成人免费看黄网站无遮挡,caowo999,se94se欧美综合色,a级精品九九九大片免费看,欧美首页,波多野结衣一二三级,日韩亚洲欧美综合

高一數學(xué)知識點(diǎn)總結

時(shí)間:2024-11-05 13:36:18 知識點(diǎn)總結 我要投稿

[熱]高一數學(xué)知識點(diǎn)總結

  總結是把一定階段內的有關(guān)情況分析研究,做出有指導性結論的書(shū)面材料,通過(guò)它可以全面地、系統地了解以往的學(xué)習和工作情況,因此十分有必須要寫(xiě)一份總結哦?偨Y你想好怎么寫(xiě)了嗎?以下是小編整理的高一數學(xué)知識點(diǎn)總結,僅供參考,大家一起來(lái)看看吧。

[熱]高一數學(xué)知識點(diǎn)總結

高一數學(xué)知識點(diǎn)總結1

  定義:

  x軸正向與直線(xiàn)向上方向之間所成的角叫直線(xiàn)的傾斜角。特別地,當直線(xiàn)與x軸平行或重合時(shí),我們規定它的傾斜角為0度。

  范圍:

  傾斜角的取值范圍是0°≤α

  理解:

  (1)注意“兩個(gè)方向”:直線(xiàn)向上的方向、x軸的正方向;

  (2)規定當直線(xiàn)和x軸平行或重合時(shí),它的傾斜角為0度。

  意義:

 、僦本(xiàn)的傾斜角,體現了直線(xiàn)對x軸正向的傾斜程度;

 、谠谄矫嬷苯亲鴺讼抵,每一條直線(xiàn)都有一個(gè)確定的傾斜角;

 、蹆A斜角相同,未必表示同一條直線(xiàn)。

  公式:

  k=tanα

  k>0時(shí)α∈(0°,90°)

  k

  k=0時(shí)α=0°

  當α=90°時(shí)k不存在

  ax+by+c=0(a≠0)傾斜角為A,則tanA=-a/b,A=arctan(-a/b)

  當a≠0時(shí),傾斜角為90度,即與X軸垂直

  兩角和與差的三角函數:

  cos(α+β)=cosα·cosβ-sinα·sinβ

  cos(α-β)=cosα·cosβ+sinα·sinβ

  sin(α±β)=sinα·cosβ±cosα·sinβ

  tan(α+β)=(tanα+tanβ)/(1-tanα·tanβ)

  tan(α-β)=(tanα-tanβ)/(1+tanα·tanβ)

  三角和的三角函數:

  sin(α+β+γ)=sinα·cosβ·cosγ+cosα·sinβ·cosγ+cosα·cosβ·sinγ-sinα·sinβ·sinγ

  cos(α+β+γ)=cosα·cosβ·cosγ-cosα·sinβ·sinγ-sinα·cosβ·sinγ-sinα·sinβ·cosγ

  tan(α+β+γ)=(tanα+tanβ+tanγ-tanα·tanβ·tanγ)/(1-tanα·tanβ-tanβ·tanγ-tanγ·tanα)

  輔助角公式:

  Asinα+Bcosα=(A2+B2)^(1/2)sin(α+t),其中

  sint=B/(A2+B2)^(1/2)

  cost=A/(A2+B2)^(1/2)

  tant=B/A

  Asinα-Bcosα=(A2+B2)^(1/2)cos(α-t),tant=A/B

  倍角公式:

  sin(2α)=2sinα·cosα=2/(tanα+cotα)

  cos(2α)=cos2(α)-sin2(α)=2cos2(α)-1=1-2sin2(α)

  tan(2α)=2tanα/[1-tan2(α)]

  三倍角公式:

  sin(3α)=3sinα-4sin3(α)=4sinα·sin(60+α)sin(60-α)

  cos(3α)=4cos3(α)-3cosα=4cosα·cos(60+α)cos(60-α)

  tan(3α)=tana·tan(π/3+a)·tan(π/3-a)

  半角公式:

  sin(α/2)=±√((1-cosα)/2)

  cos(α/2)=±√((1+cosα)/2)

  tan(α/2)=±√((1-cosα)/(1+cosα))=sinα/(1+cosα)=(1-cosα)/sinα

  降冪公式

  sin2(α)=(1-cos(2α))/2=versin(2α)/2

  cos2(α)=(1+cos(2α))/2=covers(2α)/2

  tan2(α)=(1-cos(2α))/(1+cos(2α))

