成人免费看黄网站无遮挡,caowo999,se94se欧美综合色,a级精品九九九大片免费看,欧美首页,波多野结衣一二三级,日韩亚洲欧美综合

高考數學(xué)知識點(diǎn)總結

時(shí)間:2024-02-23 17:51:43 知識點(diǎn)總結 我要投稿

高考數學(xué)知識點(diǎn)總結

  總結是對某一特定時(shí)間段內的學(xué)習和工作生活等表現情況加以回顧和分析的一種書(shū)面材料,它能幫我們理順知識結構,突出重點(diǎn),突破難點(diǎn),我想我們需要寫(xiě)一份總結了吧。我們該怎么寫(xiě)總結呢?下面是小編收集整理的高考數學(xué)知識點(diǎn)總結,僅供參考,希望能夠幫助到大家。

高考數學(xué)知識點(diǎn)總結

高考數學(xué)知識點(diǎn)總結1

  一、高考數學(xué)中有函數、數列、三角函數、平面向量、不等式、立體幾何等九大章節

  主要是考函數和導數,因為這是整個(gè)高中階段中最核心的部分,這部分里還重點(diǎn)考察兩個(gè)方面:第一個(gè)函數的性質(zhì),包括函數的單調性、奇偶性;第二是函數的解答題,重點(diǎn)考察的.是二次函數和高次函數,分函數和它的一些分布問(wèn)題,但是這個(gè)分布重點(diǎn)還包含兩個(gè)分析。

  二、平面向量和三角函數

  對于這部分知識重點(diǎn)考察三個(gè)方面:是劃減與求值,第一,重點(diǎn)掌握公式和五組基本公式;第二,掌握三角函數的圖像和性質(zhì),這里重點(diǎn)掌握正弦函數和余弦函數的性質(zhì);第三,正弦定理和余弦定理來(lái)解三角形,這方面難度并不大。

  三、數列

  數列這個(gè)板塊,重點(diǎn)考兩個(gè)方面:一個(gè)通項;一個(gè)是求和。

  四、空間向量和立體幾何

  在里面重點(diǎn)考察兩個(gè)方面:一個(gè)是證明;一個(gè)是計算。

  五、概率和統計

  概率和統計主要屬于數學(xué)應用問(wèn)題的范疇,需要掌握幾個(gè)方面:……等可能的概率;……事件;獨立事件和獨立重復事件發(fā)生的概率。

  六、解析幾何

  這部分內容說(shuō)起來(lái)容易做起來(lái)難,需要掌握幾類(lèi)問(wèn)題,第一類(lèi)直線(xiàn)和曲線(xiàn)的位置關(guān)系,要掌握它的通法;第二類(lèi)動(dòng)點(diǎn)問(wèn)題;第三類(lèi)是弦長(cháng)問(wèn)題;第四類(lèi)是對稱(chēng)問(wèn)題;第五類(lèi)重點(diǎn)問(wèn)題,這類(lèi)題往往覺(jué)得有思路卻沒(méi)有一個(gè)清晰的答案,但需要要掌握比較好的算法,來(lái)提高做題的準確度。

  七、壓軸題

  同學(xué)們在最后的備考復習中,還應該把重點(diǎn)放在不等式計算的方法中,難度雖然很大,但是也切忌在試卷中留空白,平時(shí)多做些壓軸題真題,爭取能解題就解題,能思考就思考。

高考數學(xué)知識點(diǎn)總結2

  兩個(gè)復數相等的定義:

  如果兩個(gè)復數的實(shí)部和虛部分別相等,那么我們就說(shuō)這兩個(gè)復數相等,即:如果a,b,c,d∈R,那么a+bi=c+di

  a=c,b=d。特殊地,a,b∈R時(shí),a+bi=0

  a=0,b=0.

  復數相等的'充要條件,提供了將復數問(wèn)題化歸為實(shí)數問(wèn)題解決的途徑。

  復數相等特別提醒:

  一般地,兩個(gè)復數只能說(shuō)相等或不相等,而不能比較大小。如果兩個(gè)復數都是實(shí)數,就可以比較大小,也只有當兩個(gè)復數全是實(shí)數時(shí)才能比較大小。

  解復數相等問(wèn)題的方法步驟:

  (1)把給的復數化成復數的標準形式;

  (2)根據復數相等的充要條件解之。

高考數學(xué)知識點(diǎn)總結3

  1.數列的定義

  按一定次序排列的一列數叫做數列,數列中的每一個(gè)數都叫做數列的項.

  (1)從數列定義可以看出,數列的數是按一定次序排列的,如果組成數列的數相同而排列次序不同,那么它們就不是同一數列,例如數列1,2,3,4,5與數列5,4,3,2,1是不同的數列.

  (2)在數列的定義中并沒(méi)有規定數列中的數必須不同,因此,在同一數列中可以出現多個(gè)相同的數字,如:-1的1次冪,2次冪,3次冪,4次冪,…構成數列:-1,1,-1,1,….

  (4)數列的項與它的項數是不同的,數列的項是指這個(gè)數列中的某一個(gè)確定的數,是一個(gè)函數值,也就是相當于f(n),而項數是指這個(gè)數在數列中的位置序號,它是自變量的值,相當于f(n)中的n.

  (5)次序對于數列來(lái)講是十分重要的,有幾個(gè)相同的數,由于它們的排列次序不同,構成的數列就不是一個(gè)相同的'數列,顯然數列與數集有本質(zhì)的區別.如:2,3,4,5,6這5個(gè)數按不同的次序排列時(shí),就會(huì )得到不同的數列,而{2,3,4,5,6}中元素不論按怎樣的次序排列都是同一個(gè)集合.

  2.數列的分類(lèi)

  (1)根據數列的項數多少可以對數列進(jìn)行分類(lèi),分為有窮數列和無(wú)窮數列.在寫(xiě)數列時(shí),對于有窮數列,要把末項寫(xiě)出,例如數列1,3,5,7,9,…,2n-1表示有窮數列,如果把數列寫(xiě)成1,3,5,7,9,…或1,3,5,7,9,…,2n-1,…,它就表示無(wú)窮數列.

  (2)按照項與項之間的大小關(guān)系或數列的增減性可以分為以下幾類(lèi):遞增數列、遞減數列、擺動(dòng)數列、常數列.

  3.數列的通項公式

  數列是按一定次序排列的一列數,其內涵的本質(zhì)屬性是確定這一列數的規律,這個(gè)規律通常是用式子f(n)來(lái)表示的,

  這兩個(gè)通項公式形式上雖然不同,但表示同一個(gè)數列,正像每個(gè)函數關(guān)系不都能用解析式表達出來(lái)一樣,也不是每個(gè)數列都能寫(xiě)出它的通項公式;有的數列雖然有通項公式,但在形式上,又不一定是的,僅僅知道一個(gè)數列前面的有限項,無(wú)其他說(shuō)明,數列是不能確定的,通項公式更非.如:數列1,2,3,4,…,

  由公式寫(xiě)出的后續項就不一樣了,因此,通項公式的歸納不僅要看它的前幾項,更要依據數列的構成規律,多觀(guān)察分析,真正找到數列的內在規律,由數列前幾項寫(xiě)出其通項公式,沒(méi)有通用的方法可循.

  再強調對于數列通項公式的理解注意以下幾點(diǎn):

  (1)數列的通項公式實(shí)際上是一個(gè)以正整數集N.或它的有限子集{1,2,…,n}為定義域的函數的表達式.

  (2)如果知道了數列的通項公式,那么依次用1,2,3,…去替代公式中的n就可以求出這個(gè)數列的各項;同時(shí),用數列的通項公式也可判斷某數是否是某數列中的一項,如果是的話(huà),是第幾項.

  (3)如所有的函數關(guān)系不一定都有解析式一樣,并不是所有的數列都有通項公式.

  如2的不足近似值,精確到1,0.1,0.01,0.001,0.0001,…所構成的數列1,1.4,1.41,1.414,1.4142,…就沒(méi)有通項公式.

  (4)有的數列的通項公式,形式上不一定是的,正如舉例中的:

  (5)有些數列,只給出它的前幾項,并沒(méi)有給出它的構成規律,那么僅由前面幾項歸納出的數列通項公式并不.

高考數學(xué)知識點(diǎn)總結4

  一次函數的定義

  一次函數,也作線(xiàn)性函數,在x,y坐標軸中可以用一條直線(xiàn)表示,當一次函數中的一個(gè)變量的值確定時(shí),可以用一元一次方程確定另一個(gè)變量的值。

  函數的表示方法

  列表法:一目了然,使用起來(lái)方便,但列出的對應值是有限的,不易看出自變量與函數之間的對應規律。

  解析式法:簡(jiǎn)單明了,能夠準確地反映整個(gè)變化過(guò)程中自變量與函數之間的相依關(guān)系,但有些實(shí)際問(wèn)題中的函數關(guān)系,不能用解析式表示。

  圖象法:形象直觀(guān),但只能近似地表達兩個(gè)變量之間的.函數關(guān)系。

  一次函數的性質(zhì)

  一般地,形如y=kx+b(k,b是常數,且k≠0),那么y叫做x的一次函數,當b=0時(shí),y=kx+b即y=kx,所以說(shuō)正比例函數是一種特殊的一次函數

  注:一次函數一般形式y=kx+b(k不為0)

  a)k不為0

  b)x的指數是1

  c)b取任意實(shí)數

  一次函數y=kx+b的圖像是經(jīng)過(guò)(0,b)和(-b/k,0)兩點(diǎn)的一條直線(xiàn),我們稱(chēng)它為直線(xiàn)y=kx+b,它可以看做直線(xiàn)y=kx平移|b|個(gè)單位長(cháng)度得到。(當b>0時(shí),向上平移;b<0時(shí),向下平移)

高考數學(xué)知識點(diǎn)總結5

  高中數學(xué)復習的五大要點(diǎn)分析

  一、端正態(tài)度,切忌浮躁,忌急于求成

  在第一輪復習的過(guò)程中,心浮氣躁是一個(gè)非常普遍的現象。主要表現為平時(shí)復習覺(jué)得沒(méi)有問(wèn)題,題目也能做,但是到了考試時(shí)就是拿不了高分!這主要是因為:

