成人免费看黄网站无遮挡,caowo999,se94se欧美综合色,a级精品九九九大片免费看,欧美首页,波多野结衣一二三级,日韩亚洲欧美综合

《等比數列》說(shuō)課稿示例

時(shí)間:2021-02-11 16:41:05 說(shuō)課稿 我要投稿

《等比數列》說(shuō)課稿示例

  一、地位作用

《等比數列》說(shuō)課稿示例

  數列是高中數學(xué)重要的內容之一,等比數列是在學(xué)習了等差數列后新的一種特殊數列,在生活中如儲蓄、分期付款等應用較為廣泛,在整個(gè)高中數學(xué)內容中數列與已學(xué)過(guò)的函數及后面的數列極限有密切聯(lián)系,它也是培養學(xué)生數學(xué)能力的良好題材,它可以培養學(xué)生的'觀(guān)察、分析、歸納、猜想及綜合解決問(wèn)題的能力。

  基于此,設計本節的數學(xué)思路上:

  利用類(lèi)比的思想,聯(lián)系等差數列的概念及通項公式的學(xué)習方法,采取自學(xué)、引導、歸納、猜想、類(lèi)比總結的教學(xué)思路,充分發(fā)揮學(xué)生主觀(guān)能動(dòng)性,調動(dòng)學(xué)生的主體地位,充分體現教為主導、學(xué)為主體、練為主線(xiàn)的教學(xué)思想。

  二、教學(xué)目標

  知識目標:1)理解等比數列的概念

  2)掌握等比數列的通項公式

  3)并能用公式解決一些實(shí)際問(wèn)題

  能力目標:培養學(xué)生觀(guān)察能力及發(fā)現意識,培養學(xué)生運用類(lèi)比思想、解決分析問(wèn)題的能力。

  三、教學(xué)重點(diǎn)

  1)等比數列概念的理解與掌握 關(guān)鍵:是讓學(xué)生理解“等比”的特點(diǎn)

  2)等比數列的通項公式的推導及應用

  四、教學(xué)難點(diǎn)

  “等比”的理解及利用通項公式解決一些問(wèn)題。

  五、教學(xué)過(guò)程設計

  (一)預習自學(xué)環(huán)節。(8分鐘)

  首先讓學(xué)生重新閱讀課本105頁(yè)國際象棋發(fā)明者的故事,并出示預習提綱,要求學(xué)生閱讀課本P122至P123例1上面。

  回答下列問(wèn)題

  1)課本中前3個(gè)實(shí)例有什么特點(diǎn)?能否舉出其它例子,并給出等比數列的定義。

  2)觀(guān)察以下幾個(gè)數列,回答下面問(wèn)題:

  1, , , ,……

  -1,-2,-4,-8……

  1,2,-4,8……

  -1,-1,-1,-1,……

  1,0,1,0……

 、儆心膸讉(gè)是等比數列?若是公比是什么?

 、诠萹為什么不能等于零?首項能為零嗎?

 、酃萹=1時(shí)是什么數列?

 、躴>0時(shí)數列遞增嗎?q<0時(shí)遞減嗎?

  3)怎樣推導等比數列通項公式?課本中采取了什么方法?還可以怎樣推導?

  4)等比數列通項公式與函數關(guān)系怎樣?

  (二)歸納主導與總結環(huán)節(15分鐘)

  這一環(huán)節主要是通過(guò)學(xué)生回答為主體,教師引導總結為主線(xiàn)解決本節兩個(gè)重點(diǎn)內容。

  通過(guò)回答問(wèn)題(1)(2)給出等比數列的定義并強調以下幾點(diǎn):①定義關(guān)鍵字“第二項起”“常數”;

 、谝龑W(xué)生用數學(xué)語(yǔ)言表達定義: =q(n≥2);③q=1時(shí)為非零常數數列,既是等差數列又是等比數列。引申:若數列公比為字母,分q=1和q≠1兩種情況;引入分類(lèi)討論的思想。

 、躴>0時(shí)等比數列單調性不定,q<0為擺動(dòng)數列,類(lèi)比等差數列d>0為遞增數列,d<0為遞減數列。

  通過(guò)回答問(wèn)題(3)回憶等差數列的推導方法,比較兩個(gè)數列定義的不同,引導推出等比數列通項公式。

  法一:歸納法,學(xué)會(huì )從特殊到一般的方法,并從次數中發(fā)現規律,培養觀(guān)察力。

  法二:迭乘法,聯(lián)系等差數列“迭加法”,培養學(xué)生類(lèi)比能力及新舊知識轉化能力。

  <0為擺動(dòng)數列,類(lèi)比等差數列d>

【《等比數列》說(shuō)課稿示例】相關(guān)文章:

《等比數列》說(shuō)課稿12-23

《等比數列》說(shuō)課稿范文02-20

中職數學(xué)等比數列說(shuō)課稿04-07

《秋天》說(shuō)課稿示例04-18

《北京》說(shuō)課稿示例04-18

《手指》說(shuō)課稿示例04-27

等比數列的前n項和的說(shuō)課稿02-21

等比數列及其通項公式說(shuō)課稿11-04

等比數列的前n項和說(shuō)課稿11-04