高考數學(xué)知識點(diǎn)總結(15篇)
總結是把一定階段內的有關(guān)情況分析研究,做出有指導性的經(jīng)驗方法以及結論的書(shū)面材料,它可以幫助我們總結以往思想,發(fā)揚成績(jì),不妨坐下來(lái)好好寫(xiě)寫(xiě)總結吧。但是卻發(fā)現不知道該寫(xiě)些什么,下面是小編精心整理的高考數學(xué)知識點(diǎn)總結,供大家參考借鑒,希望可以幫助到有需要的朋友。

高考數學(xué)知識點(diǎn)總結1
三角函數。
注意歸一公式、誘導公式的正確性。
數列題。
1、證明一個(gè)數列是等差(等比)數列時(shí),最后下結論時(shí)要寫(xiě)上以誰(shuí)為首項,誰(shuí)為公差(公比)的等差(等比)數列;
2、最后一問(wèn)證明不等式成立時(shí),如果一端是常數,另一端是含有n的式子時(shí),一般考慮用放縮法;如果兩端都是含n的式子,一般考慮數學(xué)歸納法(用數學(xué)歸納法時(shí),當n=k+1時(shí),一定利用上n=k時(shí)的假設,否則不正確。利用上假設后,如何把當前的式子轉化到目標式子,一般進(jìn)行適當的放縮,這一點(diǎn)是有難度的。簡(jiǎn)潔的方法是,用當前的式子減去目標式子,看符號,得到目標式子,下結論時(shí)一定寫(xiě)上綜上:由①②得證;
3、證明不等式時(shí),有時(shí)構造函數,利用函數單調性很簡(jiǎn)單
立體幾何題。
1、證明線(xiàn)面位置關(guān)系,一般不需要去建系,更簡(jiǎn)單;
2、求異面直線(xiàn)所成的角、線(xiàn)面角、二面角、存在性問(wèn)題、幾何體的高、表面積、體積等問(wèn)題時(shí),要建系;
3、注意向量所成的角的.余弦值(范圍)與所求角的余弦值(范圍)的關(guān)系。
概率問(wèn)題。
1、搞清隨機試驗包含的所有基本事件和所求事件包含的基本事件的個(gè)數;
2、搞清是什么概率模型,套用哪個(gè)公式;
3、記準均值、方差、標準差公式;
4、求概率時(shí),正難則反(根據p1+p2+……+pn=1);
5、注意計數時(shí)利用列舉、樹(shù)圖等基本方法;
6、注意放回抽樣,不放回抽樣;
正弦、余弦典型例題。
1、在△ABC中,∠C=90°,a=1,c=4,則sinA的值為
2、已知α為銳角,且,則α的度數是()A、30°B、45°C、60°D、90°
3、在△ABC中,若,∠A,∠B為銳角,則∠C的度數是()A、75°B、90°C、105°D、120°
4、若∠A為銳角,且,則A=()A、15°B、30°C、45°D、60°
5、在△ABC中,AB=AC=2,AD⊥BC,垂足為D,且AD=,E是AC中點(diǎn),EF⊥BC,垂足為F,求sin∠EBF的值。
正弦、余弦解題訣竅。
1、已知兩角及一邊,或兩邊及一邊的對角(對三角形是否存在要討論)用正弦定理。
2、已知三邊,或兩邊及其夾角用余弦定理
3、余弦定理對于確定三角形形狀非常有用,只需要知道角的余弦值為正,為負,還是為零,就可以確定是鈍角。直角還是銳角。
高考數學(xué)知識點(diǎn)總結2
高考數學(xué)重要知識點(diǎn)整理
一、求動(dòng)點(diǎn)的軌跡方程的基本步驟
、苯⑦m當的坐標系,設出動(dòng)點(diǎn)M的坐標;
、矊(xiě)出點(diǎn)M的集合;
、沉谐龇匠=0;
、椿(jiǎn)方程為最簡(jiǎn)形式;
、禉z驗。
二、求動(dòng)點(diǎn)的軌跡方程的常用方法:求軌跡方程的方法有多種,常用的有直譯法、定義法、相關(guān)點(diǎn)法、參數法和交軌法等。
、敝弊g法:直接將條件翻譯成等式,整理化簡(jiǎn)后即得動(dòng)點(diǎn)的軌跡方程,這種求軌跡方程的方法通常叫做直譯法。
、捕x法:如果能夠確定動(dòng)點(diǎn)的軌跡滿(mǎn)足某種已知曲線(xiàn)的定義,則可利用曲線(xiàn)的定義寫(xiě)出方程,這種求軌跡方程的方法叫做定義法。
、诚嚓P(guān)點(diǎn)法:用動(dòng)點(diǎn)Q的坐標x,y表示相關(guān)點(diǎn)P的坐標x0、y0,然后代入點(diǎn)P的坐標(x0,y0)所滿(mǎn)足的曲線(xiàn)方程,整理化簡(jiǎn)便得到動(dòng)點(diǎn)Q軌跡方程,這種求軌跡方程的方法叫做相關(guān)點(diǎn)法。
、磪捣ǎ寒攧(dòng)點(diǎn)坐標x、y之間的直接關(guān)系難以找到時(shí),往往先尋找x、y與某一變數t的關(guān)系,得再消去參變數t,得到方程,即為動(dòng)點(diǎn)的軌跡方程,這種求軌跡方程的方法叫做參數法。
、到卉壏ǎ簩蓜(dòng)曲線(xiàn)方程中的.參數消去,得到不含參數的方程,即為兩動(dòng)曲線(xiàn)交點(diǎn)的軌跡方程,這種求軌跡方程的方法叫做交軌法。
6.直譯法:求動(dòng)點(diǎn)軌跡方程的一般步驟
、俳ㄏ怠⑦m當的坐標系;
、谠O點(diǎn)——設軌跡上的任一點(diǎn)P(x,y);
、哿惺健谐鰟(dòng)點(diǎn)p所滿(mǎn)足的關(guān)系式;
、艽鷵Q——依條件的特點(diǎn),選用距離公式、斜率公式等將其轉化為關(guān)于X,Y的方程式,并化簡(jiǎn);
、葑C明——證明所求方程即為符合條件的動(dòng)點(diǎn)軌跡方程。
人教版高三年級高考數學(xué)必考知識點(diǎn)
、僬忮F各側棱相等,各側面都是全等的等腰三角形,各等腰三角形底邊上的高相等(它叫做正棱錐的斜高).
、谡忮F的高、斜高和斜高在底面內的射影組成一個(gè)直角三角形,正棱錐的高、側棱、側棱在底面內的射影也組成一個(gè)直角三角形.
、翘厥饫忮F的頂點(diǎn)在底面的射影位置:
、倮忮F的側棱長(cháng)均相等,則頂點(diǎn)在底面上的射影為底面多邊形的外心.
、诶忮F的側棱與底面所成的角均相等,則頂點(diǎn)在底面上的射影為底面多邊形的外心.
、劾忮F的各側面與底面所成角均相等,則頂點(diǎn)在底面上的射影為底面多邊形內心.
、芾忮F的頂點(diǎn)到底面各邊距離相等,則頂點(diǎn)在底面上的射影為底面多邊形內心.
