- 相關(guān)推薦
數學(xué)有理數知識點(diǎn)總結
總結是指對某一階段的工作、學(xué)習或思想中的經(jīng)驗或情況加以總結和概括的書(shū)面材料,它是增長(cháng)才干的一種好辦法,讓我們一起認真地寫(xiě)一份總結吧。那么你知道總結如何寫(xiě)嗎?下面是小編整理的數學(xué)有理數知識點(diǎn)總結,僅供參考,歡迎大家閱讀。
數學(xué)有理數知識點(diǎn)總結 1
1.有理數:
(1)凡能寫(xiě)成形式的數,都是有理數.正整數、0、負整數統稱(chēng)整數;正分數、負分數統稱(chēng)分數;整數和分數統稱(chēng)有理數.注意:0即不是正數,也不是負數;-a不一定是負數,+a也不一定是正數;不是有理數;
(2)有理數的分類(lèi):①②
2.數軸:
數軸是規定了原點(diǎn)、正方向、單位長(cháng)度的一條直線(xiàn).
3.相反數:
(1)只有符號不同的兩個(gè)數,我們說(shuō)其中一個(gè)是另一個(gè)的相反數;0的相反數還是0;
(2)相反數的和為0a+b=0a、b互為相反數.
4.絕對值:
(1)正數的絕對值是其本身,0的絕對值是0,負數的絕對值是它的相反數;注意:絕對值的意義是數軸上表示某數的點(diǎn)離開(kāi)原點(diǎn)的距離;
(2)絕對值可表示為:或;絕對值的問(wèn)題經(jīng)常分類(lèi)討論;
5.有理數比大。
(1)正數的絕對值越大,這個(gè)數越大;
(2)正數永遠比0大,負數永遠比0小;
(3)正數大于一切負數;
(4)兩個(gè)負數比大小,絕對值大的反而小;
(5)數軸上的兩個(gè)數,右邊的數總比左邊的數大;
(6)大數-小數0,小數-大數0.
6.互為倒數:
乘積為1的兩個(gè)數互為倒數;注意:0沒(méi)有倒數;若a0,那么的倒數是;若ab=1a、b互為倒數;若ab=-1a、b互為負倒數.
7.有理數加法法則:
(1)同號兩數相加,取相同的符號,并把絕對值相加;
(2)異號兩數相加,取絕對值較大的符號,并用較大的絕對值減去較小的絕對值;
(3)一個(gè)數與0相加,仍得這個(gè)數.
8.有理數加法的運算律:
(1)加法的交換律:a+b=b+a;
(2)加法的結合律:(a+b)+c=a+(b+c).
9.有理數減法法則:
減去一個(gè)數,等于加上這個(gè)數的相反數;即a-b=a+(-b).
10.有理數乘法法則:
(1)兩數相乘,同號為正,異號為負,并把絕對值相乘;
(2)任何數同零相乘都得零;
(3)幾個(gè)數相乘,有一個(gè)因式為零,積為零;各個(gè)因式都不為零,積的符號由負因式的'個(gè)數決定.
11.有理數乘法的運算律:
(1)乘法的交換律:ab=ba;
(2)乘法的結合律:(ab)c=a(bc);
(3)乘法的分配律:a(b+c)=ab+ac.
12.有理數除法法則:
除以一個(gè)數等于乘以這個(gè)數的倒數;注意:零不能做除數,.
13.有理數乘方的法則:
(1)正數的任何次冪都是正數;
(2)負數的奇次冪是負數;負數的偶次冪是正數;注意:當n為正奇數時(shí):(-a)n=-an或(a-b)n=-(b-a)n,當n為正偶數時(shí):(-a)n=an或(a-b)n=(b-a)n.
14.乘方的定義:
(1)求相同因式積的運算,叫做乘方;
(2)乘方中,相同的因式叫做底數,相同因式的個(gè)數叫做指數,乘方的結果叫做冪;
15.科學(xué)記數法:
把一個(gè)大于10的數記成a10n的形式,其中a是整數數位只有一位的數,這種記數法叫科學(xué)記數法.