  (1)對復習的知識點(diǎn)缺乏系統的理解,解題時(shí)缺乏思維層次結構。第一輪復習著(zhù)重對基礎知識點(diǎn)的挖掘,數學(xué)老師一定都會(huì )反復強調基礎的重要性。如果不重視對知識點(diǎn)的系統化分析,不能構成一個(gè)整體的知識網(wǎng)絡(luò )構架,自然在解題時(shí)就不能擁有整體的構思,也不能深入理解高考典型例題的思維方法。

  (2)復習的時(shí)候心不靜。心不靜就會(huì )導致思維不清晰,而思維不清晰就會(huì )促使復習沒(méi)有效率。建議大家在開(kāi)始一個(gè)學(xué)科的復習之前,先靜下心來(lái)認真想一想接下來(lái)需要復習哪一塊兒,需要做多少事情,然后認真去做,同時(shí)需要很高的注意力,只有這樣才會(huì )有很好的效果。

  (3)在第一輪復習階段,學(xué)習的重心應該轉移到基礎復習上來(lái)。

  因此,建議廣大同學(xué)在一輪復習的時(shí)候千萬(wàn)不要急于求成,一定要靜下心來(lái),認真的揣摩每個(gè)知識點(diǎn),弄清每一個(gè)原理。只有這樣,一輪復習才能顯出成效。

  二、注重教材、注重基礎,忌盲目做題

  要把書(shū)本中的常規題型做好,所謂做好就是要用最少的時(shí)間把題目做對。部分同學(xué)在第一輪復習時(shí)對基礎題不予以足夠的重視,認為題目看上去會(huì )做就可以不加訓練,結果常在一些“不該錯的地方錯了”,最終把原因簡(jiǎn)單的歸結為粗心,從而忽視了對基本概念的掌握,對基本結論和公式的記憶及基本計算的訓練和常規方法的積累,造成了實(shí)際成績(jì)與心理感覺(jué)的偏差。

  可見(jiàn),數學(xué)的基本概念、定義、公式,數學(xué)知識點(diǎn)的聯(lián)系,基本的數學(xué)解題思路與方法,是第一輪復習的重中之重。不妨以既是重點(diǎn)也是難點(diǎn)的函數部分為例,就必須掌握函數的概念,建立函數關(guān)系式,掌握定義域、值域與最值、奇偶性、單調性、周期性、對稱(chēng)性等性質(zhì),學(xué)會(huì )利用圖像即數形結合。

  三、抓薄弱環(huán)節,做好復習的針對性,忌無(wú)計劃

  每個(gè)同學(xué)在數學(xué)學(xué)習上遇到的問(wèn)題有共同點(diǎn),更有不同點(diǎn)。在復習課上,老師只能針對性去解決共同點(diǎn),而同學(xué)們自己的個(gè)別問(wèn)題則需要通過(guò)自己的思考,與同學(xué)們的討論,并向老師提問(wèn)來(lái)解決問(wèn)題,我們提倡同學(xué)多問(wèn)老師,要敢于問(wèn)。每個(gè)同學(xué)必須了解自己掌握了什么,還有哪些問(wèn)題沒(méi)有解決,要明確只有把漏洞一一補上才能提高。復習的過(guò)程,實(shí)質(zhì)就是解決問(wèn)題的過(guò)程,問(wèn)題解決了,復習的效果就實(shí)現了。同時(shí),也請同學(xué)們注意:在你問(wèn)問(wèn)題之前先經(jīng)過(guò)自己思考,不要把不經(jīng)過(guò)思考的問(wèn)題就直接去問(wèn),因為這并不能起到更大作用。

  高三的復習一定是有計劃、有目標的,所以千萬(wàn)不要盲目做題。第一輪復習非常具有針對性,對于所有知識點(diǎn)的地毯式轟炸,一定要做到不缺不漏。因此,僅靠簡(jiǎn)單做題是達不到一輪復習應該具有的效果。而且盲目做題沒(méi)有針對性,更不會(huì )有全面性。在概念模糊的情況下一定要回歸課本,注意教材上最清晰的概念與原理,注重對知識點(diǎn)運用方法的總結。

  四、在平時(shí)做題中要養成良好的解題習慣,忌不思

  1.樹(shù)立信心,養成良好的運算習慣。部分同學(xué)平時(shí)學(xué)習過(guò)程中自信心不足,做作業(yè)時(shí)免不了互相對答案,也不認真找出錯誤原因并加以改正!皶(huì )而不對”是高三數學(xué)學(xué)習的大忌,常見(jiàn)的有審題失誤、計算錯誤等,平時(shí)都以為是粗心,其實(shí)這就是一種非常不好的習慣,必須在第一輪復習中逐步克服,否則,后患無(wú)窮?山Y合平時(shí)解題中存在的具體問(wèn)題,逐題找出原因,看其是行為習慣方面的原因,還是知識方面的缺陷,再有針對性加以解決。必要時(shí)作些記錄,也就是錯題本,每位同學(xué)必備的,以便以后查詢(xún)。

  2.做好解題后的開(kāi)拓引申,培養一題多解和舉一反三的能力。解題能力的培養可以從一題多解和舉一反三中得到提高,因而解完題后,需要再回味和引申,它包括對解題方法的開(kāi)拓引申,即一道數學(xué)題從不同的角度去考慮去分析,可以有不同的思路,不同的解法。

  考慮的愈廣泛愈深刻,獲得的思路愈廣闊,解法愈多樣;及對題目做開(kāi)拓引申,引申出新題和新解法,有利于培養同學(xué)們的發(fā)散思維,激發(fā)創(chuàng )造精神,提高解題能力:

  (1)把題目條件開(kāi)拓引申。

 、侔烟厥鈼l件一般化;②把一般條件特殊化;③把特殊條件和一般條件交替變化。

  (2)把題目結論開(kāi)拓引申。

  (3)把題型開(kāi)拓引申,同一個(gè)題目,給出不同的提法,可以變成不同的題型。俗稱(chēng)為“一題多變”但其解法仍類(lèi)似,按其解法而言,這些題又可稱(chēng)為“多題一解”或“一法多用”。

  3.提高解題速度,掌握解題技巧。提高解題速度的主要因素有二:一是解題方法的巧妙與簡(jiǎn)捷;二是對常規解法的掌握是否達到高度的熟練程度。

  五、學(xué)會(huì )總結、歸納,訓練到位,忌題量不足

  我在暑期上課的時(shí)候發(fā)現,很多同學(xué)都是一看到題目就開(kāi)始做題,這也是一輪復習應該避免的地方。做題如果不注重思路的分析,知識點(diǎn)的運用,效果可想而知。因此建議同學(xué)們在做題前要把老師上課時(shí)復習的知識再回顧一下,梳理知識體系,回顧各個(gè)知識點(diǎn),對所學(xué)的知識結構要有一個(gè)完整清楚的認識,認真分析題目考查的知識,思想,以及方法,還要學(xué)會(huì )總結歸納不留下任何知識的盲點(diǎn),在一輪復習中要注意對各個(gè)知識點(diǎn)的細化。這個(gè)過(guò)程不需要很長(cháng)的時(shí)間,而且到了后續階段會(huì )越來(lái)越熟練。因此,養成良好的做題習慣,有助于訓練自己的解題思維,提高自己的解題能力。

  實(shí)踐出真知,充足的題量是把理論轉化為能力的一種保障,在足夠的題目的練習下不僅可以更扎實(shí)的掌握知識點(diǎn),還可以更深入的了解知識點(diǎn),避免出現“會(huì )而不對、對而不全”的現象。由于高考依然是以做題為主,所以解題能力是高考分數的一個(gè)直接反映,尤其是數學(xué)試題。而解題能力不是三兩道題就能提升的,而是要大量的反復的訓練、認真細致的推敲才會(huì )有較大的提升。有句話(huà)說(shuō)的好,“量變導致質(zhì)變”,因此,同學(xué)們在每章復習的時(shí)候,一定要做足夠的題,才能夠充分的理解這一章的內容,才能夠做到對這一章知識點(diǎn)的熟練運用。

  但是,大量訓練絕對不是題海戰術(shù)。因為針對每章節做題都有目標,同時(shí)做題訓練都需要不斷的總結,既要橫向總結,也要縱向深入。只要在每章節做題做到一定程度的時(shí)候都能感覺(jué)到這一章的知識點(diǎn)有哪些,典型題型有哪些,方法和技巧有哪些,換句話(huà)說(shuō),如果隨機抽取一些近幾年關(guān)于這一章的高考題都會(huì )做,那我認為就可以了。

  高中數學(xué)知識點(diǎn)歸納

  1.必修課程由5個(gè)模塊組成:

  必修1:集合,函數概念與基本初等函數(指數函數,冪函數,對數函數)

  必修2:立體幾何初步、平面解析幾何初步。

  必修3:算法初步、統計、概率。

  必修4:基本初等函數(三角函數)、平面向量、三角恒等變換。

  必修5:解三角形、數列、不等式。

  以上所有的知識點(diǎn)是所有高中生必須掌握的,而且要懂得運用。

  選修課程分為4個(gè)系列:

  系列1:2個(gè)模塊

  選修1-1:常用邏輯用語(yǔ)、圓錐曲線(xiàn)與方程、空間向量與立體幾何。

  選修1-2:統計案例、推理與證明、數系的擴充與復數、框圖

  系列2:3個(gè)模塊

  選修2-1:常用邏輯用語(yǔ)、圓錐曲線(xiàn)與方程、空間向量與立體幾何

  選修2-2:導數及其應用、推理與證明、數系的擴充與復數

  選修2-3:計數原理、隨機變量及其分布列、統計案例

  選修4-1:幾何證明選講

  選修4-4:坐標系與參數方程

  選修4-5:不等式選講

  2.重難點(diǎn)及其考點(diǎn):

  重點(diǎn):函數,數列,三角函數,平面向量,圓錐曲線(xiàn),立體幾何,導數

  難點(diǎn):函數,圓錐曲線(xiàn)

  高考相關(guān)考點(diǎn):

  1.集合與邏輯:集合的邏輯與運算(一般出現在高考卷的第一道選擇題)、簡(jiǎn)易邏輯、充要條件

  2.函數:映射與函數、函數解析式與定義域、值域與最值、反函數、三大性質(zhì)、函數圖象、指數函數、對數函數、函數的應用

  3.數列:數列的有關(guān)概念、等差數列、等比數列、數列求通項、求和

  4.三角函數:有關(guān)概念、同角關(guān)系與誘導公式、和差倍半公式、求值、化簡(jiǎn)、證明、三角函數的圖像及其性質(zhì)、應用

  5.平面向量:初等運算、坐標運算、數量積及其應用

  6.不等式:概念與性質(zhì)、均值不等式、不等式的證明、不等式的解法、絕對值不等式(經(jīng)常出現在大題的選做題里)、不等式的應用

  7.直線(xiàn)與圓的方程:直線(xiàn)的方程、兩直線(xiàn)的位置關(guān)系、線(xiàn)性規劃、圓、直線(xiàn)與圓的位置關(guān)系