、萑忮F有兩組對棱垂直,則頂點(diǎn)在底面的射影為三角形垂心.
、奕忮F的三條側棱兩兩垂直,則頂點(diǎn)在底面上的射影為三角形的垂心.
、呙總(gè)四面體都有外接球,球心0是各條棱的中垂面的交點(diǎn),此點(diǎn)到各頂點(diǎn)的距離等于球半徑;
、嗝總(gè)四面體都有內切球,球心
是四面體各個(gè)二面角的平分面的交點(diǎn),到各面的距離等于半徑.
[注]:
i.各個(gè)側面都是等腰三角形,且底面是正方形的棱錐是正四棱錐.(×)(各個(gè)側面的等腰三角形不知是否全等)
ii.若一個(gè)三角錐,兩條對角線(xiàn)互相垂直,則第三對角線(xiàn)必然垂直.
簡(jiǎn)證:AB⊥CD,AC⊥BD
BC⊥AD.令得,已知則.
iii.空間四邊形OABC且四邊長(cháng)相等,則順次連結各邊的中點(diǎn)的四邊形一定是矩形.
iv.若是四邊長(cháng)與對角線(xiàn)分別相等,則順次連結各邊的中點(diǎn)的四邊是一定是正方形.
簡(jiǎn)證:取AC中點(diǎn),則平面90°易知EFGH為平行四邊形
EFGH為長(cháng)方形.若對角線(xiàn)等,則為正方形.
高三數學(xué)高考復習知識點(diǎn)
數列是高中數學(xué)的重要內容,又是學(xué)習高等數學(xué)的基礎。高考對本章的考查比較全面,等差數列,等比數列的考查每年都不會(huì )遺漏。有關(guān)數列的試題經(jīng)常是綜合題,經(jīng)常把數列知識和指數函數、對數函數和不等式的知識綜合起來(lái),試題也常把等差數列、等比數列,求極限和數學(xué)歸納法綜合在一起。
探索性問(wèn)題是高考的熱點(diǎn),常在數列解答題中出現。本章中還蘊含著(zhù)豐富的數學(xué)思想,在主觀(guān)題中著(zhù)重考查函數與方程、轉化與化歸、分類(lèi)討論等重要思想,以及配方法、換元法、待定系數法等基本數學(xué)方法。
近幾年來(lái),高考關(guān)于數列方面的命題主要有以下三個(gè)方面;
(1)數列本身的有關(guān)知識,其中有等差數列與等比數列的概念、性質(zhì)、通項公式及求和公式。
(2)數列與其它知識的結合,其中有數列與函數、方程、不等式、三角、幾何的結合。
(3)數列的應用問(wèn)題,其中主要是以增長(cháng)率問(wèn)題為主。試題的難度有三個(gè)層次,小題大都以基礎題為主,解答題大都以基礎題和中檔題為主,只有個(gè)別地方用數列與幾何的綜合與函數、不等式的綜合作為最后一題難度較大。
1.在掌握等差數列、等比數列的定義、性質(zhì)、通項公式、前n項和公式的基礎上,系統掌握解等差數列與等比數列綜合題的規律,深化數學(xué)思想方法在解題實(shí)踐中的指導作用,靈活地運用數列知識和方法解決數學(xué)和實(shí)際生活中的有關(guān)問(wèn)題;
2.在解決綜合題和探索性問(wèn)題實(shí)踐中加深對基礎知識、基本技能和基本數學(xué)思想方法的認識,溝通各類(lèi)知識的聯(lián)系,形成更完整的知識網(wǎng)絡(luò ),提高分析問(wèn)題和解決問(wèn)題的能力,
進(jìn)一步培養學(xué)生閱讀理解和創(chuàng )新能力,綜合運用數學(xué)思想方法分析問(wèn)題與解決問(wèn)題的能力。
高考數學(xué)知識點(diǎn)總結3
一、高考數學(xué)中有函數、數列、三角函數、平面向量、不等式、立體幾何等九大章節
主要是考函數和導數,因為這是整個(gè)高中階段中最核心的部分,這部分里還重點(diǎn)考察兩個(gè)方面:第一個(gè)函數的性質(zhì),包括函數的單調性、奇偶性;第二是函數的解答題,重點(diǎn)考察的`是二次函數和高次函數,分函數和它的一些分布問(wèn)題,但是這個(gè)分布重點(diǎn)還包含兩個(gè)分析。
二、平面向量和三角函數
對于這部分知識重點(diǎn)考察三個(gè)方面:是劃減與求值,第一,重點(diǎn)掌握公式和五組基本公式;第二,掌握三角函數的圖像和性質(zhì),這里重點(diǎn)掌握正弦函數和余弦函數的性質(zhì);第三,正弦定理和余弦定理來(lái)解三角形,這方面難度并不大。
三、數列
數列這個(gè)板塊,重點(diǎn)考兩個(gè)方面:一個(gè)通項;一個(gè)是求和。
四、空間向量和立體幾何
在里面重點(diǎn)考察兩個(gè)方面:一個(gè)是證明;一個(gè)是計算。
五、概率和統計
概率和統計主要屬于數學(xué)應用問(wèn)題的范疇,需要掌握幾個(gè)方面:……等可能的概率;……事件;獨立事件和獨立重復事件發(fā)生的概率。
六、解析幾何
這部分內容說(shuō)起來(lái)容易做起來(lái)難,需要掌握幾類(lèi)問(wèn)題,第一類(lèi)直線(xiàn)和曲線(xiàn)的位置關(guān)系,要掌握它的通法;第二類(lèi)動(dòng)點(diǎn)問(wèn)題;第三類(lèi)是弦長(cháng)問(wèn)題;第四類(lèi)是對稱(chēng)問(wèn)題;第五類(lèi)重點(diǎn)問(wèn)題,這類(lèi)題往往覺(jué)得有思路卻沒(méi)有一個(gè)清晰的答案,但需要要掌握比較好的算法,來(lái)提高做題的準確度。
七、壓軸題
同學(xué)們在最后的備考復習中,還應該把重點(diǎn)放在不等式計算的方法中,難度雖然很大,但是也切忌在試卷中留空白,平時(shí)多做些壓軸題真題,爭取能解題就解題,能思考就思考。
高考數學(xué)知識點(diǎn)總結4
圓與圓的位置關(guān)系的判斷方法
一、設兩個(gè)圓的半徑為R和r,圓心距為d。
則有以下五種關(guān)系:
1、d>R+r兩圓外離;兩圓的圓心距離之和大于兩圓的半徑之和。
2、d=R+r兩圓外切;兩圓的圓心距離之和等于兩圓的.半徑之和。
3、d=R—r兩圓內切;兩圓的圓心距離之和等于兩圓的半徑之差。