16.近似數的精確位:
一個(gè)近似數,四舍五入到那一位,就說(shuō)這個(gè)近似數的精確到那一位.
17.有效數字:
從左邊第一個(gè)不為零的數字起,到精確的位數止,所有數字,都叫這個(gè)近似數的有效數字.
18.混合運算法則:
先乘方,后乘除,最后加減.
數學(xué)有理數知識點(diǎn)總結 2
(1)凡能寫(xiě)成形式的數,都是有理數,整數和分數統稱(chēng)有理數.
注意:0即不是正數,也不是負數;-a不一定是負數,+a也不一定是正數;不是有理數;
(2)有理數的分類(lèi):①②
(3)注意:有理數中,1、0、-1是三個(gè)特殊的數,它們有自己的特性;這三個(gè)數把數軸上的`數分成四個(gè)區域,這四個(gè)區域的數也有自己的特性;
(4)自然數0和正整數;a>0a是正數;a<0a是負數;
a≥0a是正數或0a是非負數;a≤0a是負數或0a是非正數.
數學(xué)有理數知識點(diǎn)總結 3
1.1 正數與負數
在以前學(xué)過(guò)的0以外的數前面加上負號“—”的數叫負數(negative number)。
與負數具有相反意義,即以前學(xué)過(guò)的0以外的數叫做正數(positive number)(根據需要,有時(shí)在正數前面也加上“+”)。
1.2 有理數
正整數、0、負整數統稱(chēng)整數(integer),正分數和負分數統稱(chēng)分數(fraction)。
整數和分數統稱(chēng)有理數(rational number)。
通常用一條直線(xiàn)上的點(diǎn)表示數,這條直線(xiàn)叫數軸(number axis)。
數軸三要素:原點(diǎn)、正方向、單位長(cháng)度。
在直線(xiàn)上任取一個(gè)點(diǎn)表示數0,這個(gè)點(diǎn)叫做原點(diǎn)(origin)。
只有符號不同的兩個(gè)數叫做互為相反數(opposite number)。(例:2的相反數是-2;0的相反數是0)
數軸上表示數a的點(diǎn)與原點(diǎn)的距離叫做數a的絕對值(absolute value),記作|a|。
一個(gè)正數的絕對值是它本身;一個(gè)負數的'絕對值是它的相反數;0的絕對值是0。兩個(gè)負數,絕對值大的反而小。
數學(xué)有理數知識點(diǎn)總結 4
有理數:
整數和分數統稱(chēng)為有理數。
注:
(1)有時(shí)為了研究的需要,整數也可以看作是分母為1的數,這時(shí)的分數包括整數。但是本講中的分數不包括分母是1的分數。
(2)因為分數與有限小數和無(wú)限循環(huán)小數可以互化,上述小數都可以用分數來(lái)表示,所以我們把有限小數和無(wú)限循環(huán)小數都看作分數。
(3)“0”即不是正數,也不是負數,但“0”是整數。
整數包括正整數、零、負整數。例如:1、2、3、0、-1、-2、-3等等。
分數包括正分數和負分數,例如:1/2、0.6、-1/2、-0.6等等。
有理數的分類(lèi)
(1)按整數、分數的關(guān)系分類(lèi):
(2)按正數、負數與0的關(guān)系分類(lèi):
注:通常把正數和0統稱(chēng)為非負數,負數和0統稱(chēng)為非正數,正整數和0稱(chēng)為非負整數(也叫做自然數),負整數和0統稱(chēng)為非正整數。
如果用字母表示數,則a>0表明a是正數;a<0表明a是負數;a≥0表明a是非負數;a≤0表明a是非正數。
數軸
數軸是理解有理數概念與運算的重要工具,數與表示數的圖形(如數軸)相結合的思想是學(xué)習數學(xué)的重要思想。正如華羅庚教授詩(shī)云:
數與形,本是相倚依,焉能分作兩邊飛。數缺形時(shí)少直覺(jué),形少數是難入微。數形結合百般好,隔裂分家萬(wàn)事非。切莫忘,幾何代數統一體,永遠聯(lián)系,切莫分離!