  萬(wàn)能公式:

  sinα=2tan(α/2)/[1+tan2(α/2)]

  cosα=[1-tan2(α/2)]/[1+tan2(α/2)]

  tanα=2tan(α/2)/[1-tan2(α/2)]

  積化和差公式:

  sinα·cosβ=(1/2)[sin(α+β)+sin(α-β)]

  cosα·sinβ=(1/2)[sin(α+β)-sin(α-β)]

  cosα·cosβ=(1/2)[cos(α+β)+cos(α-β)]

  sinα·sinβ=-(1/2)[cos(α+β)-cos(α-β)]

  和差化積公式:

  sinα+sinβ=2sin[(α+β)/2]cos[(α-β)/2]

  sinα-sinβ=2cos[(α+β)/2]sin[(α-β)/2]

  cosα+cosβ=2cos[(α+β)/2]cos[(α-β)/2]

  cosα-cosβ=-2sin[(α+β)/2]sin[(α-β)/2]

  二面角

  (1)半平面:平面內的一條直線(xiàn)把這個(gè)平面分成兩個(gè)部分,其中每一個(gè)部分叫做半平面。

  (2)二面角:從一條直線(xiàn)出發(fā)的兩個(gè)半平面所組成的圖形叫做二面角。二面角的取值范圍為[0°,180°]

  (3)二面角的'棱:這一條直線(xiàn)叫做二面角的棱。

  (4)二面角的面:這兩個(gè)半平面叫做二面角的面。

  (5)二面角的平面角:以二面角的棱上任意一點(diǎn)為端點(diǎn),在兩個(gè)面內分別作垂直于棱的兩條射線(xiàn),這兩條射線(xiàn)所成的角叫做二面角的平面角。

  (6)直二面角:平面角是直角的二面角叫做直二面角。

高一數學(xué)知識點(diǎn)總結2

  高一上學(xué)期數學(xué)知識點(diǎn)歸納

  1、多面體的結構特征

 。1)棱柱有兩個(gè)面相互平行,其余各面都是平行四邊形,每相鄰兩個(gè)四邊形的公共邊平行。

  正棱柱:側棱垂直于底面的棱柱叫做直棱柱,底面是正多邊形的直棱柱叫做正棱柱、反之,正棱柱的底面是正多邊形,側棱垂直于底面,側面是矩形。

 。2)棱錐的底面是任意多邊形,側面是有一個(gè)公共頂點(diǎn)的三角形、

  正棱錐:底面是正多邊形,頂點(diǎn)在底面的射影是底面正多邊形的中心的棱錐叫做正棱錐、特別地,各棱均相等的正三棱錐叫正四面體、反過(guò)來(lái),正棱錐的底面是正多邊形,且頂點(diǎn)在底面的射影是底面正多邊形的中心。

 。3)棱臺可由平行于底面的平面截棱錐得到,其上下底面是相似多邊形。

  2、旋轉體的結構特征

 。1)圓柱可以由矩形繞一邊所在直線(xiàn)旋轉一周得到。

 。2)圓錐可以由直角三角形繞一條直角邊所在直線(xiàn)旋轉一周得到。

 。3)圓臺可以由直角梯形繞直角腰所在直線(xiàn)旋轉一周或等腰梯形繞上下底面中心所在直線(xiàn)旋轉半周得到,也可由平行于底面的平面截圓錐得到。

 。4)球可以由半圓面繞直徑旋轉一周或圓面繞直徑旋轉半周得到。

  3、空間幾何體的三視圖

  空間幾何體的三視圖是用平行投影得到,這種投影下,與投影面平行的平面圖形留下的影子,與平面圖形的形狀和大小是全等和相等的,三視圖包括正視圖、側視圖、俯視圖、

  三視圖的長(cháng)度特征:“長(cháng)對正,寬相等,高平齊”,即正視圖和側視圖一樣高,正視圖和俯視圖一樣長(cháng),側視圖和俯視圖一樣寬、若相鄰兩物體的表面相交,表面的交線(xiàn)是它們的分界線(xiàn),在三視圖中,要注意實(shí)、虛線(xiàn)的畫(huà)法、

