初中數學(xué)《勾股定理的逆定理》說(shuō)課稿范文
一、教材分析 :
(一)、本節課在教材中的地位作用
“勾股定理的逆定理”一節,是在上節“勾股定理”之后,繼續學(xué)習的一個(gè)直角三角形的判斷定理,它是前面知識的繼續和深化,勾股定理的逆定理是初中幾何學(xué)習中的重要內容之一,是今后判斷某三角形是直角三角形的重要方法之一,在以后的解題中,將有十分廣泛的應用,同時(shí)在應用中滲透了利用代數計算的方法證明幾何問(wèn)題的思想,為將來(lái)學(xué)習解析幾何埋下了伏筆,所以本節也是本章的重要內容之一。課標要求學(xué)生必須掌握。
(二)、教學(xué)目標:
根據數學(xué)課標的要求和教材的具體內容,結合學(xué)生實(shí)際我確定了本節課的教學(xué)目標。
知識技能:
1、理解勾股定理的逆定理的證明方法并能證明勾股定理的逆定理。
2、掌握勾股定理的逆定理,并能利用勾股定理的逆定理判定一個(gè)三角形是不是直角三角形
過(guò)程與方法:
1、通過(guò)對勾股定理的逆定理的探索,經(jīng)歷知識的發(fā)生、發(fā)展與形成的過(guò)程
2、通過(guò)用三角形三邊的數量關(guān)系來(lái)判斷三角形的形狀,體驗數與形結合方法的應用
3、通過(guò)勾股定理的逆定理的證明,體會(huì )數與形結合方法在問(wèn)題解決中的作用,并能運用勾股定理的逆定理解決相關(guān)問(wèn)題。
情感態(tài)度:
1、通過(guò)用三角形三邊的數量關(guān)系來(lái)判斷三角形的形狀,體驗數與形的內在聯(lián)系,感受定理與逆定理之間的和諧及辯證統一的關(guān)系
2、在探究勾股定理的逆定理的活動(dòng)中,通過(guò)一系列富有探究性的問(wèn)題,滲透與他人交流、合作的意識和探究精神
(三)、學(xué)情分析:
盡管已到初二下學(xué)期學(xué)生知識增多,能力增強,但思維的局限性還很大,能力也有差距,而勾股定理的逆定理的證明方法學(xué)生第一次見(jiàn)到,它要求根據已知條件構造一個(gè)直角三角形,根據學(xué)生的智能狀況,學(xué)生不容易想到,因此勾股定理的逆定理的證明又是本節的難點(diǎn),這樣如何添輔助線(xiàn)就是解決它的關(guān)鍵,這樣就確定了本節課的重點(diǎn)、難點(diǎn)和關(guān)鍵。
重點(diǎn):勾股定理逆定理的應用 難點(diǎn):勾股定理逆定理的證明 關(guān)鍵:輔助線(xiàn)的添法探索
二、教學(xué)過(guò)程:
本節課的設計原則是:使學(xué)生在動(dòng)手操作的基礎上和合作交流的良好氛圍中,通過(guò)巧妙而自然地在學(xué)生的認識結構與幾何知識結構之間筑了一個(gè)信息流通渠道,進(jìn)而達到完善學(xué)生的數學(xué)認識結構的目的。
(一)、復習回顧: 復習回顧與勾股定理有關(guān)的內容,建立新舊知識之間的聯(lián)系。
(二)、創(chuàng )設問(wèn)題情境:一開(kāi)課我就提出了與本節課關(guān)系密切、學(xué)生用現有的知識可探索卻又解決不好的問(wèn)題,去提示本節課的探究宗旨。(演示)古代埃及人把一根長(cháng)繩打上等距離的13個(gè)結,然后用樁釘如圖那樣的三角形,便得到一個(gè)直角三角形。這是為什么?……。這個(gè)問(wèn)題一出現馬上激起學(xué)生已有知識與待研究知識的認識沖突,引起了學(xué)生的重視,激發(fā)了學(xué)生的興趣,因而全身心地投入到學(xué)習中來(lái),創(chuàng )造了我要學(xué)的氣氛,同時(shí)也說(shuō)明了幾何知識來(lái)源于實(shí)踐,不失時(shí)機地讓學(xué)生感到數學(xué)就在身邊。
(三)、學(xué)生在教師的指導下嘗試解決問(wèn)題,總結規律(包括難點(diǎn)突破):因為幾何來(lái)源于現實(shí)生活,對初二學(xué)生來(lái)說(shuō)選擇適當的時(shí)機,讓他們從個(gè)體實(shí)踐經(jīng)驗中開(kāi)始學(xué)習,可以提高學(xué)習的主動(dòng)性和參與意識,所以勾股定理的逆定理不是由教師直接給出的,而是讓學(xué)生通過(guò)動(dòng)手折紙在具體的實(shí)踐中觀(guān)察滿(mǎn)足條件的三角形直觀(guān)感覺(jué)上是什么三角形,再用直角三角形插入去驗證猜想。這樣設計是因為勾股定理逆定理的證明方法是學(xué)生第一次見(jiàn)到,它要求按照已知條件作一個(gè)直角三角形,根據學(xué)生的智能狀況學(xué)生是不容易想到的,為了突破這個(gè)難點(diǎn),我讓學(xué)生動(dòng)手裁出了一個(gè)兩直角邊與所折三角形兩條較小邊相等的直角三角形,通過(guò)操作驗證兩三角形全等,從而不僅顯示了符合條件的三角形是直角三角形,還孕育了輔助線(xiàn)的添法,為后面進(jìn)行邏輯推理論證提供了直觀(guān)的數學(xué)模型。接下來(lái)就是利用這個(gè)數學(xué)模型,從理論上證明這個(gè)定理。從動(dòng)手操作到證明,學(xué)生自然地聯(lián)想到了全等三角形的.