數與形的第一次聯(lián)姻——數軸,使數與直線(xiàn)上的點(diǎn)之間建立了對應關(guān)系,揭示了數與形的內在聯(lián)系,并由此成為數形結合的基礎。
1.數軸的定義:規定了原點(diǎn)、正方向和單位長(cháng)度的直線(xiàn)叫做數軸。
數軸的定義包含三層含義:
(1)數軸是一條直線(xiàn),可以向兩端無(wú)限延伸;
(2)數軸有三要素——原點(diǎn)、正方向、單位長(cháng)度,三者缺一不可;
(3)原點(diǎn)的選定、正方向的取向、單位長(cháng)度大小的確定,都是根據實(shí)際需要“規定”的'(通常取向右為正方向)。
2.數軸的畫(huà)法:
(1)畫(huà)一條直線(xiàn)(一般畫(huà)成水平的直線(xiàn))。
(2)在直線(xiàn)上選取一點(diǎn)為原點(diǎn),并用這點(diǎn)表示零(在原點(diǎn)下面標上“0”)。
(3)確定正方向(一般規定向右為正),用箭頭表示出來(lái)。
(4)選取適當的長(cháng)度作為單位長(cháng)度,從原點(diǎn)向右,每隔一個(gè)單位長(cháng)度取一點(diǎn),依次表示為1,2,3……;從原點(diǎn)向左,每隔一個(gè)單位長(cháng)度取一點(diǎn),依次表示為-1,-2,-3……
注:
(1)原點(diǎn)的位置、單位長(cháng)度的大小可根據實(shí)際情況適當選;
(2)確定單位長(cháng)度時(shí),根據實(shí)際情況,有時(shí)也可以每隔兩個(gè)(或更多的)單位長(cháng)度取一點(diǎn),從原點(diǎn)向右,依次表示為2,4,6,……;從原點(diǎn)向左,依次表示為-2,-4,-6,……;
3.數軸上的點(diǎn)與有理數的關(guān)系:所有的有理數都可以用數軸上的點(diǎn)表示。正有理數可以用原點(diǎn)右邊的點(diǎn)表示,負有理數可以用原點(diǎn)左邊的點(diǎn)表示,零用原點(diǎn)表示。
4.利用數軸比較有理數的大。涸跀递S上表示的兩個(gè)數,右邊的數總比左邊的數大。正數都大于0;負數都小于0;正數大于一切負數。
相反數
1.相反數的定義:
(1)相反數的幾何定義:在數軸上原點(diǎn)的兩旁,到原點(diǎn)距離相等的兩個(gè)點(diǎn)所表示的數,叫做互為相反數。如,4與-4互為相反數。
(2)相反數的代數定義:只有符號不同的兩個(gè)數(除了符號不同以外完全相同),我們說(shuō)其中一個(gè)是另一個(gè)的相反數。
2.相反數的性質(zhì):任何一個(gè)數都有相反數,而且只有一個(gè)。正數的相反數是負數,負數的相反數是正數,0的相反數是0。0是唯一一個(gè)相反數等于本身的數。反之,如果a=-a,那么a一定是0。
3.相反數的特征:若a與b互為相反數,則a+b=0(或a=-b)若a+b=0(或a=-b),則a與b互為相反數。
4.求一個(gè)數的相反數的方法:(見(jiàn)書(shū))
5.多重符號的化簡(jiǎn):
(1)在一個(gè)數的前面添上一個(gè)“+”號,仍然與原數相同,如+5=5,+(-5)=-5。
(2)在一個(gè)數的前面添上一個(gè)“-”號,就成為原數的相反數。如-(-3)就是-3的相反數,因此,-(-3)=3。
絕對值的概念
1.絕對值的幾何定義:一個(gè)數a的絕對值就是數軸上表示數a的點(diǎn)與原點(diǎn)的距離,數a的絕對值記作“丨a丨”
2.絕對值的代數定義:一個(gè)正數的絕對值是它本身;一個(gè)負數的絕對值是它的相反數;0的絕對值是0。
有理數大小的比較
正數都大于0,負數都小于0,正數大于一切負數,兩個(gè)負數,絕對值大的反而小。
利用數軸,在數軸右邊的數永遠大于左邊的數。