4、d 5、d 二、圓和圓的位置關(guān)系,還可用有無(wú)公共點(diǎn)來(lái)判斷: 1、無(wú)公共點(diǎn),一圓在另一圓之外叫外離,在之內叫內含。 2、有唯一公共點(diǎn)的,一圓在另一圓之外叫外切,在之內叫內切。 3、有兩個(gè)公共點(diǎn)的叫相交。兩圓圓心之間的距離叫做圓心距。 人教版高考數學(xué)復習知識點(diǎn) 1.有關(guān)平行與垂直(線(xiàn)線(xiàn)、線(xiàn)面及面面)的問(wèn)題,是在解決立體幾何問(wèn)題的過(guò)程中,大量的、反復遇到的,而且是以各種各樣的問(wèn)題(包括論證、計算角、與距離等)中不可缺少的內容,因此在主體幾何的總復習中,首先應從解決“平行與垂直”的有關(guān)問(wèn)題著(zhù)手,通過(guò)較為基本問(wèn)題,熟悉公理、定理的內容和功能,通過(guò)對問(wèn)題的分析與概括,掌握立體幾何中解決問(wèn)題的規律--充分利用線(xiàn)線(xiàn)平行(垂直)、線(xiàn)面平行(垂直)、面面平行(垂直)相互轉化的思想,以提高邏輯思維能力和空間想象能力。 2.判定兩個(gè)平面平行的方法: (1)根據定義--證明兩平面沒(méi)有公共點(diǎn); (2)判定定理--證明一個(gè)平面內的兩條相交直線(xiàn)都平行于另一個(gè)平面; (3)證明兩平面同垂直于一條直線(xiàn)。 3.兩個(gè)平面平行的主要性質(zhì): (1)由定義知:“兩平行平面沒(méi)有公共點(diǎn)”; (2)由定義推得:“兩個(gè)平面平行,其中一個(gè)平面內的直線(xiàn)必平行于另一個(gè)平面”; (3)兩個(gè)平面平行的性質(zhì)定理:“如果兩個(gè)平行平面同時(shí)和第三個(gè)平面相交,那么它們的交線(xiàn)平行”; (4)一條直線(xiàn)垂直于兩個(gè)平行平面中的一個(gè)平面,它也垂直于另一個(gè)平面; (5)夾在兩個(gè)平行平面間的平行線(xiàn)段相等; (6)經(jīng)過(guò)平面外一點(diǎn)只有一個(gè)平面和已知平面平行。 高考高三數學(xué)復習知識點(diǎn) 1、三類(lèi)角的求法: 、僬页龌蜃鞒鲇嘘P(guān)的角。 、谧C明其符合定義,并指出所求作的角。 、塾嬎愦笮(解直角三角形,或用余弦定理)。 2、正棱柱——底面為正多邊形的直棱柱 正棱錐——底面是正多邊形,頂點(diǎn)在底面的射影是底面的中心。 正棱錐的`計算集中在四個(gè)直角三角形中: 3、怎樣判斷直線(xiàn)l與圓C的位置關(guān)系? 圓心到直線(xiàn)的距離與圓的半徑比較。 直線(xiàn)與圓相交時(shí),注意利用圓的“垂徑定理”。 4、對線(xiàn)性規劃問(wèn)題:作出可行域,作出以目標函數為截距的直線(xiàn),在可行域內平移直線(xiàn),求出目標函數的最值。 不看后悔!清華名師揭秘學(xué)好高中數學(xué)的方法 培養興趣是關(guān)鍵。學(xué)生對數學(xué)產(chǎn)生了興趣,自然有動(dòng)力去鉆研。如何培養興趣呢? (1)欣賞數學(xué)的美感 比如幾何圖形中的對稱(chēng)、變換前后的不變量、概念的嚴謹、邏輯的嚴密…… 通過(guò)對旋轉變換及其不變量的討論,我們可以證明反比例函數、“對勾函數”的圖象都是雙曲線(xiàn)——平面上到兩個(gè)定點(diǎn)的距離之差的絕對值為定值(小于兩個(gè)定點(diǎn)之間的距離)的點(diǎn)的集合。 (2)注意到數學(xué)在實(shí)際生活中的應用。 例如和日常生活息息相關(guān)的等額本金、等額本息兩種不同的還款方式,用數列的知識就可以理解. 學(xué)好數學(xué),是現代公民的基本素養之一啊. 人教版高考年級數學(xué)知識點(diǎn) 1、直線(xiàn)的傾斜角 定義:x軸正向與直線(xiàn)向上方向之間所成的角叫直線(xiàn)的傾斜角。特別地,當直線(xiàn)與x軸平行或重合時(shí),我們規定它的傾斜角為0度。因此,傾斜角的取值范圍是0°≤α<180° 2、直線(xiàn)的斜率 、俣x:傾斜角不是90°的直線(xiàn),它的傾斜角的正切叫做這條直線(xiàn)的斜率。直線(xiàn)的斜率常用k表示。即。斜率反映直線(xiàn)與軸的傾斜程度。 、谶^(guò)兩點(diǎn)的直線(xiàn)的斜率公式: 注意下面四點(diǎn): (1)當時(shí),公式右邊無(wú)意義,直線(xiàn)的斜率不存在,傾斜角為90°; (2)k與P1、P2的順序無(wú)關(guān); (3)以后求斜率可不通過(guò)傾斜角而由直線(xiàn)上兩點(diǎn)的坐標直接求得; (4)求直線(xiàn)的傾斜角可由直線(xiàn)上兩點(diǎn)的坐標先求斜率得到。 云南高考數學(xué)知識點(diǎn)總結 掌握每一個(gè)公式定理 做課本的例題,課本的例題的思路比較簡(jiǎn)單,其知識點(diǎn)也是單一不會(huì )交叉的,如果課本上的例題你拿出來(lái)都會(huì )做了,說(shuō)明你已經(jīng)具備了一定的理解力。 做課后練習題,前面的題是和課本例題一個(gè)級別的,如果課本上所有的題都會(huì )做了,那么基礎夯實(shí)可以告一段落。 進(jìn)行專(zhuān)題訓練提高數學(xué)成績(jì) 1、做高中數學(xué)題的時(shí)候千萬(wàn)不能怕難題!有很多人數學(xué)分數提不動(dòng),很大一部分原因是他們的畏懼心理。有的人看到圓錐曲線(xiàn)和導數,看到稍微長(cháng)一點(diǎn)的復雜一點(diǎn)的敘述,甚至看到21、22就已經(jīng)開(kāi)始退卻了。這部分的分數,如果你不去努力,永遠都不會(huì )掙到的,所以第一個(gè)建議,就是大膽的去做。前面虧欠數學(xué)這門(mén)學(xué)科太多,就算讓它打腫了又怎樣,后面一點(diǎn)一點(diǎn)的強大起來(lái),總有那么一天你去打它的臉。 2、錯題本怎么用。和記筆記一樣,整理錯題不是謄寫(xiě)不是照抄,而是摘抄。你只顧著(zhù)去采擷問(wèn)題,就失去了理解和挑選題目的過(guò)程,筆記同理,如果老師說(shuō)什么記什么,那只能說(shuō)明你這節課根本沒(méi)聽(tīng),真正有效率的人,是會(huì )把知識簡(jiǎn)化,把書(shū)本讀薄的。先學(xué)學(xué)你能思考到答案的哪一步,學(xué)著(zhù)去偷分。當然,因人而異,如果你覺(jué)得還有哪些題需要整理也可以記下來(lái)。 3、如何學(xué)好高中數學(xué) 1)先看筆記后做作業(yè)。有的高中學(xué)生感到。老師講過(guò)的,自己已經(jīng)聽(tīng)得明明白白了。但是,為什么自己一做題就困難重重了呢?