  8.圓錐曲線(xiàn)方程:橢圓、雙曲線(xiàn)、拋物線(xiàn)、直線(xiàn)與圓錐曲線(xiàn)的位置關(guān)系、軌跡問(wèn)題、圓錐曲線(xiàn)的應用

  9.直線(xiàn)、平面、簡(jiǎn)單幾何體:空間直線(xiàn)、直線(xiàn)與平面、平面與平面、棱柱、棱錐、球、空間向量

  10.排列、組合和概率:排列、組合應用題、二項式定理及其應用

  11.概率與統計:概率、分布列、期望、方差、抽樣、正態(tài)分布

  12.導數:導數的概念、求導、導數的應用

  13.復數:復數的概念與運算

  高三數學(xué)重要知識點(diǎn)總結

  考點(diǎn)一:集合與簡(jiǎn)易邏輯

  集合部分一般以選擇題出現,屬容易題。重點(diǎn)考查集合間關(guān)系的理解和認識。近年的試題加強了對集合計算化簡(jiǎn)能力的'考查,并向無(wú)限集發(fā)展,考查抽象思維能力。在解決這些問(wèn)題時(shí),要注意利用幾何的直觀(guān)性,并注重集合表示方法的轉換與化簡(jiǎn)。簡(jiǎn)易邏輯考查有兩種形式:一是在選擇題和填空題中直接考查命題及其關(guān)系、邏輯聯(lián)結詞、“充要關(guān)系”、命題真偽的判斷、全稱(chēng)命題和特稱(chēng)命題的否定等,二是在解答題中深層次考查常用邏輯用語(yǔ)表達數學(xué)解題過(guò)程和邏輯推理。

  考點(diǎn)二:函數與導數

  函數是高考的重點(diǎn)內容,以選擇題和填空題的為載體針對性考查函數的定義域與值域、函數的性質(zhì)、函數與方程、基本初等函數(一次和二次函數、指數、對數、冪函數)的應用等,分值約為10分,解答題與導數交匯在一起考查函數的性質(zhì)。導數部分一方面考查導數的運算與導數的幾何意義,另一方面考查導數的簡(jiǎn)單應用,如求函數的單調區間、極值與最值等,通常以客觀(guān)題的形式出現,屬于容易題和中檔題,三是導數的綜合應用,主要是和函數、不等式、方程等聯(lián)系在一起以解答題的形式出現,如一些不等式恒成立問(wèn)題、參數的取值范圍問(wèn)題、方程根的個(gè)數問(wèn)題、不等式的證明等問(wèn)題。

  考點(diǎn)三:三角函數與平面向量

  一般是2道小題,1道綜合解答題。小題一道考查平面向量有關(guān)概念及運算等,另一道對三角知識點(diǎn)的補充。大題中如果沒(méi)有涉及正弦定理、余弦定理的應用,可能就是一道和解答題相互補充的三角函數的圖像、性質(zhì)或三角恒等變換的題目,也可能是考查平面向量為主的試題,要注意數形結合思想在解題中的應用。向量重點(diǎn)考查平面向量數量積的概念及應用,向量與直線(xiàn)、圓錐曲線(xiàn)、數列、不等式、三角函數等結合,解決角度、垂直、共線(xiàn)等問(wèn)題是“新熱點(diǎn)”題型.

  考點(diǎn)四:數列與不等式

  不等式主要考查一元二次不等式的解法、一元二次不等式組和簡(jiǎn)單線(xiàn)性規劃問(wèn)題、基本不等式的應用等,通常會(huì )在小題中設置1到2道題。對不等式的工具性穿插在數列、解析幾何、函數導數等解答題中進(jìn)行考查.在選擇、填空題中考查等差或等比數列的概念、性質(zhì)、通項公式、求和公式等的靈活應用,一道解答題大多凸顯以數列知識為工具,綜合運用函數、方程、不等式等解決問(wèn)題的能力,它們都屬于中、高檔題目.

  考點(diǎn)五:立體幾何與空間向量

  一是考查空間幾何體的結構特征、直觀(guān)圖與三視圖;二是考查空間點(diǎn)、線(xiàn)、面之間的位置關(guān)系;三是考查利用空間向量解決立體幾何問(wèn)題:利用空間向量證明線(xiàn)面平行與垂直、求空間角等(文科不要求).在高考試卷中,一般有1~2個(gè)客觀(guān)題和一個(gè)解答題,多為中檔題。

  考點(diǎn)六:解析幾何

  一般有1~2個(gè)客觀(guān)題和1個(gè)解答題,其中客觀(guān)題主要考查直線(xiàn)斜率、直線(xiàn)方程、圓的方程、直線(xiàn)與圓的位置關(guān)系、圓錐曲線(xiàn)的定義應用、標準方程的求解、離心率的計算等,解答題則主要考查直線(xiàn)與橢圓、拋物線(xiàn)等的位置關(guān)系問(wèn)題,經(jīng)常與平面向量、函數與不等式交匯,考查一些存在性問(wèn)題、證明問(wèn)題、定點(diǎn)與定值、最值與范圍問(wèn)題等。

  考點(diǎn)七:算法復數推理與證明

  高考對算法的考查以選擇題或填空題的形式出現,或給解答題披層“外衣”.考查的熱點(diǎn)是流程圖的識別與算法語(yǔ)言的閱讀理解.算法與數列知識的網(wǎng)絡(luò )交匯命題是考查的主流.復數考查的重點(diǎn)是復數的有關(guān)概念、復數的代數形式、運算及運算的幾何意義,一般是選擇題、填空題,難度不大.推理證明部分命題的方向主要會(huì )在函數、三角、數列、立體幾何、解析幾何等方面,單獨出題的可能性較小。對于理科,數學(xué)歸納法可能作為解答題的一小問(wèn).

高考數學(xué)知識點(diǎn)總結6

  1、課程內容:

  必修課程由5個(gè)模塊組成:

  必修1:集合、函數概念與基本初等函數(指、對、冪函數)

  必修2:立體幾何初步、平面解析幾何初步。

  必修3:算法初步、統計、概率。

  必修4:基本初等函數(三角函數)、平面向量、三角恒等變換。

  必修5:解三角形、數列、不等式。

  以上是每一個(gè)高中學(xué)生所必須學(xué)習的。

  上述內容覆蓋了高中階段傳統的數學(xué)基礎知識和基本技能的主要部分,其中包括集合、函數、數列、不等式、解三角形、立體幾何初步、平面解析幾何初步等。不同的是在保證打好基礎的同時(shí),進(jìn)一步強調了這些知識的發(fā)生、發(fā)展過(guò)程和實(shí)際應用,而不在技巧與難度上做過(guò)高的要求。

  此外,基礎內容還增加了向量、算法、概率、統計等內容。

  2、重難點(diǎn)及考點(diǎn):

  重點(diǎn):函數,數列,三角函數,平面向量,圓錐曲線(xiàn),立體幾何,導數

  難點(diǎn):函數、圓錐曲線(xiàn)

  高考相關(guān)考點(diǎn):

 、偶吓c簡(jiǎn)易邏輯:集合的概念與運算、簡(jiǎn)易邏輯、充要條件

 、坪瘮担河成渑c函數、函數解析式與定義域、值域與最值、反函數、三大性質(zhì)、函數圖象、指數與指數函數、對數與對數函數、函數的應用

 、菙盗校簲盗械挠嘘P(guān)概念、等差數列、等比數列、數列求和、數列的應用

 、热呛瘮担河嘘P(guān)概念、同角關(guān)系與誘導公式、和、差、倍、半公式、求值、化簡(jiǎn)、證明、三角函數的圖象與性質(zhì)、三角函數的應用

 、善矫嫦蛄浚河嘘P(guān)概念與初等運算、坐標運算、數量積及其應用

 、什坏仁剑焊拍钆c性質(zhì)、均值不等式、不等式的證明、不等式的解法、絕對值不等式、不等式的應用

 、酥本(xiàn)和圓的方程:直線(xiàn)的方程、兩直線(xiàn)的位置關(guān)系、線(xiàn)性規劃、圓、直線(xiàn)與圓的.位置關(guān)系

 、虉A錐曲線(xiàn)方程:橢圓、雙曲線(xiàn)、拋物線(xiàn)、直線(xiàn)與圓錐曲線(xiàn)的位置關(guān)系、軌跡問(wèn)題、圓錐曲線(xiàn)的應用

 、椭本(xiàn)、平面、簡(jiǎn)單幾何體:空間直線(xiàn)、直線(xiàn)與平面、平面與平面、棱柱、棱錐、球、空間向量

 、闻帕、組合和概率:排列、組合應用題、二項式定理及其應用

 、细怕逝c統計:概率、分布列、期望、方差、抽樣、正態(tài)分布

 、袑担簩档母拍、求導、導數的應用

 、褟蛿担簭蛿档母拍钆c運算

高考數學(xué)知識點(diǎn)總結7

  高考數學(xué)重要知識點(diǎn)整理

  一、求動(dòng)點(diǎn)的軌跡方程的基本步驟

 、苯⑦m當的坐標系,設出動(dòng)點(diǎn)M的坐標;

 、矊(xiě)出點(diǎn)M的集合;

 、沉谐龇匠=0;

 、椿(jiǎn)方程為最簡(jiǎn)形式;

 、禉z驗。

  二、求動(dòng)點(diǎn)的軌跡方程的常用方法:求軌跡方程的方法有多種,常用的有直譯法、定義法、相關(guān)點(diǎn)法、參數法和交軌法等。

 、敝弊g法:直接將條件翻譯成等式,整理化簡(jiǎn)后即得動(dòng)點(diǎn)的軌跡方程,這種求軌跡方程的方法通常叫做直譯法。

 、捕x法:如果能夠確定動(dòng)點(diǎn)的軌跡滿(mǎn)足某種已知曲線(xiàn)的定義,則可利用曲線(xiàn)的定義寫(xiě)出方程,這種求軌跡方程的方法叫做定義法。