數學(xué)有理數知識點(diǎn)總結 5
1.1正數和負數
以前學(xué)過(guò)的0以外的數前面加上負號“-”的書(shū)叫做負數。
以前學(xué)過(guò)的0以外的數叫做正數。
數0既不是正數也不是負數,0是正數與負數的分界。
在同一個(gè)問(wèn)題中,分別用正數和負數表示的`量具有相反的意義
1.2有理數
1.2.1有理數
正整數、0、負整數統稱(chēng)整數,正分數和負分數統稱(chēng)分數。
整數和分數統稱(chēng)有理數。
1.2.2數軸
規定了原點(diǎn)、正方向、單位長(cháng)度的直線(xiàn)叫做數軸。
數軸的作用:所有的有理數都可以用數軸上的點(diǎn)來(lái)表達。
注意事項:⑴數軸的原點(diǎn)、正方向、單位長(cháng)度三要素,缺一不可。
、仆桓鶖递S,單位長(cháng)度不能改變。
一般地,設是一個(gè)正數,則數軸上表示a的點(diǎn)在原點(diǎn)的右邊,與原點(diǎn)的距離是a個(gè)單位長(cháng)度;表示數-a的點(diǎn)在原點(diǎn)的左邊,與原點(diǎn)的距離是a個(gè)單位長(cháng)度。
1.2.3相反數
只有符號不同的兩個(gè)數叫做互為相反數。
數軸上表示相反數的兩個(gè)點(diǎn)關(guān)于原點(diǎn)對稱(chēng)。
在任意一個(gè)數前面添上“-”號,新的數就表示原數的相反數。
1.2.4絕對值
一般地,數軸上表示數a的點(diǎn)與原點(diǎn)的距離叫做數a的絕對值。
一個(gè)正數的絕對值是它的本身;一個(gè)負數的絕對值是它的相反數;0的絕對值是0。
數學(xué)有理數知識點(diǎn)總結 6
有理數:
、僬麛怠麛/0/負整數
、诜謹怠謹/負分數
數軸:
、佼(huà)一條水平直線(xiàn),在直線(xiàn)上取一點(diǎn)表示0(原點(diǎn)),選取某一長(cháng)度作為單位長(cháng)度,規定直線(xiàn)上向右的方向為正方向,就得到數軸。
、谌魏我粋(gè)有理數都可以用數軸上的一個(gè)點(diǎn)來(lái)表示。
、廴绻麅蓚(gè)數只有符號不同,那么我們稱(chēng)其中一個(gè)數為另外一個(gè)數的相反數,也稱(chēng)這兩個(gè)數互為相反數。在數軸上,表示互為相反數的兩個(gè)點(diǎn),位于原點(diǎn)的兩側,并且與原點(diǎn)距離相等。
、軘递S上兩個(gè)點(diǎn)表示的數,右邊的總比左邊的大。正數大于0,負數小于0,正數大于負數。
絕對值:
、僭跀递S上,一個(gè)數所對應的點(diǎn)與原點(diǎn)的距離叫做該數的絕對值。
、谡龜档慕^對值是他的本身、負數的絕對值是他的相反數、0的絕對值是0。兩個(gè)負數比較大小,絕對值大的反而小。
有理數的運算:
加法:
、偻栂嗉,取相同的'符號,把絕對值相加。
、诋愄栂嗉,絕對值相等時(shí)和為0;絕對值不等時(shí),取絕對值較大的數的符號,并用較大的絕對值減去較小的絕對值。
、垡粋(gè)數與0相加不變。
減法:減去一個(gè)數,等于加上這個(gè)數的相反數。
乘法:
、賰蓴迪喑,同號得正,異號得負,絕對值相乘。
、谌魏螖蹬c0相乘得0。
、鄢朔e為1的兩個(gè)有理數互為倒數。
除法:
、俪砸粋(gè)數等于乘以一個(gè)數的倒數。
、0不能作除數。
乘方:求N個(gè)相同因數A的積的運算叫做乘方,乘方的結果叫冪,A叫底數,N叫次數。
混合順序:先算乘法,再算乘除,最后算加減,有括號要先算括號里的。
通過(guò)上面對數學(xué)中關(guān)于有理數的知識點(diǎn)內容講解學(xué)習,相信可以很好的幫助同學(xué)們對數學(xué)知識的學(xué)習吧,同學(xué)們努力學(xué)習哦!