  4、空間幾何體的直觀(guān)圖

  空間幾何體的直觀(guān)圖常用斜二測畫(huà)法來(lái)畫(huà),基本步驟是:

 。1)畫(huà)幾何體的底面

  在已知圖形中取互相垂直的x軸、y軸,兩軸相交于點(diǎn)O,畫(huà)直觀(guān)圖時(shí),把它們畫(huà)成對應的x′軸、y′軸,兩軸相交于點(diǎn)O′,且使∠x(chóng)′O′y′=45°或135°,已知圖形中平行于x軸、y軸的線(xiàn)段,在直觀(guān)圖中平行于x′軸、y′軸、已知圖形中平行于x軸的線(xiàn)段,在直觀(guān)圖中長(cháng)度不變,平行于y軸的線(xiàn)段,長(cháng)度變?yōu)樵瓉?lái)的一半。

 。2)畫(huà)幾何體的高

  在已知圖形中過(guò)O點(diǎn)作z軸垂直于xOy平面,在直觀(guān)圖中對應的z′軸,也垂直于x′O′y′平面,已知圖形中平行于z軸的線(xiàn)段,在直觀(guān)圖中仍平行于z′軸且長(cháng)度不變。

  反比例函數

  形如y=k/x(k為常數且k≠0)的函數,叫做反比例函數。

  自變量x的取值范圍是不等于0的一切實(shí)數。

  反比例函數圖像性質(zhì):

  反比例函數的圖像為雙曲線(xiàn)。

  由于反比例函數屬于奇函數,有f(—x)=—f(x),圖像關(guān)于原點(diǎn)對稱(chēng)。

  另外,從反比例函數的解析式可以得出,在反比例函數的圖像上任取一點(diǎn),向兩個(gè)坐標軸作垂線(xiàn),這點(diǎn)、兩個(gè)垂足及原點(diǎn)所圍成的矩形面積是定值,為∣k∣。

  k分別為正和負(2和—2)時(shí)的函數圖像。

  當K>0時(shí),反比例函數圖像經(jīng)過(guò)一,三象限,是減函數

  當K<0時(shí),反比例函數圖像經(jīng)過(guò)二,四象限,是增函數

  反比例函數圖像只能無(wú)限趨向于坐標軸,無(wú)法和坐標軸相交。

  學(xué)好高中數學(xué)的方法

  克服畏難抵觸心理

  我們說(shuō),做什么事情都要有一個(gè)良好的心態(tài)。據科學(xué)家們分析,人在有心態(tài)問(wèn)題時(shí)是斷然不能發(fā)揮其平時(shí)百分之一百的水平,如果是在中考甚至是在高考的考場(chǎng)當中,心態(tài)出現了嚴重的問(wèn)題,那十年的光陰一瞬間就要功虧一簣了,這豈不是讓眾多考生無(wú)顏見(jiàn)江東父老了嗎。

  其實(shí),你絕對沒(méi)有必要對數學(xué)有任何的心理抵觸。

  舉一個(gè)簡(jiǎn)單的`例子,如一些應用題,雖然看上去文字描述比較多,但實(shí)際分析實(shí)用的數據僅僅有那么幾個(gè)而已,然后通過(guò)建立數學(xué)模型而列出方程,進(jìn)而得出答案。

  等完成后你會(huì )覺(jué)得數學(xué)最難的試題也不過(guò)如此的時(shí)候,頓時(shí)你的自豪感就會(huì )由然而生,這時(shí)你對數學(xué)的抵觸情緒便云開(kāi)霧散,灰飛煙滅了。

  上課40分鐘很重要

  對于課堂上老師所講的每一個(gè)公式,每一條定理都要深究其源,這樣即便在考試當中忘了公式,也可以很好的解決問(wèn)題,不至于內心的慌亂和緊張。另外要充分利用好課堂這短短的45分鐘的時(shí)間,盡量在課上將所學(xué)習的知識吸收,這樣回到家后才能進(jìn)一步展開(kāi)接下來(lái)的學(xué)習,節約時(shí)間。

