn)段平行(或在同一直線(xiàn)上)且相等。
考點(diǎn)二、軸對稱(chēng)(3~5分)
1、定義
把一個(gè)圖形沿著(zhù)某條直線(xiàn)折疊,如果它能夠與另一個(gè)圖形重合,那么就說(shuō)這兩個(gè)圖形關(guān)于這條直線(xiàn)成軸對稱(chēng),該直線(xiàn)叫做對稱(chēng)軸。
2、性質(zhì)
(1)關(guān)于某條直線(xiàn)對稱(chēng)的兩個(gè)圖形是全等形。
(2)如果兩個(gè)圖形關(guān)于某直線(xiàn)對稱(chēng),那么對稱(chēng)軸是對應點(diǎn)連線(xiàn)的垂直平分線(xiàn)。
(3)兩個(gè)圖形關(guān)于某直線(xiàn)對稱(chēng),如果它們的對應線(xiàn)段或延長(cháng)線(xiàn)相交,那么交點(diǎn)在對稱(chēng)軸上。
3、判定
如果兩個(gè)圖形的對應點(diǎn)連線(xiàn)被同一條直線(xiàn)垂直平分,那么這兩個(gè)圖形關(guān)于這條直線(xiàn)對稱(chēng)。
4、軸對稱(chēng)圖形
把一個(gè)圖形沿著(zhù)某條直線(xiàn)折疊,如果直線(xiàn)兩旁的部分能夠互相重合,那么這個(gè)圖形叫做軸對稱(chēng)圖形,這條直線(xiàn)就是它的對稱(chēng)軸。
考點(diǎn)三、旋轉(3~8分)
1、定義
把一個(gè)圖形繞某一點(diǎn)o轉動(dòng)一個(gè)角度的圖形變換叫做旋轉,其中o叫做旋轉中心,轉動(dòng)的角叫做旋轉角。
2、性質(zhì)
(1)對應點(diǎn)到旋轉中心的距離相等。
(2)對應點(diǎn)與旋轉中心所連線(xiàn)段的夾角等于旋轉角。
考點(diǎn)四、中心對稱(chēng)(3分)
1、定義
把一個(gè)圖形繞著(zhù)某一個(gè)點(diǎn)旋轉180°,如果旋轉后的圖形能夠和原來(lái)的圖形互相重合,那么這個(gè)圖形叫做中心對稱(chēng)圖形,這個(gè)點(diǎn)就是它的對稱(chēng)中心。
2、性質(zhì)
(1)關(guān)于中心對稱(chēng)的兩個(gè)圖形是全等形。
(2)關(guān)于中心對稱(chēng)的兩個(gè)圖形,對稱(chēng)點(diǎn)連線(xiàn)都經(jīng)過(guò)對稱(chēng)中心,并且被對稱(chēng)中心平分。
(3)關(guān)于中心對稱(chēng)的兩個(gè)圖形,對應線(xiàn)段平行(或在同一直線(xiàn)上)且相等。
3、判定
如果兩個(gè)圖形的對應點(diǎn)連線(xiàn)都經(jīng)過(guò)某一點(diǎn),并且被這一點(diǎn)平分,那么這兩個(gè)圖形關(guān)于這一點(diǎn)對稱(chēng)。
4、中心對稱(chēng)圖形
把一個(gè)圖形繞某一個(gè)點(diǎn)旋轉180°,如果旋轉后的圖形能夠和原來(lái)的圖形互相重合,那么這個(gè)圖形叫做中心對稱(chēng)圖形,這個(gè)店就是它的對稱(chēng)中心。
考點(diǎn)五、坐標系中對稱(chēng)點(diǎn)的特征(3分)
1、關(guān)于原點(diǎn)對稱(chēng)的點(diǎn)的特征
兩個(gè)點(diǎn)關(guān)于原點(diǎn)對稱(chēng)時(shí),它們的坐標的符號相反,即點(diǎn)p(x,y)關(guān)于原點(diǎn)的對稱(chēng)點(diǎn)為p’(-x,-y)