其原因在于,學(xué)生對教師所講的內容的理解,還沒(méi)能達到教師所要求的層次。因此,每天在做作業(yè)之前,一定要把課本的有關(guān)內容和當天的課堂筆記先看一看。能否堅持如此,常常是好學(xué)生與差學(xué)生的最大區別。尤其練習題不太配套時(shí),作業(yè)中往往沒(méi)有老師剛剛講過(guò)的'題目類(lèi)型,因此不能對比消化。如果自己又不注意對此落實(shí),天長(cháng)日久,就會(huì )造成極大損失。 2)做題之后加強反思。學(xué)生一定要明確,現在正坐著(zhù)的題,一定不是考試的題目。而是要運用現在正做著(zhù)的題目的解題思路與方法。因此,要把自己做過(guò)的每道題加以反思?偨Y一下自己的收獲。要總結出,這是一道什么內容的題,用的是什么方法。做到知識成片,問(wèn)題成串,日久天長(cháng),構建起一個(gè)內容與方法的科學(xué)的網(wǎng)絡(luò )系統。 3)主動(dòng)復習總結提高。進(jìn)行章節總結是非常重要的。初中時(shí)是教師替學(xué)生做總結,做得細致,深刻,完整。高中是自己給自己做總結,老師不但不給做,而且是講到哪,考到哪,不留復習時(shí)間,也沒(méi)有明確指出做總結的時(shí)間。 表達式:(a+b)(a-b)=a^2-b^2,兩個(gè)數的和與這兩個(gè)數差的積,等于這兩個(gè)數的平方差,這個(gè)公式就叫做乘法的平方差公式 公式運用 可用于某些分母含有根號的.分式: 1/(3-4倍根號2)化簡(jiǎn): 1×(3+4倍根號2)/(3-4倍根號2)^2;=(3+4倍根號2)/(9-32)=(3+4倍根號2)/-23 [解方程] x^2-y^2=1991 [思路分析] 利用平方差公式求解 [解題過(guò)程] x^2-y^2=1991 。▁+y)(x-y)=1991 因為1991可以分成1×1991,11×181 所以如果x+y=1991,x-y=1,解得x=996,y=995 如果x+y=181,x-y=11,x=96,y=85同時(shí)也可以是負數 所以解有x=996,y=995,或x=996,y=-995,或x=-996,y=995或x=-996,y=-995 或x=96,y=85,或x=96,y=-85或x=-96,y=85或x=-96,y=-85 有時(shí)應注意加減的過(guò)程。 1、函數零點(diǎn)的概念: 對于函數,把使成立的實(shí)數叫做函數的零點(diǎn)。 2、函數零點(diǎn)的'意義: 函數的零點(diǎn)就是方程實(shí)數根,亦即函數的圖象與軸交點(diǎn)的橫坐標。即:方程有實(shí)數根函數的圖象與軸有交點(diǎn)函數有零點(diǎn)。 3、函數零點(diǎn)的求法: 求函數的零點(diǎn): 。1)(代數法)求方程的實(shí)數根; 。2)(幾何法)對于不能用求根公式的方程,可以將它與函數的圖象聯(lián)系起來(lái),并利用函數的性質(zhì)找出零點(diǎn)。 4、二次函數的零點(diǎn): 二次函數。 1)△>0,方程有兩不等實(shí)根,二次函數的圖象與軸有兩個(gè)交點(diǎn),二次函數有兩個(gè)零點(diǎn)。 2)△=0,方程有兩相等實(shí)根(二重根),二次函數的圖象與軸有一個(gè)交點(diǎn),二次函數有一個(gè)二重零點(diǎn)或二階零點(diǎn)。 3)△<0,方程無(wú)實(shí)根,二次函數的圖象與軸無(wú)交點(diǎn),二次函數無(wú)零點(diǎn)。 求函數奇偶性的常見(jiàn)錯誤 錯因分析:求函數奇偶性的常見(jiàn)錯誤有求錯函數定義域或是忽視函數定義域,對函數具有奇偶性的前提條件不清,對分段函數奇偶性判斷方法不當等。判斷函數的奇偶性,首先要考慮函數的定義域,一個(gè)函數具備奇偶性的必要條件是這個(gè)函數的定義域區間關(guān)于原點(diǎn)對稱(chēng),如果不具備這個(gè)條件,函數一定是非奇非偶的函數。在定義域區間關(guān)于原點(diǎn)對稱(chēng)的前提下,再根據奇偶函數的定義進(jìn)行判斷,在用定義進(jìn)行判斷時(shí)要注意自變量在定義域區間內的任意性。 抽象函數中推理不嚴密致誤 錯因分析:很多抽象函數問(wèn)題都是以抽象出某一類(lèi)函數的共同“特征”而設計出來(lái)的,在解決問(wèn)題時(shí),可以通過(guò)類(lèi)比這類(lèi)函數中一些具體函數的性質(zhì)去解決抽象函數的性質(zhì)。解答抽象函數問(wèn)題要注意特殊賦值法的應用,通過(guò)特殊賦值可以找到函數的不變性質(zhì),這個(gè)不變性質(zhì)往往是進(jìn)一步解決問(wèn)題的突破口。抽象函數性質(zhì)的證明是一種代數推理,和幾何推理證明一樣,要注意推理的嚴謹性,每一步推理都要有充分的條件,不可漏掉一些條件,更不要臆造條件,推理過(guò)程要層次分明,書(shū)寫(xiě)規范。 函數零點(diǎn)定理使用不當致誤 錯因分析:如果函數y=f(x)在區間[a,b]上的圖象是連續不斷的一條曲線(xiàn),并且有f(a)f(b)<0,那么,函數y=f(x)在區間(a,b)內有零點(diǎn),即存在c∈(a,b),使得f(c)=0,這個(gè)c也是方程f(c)=0的根,這個(gè)結論我們一般稱(chēng)之為函數的零點(diǎn)定理。函數的零點(diǎn)有“變號零點(diǎn)”和“不變號零點(diǎn)”,對于“不變號零點(diǎn)”,函數的零點(diǎn)定理是“無(wú)能為力”的,在解決函數的零點(diǎn)時(shí)要注意這個(gè)問(wèn)題。 混淆兩類(lèi)切線(xiàn)致誤 錯因分析:曲線(xiàn)上一點(diǎn)處的切線(xiàn)是指以該點(diǎn)為切點(diǎn)的曲線(xiàn)的切線(xiàn),這樣的切線(xiàn)只有一條;曲線(xiàn)的過(guò)一個(gè)點(diǎn)的切線(xiàn)是指過(guò)這個(gè)點(diǎn)的曲線(xiàn)的所有切線(xiàn),這個(gè)點(diǎn)如果在曲線(xiàn)上當然包括曲線(xiàn)在該點(diǎn)處的切線(xiàn),曲線(xiàn)的過(guò)一個(gè)點(diǎn)的切線(xiàn)可能不止一條。因此求解曲線(xiàn)的切線(xiàn)問(wèn)題時(shí),首先要區分是什么類(lèi)型的切線(xiàn)。 