 、诚嚓P(guān)點(diǎn)法:用動(dòng)點(diǎn)Q的坐標x,y表示相關(guān)點(diǎn)P的坐標x0、y0,然后代入點(diǎn)P的坐標(x0,y0)所滿(mǎn)足的曲線(xiàn)方程,整理化簡(jiǎn)便得到動(dòng)點(diǎn)Q軌跡方程,這種求軌跡方程的方法叫做相關(guān)點(diǎn)法。

 、磪捣ǎ寒攧(dòng)點(diǎn)坐標x、y之間的直接關(guān)系難以找到時(shí),往往先尋找x、y與某一變數t的關(guān)系,得再消去參變數t,得到方程,即為動(dòng)點(diǎn)的軌跡方程,這種求軌跡方程的方法叫做參數法。

 、到卉壏ǎ簩蓜(dòng)曲線(xiàn)方程中的參數消去,得到不含參數的方程,即為兩動(dòng)曲線(xiàn)交點(diǎn)的軌跡方程,這種求軌跡方程的方法叫做交軌法。

  6.直譯法:求動(dòng)點(diǎn)軌跡方程的一般步驟

 、俳ㄏ怠⑦m當的坐標系;

 、谠O點(diǎn)——設軌跡上的任一點(diǎn)P(x,y);

 、哿惺健谐鰟(dòng)點(diǎn)p所滿(mǎn)足的關(guān)系式;

 、艽鷵Q——依條件的特點(diǎn),選用距離公式、斜率公式等將其轉化為關(guān)于X,Y的方程式,并化簡(jiǎn);

 、葑C明——證明所求方程即為符合條件的動(dòng)點(diǎn)軌跡方程。

  人教版高三年級高考數學(xué)必考知識點(diǎn)

 、僬忮F各側棱相等,各側面都是全等的等腰三角形,各等腰三角形底邊上的高相等(它叫做正棱錐的斜高).

 、谡忮F的高、斜高和斜高在底面內的射影組成一個(gè)直角三角形,正棱錐的高、側棱、側棱在底面內的射影也組成一個(gè)直角三角形.

 、翘厥饫忮F的頂點(diǎn)在底面的射影位置:

 、倮忮F的側棱長(cháng)均相等,則頂點(diǎn)在底面上的射影為底面多邊形的外心.

 、诶忮F的側棱與底面所成的角均相等,則頂點(diǎn)在底面上的射影為底面多邊形的外心.

 、劾忮F的各側面與底面所成角均相等,則頂點(diǎn)在底面上的射影為底面多邊形內心.

 、芾忮F的頂點(diǎn)到底面各邊距離相等,則頂點(diǎn)在底面上的射影為底面多邊形內心.

 、萑忮F有兩組對棱垂直,則頂點(diǎn)在底面的射影為三角形垂心.

 、奕忮F的三條側棱兩兩垂直,則頂點(diǎn)在底面上的射影為三角形的垂心.

 、呙總(gè)四面體都有外接球,球心0是各條棱的中垂面的交點(diǎn),此點(diǎn)到各頂點(diǎn)的距離等于球半徑;

 、嗝總(gè)四面體都有內切球,球心

  是四面體各個(gè)二面角的平分面的交點(diǎn),到各面的距離等于半徑.

  [注]:

  i.各個(gè)側面都是等腰三角形,且底面是正方形的棱錐是正四棱錐.(×)(各個(gè)側面的等腰三角形不知是否全等)

  ii.若一個(gè)三角錐,兩條對角線(xiàn)互相垂直,則第三對角線(xiàn)必然垂直.

  簡(jiǎn)證:AB⊥CD,AC⊥BD

  BC⊥AD.令得,已知則.

  iii.空間四邊形OABC且四邊長(cháng)相等,則順次連結各邊的中點(diǎn)的四邊形一定是矩形.

  iv.若是四邊長(cháng)與對角線(xiàn)分別相等,則順次連結各邊的中點(diǎn)的四邊是一定是正方形.

  簡(jiǎn)證:取AC中點(diǎn),則平面90°易知EFGH為平行四邊形

  EFGH為長(cháng)方形.若對角線(xiàn)等,則為正方形.

  高三數學(xué)高考復習知識點(diǎn)

  數列是高中數學(xué)的.重要內容,又是學(xué)習高等數學(xué)的基礎。高考對本章的考查比較全面,等差數列,等比數列的考查每年都不會(huì )遺漏。有關(guān)數列的試題經(jīng)常是綜合題,經(jīng)常把數列知識和指數函數、對數函數和不等式的知識綜合起來(lái),試題也常把等差數列、等比數列,求極限和數學(xué)歸納法綜合在一起。

  探索性問(wèn)題是高考的熱點(diǎn),常在數列解答題中出現。本章中還蘊含著(zhù)豐富的數學(xué)思想,在主觀(guān)題中著(zhù)重考查函數與方程、轉化與化歸、分類(lèi)討論等重要思想,以及配方法、換元法、待定系數法等基本數學(xué)方法。

  近幾年來(lái),高考關(guān)于數列方面的命題主要有以下三個(gè)方面;

  (1)數列本身的有關(guān)知識,其中有等差數列與等比數列的概念、性質(zhì)、通項公式及求和公式。

  (2)數列與其它知識的結合,其中有數列與函數、方程、不等式、三角、幾何的結合。

  (3)數列的應用問(wèn)題,其中主要是以增長(cháng)率問(wèn)題為主。試題的難度有三個(gè)層次,小題大都以基礎題為主,解答題大都以基礎題和中檔題為主,只有個(gè)別地方用數列與幾何的綜合與函數、不等式的綜合作為最后一題難度較大。

  1.在掌握等差數列、等比數列的定義、性質(zhì)、通項公式、前n項和公式的基礎上,系統掌握解等差數列與等比數列綜合題的規律,深化數學(xué)思想方法在解題實(shí)踐中的指導作用,靈活地運用數列知識和方法解決數學(xué)和實(shí)際生活中的有關(guān)問(wèn)題;

  2.在解決綜合題和探索性問(wèn)題實(shí)踐中加深對基礎知識、基本技能和基本數學(xué)思想方法的認識,溝通各類(lèi)知識的聯(lián)系,形成更完整的知識網(wǎng)絡(luò ),提高分析問(wèn)題和解決問(wèn)題的能力,

  進(jìn)一步培養學(xué)生閱讀理解和創(chuàng )新能力,綜合運用數學(xué)思想方法分析問(wèn)題與解決問(wèn)題的能力。

高考數學(xué)知識點(diǎn)總結8

  一、高考數學(xué)中有函數、數列、三角函數、平面向量、不等式、立體幾何等九大章節

  主要是考函數和導數,因為這是整個(gè)高中階段中最核心的部分,這部分里還重點(diǎn)考察兩個(gè)方面:第一個(gè)函數的性質(zhì),包括函數的單調性、奇偶性;第二是函數的解答題,重點(diǎn)考察的是二次函數和高次函數,分函數和它的一些分布問(wèn)題,但是這個(gè)分布重點(diǎn)還包含兩個(gè)分析。

  二、平面向量和三角函數

  對于這部分知識重點(diǎn)考察三個(gè)方面:是劃減與求值,第一,重點(diǎn)掌握公式和五組基本公式;第二,掌握三角函數的圖像和性質(zhì),這里重點(diǎn)掌握正弦函數和余弦函數的性質(zhì);第三,正弦定理和余弦定理來(lái)解三角形,這方面難度并不大。

  三、數列

  數列這個(gè)板塊,重點(diǎn)考兩個(gè)方面:一個(gè)通項;一個(gè)是求和。

  四、空間向量和立體幾何

  在里面重點(diǎn)考察兩個(gè)方面:一個(gè)是證明;一個(gè)是計算。

  五、概率和統計

  概率和統計主要屬于數學(xué)應用問(wèn)題的范疇,需要掌握幾個(gè)方面:……等可能的概率;……事件;獨立事件和獨立重復事件發(fā)生的概率。

  六、解析幾何

  這部分內容說(shuō)起來(lái)容易做起來(lái)難,需要掌握幾類(lèi)問(wèn)題,第一類(lèi)直線(xiàn)和曲線(xiàn)的位置關(guān)系,要掌握它的通法;第二類(lèi)動(dòng)點(diǎn)問(wèn)題;第三類(lèi)是弦長(cháng)問(wèn)題;第四類(lèi)是對稱(chēng)問(wèn)題;第五類(lèi)重點(diǎn)問(wèn)題,這類(lèi)題往往覺(jué)得有思路卻沒(méi)有一個(gè)清晰的答案,但需要要掌握比較好的算法,來(lái)提高做題的準確度。

  七、壓軸題

  同學(xué)們在最后的備考復習中,還應該把重點(diǎn)放在不等式計算的方法中,難度雖然很大,但是也切忌在試卷中留空白,平時(shí)多做些壓軸題真題,爭取能解題就解題,能思考就思考。

  高考數學(xué)直線(xiàn)方程知識點(diǎn):什么是直線(xiàn)方程

  從平面解析幾何的角度來(lái)看,平面上的.直線(xiàn)就是由平面直角坐標系中的一個(gè)二元一次方程所表示的圖形。求兩條直線(xiàn)的交點(diǎn),只需把這兩個(gè)二元一次方程聯(lián)立求解,當這個(gè)聯(lián)立方程組無(wú)解時(shí),兩直線(xiàn)平行;有無(wú)窮多解時(shí),兩直線(xiàn)重合;只有一解時(shí),兩直線(xiàn)相交于一點(diǎn)。常用直線(xiàn)向上方向與X軸正向的夾角(叫直線(xiàn)的傾斜角)或該角的正切(稱(chēng)直線(xiàn)的斜率)來(lái)表示平面上直線(xiàn)(對于X軸)的傾斜程度?梢酝ㄟ^(guò)斜率來(lái)判斷兩條直線(xiàn)是否互相平行或互相垂直,也可計算它們的交角。直線(xiàn)與某個(gè)坐標軸的交點(diǎn)在該坐標軸上的坐標,稱(chēng)為直線(xiàn)在該坐標軸上的截距。直線(xiàn)在平面上的位置,由它的斜率和一個(gè)截距完全確定。在空間,兩個(gè)平面相交時(shí),交線(xiàn)為一條直線(xiàn)。因此,在空間直角坐標系中,用兩個(gè)表示平面的三元一次方程聯(lián)立,作為它們相交所得直線(xiàn)的方程。

高考數學(xué)知識點(diǎn)總結9

 。1)先看“充分條件和必要條件”

  當命題“若p則q”為真時(shí),可表示為p=>q,則我們稱(chēng)p為q的充分條件,q是p的必要條件。這里由p=>q,得出p為q的充分條件是容易理解的。

  但為什么說(shuō)q是p的必要條件呢?