數學(xué)有理數知識點(diǎn)總結 7
一、正數和負數
正數和負數的概念
負數:比0小的數;正數:比0大的數。
0既不是正數,也不是負數
注意:字母a可以表示任意數,當a表示正數時(shí),-a是負數;當a表示負數時(shí),-a是正數;當a表示0時(shí),-a仍是0。強調:帶正號的數不一定是正數,帶負號的數不一定是負數。
具有相反意義的量
若正數表示某種意義的量,則負數可以表示具有與該正數相反意義的量。習慣把“前進(jìn)、上升、收入、零上溫度”等規定為正,“后退、下降、支出、零下溫度”等規定為負.
二、有理數
有理數的概念
(1)正整數、0、負整數統稱(chēng)為整數(0和正整數統稱(chēng)為自然數)
(2)正分數和負分數統稱(chēng)為分數
(3)整數和分數統稱(chēng)有理數
注意:
、佴惺菬o(wú)限不循環(huán)小數,不能寫(xiě)成分數形式,不是有理數。
、谟邢扌岛蜔o(wú)限循環(huán)小數都可化成分數,都是有理數。
數軸
(1)數軸的概念:規定了原點(diǎn),正方向,單位長(cháng)度的直線(xiàn)叫做數軸。
注意:數軸是一條向兩端無(wú)限延伸的直線(xiàn);
原點(diǎn)、正方向、單位長(cháng)度是數軸的三要素,三者缺一不可;
數軸的三要素都是根據實(shí)際需要規定的,同一數軸上的單位長(cháng)度要統一;
(2)數軸上的點(diǎn)與有理數的關(guān)系
所有的有理數都可以用數軸上唯一的點(diǎn)來(lái)表示,正有理數可用原點(diǎn)正方向的點(diǎn)表示,負有理數可用原點(diǎn)負方向的點(diǎn)表示,0用原點(diǎn)表示。
相反數
(1)只有符號不同的兩個(gè)數叫做互為相反數;0的相反數是0;任何一個(gè)有理數都有相反數
(2)互為相反數的兩數的和為0,即:若a、b互為相反數,則a+b=0;互為相反數的兩個(gè)點(diǎn)在數軸上分別位于原點(diǎn)兩側,并且與原點(diǎn)的距離相等。
(3)在一個(gè)數的前面加上負號“-”,就得到了這個(gè)數的相反數。a的相反數是-a。
(4)多重符號的化簡(jiǎn)
多重符號的化簡(jiǎn)規律:“+”號的個(gè)數不影響化簡(jiǎn)的結果,可以直接省略;“-”號的個(gè)數決定最后化簡(jiǎn)結果;即:“-”的個(gè)數是奇數時(shí),結果為負,“-”的個(gè)數是偶數時(shí),結果為正。
絕對值
(1)絕對值的幾何定義:數軸上表示數a的點(diǎn)與原點(diǎn)的距離,叫做a的絕對值,記作:|a|
(2)求絕對值:正數的絕對值是它本身,0的絕對值是0,負數的絕對值是它的相反數;可用字母表示為:
、偃绻鸻>0,那么|a|=a;
、谌绻鸻<0,那么|a|=-a;
、廴绻鸻=0,那么|a|=0。
可歸納為
、伲篴≥0時(shí),|a|=a(非負數的絕對值等于本身;絕對值等于本身的數是非負數。)
、赼≤0時(shí),|a|=-a(非正數的絕對值等于其相反數;絕對值等于其相反數的數是非正數。)
(3)若幾個(gè)數的絕對值的和等于0,則這幾個(gè)數就同時(shí)為0。即|a|+|b|=0,則a=0且b=0。(非負數的常用性質(zhì):若幾個(gè)非負數的和為0,則有且只有這幾個(gè)非負數同時(shí)為0)