2、關(guān)于x軸對稱(chēng)的點(diǎn)的特征
兩個(gè)點(diǎn)關(guān)于x軸對稱(chēng)時(shí),它們的坐標中,x相等,y的符號相反,即點(diǎn)p(x,y)關(guān)于x軸的對稱(chēng)點(diǎn)為p’(x,-y)
3、關(guān)于y軸對稱(chēng)的點(diǎn)的特征
兩個(gè)點(diǎn)關(guān)于y軸對稱(chēng)時(shí),它們的坐標中,y相等,x的符號相反,即點(diǎn)p(x,y)關(guān)于y軸的對稱(chēng)點(diǎn)為p’(-x,y)
第二章圖形的相似
考點(diǎn)一、比例線(xiàn)段(3分)
1、比例線(xiàn)段的相關(guān)概念
如果選用同一長(cháng)度單位量得兩條線(xiàn)段a,b的長(cháng)度分別為m,n,那么就說(shuō)這兩條線(xiàn)段的比是,或寫(xiě)成a:b=m:n
在兩條線(xiàn)段的比a:b中,a叫做比的前項,b叫做比的后項。
在四條線(xiàn)段中,如果其中兩條線(xiàn)段的比等于另外兩條線(xiàn)段的比,那么這四條線(xiàn)段叫做成比例線(xiàn)段,簡(jiǎn)稱(chēng)比例線(xiàn)段
若四條a,b,c,d滿(mǎn)足或a:b=c:d,那么a,b,c,d叫做組成比例的項,線(xiàn)段a,d叫做比例外項,線(xiàn)段b,c叫做比例內項,線(xiàn)段的d叫做a,b,c的第四比例項。
如果作為比例內項的是兩條相同的線(xiàn)段,即或a:b=b:c,那么線(xiàn)段b叫做線(xiàn)段a,c的.比例中項。
2、比例的性質(zhì)
(1)基本性質(zhì)
、賏:b=c:dad=bc
、赼:b=b:c
(2)更比性質(zhì)(交換比例的內項或外項)
(交換內項)
(交換外項)
(同時(shí)交換內項和外項)
(3)反比性質(zhì)(交換比的前項、后項):
(4)合比性質(zhì):
(5)等比性質(zhì):
3、黃金分割
把線(xiàn)段ab分成兩條線(xiàn)段ac,bc(ac>bc),并且使ac是ab和bc的比例中項,叫做把線(xiàn)段ab黃金分割,點(diǎn)c叫做線(xiàn)段ab的黃金分割點(diǎn),其中ac=ab0.618ab
考點(diǎn)二、平行線(xiàn)分線(xiàn)段成比例定理(3~5分)
三條平行線(xiàn)截兩條直線(xiàn),所得的對應線(xiàn)段成比例。
推論:
(1)平行于三角形一邊的直線(xiàn)截其他兩邊(或兩邊的延長(cháng)線(xiàn)),所得的對應線(xiàn)段成比例。
逆定理:如果一條直線(xiàn)截三角形的兩邊(或兩邊的延長(cháng)線(xiàn))所得的對應線(xiàn)段成比例,那么這條直線(xiàn)平行于三角形的第三邊。
(2)平行于三角形一邊且和其他兩邊相交的直線(xiàn)截得的三角形的三邊與原三角形的三邊對應成比例。
考點(diǎn)三、相似三角形(3~8分)
1、相似三角形的概念
對應角相等,對應邊成比例的三角形叫做相似三角形。相似用符號“∽”來(lái)表示,讀作“相似于”。相似三角形對應邊的比叫做相似比(或相似系數)。
2、相似三角形的基本定理
平行于三角形一邊的直線(xiàn)和其他兩邊(或兩邊的延長(cháng)線(xiàn))相交,所構成的三角形與原三角形相似。