  事實(shí)上,與“p=>q”等價(jià)的逆否命題是“非q=>非p”。它的意思是:若q不成立,則p一定不成立。這就是說(shuō),q對于p是必不可少的,因而是必要的。

 。2)再看“充要條件”

  若有p=>q,同時(shí)q=>p,則p既是q的充分條件,又是必要條件。簡(jiǎn)稱(chēng)為p是q的充要條件。記作p<=>q

 。3)定義與充要條件

  數學(xué)中,只有A是B的充要條件時(shí),才用A去定義B,因此每個(gè)定義中都包含一個(gè)充要條件。如“兩組對邊分別平行的四邊形叫做平行四邊形”這一定義就是說(shuō),一個(gè)四邊形為平行四邊形的充要條件是它的兩組對邊分別平行。

  顯然,一個(gè)定理如果有逆定理,那么定理、逆定理合在一起,可以用一個(gè)含有充要條件的語(yǔ)句來(lái)表示。

  “充要條件”有時(shí)還可以改用“當且僅當”來(lái)表示,其中“當”表示“充分”!皟H當”表示“必要”。

 。4)一般地,定義中的條件都是充要條件,判定定理中的條件都是充分條件,性質(zhì)定理中的.“結論”都可作為必要條件。

  高考數學(xué)集合復習知識點(diǎn)

  1、集合的概念

  集合是數學(xué)中最原始的不定義的概念,只能給出,描述性說(shuō)明:某些制定的且不同的對象集合在一起就稱(chēng)為一個(gè)集合。組成集合的對象叫元素,集合通常用大寫(xiě)字母A、B、C、…來(lái)表示。元素常用小寫(xiě)字母a、b、c、…來(lái)表示。

  集合是一個(gè)確定的整體,因此對集合也可以這樣描述:具有某種屬性的對象的全體組成的一個(gè)集合。

  2、元素與集合的關(guān)系元素與集合的關(guān)系有屬于和不屬于兩種:元素a屬于集合A,記做a∈A;元素a不屬于集合A,記做a?A。

  3、集合中元素的特性

 。1)確定性:設A是一個(gè)給定的集合,x是某一具體對象,則x或者是A的元素,或者不是A的元素,兩種情況必有一種且只有一種成立。例如A={0,1,3,4},可知0∈A,6?A。

 。2)互異性:“集合張的元素必須是互異的”,就是說(shuō)“對于一個(gè)給定的集合,它的任何兩個(gè)元素都是不同的”。

 。3)無(wú)序性:集合與其中元素的排列次序無(wú)關(guān),如集合{a,b,c}與集合{c,b,a}是同一個(gè)集合。

  4、集合的分類(lèi)

  集合科根據他含有的元素個(gè)數的多少分為兩類(lèi):

  有限集:含有有限個(gè)元素的集合。如“方程3x+1=0”的解組成的集合”,由“2,4,6,8,組成的集合”,它們的元素個(gè)數是可數的,因此兩個(gè)集合是有限集。

  無(wú)限集:含有無(wú)限個(gè)元素的集合,如“到平面上兩個(gè)定點(diǎn)的距離相等于所有點(diǎn)”“所有的三角形”,組成上述集合的元素不可數的,因此他們是無(wú)限集。

  特別的,我們把不含有任何元素的集合叫做空集,記錯F,如{x?R|+1=0}。

  5、特定的集合的表示

  為了書(shū)寫(xiě)方便,我們規定常見(jiàn)的數集用特定的字母表示,下面是幾種常見(jiàn)的數集表示方法,請牢記。

 。1)全體非負整數的集合通常簡(jiǎn)稱(chēng)非負整數集(或自然數集),記做N。

 。2)非負整數集內排出0的集合,也稱(chēng)正整數集,記做N;騈+。

 。3)全體整數的集合通常簡(jiǎn)稱(chēng)為整數集Z。

 。4)全體有理數的集合通常簡(jiǎn)稱(chēng)為有理數集,記做Q。

 。5)全體實(shí)數的集合通常簡(jiǎn)稱(chēng)為實(shí)數集,記做R。

  不等式的解集:

 、倌苁共坏仁匠闪⒌奈粗獢档闹,叫做不等式的解。

 、谝粋(gè)含有未知數的不等式的所有解,組成這個(gè)不等式的解集。

 、矍蟛坏仁浇饧倪^(guò)程叫做解不等式。

  不等式的判定:

 、俪R(jiàn)的不等號有“>”“<”“≤”“≥”及“≠”。分別讀作“大于,小于,小于等于,大于等于,不等于”,其中“≤”又叫作不大于,“≥”叫作不小于;

 、谠诓坏仁健癮>b”或“a

 、鄄坏忍柕拈_(kāi)口所對的數較大,不等號的尖頭所對的數較;

 、茉诹胁坏仁綍r(shí),一定要注意不等式關(guān)系的關(guān)鍵字,如:正數、非負數、不大于、小于等等。

高考數學(xué)知識點(diǎn)總結10

  一、排列組合篇

  1.掌握分類(lèi)計數原理與分步計數原理,并能用它們分析和解決一些簡(jiǎn)單的應用問(wèn)題。

  2.理解排列的意義,掌握排列數計算公式,并能用它解決一些簡(jiǎn)單的應用問(wèn)題。

  3.理解組合的意義,掌握組合數計算公式和組合數的性質(zhì),并能用它們解決一些簡(jiǎn)單的應用問(wèn)題。

  4.掌握二項式定理和二項展開(kāi)式的性質(zhì),并能用它們計算和證明一些簡(jiǎn)單的問(wèn)題。

  5.了解隨機事件的發(fā)生存在著(zhù)規律性和隨機事件概率的意義。

  6.了解等可能性事件的概率的意義,會(huì )用排列組合的基本公式計算一些等可能性事件的概率。

  7.了解互斥事件、相互獨立事件的意義,會(huì )用互斥事件的概率加法公式與相互獨立事件的概率乘法公式計算一些事件的概率。

  8.會(huì )計算事件在n次獨立重復試驗中恰好發(fā)生k次的概率.

  二、立體幾何篇

  高考立體幾何試題一般共有4道(選擇、填空題3道,解答題1道),共計總分27分左右,考查的知識點(diǎn)在20個(gè)以?xún)。選擇填空題考核立幾中的計算型問(wèn)題,而解答題著(zhù)重考查立幾中的邏輯推理型問(wèn)題,當然,二者均應以正確的空間想象為前提。隨著(zhù)新的課程改革的進(jìn)一步實(shí)施,立體幾何考題正朝著(zhù)“多一點(diǎn)思考,少一點(diǎn)計算”的發(fā)展。從歷年的考題變化看,以簡(jiǎn)單幾何體為載體的線(xiàn)面位置關(guān)系的論證,角與距離的探求是?汲P碌臒衢T(mén)話(huà)題。

  1.有關(guān)平行與垂直(線(xiàn)線(xiàn)、線(xiàn)面及面面)的問(wèn)題,是在解決立體幾何問(wèn)題的過(guò)程中,大量的、反復遇到的,而且是以各種各樣的.問(wèn)題(包括論證、計算角、與距離等)中不可缺少的內容,因此在主體幾何的總復習中,首先應從解決“平行與垂直”的有關(guān)問(wèn)題著(zhù)手,通過(guò)較為基本問(wèn)題,熟悉公理、定理的內容和功能,通過(guò)對問(wèn)題的分析與概括,掌握立體幾何中解決問(wèn)題的規律--充分利用線(xiàn)線(xiàn)平行(垂直)、線(xiàn)面平行(垂直)、面面平行(垂直)相互轉化的思想,以提高邏輯思維能力和空間想象能力。

  2.判定兩個(gè)平面平行的方法:

  (1)根據定義--證明兩平面沒(méi)有公共點(diǎn);

  (2)判定定理--證明一個(gè)平面內的兩條相交直線(xiàn)都平行于另一個(gè)平面;

  (3)證明兩平面同垂直于一條直線(xiàn)。

  3.兩個(gè)平面平行的主要性質(zhì):

  (1)由定義知:“兩平行平面沒(méi)有公共點(diǎn)”。

  (2)由定義推得:“兩個(gè)平面平行,其中一個(gè)平面內的直線(xiàn)必平行于另一個(gè)平面。

  (3)兩個(gè)平面平行的性質(zhì)定理:”如果兩個(gè)平行平面同時(shí)和第三個(gè)平面相交,那

  么它們的交線(xiàn)平行“。

  (4)一條直線(xiàn)垂直于兩個(gè)平行平面中的一個(gè)平面,它也垂直于另一個(gè)平面。

  (5)夾在兩個(gè)平行平面間的平行線(xiàn)段相等。

  (6)經(jīng)過(guò)平面外一點(diǎn)只有一個(gè)平面和已知平面平行。

  以上性質(zhì)(2)、(3)、(5)、(6)在課文中雖未直接列為”性質(zhì)定理“,但在解題過(guò)程中均可直接作為性質(zhì)定理引用。

  解答題分步驟解答可多得分

  1.合理安排,保持清醒。數學(xué)考試在下午,建議中午休息半小時(shí)左右,睡不著(zhù)閉閉眼睛也好,盡量放松。然后帶齊用具,提前半小時(shí)到考場(chǎng)。