有理數比大小
(1)利用數軸表示兩數大小
在以向右為正方向的數軸上數的大小比較,右邊的數總比左邊的數大;
正數都大于0,負數都小于0,正數大于負數;
(2)數軸上特殊的最大(小)數
最小的自然數是0,無(wú)最大的自然數;
最小的正整數是1,無(wú)最大的正整數;
最大的負整數是-1,無(wú)最小的負整數
(3)利用絕對值比較兩個(gè)負數的大。簝蓚(gè)負數比較大小,絕對值大的反而小;
(4)大數-小數>0,小數-大數<0。
三、有理數的加、減法運算
有理數加法
(1)同號兩數相加,取相同符號,并且把絕對值相加
(2)異號兩數相加,取絕對值大的數的符號,并且用較大的絕對值減去較小的絕對值
(3)互為相反數的兩數相加得0
加法交換律:兩個(gè)有理數相加,交換加數的位置,和不變,a+b=b+a
加法結合律:三個(gè)有理數相加,先把前兩個(gè)數相加,再把結果與第三個(gè)數相加;或者先把后兩個(gè)數相加,再把結果與第一個(gè)數相加,和不變,(a+b)+c=a+(b+c)
(1)同號結合相加(正數+正數、負數+負數)
(2)互為相反數的兩數結合相加(把相加結果為零的數結合相加)
(3)幾個(gè)分數相加,將同分母的先結合相加
(4)將求和后為整數的數先結合相加
(5)幾個(gè)帶分數相加,可將整數部分與分數部分分別結合相加
在一個(gè)求和的式子中,通?梢园选+”省略不寫(xiě),同時(shí)去掉加數的括號
有理數的減法
根據相反數的定義,減去一個(gè)數,等于加上這個(gè)數的相反數,有理數的減法可以轉化為加法進(jìn)行計算。引入相反數的`之后,有理數的加減混合運算可以統一為加法運算。
四、有理數的乘、除法運算
有理數乘法
(1)異號兩數相乘得負數,并把絕對值相乘;同號兩數相乘得正數,并把絕對值相乘。
(2)任何數與0相乘都得0
有理數的乘法運算定律
乘法交換律:兩個(gè)有理數相乘,交換因數的位置,它們的積不變。a×b=b×a
乘法結合律:三個(gè)數相乘,先把前兩個(gè)數相乘,再和另外一個(gè)數相乘,或先把后兩個(gè)數相乘,再和另外一個(gè)數相乘,積不變。a×b×c=a×(b×c)
乘法分配律:兩個(gè)數的和(差)同一個(gè)數相乘,可以先把兩個(gè)加數(減數)分別同這個(gè)數相乘,再把兩個(gè)積相加(減),積不變。a×(b+c)=a×b+a×c
倒數
(1)乘積為1的兩個(gè)數互為倒數;注意:0沒(méi)有倒數;
(2)若a,b互為倒數,則ab=1;
(3)求倒數:求一個(gè)數的倒數就是用1去除以這個(gè)數。
、偾蠹俜謹祷蛘娣謹档牡箶,只要把這個(gè)分數的分子、分母顛倒位置即可;
、谇髱Х謹档牡箶禃r(shí),先把帶分數化為假分數,再把分子、分母顛倒位置;
、壅龜档牡箶凳钦龜,負數的倒數是負數。(求一個(gè)數的倒數,不改變這個(gè)數的性質(zhì));
、艿箶档扔谒旧淼臄凳1或-1;
有理數除法
(1)除以一個(gè)不等0的數,等于乘以這個(gè)數的倒數。
(2)兩數相除,同號得正,異號得負,并把絕對值相除。0除以任何一個(gè)不等于0的數,都得0
有理數的加減乘除混合運算
(1)乘除混合運算往往先將除法化成乘法,然后確定積的符號,最后求出結果。
(2)有理數的加減乘除混合運算,如果有括號先計算括號里的,如果無(wú)括則按照‘先乘除,后加減’的順序進(jìn)行,同級運算中,按前后順序從左到右依次運算,誰(shuí)在前先算誰(shuí)。