用數學(xué)語(yǔ)言表述如下:
∵de∥bc,∴△ade∽△abc
相似三角形的等價(jià)關(guān)系:
(1)反身性:對于任一△abc,都有△abc∽△abc;
(2)對稱(chēng)性:若△abc∽△a’b’c’,則△a’b’c’∽△abc
(3)傳遞性:若△abc∽△a’b’c’,并且△a’b’c’∽△a’’b’’c’’,則△abc∽△a’’b’’c’’。
3、三角形相似的判定
(1)三角形相似的判定方法
、俣x法:對應角相等,對應邊成比例的兩個(gè)三角形相似
、谄叫蟹ǎ浩叫杏谌切我贿叺闹本(xiàn)和其他兩邊(或兩邊的延長(cháng)線(xiàn))相交,所構成的三角形與原三角形相似
、叟卸ǘɡ1:如果一個(gè)三角形的兩個(gè)角與另一個(gè)三角形的兩個(gè)角對應相等,那么這兩個(gè)三角形相似,可簡(jiǎn)述為兩角對應相等,兩三角形相似。
、芘卸ǘɡ2:如果一個(gè)三角形的兩條邊和另一個(gè)三角形的兩條邊對應相等,并且?jiàn)A角相等,那么這兩個(gè)三角形相似,可簡(jiǎn)述為兩邊對應成比例且?jiàn)A角相等,兩三角形相似。
、菖卸ǘɡ3:如果一個(gè)三角形的三條邊與另一個(gè)三角形的三條邊對應成比例,那么這兩個(gè)三角形相似,可簡(jiǎn)述為三邊對應成比例,兩三角形相似
(2)直角三角形相似的判定方法
、僖陨细鞣N判定方法均適用
、诙ɡ恚喝绻粋(gè)直角三角形的斜邊和一條直角邊與另一個(gè)直角三角形的斜邊和一條直角邊對應成比例,那么這兩個(gè)直角三角形相似
、鄞怪狈ǎ褐苯侨切伪恍边吷系母叻殖傻膬蓚(gè)直角三角形與原三角形相似。
4、相似三角形的性質(zhì)
(1)相似三角形的對應角相等,對應邊成比例
(2)相似三角形對應高的比、對應中線(xiàn)的比與對應角平分線(xiàn)的比都等于相似比
(3)相似三角形周長(cháng)的比等于相似比
(4)相似三角形面積的比等于相似比的平方。
5、相似多邊形
(1)如果兩個(gè)邊數相同的多邊形的對應角相等,對應邊成比例,那么這兩個(gè)多邊形叫做相似多邊形。相似多邊形對應邊的比叫做相似比(或相似系數)
(2)相似多邊形的性質(zhì)
、傧嗨贫噙呅蔚膶窍嗟,對應邊成比例
、谙嗨贫噙呅沃荛L(cháng)的比、對應對角線(xiàn)的比都等于相似比
、巯嗨贫噙呅沃械膶切蜗嗨,相似比等于相似多邊形的相似比
、芟嗨贫噙呅蚊娣e的比等于相似比的平方
6、位似圖形
如果兩個(gè)圖形不僅是相似圖形,而且每組對應點(diǎn)所在直線(xiàn)都經(jīng)過(guò)同一個(gè)點(diǎn),那么這樣的兩個(gè)圖形叫做位似圖形,這個(gè)點(diǎn)叫做位似中心,此時(shí)的相似比叫做位似比。
性質(zhì):每一組對應點(diǎn)和位似中心在同一直線(xiàn)上,它們到位似中心的距離之比都等于位似比。
由一個(gè)圖形得到它的位似圖形的變換叫做位似變換。利用位似變換可以把一個(gè)圖形放大或縮小。
關(guān)于數學(xué)的知識點(diǎn)總結13
平面直角坐標系:
在平面內畫(huà)兩條互相垂直、原點(diǎn)重合的數軸,組成平面直角坐標系。
水平的數軸稱(chēng)為x軸或橫軸,豎直的數軸稱(chēng)為y軸或縱軸,兩坐標軸的交點(diǎn)為平面直角坐標系的原點(diǎn)。
平面直角坐標系的'要素:①在同一平面②兩條數軸③互相垂直④原點(diǎn)重合
三個(gè)規定:
、僬较虻囊幎M軸取向右為正方向,縱軸取向上為正方向