  2.通覽全卷,摸透題情。剛拿到試卷,一般較緊張,不宜匆忙作答,應從頭到尾通覽全卷,盡量從卷面上獲取更多的信息,摸透題情。這樣能提醒自己先易后難,也可防止漏做題。

  3 .解答題規范有序。一般來(lái)說(shuō),試題中容易題和中檔題占全卷的80%以上,是考生得分的主要來(lái)源。對于解答題中的容易題和中檔題,要注意解題的規范化,關(guān)鍵步驟不能丟,如三種語(yǔ)言(文字語(yǔ)言、符號語(yǔ)言、圖形語(yǔ)言)的表達要規范,邏輯推理要嚴謹,計算過(guò)程要完整,注意算理算法,應用題建模與還原過(guò)程要清晰,合理安排卷面結構……對于解答題中的難題,得滿(mǎn)分很困難,可以采用“分段得分”的策略,因為高考(微博)閱卷是“分段評分”。比如可將難題劃分為一個(gè)個(gè)子問(wèn)題或一系列的步驟,先解決問(wèn)題的一部分,能解決到什么程度就解決到什么程度,獲取一定的分數。有些題目有好幾問(wèn),前面的小問(wèn)你解答不出,但后面的小問(wèn)如果根據前面的結論你能夠解答出來(lái),這時(shí)候不妨引用前面的結論先解答后面的,這樣跳步解答也可以得分。

  三、數列問(wèn)題篇

  數列是高中數學(xué)的重要內容,又是學(xué)習高等數學(xué)的基礎。高考對本章的考查比較全面,等差數列,等比數列的考查每年都不會(huì )遺漏。有關(guān)數列的試題經(jīng)常是綜合題,經(jīng)常把數列知識和指數函數、對數函數和不等式的知識綜合起來(lái),試題也常把等差數列、等比數列,求極限和數學(xué)歸納法綜合在一起。探索性問(wèn)題是高考的熱點(diǎn),常在數列解答題中出現。本章中還蘊含著(zhù)豐富的數學(xué)思想,在主觀(guān)題中著(zhù)重考查函數與方程、轉化與化歸、分類(lèi)討論等重要思想,以及配方法、換元法、待定系數法等基本數學(xué)方法。

  近幾年來(lái),高考關(guān)于數列方面的命題主要有以下三個(gè)方面;(1)數列本身的有關(guān)知識,其中有等差數列與等比數列的概念、性質(zhì)、通項公式及求和公式。(2)數列與其它知識的結合,其中有數列與函數、方程、不等式、三角、幾何的結合。(3)數列的應用問(wèn)題,其中主要是以增長(cháng)率問(wèn)題為主。試題的難度有三個(gè)層次,小題大都以基礎題為主,解答題大都以基礎題和中檔題為主,只有個(gè)別地方用數列與幾何的綜合與函數、不等式的綜合作為最后一題難度較大。

  知識整合

  1.在掌握等差數列、等比數列的定義、性質(zhì)、通項公式、前n項和公式的基礎上,系統掌握解等差數列與等比數列綜合題的規律,深化數學(xué)思想方法在解題實(shí)踐中的指導作用,靈活地運用數列知識和方法解決數學(xué)和實(shí)際生活中的有關(guān)問(wèn)題;

  2.在解決綜合題和探索性問(wèn)題實(shí)踐中加深對基礎知識、基本技能和基本數學(xué)思想方法的認識,溝通各類(lèi)知識的聯(lián)系,形成更完整的知識網(wǎng)絡(luò ),提高分析問(wèn)題和解決問(wèn)題的能力,進(jìn)一步培養學(xué)生閱讀理解和創(chuàng )新能力,綜合運用數學(xué)思想方法分析問(wèn)題與解決問(wèn)題的能力。

  3.培養學(xué)生善于分析題意,富于聯(lián)想,以適應新的背景,新的設問(wèn)方式,提高學(xué)生用函數的思想、方程的思想研究數列問(wèn)題的自覺(jué)性、培養學(xué)生主動(dòng)探索的精神和科學(xué)理性的思維方法.

  四、導數應用篇專(zhuān)題綜述

  導數是微積分的初步知識,是研究函數,解決實(shí)際問(wèn)題的有力工具。在高中階段對于導數的學(xué)習,主要是以下幾個(gè)方面:

  1.導數的常規問(wèn)題:

  (1)刻畫(huà)函數(比初等方法精確細微);

  (2)同幾何中切線(xiàn)聯(lián)系(導數方法可用于研究平面曲線(xiàn)的切線(xiàn));

  (3)應用問(wèn)題(初等方法往往技巧性要求較高,而導數方法顯得簡(jiǎn)便)等關(guān)于次多項式的導數問(wèn)題屬于較難類(lèi)型。

  2.關(guān)于函數特征,最值問(wèn)題較多,所以有必要專(zhuān)項討論,導數法求最值要比初等方法快捷簡(jiǎn)便。

  3.導數與解析幾何或函數圖象的混合問(wèn)題是一種重要類(lèi)型,也是高考(微博)中考察綜合能力的一個(gè)方向,應引起注意。

  知識整合

  1.導數概念的理解。

  2.利用導數判別可導函數的極值的方法及求一些實(shí)際問(wèn)題的最大值與最小值。復合函數的求導法則是微積分中的重點(diǎn)與難點(diǎn)內容。課本中先通過(guò)實(shí)例,引出復合函數的求導法則,接下來(lái)對法則進(jìn)行了證明。

  3.要能正確求導,必須做到以下兩點(diǎn):

  (1)熟練掌握各基本初等函數的求導公式以及和、差、積、商的求導法則,復合函數的求導法則。

  (2)對于一個(gè)復合函數,一定要理清中間的復合關(guān)系,弄清各分解函數中應對哪個(gè)變量求導。

  五、解析幾何(圓錐曲線(xiàn))高考解析幾何剖析:

  1、很多高考問(wèn)題都是以平面上的點(diǎn)、直線(xiàn)、曲線(xiàn)(如圓、橢圓、拋物線(xiàn)、雙曲線(xiàn))這三大類(lèi)幾何元素為基礎構成的圖形的問(wèn)題;

  2、演繹規則就是代數的演繹規則,或者說(shuō)就是列方程、解方程的規則。

  有了以上兩點(diǎn)認識,我們可以毫不猶豫地下這么一個(gè)結論,那就是解決高考解析幾何問(wèn)題無(wú)外乎做兩項工作:

  1、幾何問(wèn)題代數化。

  2、用代數規則對代數化后的問(wèn)題進(jìn)行處理。

  高考數學(xué)知識點(diǎn)總結整理5

  (1)隨機抽樣

 、倌軓默F實(shí)生活或其他學(xué)科中提出具有一定價(jià)值的統計問(wèn)題。

 、诮Y合具體的實(shí)際問(wèn)題情境,理解隨機抽樣的必要性和重要性。

 、墼趨⑴c解決統計問(wèn)題的過(guò)程中,學(xué)會(huì )用簡(jiǎn)單隨機抽樣方法從總體中抽取樣本;通過(guò)對實(shí)例的分析,了解分層抽樣和系統抽樣方法。

 、苣芡ㄟ^(guò)試驗、查閱資料、設計調查問(wèn)卷等方法收集數據。

  (2)用樣本估計總體

 、偻ㄟ^(guò)實(shí)例體會(huì )分布的意義和作用,在表示樣本數據的過(guò)程中,學(xué)會(huì )列頻率分布表、畫(huà)頻率分布直方圖、頻率折線(xiàn)圖、莖葉圖(參見(jiàn)例1),體會(huì )他們各自的特點(diǎn)。

 、谕ㄟ^(guò)實(shí)例理解樣本數據標準差的意義和作用,學(xué)會(huì )計算數據標準差。

 、勰芨鶕䦟(shí)際問(wèn)題的需求合理地選取樣本,從樣本數據中提取基本的數字特征(如平均數、標準差),并作出合理的解釋。

 、茉诮鉀Q統計問(wèn)題的過(guò)程中,進(jìn)一步體會(huì )用樣本估計總體的思想,會(huì )用樣本的頻率分布估計總體分布,會(huì )用樣本的基本數字特征估計總體的基本數字特征;初步體會(huì )樣本頻率分布和數字特征的隨機性。

 、輹(huì )用隨機抽樣的基本方法和樣本估計總體的思想,解決一些簡(jiǎn)單的實(shí)際問(wèn)題;能通過(guò)對數據的分析為合理的決策提供一些依據,認識統計的作用,體會(huì )統計思維與確定性思維的差異。

 、扌纬蓪祿幚磉^(guò)程進(jìn)行初步評價(jià)的意識。

  (3)變量的相關(guān)性

 、偻ㄟ^(guò)收集現實(shí)問(wèn)題中兩個(gè)有關(guān)聯(lián)變量的數據作出散點(diǎn)圖,并利用散點(diǎn)圖直觀(guān)認識變量間的相關(guān)關(guān)系。

 、诮(jīng)歷用不同估算方法描述兩個(gè)變量線(xiàn)性相關(guān)的過(guò)程。知道最小二乘法的思想,能根據給出的線(xiàn)性回歸方程系數公式建立線(xiàn)性回歸方程。

高考數學(xué)知識點(diǎn)總結11

  1.數列的定義

  按一定次序排列的一列數叫做數列,數列中的每一個(gè)數都叫做數列的項.

  (1)從數列定義可以看出,數列的數是按一定次序排列的,如果組成數列的數相同而排列次序不同,那么它們就不是同一數列,例如數列1,2,3,4,5與數列5,4,3,2,1是不同的數列.

  (2)在數列的定義中并沒(méi)有規定數列中的數必須不同,因此,在同一數列中可以出現多個(gè)相同的數字,如:-1的1次冪,2次冪,3次冪,4次冪,…構成數列:-1,1,-1,1,….

  (4)數列的項與它的項數是不同的,數列的項是指這個(gè)數列中的某一個(gè)確定的'數,是一個(gè)函數值,也就是相當于f(n),而項數是指這個(gè)數在數列中的位置序號,它是自變量的值,相當于f(n)中的n.

  (5)次序對于數列來(lái)講是十分重要的,有幾個(gè)相同的數,由于它們的排列次序不同,構成的數列就不是一個(gè)相同的數列,顯然數列與數集有本質(zhì)的區別.如:2,3,4,5,6這5個(gè)數按不同的次序排列時(shí),就會(huì )得到不同的數列,而{2,3,4,5,6}中元素不論按怎樣的次序排列都是同一個(gè)集合.

  2.數列的分類(lèi)

  (1)根據數列的項數多少可以對數列進(jìn)行分類(lèi),分為有窮數列和無(wú)窮數列.在寫(xiě)數列時(shí),對于有窮數列,要把末項寫(xiě)出,例如數列1,3,5,7,9,…,2n-1表示有窮數列,如果把數列寫(xiě)成1,3,5,7,9,…或1,3,5,7,9,…,2n-1,…,它就表示無(wú)窮數列.