性質(zhì),證明它與一個(gè)直角三角形全等,順利作出了輔助直角三角形,整個(gè)證明過(guò)程自然、無(wú)神秘感,實(shí)現了從生動(dòng)直觀(guān)向抽象思維的轉化,同時(shí)學(xué)生親身體會(huì )了動(dòng)手操作——觀(guān)察——猜測——探索——論證的全過(guò)程,這樣學(xué)生不是被動(dòng)接受勾股定理的逆定理,因而使學(xué)生感到自然、親切,學(xué)生的學(xué)習興趣和學(xué)習積極性有所提高。使學(xué)生確實(shí)在學(xué)習過(guò)程中享受到自我創(chuàng )造的快樂(lè )。在同學(xué)們完成證明之后,可讓他們對照課本把證明過(guò)程嚴格的閱讀一遍,充分發(fā)揮教課書(shū)的作用,養成學(xué)生看書(shū)的習慣,這也是在培養學(xué)生的自學(xué)能力。
(四)、組織變式訓練:本著(zhù)由淺入深的原則,安排了三個(gè)題目。(演示)第一題比較簡(jiǎn)單,讓學(xué)生口答,讓所有的學(xué)生都能完成。第二題則進(jìn)了一層,字母代替了數字,繞了一個(gè)彎,既可以檢查本課知識,又可以提高靈活運用以往知識的能力。第三題則要求更高,要求學(xué)生能夠推出可能的結論,這些作法培養了學(xué)生靈活轉換、舉一反三的能力,發(fā)展了學(xué)生的思維,提高了課堂教學(xué)的效果和利用率。在變式訓練中我還采用講、說(shuō)、練結合的方法,教師通過(guò)觀(guān)察、提問(wèn)、巡視、談話(huà)等活動(dòng)、及時(shí)了解學(xué)生的學(xué)習過(guò)程,隨時(shí)反饋,調節教法,同時(shí)注意加強有針對性的個(gè)別指導,把發(fā)展學(xué)生的思維和隨時(shí)把握學(xué)生的學(xué)習效果結合起來(lái)。
(五)、歸納小結,納入知識體系:本節課小結先讓學(xué)生歸納本節知識和技能,然后教師作必要的補充,尤其是注意總結思想方法,培養能力方面,比如輔助線(xiàn)的添法,數形結合的思想,并告訴同學(xué)今天的勾股定理逆定理是同學(xué)們通過(guò)自己親手實(shí)踐發(fā)現并證明的,這種討論問(wèn)題的方法是培養我們發(fā)現問(wèn)題認識問(wèn)題的好方法,希望同學(xué)在課外練習時(shí)注意用這種方法,這都是教給學(xué)習方法。
(六)、作業(yè)布置:由于學(xué)生的思維素質(zhì)存在一定的差異,教學(xué)要貫徹“因材施教”的原則,為此我安排了兩組作業(yè)。A組是基本的思維訓練項目,全體都要做,這樣有利于學(xué)生學(xué)習習慣的培養,以及提高他們學(xué)好數學(xué)的信心。B組題適當加大難度,拓寬知識,供有能力又有興趣的學(xué)生做,日積月累,對訓練和培養他們的思維素質(zhì),發(fā)展學(xué)生的個(gè)性有積極作用。
三、說(shuō)教法、學(xué)法與教學(xué)手段:
為貫徹實(shí)施素質(zhì)教育提出的面向全體學(xué)生,使學(xué)生全面發(fā)展主動(dòng)發(fā)展的精神和培養創(chuàng )新活動(dòng)的要求,根據本節課的教學(xué)內容、教學(xué)要求以及初二學(xué)生的年齡和心理特征以及學(xué)生的認知規律和認知水平,本節課我主要采用了以學(xué)生為主體,引導發(fā)現、操作探究的教學(xué)方法,即不違反科學(xué)性又符合可接受性原則,這樣有利于培養學(xué)生的學(xué)習興趣,調動(dòng)學(xué)生的學(xué)習積極性,發(fā)展學(xué)生的思維;有利于培養學(xué)生動(dòng)手、觀(guān)察、分析、猜想、驗證、推理能力和創(chuàng )新能力;有利于學(xué)生從感性認識上升到理性認識,加深對所學(xué)知識的理解和掌握;有利于突破難點(diǎn)和突出重點(diǎn)。此外,本節課我還采用了理論聯(lián)系實(shí)際的教學(xué)原則,以教師為主導、學(xué)生為主體的教學(xué)原則,通過(guò)聯(lián)系學(xué)生現有的經(jīng)驗和感性認識,由最鄰近的知識去向本節課遷移,通過(guò)動(dòng)手操作讓學(xué)生獨立探討、主動(dòng)獲取知識?傊,本節課遵循從生動(dòng)直觀(guān)到抽象思維的認識規律,力爭最大限度地調動(dòng)學(xué)生學(xué)習的積極性;力爭把教師教的過(guò)程轉化為學(xué)生親自探索、發(fā)現知識的過(guò)程;力爭使學(xué)生在獲得知識的過(guò)程中得到能力的培養。
【初中數學(xué)《勾股定理的逆定理》說(shuō)課稿】相關(guān)文章:
初中數學(xué)《勾股定理的逆定理》說(shuō)課稿07-30
初中數學(xué)說(shuō)課稿——勾股定理的逆定理08-04
數學(xué)《勾股定理的逆定理》說(shuō)課稿06-23
勾股定理的逆定理說(shuō)課稿12-04
《勾股定理的逆定理》說(shuō)課稿08-02
勾股定理的逆定理說(shuō)課稿03-25
勾股定理的逆定理說(shuō)課稿4篇12-04