、趩挝婚L(cháng)度的規定;一般情況,橫軸、縱軸單位長(cháng)度相同;實(shí)際有時(shí)也可不同,但同一數軸上必須相同。
、巯笙薜囊幎ǎ河疑蠟榈谝幌笙、左上為第二象限、左下為第三象限、右下為第四象限。
平面直角坐標系的構成
在同一個(gè)平面上互相垂直且有公共原點(diǎn)的兩條數軸構成平面直角坐標系,簡(jiǎn)稱(chēng)為直角坐標系。通常,兩條數軸分別置于水平位置與鉛直位置,取向右與向上的方向分別為兩條數軸的正方向。水平的數軸叫做X軸或橫軸,鉛直的數軸叫做Y軸或縱軸,X軸或Y軸統稱(chēng)為坐標軸,它們的公共原點(diǎn)O稱(chēng)為直角坐標系的原點(diǎn)。
點(diǎn)的坐標的性質(zhì)
建立了平面直角坐標系后,對于坐標系平面內的任何一點(diǎn),我們可以確定它的坐標。反過(guò)來(lái),對于任何一個(gè)坐標,我們可以在坐標平面內確定它所表示的一個(gè)點(diǎn)。
對于平面內任意一點(diǎn)C,過(guò)點(diǎn)C分別向X軸、Y軸作垂線(xiàn),垂足在X軸、Y軸上的對應點(diǎn)a,b分別叫做點(diǎn)C的橫坐標、縱坐標,有序實(shí)數對(a,b)叫做點(diǎn)C的坐標。
一個(gè)點(diǎn)在不同的象限或坐標軸上,點(diǎn)的坐標不一樣。
關(guān)于數學(xué)的知識點(diǎn)總結14
表達式:(a+b)(a-b)=a^2-b^2,兩個(gè)數的和與這兩個(gè)數差的積,等于這兩個(gè)數的平方差,這個(gè)公式就叫做乘法的平方差公式
公式運用
可用于某些分母含有根號的分式:
1/(3-4倍根號2)化簡(jiǎn):
1×(3+4倍根號2)/(3-4倍根號2)^2;=(3+4倍根號2)/(9-32)=(3+4倍根號2)/-23
[解方程]
x^2-y^2=1991
[思路分析]
利用平方差公式求解
[解題過(guò)程]
x^2-y^2=1991
。▁+y)(x-y)=1991
因為1991可以分成1×1991,11×181
所以如果x+y=1991,x-y=1,解得x=996,y=995
如果x+y=181,x-y=11,x=96,y=85同時(shí)也可以是負數
所以解有x=996,y=995,或x=996,y=-995,或x=-996,y=995或x=-996,y=-995
或x=96,y=85,或x=96,y=-85或x=-96,y=85或x=-96,y=-85
有時(shí)應注意加減的`過(guò)程。
關(guān)于數學(xué)的知識點(diǎn)總結15
一般地,設一個(gè)總體含有N個(gè)個(gè)體,從中逐個(gè)不放回地抽取n個(gè)個(gè)體作為樣本(n≤N),如果每次抽取時(shí)總體內的各個(gè)個(gè)體被抽到的機會(huì )都相等,就把這種抽樣方法叫做簡(jiǎn)單隨機抽樣。
簡(jiǎn)單隨機抽樣的特點(diǎn):
(1)用簡(jiǎn)單隨機抽樣從含有N個(gè)個(gè)體的總體中抽取一個(gè)容量為n的樣本時(shí),每次抽取一個(gè)個(gè)體時(shí)任一個(gè)體被抽到的概率為;在整個(gè)抽樣過(guò)程中各個(gè)個(gè)體被抽到的概率為
(2)簡(jiǎn)單隨機抽樣的特點(diǎn)是,逐個(gè)抽取,且各個(gè)個(gè)體被抽到的概率相等;
(3)簡(jiǎn)單隨機抽樣方法,體現了抽樣的客觀(guān)性與公平性,是其他更復雜抽樣方法的基礎.