  (2)按照項與項之間的大小關(guān)系或數列的增減性可以分為以下幾類(lèi):遞增數列、遞減數列、擺動(dòng)數列、常數列.

  3.數列的通項公式

  數列是按一定次序排列的一列數,其內涵的本質(zhì)屬性是確定這一列數的規律,這個(gè)規律通常是用式子f(n)來(lái)表示的,

  這兩個(gè)通項公式形式上雖然不同,但表示同一個(gè)數列,正像每個(gè)函數關(guān)系不都能用解析式表達出來(lái)一樣,也不是每個(gè)數列都能寫(xiě)出它的通項公式;有的數列雖然有通項公式,但在形式上,又不一定是的,僅僅知道一個(gè)數列前面的有限項,無(wú)其他說(shuō)明,數列是不能確定的,通項公式更非.如:數列1,2,3,4。

高考數學(xué)知識點(diǎn)總結12

  一、集合與函數

  1.進(jìn)行集合的交、并、補運算時(shí),不要忘了全集和空集的特殊情況,不要忘記了借助數軸和文氏圖進(jìn)行求解。

  2.在應用條件時(shí),易A忽略是空集的情況

  3.你會(huì )用補集的思想解決有關(guān)問(wèn)題嗎?

  4.簡(jiǎn)單命題與復合命題有什么區別?四種命題之間的相互關(guān)系是什么?如何判斷充分與必要條件?

  5.你知道“否命題”與“命題的否定形式”的區別。

  6.求解與函數有關(guān)的問(wèn)題易忽略定義域優(yōu)先的原則。

  7.判斷函數奇偶性時(shí),易忽略檢驗函數定義域是否關(guān)于原點(diǎn)對稱(chēng)。

  8.求一個(gè)函數的解析式和一個(gè)函數的反函數時(shí),易忽略標注該函數的定義域。

  9.原函數在區間[-a,a]上單調遞增,則一定存在反函數,且反函數也單調遞增;但一個(gè)函數存在反函數,此函數不一定單調。例如:。

  10.你熟練地掌握了函數單調性的證明方法嗎?定義法(取值, 作差, 判正負)和導數法

  11. 求函數單調性時(shí),易錯誤地在多個(gè)單調區間之間添加符號“∪”和“或”;單調區間不能用集合或不等式表示。

  12.求函數的值域必須先求函數的定義域。

  13.如何應用函數的單調性與奇偶性解題?①比較函數值的大小;②解抽象函數不等式;③求參數的范圍(恒成立問(wèn)題).這幾種基本應用你掌握了嗎?

  14.解對數函數問(wèn)題時(shí),你注意到真數與底數的限制條件了嗎?

  (真數大于零,底數大于零且不等于1)字母底數還需討論

  15.三個(gè)二次(哪三個(gè)二次?)的關(guān)系及應用掌握了嗎?如何利用二次函數求最值?

  16.用換元法解題時(shí)易忽略換元前后的等價(jià)性,易忽略參數的范圍。

  17.“實(shí)系數一元二次方程有實(shí)數解”轉化時(shí),你是否注意到:當時(shí),“方程有解”不能轉化為。若原題中沒(méi)有指出是二次方程,二次函數或二次不等式,你是否考慮到二次項系數可能為的零的情形?

  二、不等式

  1.利用均值不等式求最值時(shí),你是否注意到:“一正;二定;三等”.

  2.絕對值不等式的解法及其幾何意義是什么?

  3.解分式不等式應注意什么問(wèn)題?用“根軸法”解整式(分式)不等式的注意事項是什么?

  4.解含參數不等式的通法是“定義域為前提,函數的單調性為基礎,分類(lèi)討論是關(guān)鍵”,注意解完之后要寫(xiě)上:“綜上,原不等式的解集是……”.

  5. 在求不等式的解集、定義域及值域時(shí),其結果一定要用集合或區間表示;不能用不等式表示。

  6. 兩個(gè)不等式相乘時(shí),必須注意同向同正時(shí)才能相乘,即同向同正可乘;同時(shí)要注意“同號可倒”即a>b>0,a

  三、數列

  1.解決一些等比數列的前項和問(wèn)題,你注意到要對公比及兩種情況進(jìn)行討論了嗎?

  2.在“已知,求”的問(wèn)題中,你在利用公式時(shí)注意到了嗎?(時(shí),應有)需要驗證,有些題目通項是分段函數。

  3.你知道存在的條件嗎?(你理解數列、有窮數列、無(wú)窮數列的概念嗎?你知道無(wú)窮數列的前項和與所有項的和的不同嗎?什么樣的無(wú)窮等比數列的所有項的和必定存在?

  4.數列單調性問(wèn)題能否等同于對應函數的單調性問(wèn)題?(數列是特殊函數,但其定義域中的值不是連續的。)

  5.應用數學(xué)歸納法一要注意步驟齊全,二要注意從到過(guò)程中,先假設時(shí)成立,再結合一些數學(xué)方法用來(lái)證明時(shí)也成立。

  四、三角函數

  1.正角、負角、零角、象限角的概念你清楚嗎,若角的終邊在坐標軸上,那它歸哪個(gè)象限呢?你知道銳角與第一象限的`角;終邊相同的角和相等的角的區別嗎?

  2.三角函數的定義及單位圓內的三角函數線(xiàn)(正弦線(xiàn)、余弦線(xiàn)、正切線(xiàn))的定義你知道嗎?

  3. 在解三角問(wèn)題時(shí),你注意到正切函數、余切函數的定義域了嗎?你注意到正弦函數、余弦函數的有界性了嗎?

  4. 你還記得三角化簡(jiǎn)的通性通法嗎?(切割化弦、降冪公式、用三角公式轉化出現特殊角。 異角化同角,異名化同名,高次化低次)

  5. 反正弦、反余弦、反正切函數的取值范圍分別是

  6.你還記得某些特殊角的三角函數值嗎?

  7.掌握正弦函數、余弦函數及正切函數的圖象和性質(zhì)。你會(huì )寫(xiě)三角函數的單調區間嗎?會(huì )寫(xiě)簡(jiǎn)單的三角不等式的解集嗎?(要注意數形結合與書(shū)寫(xiě)規范,可別忘了),你是否清楚函數的圖象可以由函數經(jīng)過(guò)怎樣的變換得到嗎?

  五、平面向量

  1..數0有區別,的模為數0,它不是沒(méi)有方向,而是方向不定?梢钥闯膳c任意向量平行,但與任意向量都不垂直。

  2..數量積與兩個(gè)實(shí)數乘積的區別:

  在實(shí)數中:若,且ab=0,則b=0,但在向量的數量積中,若,且,不能推出。

  已知實(shí)數,且,則a=c,但在向量的數量積中沒(méi)有。

  在實(shí)數中有,但是在向量的數量積中,這是因為左邊是與共線(xiàn)的向量,而右邊是與共線(xiàn)的向量。

  3.是向量與平行的充分而不必要條件,是向量和向量夾角為鈍角的必要而不充分條件。

  六、解析幾何

  1.在用點(diǎn)斜式、斜截式求直線(xiàn)的方程時(shí),你是否注意到不存在的情況?

  2.用到角公式時(shí),易將直線(xiàn)l1、l2的斜率k1、k2的順序弄顛倒。

  3.直線(xiàn)的傾斜角、到的角、與的夾角的取值范圍依次是。

  4. 定比分點(diǎn)的坐標公式是什么?(起點(diǎn),中點(diǎn),分點(diǎn)以及值可要搞清),在利用定比分點(diǎn)解題時(shí),你注意到了嗎?

  5. 對不重合的兩條直線(xiàn)

  (建議在解題時(shí),討論后利用斜率和截距)

  6. 直線(xiàn)在兩坐標軸上的截距相等,直線(xiàn)方程可以理解為,但不要忘記當時(shí),直線(xiàn)在兩坐標軸上的截距都是0,亦為截距相等。

  7.解決線(xiàn)性規劃問(wèn)題的基本步驟是什么?請你注意解題格式和完整的文字表達。(①設出變量,寫(xiě)出目標函數②寫(xiě)出線(xiàn)性約束條件③畫(huà)出可行域④作出目標函數對應的系列平行線(xiàn),找到并求出最優(yōu)解⑦應用題一定要有答。)

  8.三種圓錐曲線(xiàn)的定義、圖形、標準方程、幾何性質(zhì),橢圓與雙曲線(xiàn)中的兩個(gè)特征三角形你掌握了嗎?

  9.圓、和橢圓的參數方程是怎樣的?常用參數方程的方法解決哪一些問(wèn)題?

  10.利用圓錐曲線(xiàn)第二定義解題時(shí),你是否注意到定義中的定比前后項的順序?如何利用第二定義推出圓錐曲線(xiàn)的焦半徑公式?如何應用焦半徑公式?

  11. 通徑是拋物線(xiàn)的所有焦點(diǎn)弦中最短的弦。(想一想在雙曲線(xiàn)中的結論?)

  12. 在用圓錐曲線(xiàn)與直線(xiàn)聯(lián)立求解時(shí),消元后得到的方程中要注意:二次項的系數是否為零?橢圓,雙曲線(xiàn)二次項系數為零時(shí)直線(xiàn)與其只有一個(gè)交點(diǎn),判別式的限制。(求交點(diǎn),弦長(cháng),中點(diǎn),斜率,對稱(chēng),存在性問(wèn)題都在下進(jìn)行).

  13.解析幾何問(wèn)題的求解中,平面幾何知識利用了嗎?題目中是否已經(jīng)有坐標系了,是否需要建立直角坐標系?

  七、立體幾何

  1.你掌握了空間圖形在平面上的直觀(guān)畫(huà)法嗎?(斜二測畫(huà)法)。

  2.線(xiàn)面平行和面面平行的定義、判定和性質(zhì)定理你掌握了嗎?線(xiàn)線(xiàn)平行、線(xiàn)面平行、面面平行這三者之間的聯(lián)系和轉化在解決立幾問(wèn)題中的應用是怎樣的?每種平行之間轉換的條件是什么?