混淆導數與單調性的關(guān)系致誤 錯因分析:對于一個(gè)函數在某個(gè)區間上是增函數,如果認為函數的導函數在此區間上恒大于0,就會(huì )出錯。研究函數的單調性與其導函數的關(guān)系時(shí)一定要注意:一個(gè)函數的導函數在某個(gè)區間上單調遞增(減)的充要條件是這個(gè)函數的導函數在此區間上恒大(小)于等于0,且導函數在此區間的任意子區間上都不恒為零。 導數與極值關(guān)系不清致誤 錯因分析:在使用導數求函數極值時(shí),很容易出現的錯誤就是求出使導函數等于0的點(diǎn),而沒(méi)有對這些點(diǎn)左右兩側導函數的符號進(jìn)行判斷,誤以為使導函數等于0的點(diǎn)就是函數的極值點(diǎn)。出現這些錯誤的原因是對導數與極值關(guān)系不清?蓪Ш瘮翟谝粋(gè)點(diǎn)處的導函數值為零只是這個(gè)函數在此點(diǎn)處取到極值的必要條件,在此提醒廣大考生在使用導數求函數極值時(shí)一定要注意對極值點(diǎn)進(jìn)行檢驗。 用錯基本公式致誤 錯因分析:等差數列的首項為a1、公差為d,則其通項公式an=a1+(n-1)d,前n項和公式Sn=na1+n(n-1)d/2=(a1+an)d/2;等比數列的首項為a1、公比為q,則其通項公式an=a1pn-1,當公比q≠1時(shí),前n項和公式Sn=a1(1-pn)/(1-q)=(a1-anq)/(1-q),當公比q=1時(shí),前n項和公式Sn=na1。在數列的基礎性試題中,等差數列、等比數列的這幾個(gè)公式是解題的根本,用錯了公式,解題就失去了方向。 an,Sn關(guān)系不清致誤 錯因分析:在數列問(wèn)題中,數列的通項an與其前n項和Sn之間存在關(guān)系:這個(gè)關(guān)系是對任意數列都成立的,但要注意的是這個(gè)關(guān)系式是分段的,在n=1和n≥2時(shí)這個(gè)關(guān)系式具有完全不同的表現形式,這也是解題中經(jīng)常出錯的一個(gè)地方,在使用這個(gè)關(guān)系式時(shí)要牢牢記住其“分段”的特點(diǎn)。當題目中給出了數列{an}的an與Sn之間的關(guān)系時(shí),這兩者之間可以進(jìn)行相互轉換,知道了an的具體表達式可以通過(guò)數列求和的方法求出Sn,知道了Sn可以求出an,解題時(shí)要注意體會(huì )這種轉換的相互性。 對等差、等比數列的性質(zhì)理解錯誤 錯因分析:等差數列的前n項和在公差不為0時(shí)是關(guān)于n的常數項為0的二次函數。一般地,有結論“若數列{an}的前N項和Sn=an2+bn+c(a,b,c∈R),則數列{an}為等差數列的充要條件是c=0”;在等差數列中,Sm,S2m-Sm,S3m-S2m(m∈N*)是等差數列。解決這類(lèi)題目的一個(gè)基本出發(fā)點(diǎn)就是考慮問(wèn)題要全面,把各種可能性都考慮進(jìn)去,認為正確的命題給以證明,認為不正確的命題舉出反例予以駁斥。在等比數列中公比等于-1時(shí)是一個(gè)很特殊的情況,在解決有關(guān)問(wèn)題時(shí)要注意這個(gè)特殊情況。 遺忘空集致誤 錯因分析:由于空集是任何非空集合的真子集,因此,對于集合B高三經(jīng)典糾錯筆記:數學(xué)A,就有B=A,φ≠B高三經(jīng)典糾錯筆記:數學(xué)A,B≠φ,三種情況,在解題中如果思維不夠縝密就有可能忽視了 B≠φ這種情況,導致解題結果錯誤。尤其是在解含有參數的集合問(wèn)題時(shí),更要充分注意當參數在某個(gè)范圍內取值時(shí)所給的集合可能是空集這種情況?占且粋(gè)特殊的集合,由于思維定式的原因,考生往往會(huì )在解題中遺忘了這個(gè)集合,導致解題錯誤或是解題不全面。 忽視集合元素的三性致誤 錯因分析:集合中的元素具有確定性、無(wú)序性、互異性,集合元素的'三性中互異性對解題的影響最大,特別是帶有字母參數的集合,實(shí)際上就隱含著(zhù)對字母參數的一些要求。在解題時(shí)也可以先確定字母參數的范圍后,再具體解決問(wèn)題。 四種命題的結構不明致誤 錯因分析:如果原命題是“若 A則B”,則這個(gè)命題的逆命題是“若B則A”,否命題是“若┐A則┐B”,逆否命題是“若┐B則┐A”。這里面有兩組等價(jià)的命題,即“原命題和它的逆否命題等價(jià),否命題與逆命題等價(jià)”。在解答由一個(gè)命題寫(xiě)出該命題的其他形式的命題時(shí),一定要明確四種命題的結構以及它們之間的等價(jià)關(guān)系。另外,在否定一個(gè)命題時(shí),要注意全稱(chēng)命題的否定是特稱(chēng)命題,特稱(chēng)命題的否定是全稱(chēng)命題。如對“a,b都是偶數”的否定應該是“a,b不都是偶數”,而不應該是“a ,b都是奇數”。 充分必要條件顛倒致誤 錯因分析:對于兩個(gè)條件A,B,如果A=>B成立,則A是B的充分條件,B是A的必要條件;如果B=>A成立,則A是B的必要條件,B是A的充分條件;如果A<=>B,則A,B互為充分必要條件。解題時(shí)最容易出錯的就是顛倒了充分性與必要性,所以在解決這類(lèi)問(wèn)題時(shí)一定要根據充要條件的概念作出準確的判斷。 易錯點(diǎn)5 邏輯聯(lián)結詞理解不準致誤 錯因分析:在判斷含邏輯聯(lián)結詞的命題時(shí)很容易因為理解不準確而出現錯誤,在這里我們給出一些常用的判斷方法,希望對大家有所幫助:p∨q真<=>p真或q真,命題p∨q假<=>p假且q假(概括為一真即真);命題p∧q真<=>p真且q真,p∧q假<=>p假或q假(概括為一假即假);┐p真<=>p假,┐p假<=>p真(概括為一真一假)。 函數與導數 易錯點(diǎn)6 求函數定義域忽視細節致誤 錯因分析:函數的定義域是使函數有意義的自變量的取值范圍,因此要求定義域就要根據函數解析式把各種情況下的自變量的限制條件找出來(lái),列成不等式組,不等式組的解集就是該函數的定義域。在求一般函數定義域時(shí)要注意下面幾點(diǎn):(1)分母不為0;(2)偶次被開(kāi)放式非負;(3)真數大于0;(4)0的0次冪沒(méi)有意義。函 數的定義域是非空的數集,在解決函數定義域時(shí)不要忘記了這點(diǎn)。對于復合函數,要注意外層函數的定義域是由內層函數的值域決定的。 