(4)簡(jiǎn)單隨機抽樣是不放回抽樣;它是逐個(gè)地進(jìn)行抽取;它是一種等概率抽樣
簡(jiǎn)單抽樣常用方法:
(1)抽簽法:先將總體中的所有個(gè)體(共有N個(gè))編號(號碼可從1到N),并把號碼寫(xiě)在形狀、大小相同的號簽上(號簽可用小球、卡片、紙條等制作),然后將這些號簽放在同一個(gè)箱子里,進(jìn)行均勻攪拌,抽簽時(shí)每次從中抽一個(gè)號簽,連續抽取n次,就得到一個(gè)容量為n的樣本適用范圍:總體的個(gè)體數不多時(shí)優(yōu)點(diǎn):抽簽法簡(jiǎn)便易行,當總體的個(gè)體數不太多時(shí)適宜采用抽簽法.(2)隨機數表法:隨機數表抽樣“三步曲”:第一步,將總體中的個(gè)體編號;第二步,選定開(kāi)始的數字;第三步,獲取樣本號碼概率:
相關(guān)高中數學(xué)知識點(diǎn):系統抽樣
系統抽樣的概念:
當整體中個(gè)體數較多時(shí),將整體均分為幾個(gè)部分,然后按一定的規則,從每一個(gè)部分抽取1個(gè)個(gè)體而得到所需要的樣本的方法叫系統抽樣。
系統抽樣的步驟:
(1)采用隨機方式將總體中的個(gè)體編號;
(2)將整個(gè)編號進(jìn)行均勻分段在確定相鄰間隔k后,若不能均勻分段,即
=k不是整數時(shí),可采用隨機方法從總體中剔除一些個(gè)體,使總體中剩余的個(gè)體數N′滿(mǎn)足是整數;
(3)在第一段中采用簡(jiǎn)單隨機抽樣方法確定第一個(gè)被抽得的個(gè)體編號l;
(4)依次將l加上ik,i=1,2,…,(n-1),得到其余被抽取的'個(gè)體的編號,從而得到整個(gè)樣本。
相關(guān)高中數學(xué)知識點(diǎn):分層抽樣
分層抽樣:
當已知總體由差異明顯的幾部分組成時(shí),常將總體分成幾部分,然后按照各部分所占的比例進(jìn)行抽樣,這種抽樣叫做分層抽樣,其所分成的各個(gè)部分叫做層。
利用分層抽樣抽取樣本,每一層按照它在總體中所占的比例進(jìn)行抽取。
不放回抽樣和放回抽樣:
在抽樣中,如果每次抽出個(gè)體后不再將它放回總體,稱(chēng)這樣的抽樣為不放回抽樣;如果每次抽出個(gè)體后再將它放回總體,稱(chēng)這樣的抽樣為放回抽樣.
隨機抽樣、系統抽樣、分層抽樣都是不放回抽樣
分層抽樣的特點(diǎn):
(1)分層抽樣適用于差異明顯的幾部分組成的情況;
(2)在每一層進(jìn)行抽樣時(shí),在采用簡(jiǎn)單隨機抽樣或系統抽樣;
(3)分層抽樣充分利用已掌握的信息,使樣具有良好的代表性;
(4)分層抽樣也是等概率抽樣,而且在每層抽樣時(shí),可以根據具體情況采用不同的抽樣方法,因此應用較為廣泛。
關(guān)于數學(xué)的知識點(diǎn)總結16
1、重心的定義:平面圖形中,幾何圖形的重心是當支撐或懸掛時(shí)圖形能在水平面處于平衡狀態(tài),此時(shí)的支撐點(diǎn)或者懸掛點(diǎn)叫做平衡點(diǎn),也叫做重心。
2、幾種幾何圖形的重心:
、 線(xiàn)段的重心就是線(xiàn)段的中點(diǎn);
、 平行四邊形及特殊平行四邊形的重心是它的兩條對角線(xiàn)的交點(diǎn);
、 三角形的三條中線(xiàn)交于一點(diǎn),這一點(diǎn)就是三角形的重心;
、 任意多邊形都有重心,以多邊形的任意兩個(gè)頂點(diǎn)作為懸掛點(diǎn),把多邊形懸掛時(shí),過(guò)這兩點(diǎn)鉛垂線(xiàn)的交點(diǎn)就是這個(gè)多邊形的重心。
提示:⑴ 無(wú)論幾何圖形的形狀如何,重心都有且只有一個(gè);
、 從物理學(xué)角度看,幾何圖形在懸掛或支撐時(shí),位于重心兩邊的'力矩相同。
3、常見(jiàn)圖形重心的性質(zhì):
、 線(xiàn)段的重心把線(xiàn)段分為兩等份;
、 平行四邊形的重心把對角線(xiàn)分為兩等份;
、 三角形的重心把中線(xiàn)分為1:2兩部分(重心到頂點(diǎn)距離占2份,重心到對邊中點(diǎn)距離占1份)。
上面對重心知識點(diǎn)的鞏固學(xué)習,同學(xué)們都能熟練的掌握了吧,希望同學(xué)們很好的復習學(xué)習數學(xué)知識。
【數學(xué)的知識點(diǎn)總結】相關(guān)文章:
數學(xué)的知識點(diǎn)總結04-16
數學(xué)知識點(diǎn)總結11-07