五、有理數乘方
乘方的概念:求n個(gè)相同因數的乘積的運算,叫做乘方,乘方的結果叫做冪。乘方中,相同的因式叫做底數,相同因式的個(gè)數叫做指數。
記作:an,在an中,a叫做底數,n叫做指數,an叫做冪
乘方的性質(zhì)
(1)負數的奇次冪是負數,負數的偶次冪的正數。
(2)正數的任何次冪都是正數,0的任何正整數次冪都是0。
(3)互為相反數的兩個(gè)數的奇數次冪仍互為相反數,偶數次冪相等。
(4)任何一個(gè)數的偶數次冪都是非負數。
有理數的混合運算
做有理數的混合運算時(shí),應注意以下運算順序:
(1)先乘方,再乘除,最后加減;
(2)同級運算中,按前后順序從左到右依次運算,誰(shuí)在前先算誰(shuí)。
(3)如有括號,先做括號內的運算,按小括號,中括號,大括號依次進(jìn)行。
科學(xué)記數法
把一個(gè)絕對值大于10的數記成a×10n的形式,其中a是整數數位只有一位的數(即1≤|a|<10,n是正整數),這種記數法叫科學(xué)記數法。
方法:
、賏的確定:把原數的小數點(diǎn)向左移動(dòng),使它的整數位數為1,數的正負號保持不變;
、趎=原數的整數數位-1。
數學(xué)有理數知識點(diǎn)總結 8
有理數乘法法則:
兩數相乘,同號得正,異號得負,并把絕對值相乘。
任何數同0相乘,都得0。
乘積是1的兩個(gè)數互為倒數。
幾個(gè)不是0的數相乘,負因數的個(gè)數是偶數時(shí),積是正數;負因數的個(gè)數是奇數時(shí),積是負數。
兩個(gè)數相乘,交換因數的位置,積相等。
ab=ba
三個(gè)數相乘,先把前兩個(gè)數相乘,或者先把后兩個(gè)數相乘,積相等。
。╝b)c=a(bc)
一個(gè)數同兩個(gè)數的'和相乘,等于把這個(gè)數分別同這兩個(gè)數相乘,再把積相加。
a(b+c)=ab+ac
數字與字母相乘的書(shū)寫(xiě)規范:
、艛底峙c字母相乘,乘號要省略,或用
、茢底峙c字母相乘,當系數是1或—1時(shí),1要省略不寫(xiě)。
、菐Х謹蹬c字母相乘,帶分數應當化成假分數。
用字母x表示任意一個(gè)有理數,2與x的乘積記為2x,3與x的乘積記為3x,則式子2x+3x是2x與3x的和,2x與3x叫做這個(gè)式子的項,2和3分別是著(zhù)兩項的系數。
一般地,合并含有相同字母因數的式子時(shí),只需將它們的系數合并,所得結果作為系數,再乘字母因數,即
ax+bx=(a+b)x
上式中x是字母因數,a與b分別是ax與bx這兩項的系數。
去括號法則:
括號前是+,把括號和括號前的+去掉,括號里各項都不改變符號。
括號前是—,把括號和括號前的—去掉,括號里各項都改變符號。
括號外的因數是正數,去括號后式子各項的符號與原括號內式子相應各項的符號相同;括號外的因數是負數,去括號后式子各項的符號與原括號內式子相應各項的符號相反。
【數學(xué)有理數知識點(diǎn)總結】相關(guān)文章:
數學(xué)有理數知識點(diǎn)03-20
數學(xué)有理數知識點(diǎn)07-21
初中有理數知識點(diǎn)總結09-21
初中有理數知識點(diǎn)總結11-28
數學(xué)的知識點(diǎn)總結04-16