易錯點(diǎn)7 帶有絕對值的函數單調性判斷錯誤 錯因分析:帶有絕對值的函數實(shí)質(zhì)上就是分段函數,對于分段函數的單調性,有兩種基本的判斷方法:一是在各個(gè)段上根據函數的解析式所表示的函數的單調性求出單調區間,最后對各個(gè)段上的單調區間進(jìn)行整合;二是畫(huà)出這個(gè)分段函數的圖象,結合函數圖象、性質(zhì)進(jìn)行直觀(guān)的判斷。研究函數問(wèn)題離不開(kāi)函數圖象,函數圖象反應了函數的所有性質(zhì),在研究函數問(wèn)題時(shí)要時(shí)時(shí)刻刻想到函數的圖象,學(xué)會(huì )從函數圖象上去分析問(wèn)題,尋找解決問(wèn)題的方案。對于函數的幾個(gè)不同的單調遞增(減)區間,千萬(wàn)記住不要使用并集,只要指明這幾個(gè)區間是該函數的單調遞增(減)區間即可。 易錯點(diǎn)8 求函數奇偶性的常見(jiàn)錯誤 錯因分析:求函數奇偶性的常見(jiàn)錯誤有求錯函數定義域或是忽視函數定義域,對函數具有奇偶性的前提條件不清,對分段函數奇偶性判斷方法不當等。判斷函數的奇偶性,首先要考慮函數的定義域,一個(gè)函數具備奇偶性的必要條件是這個(gè)函數的定義域區間關(guān)于原點(diǎn)對稱(chēng),如果不具備這個(gè)條件,函數一定是非奇非偶的函數。在定義域區間關(guān)于原點(diǎn)對稱(chēng)的前提下,再根據奇偶函數的定義進(jìn)行判斷,在用定義進(jìn)行判斷時(shí)要注意自變量在定義域區間內的任意性。 易錯點(diǎn)9 抽象函數中推理不嚴密致誤 錯因分析:很多抽象函數問(wèn)題都是以抽象出某一類(lèi)函數的共同“特征”而設計出來(lái)的,在解決問(wèn)題時(shí),可以通過(guò)類(lèi)比這類(lèi)函數中一些具體函數的性質(zhì)去解決抽象函數的性質(zhì)。解答抽象函數問(wèn)題要注意特殊賦值法的應用,通過(guò)特殊賦值可以找到函數的不變性質(zhì),這個(gè)不變性質(zhì)往往是進(jìn)一步解決問(wèn)題的突破口。抽象函數性質(zhì)的證明是一種代數推理,和幾何推理證明一樣,要注意推理的嚴謹性,每一步推理都要有充分的條件,不可漏掉一些條件,更不要臆造條件,推理過(guò)程要層次分明,書(shū)寫(xiě)規范。 易錯點(diǎn)10 函數零點(diǎn)定理使用不當致誤 錯因分析:如果函數y=f(x)在區間[a,b]上的圖象是連續不斷的一條曲線(xiàn),并且有f(a)f(b)<0,那么,函數y=f(x)在區間(a,b)內有零點(diǎn),即存在c∈(a,b),使得f(c)=0,這個(gè)c也是方程f(c)=0的根,這個(gè)結論我們一般稱(chēng)之為函數的零點(diǎn)定理。函數的零點(diǎn)有“變號零點(diǎn)”和“不變號零點(diǎn)”,對于“不變號零點(diǎn)”,函數的零點(diǎn)定理是“無(wú)能為力”的,在解決函數的零點(diǎn)時(shí)要注意這個(gè)問(wèn)題。 易錯點(diǎn)11 混淆兩類(lèi)切線(xiàn)致誤 錯因分析:曲線(xiàn)上一點(diǎn)處的切線(xiàn)是指以該點(diǎn)為切點(diǎn)的曲線(xiàn)的切線(xiàn),這樣的切線(xiàn)只有一條;曲線(xiàn)的過(guò)一個(gè)點(diǎn)的切線(xiàn)是指過(guò)這個(gè)點(diǎn)的曲線(xiàn)的所有切線(xiàn),這個(gè)點(diǎn)如果在曲線(xiàn)上當然包括曲線(xiàn)在該點(diǎn)處的切線(xiàn),曲線(xiàn)的過(guò)一個(gè)點(diǎn)的切線(xiàn)可能不止一條。因此求解曲線(xiàn)的切線(xiàn)問(wèn)題時(shí),首先要區分是什么類(lèi)型的切線(xiàn)。 易錯點(diǎn)12 混淆導數與單調性的關(guān)系致誤 錯因分析:對于一個(gè)函數在某個(gè)區間上是增函數,如果認為函數的導函數在此區間上恒大于0,就會(huì )出錯。研究函數的單調性與其導函數的關(guān)系時(shí)一定要注意:一個(gè)函數的導函數在某個(gè)區間上單調遞增(減)的充要條件是這個(gè)函數的導函數在此區間上恒大(。┯诘扔0,且導函數在此區間的任意子區間上都不恒為零。 易錯點(diǎn)13 導數與極值關(guān)系不清致誤 錯因分析:在使用導數求函數極值時(shí),很容易出現的錯誤就是求出使導函數等于0的點(diǎn),而沒(méi)有對這些點(diǎn)左右兩側導函數的符號進(jìn)行判斷,誤以為使導函數等于0的點(diǎn)就是函數的極值點(diǎn)。出現這些錯誤的原因是對導數與極值關(guān)系不清?蓪Ш瘮翟谝粋(gè)點(diǎn)處的導函數值為零只是這個(gè)函數在此點(diǎn)處取到極值的必要條件,在此提醒廣大考生在使用導數求函數極值時(shí)一定要注意對極值點(diǎn)進(jìn)行檢驗。 數列 易錯點(diǎn)14 用錯基本公式致誤 錯因分析:等差數列的首項為a1、公差為d,則其通項公式an=a1+(n-1)d,前n項和公式Sn=na1+n(n-1)d/2=(a1+an)d/2;等比數列的首項為a1、公比為q,則其通項公式an=a1pn-1,當公比q≠1時(shí),前n項和公式Sn=a1(1-pn)/(1-q)=(a1-anq)/(1-q),當公比q=1時(shí),前n項和公式Sn=na1。在數列的基礎性試題中,等差數列、等比數列的這幾個(gè)公式是解題的根本,用錯了公式,解題就失去了方向。 易錯點(diǎn)15 an,Sn關(guān)系不清致誤 一、端正態(tài)度,切忌浮躁,忌急于求成 在第一輪復習的過(guò)程中,心浮氣躁是一個(gè)非常普遍的現象。主要表現為平時(shí)復習覺(jué)得沒(méi)有問(wèn)題,題目也能做,但是到了考試時(shí)就是拿不了高分!這主要是因為: 。1)對復習的知識點(diǎn)缺乏系統的理解,解題時(shí)缺乏思維層次結構。第一輪復習著(zhù)重對基礎知識點(diǎn)的挖掘,數學(xué)老師一定都會(huì )反復強調基礎的重要性。如果不重視對知識點(diǎn)的系統化分析,不能構成一個(gè)整體的知識網(wǎng)絡(luò )構架,自然在解題時(shí)就不能擁有整體的構思,也不能深入理解高考典型例題的思維方法。 。2)復習的時(shí)候心不靜。