  3.三垂線(xiàn)定理及其逆定理你記住了嗎?你知道三垂線(xiàn)定理的關(guān)鍵是什么嗎?(一面、四線(xiàn)、三垂直、立柱即面的垂線(xiàn)是關(guān)鍵)一面四直線(xiàn),立柱是關(guān)鍵,垂直三處見(jiàn)

  4.線(xiàn)面平行的判定定理和性質(zhì)定理在應用時(shí)都是三個(gè)條件,但這三個(gè)條件易混為一談;面面平行的判定定理易把條件錯誤地記為”一個(gè)平面內的兩條相交直線(xiàn)與另一個(gè)平面內的兩條相交直線(xiàn)分別平行”而導致證明過(guò)程跨步太大。

  5.求兩條異面直線(xiàn)所成的角、直線(xiàn)與平面所成的角和二面角時(shí),如果所求的角為90°,那么就不要忘了還有一種求角的方法即用證明它們垂直的方法。

  6.異面直線(xiàn)所成角利用“平移法”求解時(shí),一定要注意平移后所得角等于所求角(或其補角),特別是題目告訴異面直線(xiàn)所成角,應用時(shí)一定要從題意出發(fā),是用銳角還是其補角,還是兩種情況都有可能。

  7.你知道公式:和中每一字母的意思嗎?能夠熟練地應用它們解題嗎?

  8. 兩條異面直線(xiàn)所成的角的范圍:0°<α≤90°< p="">

  直線(xiàn)與平面所成的角的范圍:0o≤α≤90°

高考數學(xué)知識點(diǎn)總結13

  掌握每一個(gè)公式定理

  做課本的例題,課本的例題的思路比較簡(jiǎn)單,其知識點(diǎn)也是單一不會(huì )交叉的,如果課本上的例題你拿出來(lái)都會(huì )做了,說(shuō)明你已經(jīng)具備了一定的理解力。

  做課后練習題,前面的題是和課本例題一個(gè)級別的,如果課本上所有的題都會(huì )做了,那么基礎夯實(shí)可以告一段落。

  進(jìn)行專(zhuān)題訓練提高數學(xué)成績(jì)

  1、做高中數學(xué)題的時(shí)候千萬(wàn)不能怕難題!有很多人數學(xué)分數提不動(dòng),很大一部分原因是他們的畏懼心理。有的人看到圓錐曲線(xiàn)和導數,看到稍微長(cháng)一點(diǎn)的`復雜一點(diǎn)的敘述,甚至看到21、22就已經(jīng)開(kāi)始退卻了。這部分的分數,如果你不去努力,永遠都不會(huì )掙到的,所以第一個(gè)建議,就是大膽的去做。前面虧欠數學(xué)這門(mén)學(xué)科太多,就算讓它打腫了又怎樣,后面一點(diǎn)一點(diǎn)的強大起來(lái),總有那么一天你去打它的臉。

  2、錯題本怎么用。和記筆記一樣,整理錯題不是謄寫(xiě)不是照抄,而是摘抄。你只顧著(zhù)去采擷問(wèn)題,就失去了理解和挑選題目的過(guò)程,筆記同理,如果老師說(shuō)什么記什么,那只能說(shuō)明你這節課根本沒(méi)聽(tīng),真正有效率的人,是會(huì )把知識簡(jiǎn)化,把書(shū)本讀薄的。先學(xué)學(xué)你能思考到答案的哪一步,學(xué)著(zhù)去偷分。當然,因人而異,如果你覺(jué)得還有哪些題需要整理也可以記下來(lái)。

  3、如何學(xué)好高中數學(xué)

  1)先看筆記后做作業(yè)。有的高中學(xué)生感到。老師講過(guò)的,自己已經(jīng)聽(tīng)得明明白白了。但是,為什么自己一做題就困難重重了呢?其原因在于,學(xué)生對教師所講的內容的理解,還沒(méi)能達到教師所要求的層次。因此,每天在做作業(yè)之前,一定要把課本的有關(guān)內容和當天的課堂筆記先看一看。能否堅持如此,常常是好學(xué)生與差學(xué)生的最大區別。尤其練習題不太配套時(shí),作業(yè)中往往沒(méi)有老師剛剛講過(guò)的題目類(lèi)型,因此不能對比消化。如果自己又不注意對此落實(shí),天長(cháng)日久,就會(huì )造成極大損失。

  2)做題之后加強反思。學(xué)生一定要明確,現在正坐著(zhù)的題,一定不是考試的題目。而是要運用現在正做著(zhù)的題目的解題思路與方法。因此,要把自己做過(guò)的每道題加以反思?偨Y一下自己的收獲。要總結出,這是一道什么內容的題,用的是什么方法。做到知識成片,問(wèn)題成串,日久天長(cháng),構建起一個(gè)內容與方法的科學(xué)的網(wǎng)絡(luò )系統。

  3)主動(dòng)復習總結提高。進(jìn)行章節總結是非常重要的。初中時(shí)是教師替學(xué)生做總結,做得細致,深刻,完整。高中是自己給自己做總結,老師不但不給做,而且是講到哪,考到哪,不留復習時(shí)間,也沒(méi)有明確指出做總結的時(shí)間。

高考數學(xué)知識點(diǎn)總結14

  第一部分集合

 。1)含n個(gè)元素的集合的子集數為2^n,真子集數為2^n—1;非空真子集的數為2^n—2;

 。2)注意:討論的時(shí)候不要遺忘了的情況。

  第二部分函數與導數

  1、映射:注意

 、俚谝粋(gè)集合中的元素必須有象;

 、谝粚σ,或多對一。

  2、函數值域的求法:

 、俜治龇;

 、谂浞椒;

 、叟袆e式法;

 、芾煤瘮祮握{性;

 、輷Q元法;

 、蘩镁挡坏仁;

 、呃脭敌谓Y合或幾何意義(斜率、距離、絕對值的意義等);

 、嗬煤瘮涤薪缧;

 、釋捣

  3、復合函數的有關(guān)問(wèn)題

 。1)復合函數定義域求法:

 、偃鬴(x)的定義域為〔a,b〕,則復合函數f[g(x)]的`定義域由不等式a≤g(x)≤b解出。

 、谌鬴[g(x)]的定義域為[a,b],求f(x)的定義域,相當于x∈[a,b]時(shí),求g(x)的值域。

 。2)復合函數單調性的判定:

 、偈紫葘⒃瘮捣纸鉃榛竞瘮担簝群瘮蹬c外函數;

 、诜謩e研究?jì)、外函數在各自定義域內的單調性;

 、鄹鶕巴詣t增,異性則減”來(lái)判斷原函數在其定義域內的單調性。

  注意:外函數的定義域是內函數的值域。

  4、分段函數:值域(最值)、單調性、圖象等問(wèn)題,先分段解決,再下結論。

  5、函數的奇偶性

 。1)函數的定義域關(guān)于原點(diǎn)對稱(chēng)是函數具有奇偶性的必要條件;

 。2)是奇函數;

 。3)是偶函數;

 。4)奇函數在原點(diǎn)有定義,則;

 。5)在關(guān)于原點(diǎn)對稱(chēng)的單調區間內:奇函數有相同的單調性,偶函數有相反的單調性;

 。6)若所給函數的解析式較為復雜,應先等價(jià)變形,再判斷其奇偶性;

高考數學(xué)知識點(diǎn)總結15

  一、集合有關(guān)概念

  1. 集合的含義

  2. 集合的中元素的三個(gè)特性:

  (1) 元素的確定性,

  (2) 元素的互異性,

  (3) 元素的無(wú)序性,

  3.集合的表示:{ … } 如:{我校的籃球隊員},{太平洋,大西洋,印度洋,北冰洋}

  (1) 用拉丁字母表示集合:A={我校的籃球隊員},B={1,2,3,4,5}

  (2) 集合的表示方法:列舉法與描述法。

  ? 注意:常用數集及其記法:

  非負整數集(即自然數集) 記作:N

  正整數集 N*或 N+ 整數集Z 有理數集Q 實(shí)數集R

  1) 列舉法:{a,b,c……}

  2) 描述法:將集合中的元素的公共屬性描述出來(lái),寫(xiě)在大括號內表示集合的方法。{x?R| x-3>2} ,{x| x-3>2}

  3) 語(yǔ)言描述法:例:{不是直角三角形的三角形}

  4) Venn圖:

  4、集合的分類(lèi):

  (1) 有限集 含有有限個(gè)元素的集合

  (2) 無(wú)限集 含有無(wú)限個(gè)元素的集合

  (3) 空集 不含任何元素的集合 例:{x|x2=-5}

  二、集合間的基本關(guān)系

  1.“包含”關(guān)系—子集

  注意: 有兩種可能(1)A是B的一部分,;(2)A與B是同一集合。

  反之: 集合A不包含于集合B,或集合B不包含集合A,記作A B或B A

  2.“相等”關(guān)系:A=B (5≥5,且5≤5,則5=5)

  實(shí)例:設 A={x|x2-1=0} B={-1,1} “元素相同則兩集合相等”

  即:① 任何一個(gè)集合是它本身的子集。A?A

 、谡孀蛹:如果A?B,且A? B那就說(shuō)集合A是集合B的真子集,記作A B(或B A)

 、廴绻 A?B, B?C ,那么 A?C

 、 如果A?B 同時(shí) B?A 那么A=B

  3. 不含任何元素的.集合叫做空集,記為

  規定: 空集是任何集合的子集, 空集是任何非空集合的真子集。

  ? 有n個(gè)元素的集合,含有2n個(gè)子集,2n-1個(gè)真子集

  三、集合的運算

  運算類(lèi)型 交 集 并 集 補 集

  定 義 由所有屬于A(yíng)且屬于B的元素所組成的集合,叫做A,B的交集.記作A B(讀作‘A交B’),即A B={x|x A,且x B}.

  由所有屬于集合A或屬于集合B的元素所組成的集合,叫做A,B的并集.記作:A B(讀作‘A并B’),即A B ={x|x A,或x B}).

  設S是一個(gè)集合,A是S的一個(gè)子集,由S中所有不屬于A(yíng)的元素組成的集合,叫做S中子集A的補集(或余集)

【高考數學(xué)知識點(diǎn)總結】相關(guān)文章:

高考數學(xué)必考知識點(diǎn)總結06-28

高考數學(xué)知識點(diǎn)總結01-06

對口高考數學(xué)知識點(diǎn)總結06-08

高考數學(xué)知識點(diǎn)歸納總結10-27

成人高考數學(xué)的知識點(diǎn)總結10-21

高考數學(xué)知識點(diǎn)01-10

高考數學(xué)知識點(diǎn)總結(精選24篇)04-29

高考數學(xué)知識點(diǎn)總結15篇11-02

高考數學(xué)知識點(diǎn)總結(15篇)11-02