心不靜就會(huì )導致思維不清晰,而思維不清晰就會(huì )促使復習沒(méi)有效率。建議大家在開(kāi)始一個(gè)學(xué)科的復習之前,先靜下心來(lái)認真想一想接下來(lái)需要復習哪一塊兒,需要做多少事情,然后認真去做,同時(shí)需要很高的注意力,只有這樣才會(huì )有很好的效果。 。3)在第一輪復習階段,學(xué)習的重心應該轉移到基礎復習上來(lái)。 因此,建議廣大同學(xué)在一輪復習的時(shí)候千萬(wàn)不要急于求成,一定要靜下心來(lái),認真的揣摩每個(gè)知識點(diǎn),弄清每一個(gè)原理。只有這樣,一輪復習才能顯出成效。 二、注重教材、注重基礎,忌盲目做題 要把書(shū)本中的常規題型做好,所謂做好就是要用最少的時(shí)間把題目做對。部分同學(xué)在第一輪復習時(shí)對基礎題不予以足夠的重視,認為題目看上去會(huì )做就可以不加訓練,結果常在一些“不該錯的地方錯了”,最終把原因簡(jiǎn)單的歸結為粗心,從而忽視了對基本概念的掌握,對基本結論和公式的記憶及基本計算的訓練和常規方法的積累,造成了實(shí)際成績(jì)與心理感覺(jué)的偏差。 可見(jiàn),數學(xué)的基本概念、定義、公式,數學(xué)知識點(diǎn)的聯(lián)系,基本的數學(xué)解題思路與方法,是第一輪復習的重中之重。不妨以既是重點(diǎn)也是難點(diǎn)的函數部分為例,就必須掌握函數的概念,建立函數關(guān)系式,掌握定義域、值域與最值、奇偶性、單調性、周期性、對稱(chēng)性等性質(zhì),學(xué)會(huì )利用圖像即數形結合。 三、抓薄弱環(huán)節,做好復習的針對性,忌無(wú)計劃 每個(gè)同學(xué)在數學(xué)學(xué)習上遇到的問(wèn)題有共同點(diǎn),更有不同點(diǎn)。在復習課上,老師只能針對性去解決共同點(diǎn),而同學(xué)們自己的個(gè)別問(wèn)題則需要通過(guò)自己的思考,與同學(xué)們的討論,并向老師提問(wèn)來(lái)解決問(wèn)題,我們提倡同學(xué)多問(wèn)老師,要敢于問(wèn)。每個(gè)同學(xué)必須了解自己掌握了什么,還有哪些問(wèn)題沒(méi)有解決,要明確只有把漏洞一一補上才能提高。復習的過(guò)程,實(shí)質(zhì)就是解決問(wèn)題的過(guò)程,問(wèn)題解決了,復習的效果就實(shí)現了。同時(shí),也請同學(xué)們注意:在你問(wèn)問(wèn)題之前先經(jīng)過(guò)自己思考,不要把不經(jīng)過(guò)思考的問(wèn)題就直接去問(wèn),因為這并不能起到更大作用。 高三的復習一定是有計劃、有目標的,所以千萬(wàn)不要盲目做題。第一輪復習非常具有針對性,對于所有知識點(diǎn)的地毯式轟炸,一定要做到不缺不漏。因此,僅靠簡(jiǎn)單做題是達不到一輪復習應該具有的效果。而且盲目做題沒(méi)有針對性,更不會(huì )有全面性。在概念模糊的情況下一定要回歸課本,注意教材上最清晰的概念與原理,注重對知識點(diǎn)運用方法的總結。 四、在平時(shí)做題中要養成良好的解題習慣,忌不思 1、樹(shù)立信心,養成良好的運算習慣。部分同學(xué)平時(shí)學(xué)習過(guò)程中自信心不足,做作業(yè)時(shí)免不了互相對答案,也不認真找出錯誤原因并加以改正!皶(huì )而不對”是高三數學(xué)學(xué)習的大忌,常見(jiàn)的有審題失誤、計算錯誤等,平時(shí)都以為是粗心,其實(shí)這就是一種非常不好的習慣,必須在第一輪復習中逐步克服,否則,后患無(wú)窮?山Y合平時(shí)解題中存在的具體問(wèn)題,逐題找出原因,看其是行為習慣方面的原因,還是知識方面的缺陷,再有針對性加以解決。必要時(shí)作些記錄,也就是錯題本,每位同學(xué)必備的,以便以后查詢(xún)。 2、做好解題后的開(kāi)拓引申,培養一題多解和舉一反三的能力。解題能力的培養可以從一題多解和舉一反三中得到提高,因而解完題后,需要再回味和引申,它包括對解題方法的開(kāi)拓引申,即一道數學(xué)題從不同的角度去考慮去分析,可以有不同的思路,不同的解法。 考慮的愈廣泛愈深刻,獲得的思路愈廣闊,解法愈多樣;及對題目做開(kāi)拓引申,引申出新題和新解法,有利于培養同學(xué)們的發(fā)散思維,激發(fā)創(chuàng )造精神,提高解題能力: 。1)把題目條件開(kāi)拓引申。 、侔烟厥鈼l件一般化;②把一般條件特殊化;③把特殊條件和一般條件交替變化。 。2)把題目結論開(kāi)拓引申。 。3)把題型開(kāi)拓引申,同一個(gè)題目,給出不同的提法,可以變成不同的題型。俗稱(chēng)為“一題多變”但其解法仍類(lèi)似,按其解法而言,這些題又可稱(chēng)為“多題一解”或“一法多用”。 3。提高解題速度,掌握解題技巧。提高解題速度的主要因素有二:一是解題方法的巧妙與簡(jiǎn)捷;二是對常規解法的掌握是否達到高度的熟練程度。 五、學(xué)會(huì )總結、歸納,訓練到位,忌題量不足 我在暑期上課的時(shí)候發(fā)現,很多同學(xué)都是一看到題目就開(kāi)始做題,這也是一輪復習應該避免的地方。做題如果不注重思路的分析,知識點(diǎn)的運用,效果可想而知。因此建議同學(xué)們在做題前要把老師上課時(shí)復習的知識再回顧一下,梳理知識體系,回顧各個(gè)知識點(diǎn),對所學(xué)的知識結構要有一個(gè)完整清楚的認識,認真分析題目考查的知識,思想,以及方法,還要學(xué)會(huì )總結歸納不留下任何知識的盲點(diǎn),在一輪復習中要注意對各個(gè)知識點(diǎn)的細化。這個(gè)過(guò)程不需要很長(cháng)的時(shí)間,而且到了后續階段會(huì )越來(lái)越熟練。因此,養成良好的做題習慣,有助于訓練自己的'解題思維,提高自己的解題能力。 實(shí)踐出真知,充足的題量是把理論轉化為能力的一種保障,在足夠的題目的練習下不僅可以更扎實(shí)的掌握知識點(diǎn),還可以更深入的了解知識點(diǎn),避免出現“會(huì )而不對、對而不全”的現象。由于高考依然是以做題為主,所以解題能力是高考分數的一個(gè)直接反映,尤其是數學(xué)試題。而解題能力不是三兩道題就能提升的,而是要大量的反復的訓練、認真細致的推敲才會(huì )有較大的提升。有句話(huà)說(shuō)的好,“量變導致質(zhì)變”,因此,同學(xué)們在每章復習的時(shí)候,一定要做足夠的題,才能夠充分的理解這一章的內容,才能夠做到對這一章知識點(diǎn)的熟練運用。 但是,大量訓練絕對不是題海戰術(shù)。因為針對每章節做題都有目標,同時(shí)做題訓練都需要不斷的總結,既要橫向總結,也要縱向深入。只要在每章節做題做到一定程度的時(shí)候都能感覺(jué)到這一章的知識點(diǎn)有哪些,典型題型有哪些,方法和技巧有哪些,換句話(huà)說(shuō),如果隨機抽取一些近幾年關(guān)于這一章的高考題都會(huì )做,那我認為就可以了。 1. 函數的奇偶性 。1)若f(x)是偶函數,那么f(x)=f(-x) ; 。2)若f(x)是奇函數,0在其定義域內,則 f(0)=0(可用于求參數); 。3)判斷函數奇偶性可用定義的等價(jià)形式:f(x)±f(-x)=0或 (f(x)≠0); 。4)若所給函數的解析式較為復雜,應先化簡(jiǎn),再判斷其奇偶性; 。5)奇函數在對稱(chēng)的單調區間內有相同的單調性;偶函數在對稱(chēng)的單調區間內有相反的單調性; 2. 復合函數的有關(guān)問(wèn)題 。1)復合函數定義域求法:若已知 的定義域為[a,b],其復合函數f[g(x)]的定義域由不等式a≤g(x)≤b解出即可;若已知f[g(x)]的定義域為[a,b],求 f(x)的定義域,相當于x∈[a,b]時(shí),求g(x)的值域(即 f(x)的定義域);研究函數的問(wèn)題一定要注意定義域優(yōu)先的原則。 。2)復合函數的.單調性由“同增異減”判定; 3.函數圖像(或方程曲線(xiàn)的對稱(chēng)性) 。1)證明函數圖像的對稱(chēng)性,即證明圖像上任意點(diǎn)關(guān)于對稱(chēng)中心(對稱(chēng)軸)的對稱(chēng)點(diǎn)仍在圖像上; 。2)證明圖像C1與C2的對稱(chēng)性,即證明C1上任意點(diǎn)關(guān)于對稱(chēng)中心(對稱(chēng)軸)的對稱(chēng)點(diǎn)仍在C2上,反之亦然; 。3)曲線(xiàn)C1:f(x,y)=0,關(guān)于y=x+a(y=-x+a)的對稱(chēng)曲線(xiàn)C2的方程為f(y-a,x+a)=0(或f(-y+a,-x+a)=0); 。4)曲線(xiàn)C1:f(x,y)=0關(guān)于點(diǎn)(a,b)的對稱(chēng)曲線(xiàn)C2方程為:f(2a-x,2b-y)=0; 。5)若函數y=f(x)對x∈R時(shí),f(a+x)=f(a-x)恒成立,則y=f(x)圖像關(guān)于直線(xiàn)x=a對稱(chēng); 。6)函數y=f(x-a)與y=f(b-x)的圖像關(guān)于直線(xiàn)x= 對稱(chēng); 4.函數的周期性 。1)y=f(x)對x∈R時(shí),f(x +a)=f(x-a) 或f(x-2a )=f(x) (a>;0)恒成立,則y=f(x)是周期為2a的周期函數; 。2)若y=f(x)是偶函數,其圖像又關(guān)于直線(xiàn)x=a對稱(chēng),則f(x)是周期為2︱a︱的周期函數; 。3)若y=f(x)奇函數,其圖像又關(guān)于直線(xiàn)x=a對稱(chēng),則f(x)是周期為4︱a︱的周期函數; 。4)若y=f(x)關(guān)于點(diǎn)(a,0),(b,0)對稱(chēng),則f(x)是周期為2 的周期函數; 。5)y=f(x)的圖象關(guān)于直線(xiàn)x=a,x=b(a≠b)對稱(chēng),則函數y=f(x)是周期為2 的周期函數; 。6)y=f(x)對x∈R時(shí),f(x+a)=-f(x)(或f(x+a)= ,則y=f(x)是周期為2 的周期函數; 5.方程k=f(x)有解 k∈D(D為f(x)的值域); 6.a≥f(x) 恒成立 a≥[f(x)]max,; a≤f(x) 恒成立 a≤[f(x)]min; 7.(1) (a>;0,a≠1,b>;0,n∈R+); (2) l og a N= ( a>;0,a≠1,b>;0,b≠1); 。3) l og a b的符號由口訣“同正異負”記憶; (4) a log a N= N ( a>;0,a≠1,N>;0 ); 8. 判斷對應是否為映射時(shí),抓住兩點(diǎn):(1)A中元素必須都有象且唯一;(2)B中元素不一定都有原象,并且A中不同元素在B中可以有相同的象; 9. 能熟練地用定義證明函數的單調性,求反函數,判斷函數的奇偶性。 10.對于反函數,應掌握以下一些結論:(1)定義域上的單調函數必有反函數;(2)奇函數的反函數也是奇函數;(3)定義域為非單元素集的偶函數不存在反函數;(4)周期函數不存在反函數;(5)互為反函數的兩個(gè)函數具有相同的單調性;(5) y=f(x)與y=f-1(x)互為反函數,設f(x)的定義域為A,值域為B,則有f[f--1(x)]=x(x∈B),f--1[f(x)]=x(x∈A)。 11.處理二次函數的問(wèn)題勿忘數形結合;二次函數在閉區間上必有最值,求最值問(wèn)題用“兩看法”:一看開(kāi)口方向;二看對稱(chēng)軸與所給區間的相對位置關(guān)系; 12. 依據單調性,利用一次函數在區間上的保號性可解決求一類(lèi)參數的范圍問(wèn)題 13. 恒成立問(wèn)題的處理方法:(1)分離參數法;(2)轉化為一元二次方程的根的分布列不等式(組)求解; 【高考數學(xué)知識點(diǎn)總結】相關(guān)文章: 數學(xué)高考知識點(diǎn)總結11-27 高考數學(xué)知識點(diǎn)總結02-23 高考數學(xué)知識點(diǎn)總結【經(jīng)典4篇】05-25 高考數學(xué)知識點(diǎn)總結(精選7篇)05-07 高考數學(xué)知識點(diǎn)總結(合集15篇)11-27 高考化學(xué)知識點(diǎn)總結08-29 高考語(yǔ)文總結知識點(diǎn)11-30高考數學(xué)知識點(diǎn)總結5
高考數學(xué)知識點(diǎn)總結6
高考數學(xué)知識點(diǎn)總結7
高考數學(xué)知識點(diǎn)總結8
高考數學(xué)知識點(diǎn)總結9
高考數學(xué)知識點(diǎn)總結14
高考數學(xué)知識點(diǎn)總結15