  看書(shū)寫(xiě)作業(yè)的順序

  看書(shū)和寫(xiě)作業(yè)要注意順序,有的老師說(shuō)先寫(xiě)作業(yè)再復習,其實(shí)經(jīng)過(guò)證明這是完全不對的。因為在下課之后到你回家時(shí)又經(jīng)過(guò)了一段時(shí)間,這段時(shí)間難免你會(huì )把老師所講的重點(diǎn)或細節忘記,這種情況下寫(xiě)作業(yè)難免會(huì )有一些問(wèn)題。其實(shí),我們要養成良好的學(xué)習方法,盡量回家后先復習一下當天學(xué)習的知識,特別是所記的筆記要重點(diǎn)關(guān)照,然后在寫(xiě)作業(yè),這樣效果更佳。

  提升數學(xué)成績(jì)的方法

  注重課本上的例題

  也許你會(huì )這樣說(shuō):那些例題太簡(jiǎn)單了,我一看就會(huì )了。其實(shí),如果你不注意那些“過(guò)于簡(jiǎn)單”的例題的話(huà),在考試當中就會(huì )吃大虧。大家都知道,近幾年來(lái)不論是中考、高考等各種數學(xué)考試的解答試題基本上都是經(jīng)過(guò)例題改編而成,如果你平時(shí)養成了對例題不重視的習慣,那么到考試時(shí)候,它的特殊氣氛會(huì )使你處處都感到緊張,進(jìn)而對這樣簡(jiǎn)單的試題束手無(wú)策。所以,我們一定要在平時(shí)的學(xué)習中養成注重例題的習慣,這樣會(huì )在考試當中多一分勝算。

  面對考試,平時(shí)要彌補漏洞

  對于平時(shí)的測驗和考試不要注重于成績(jì),一定要找到自己的漏洞?荚嚨墓δ芫褪且獧z驗自己平時(shí)的學(xué)習上還有那些漏洞,有些同學(xué)過(guò)于注重成績(jì),怕在朋友面前丟面子。如果是這樣,我勸你還是多丟面子為好。錯題是你的寶貴經(jīng)驗,錯一次并不可怕,下一次做對不就可以了。俗話(huà)說(shuō):久病成醫,說(shuō)一句白話(huà),你錯的越多,考試再做這樣的試題正確率就會(huì )比別人更高,笑到最后的才笑得最好。

  準備錯題本,積累經(jīng)驗

  學(xué)習數學(xué),錯題不可避免。對錯題的心態(tài)人人各異,處理好反而會(huì )促進(jìn)你的學(xué)習熱情,但處理不好會(huì )使你學(xué)習數學(xué)的動(dòng)力進(jìn)一步減退。對于錯題,希望大家準備一個(gè)本,將錯題都寫(xiě)到這個(gè)本上,特別要寫(xiě)出此題所考的知識點(diǎn),自己的想法,正確答案,而自己怎么不能往正確的方向上想等等。日積月累,這個(gè)本便是你寶貴的財富,也是你的“小辮子”。它是你的弱點(diǎn),但攻克它雖然要費一些時(shí)間,但要相信你會(huì )在考試當中充分地體現你自己的優(yōu)勢的。

高一數學(xué)知識點(diǎn)總結3

  1、在運用性質(zhì)logaMn=nlogaM時(shí),要特別注意條件,在無(wú)M>0的條件下應為logaMn=nloga|M|(n∈N,且n為偶數)。

  2、對數值取正、負值的規律:

  當a>1且b>1,或00;

  3、對數函數的。定義域及單調性:

  在對數式中,真數必須大于0,所以對數函數y=logax的定義域應為{x|x>0}。對數函數的單調性和a的值有關(guān),因而,在研究對數函數的單調性時(shí),要按01進(jìn)行分類(lèi)討論。

  4、對數式的化簡(jiǎn)與求值的常用思路

 。1)先利用冪的`運算把底數或真數進(jìn)行變形,化成分數指數冪的形式,使冪的底數最簡(jiǎn),然后正用對數運算法則化簡(jiǎn)合并。

 。2)先將對數式化為同底數對數的和、差、倍數運算,然后逆用對數的運算法則,轉化為同底對數真數的積、商、冪再運算。

高一數學(xué)知識點(diǎn)總結4

  函數圖象

 。1)定義:在平面直角坐標系中,以函數y=f(x),(x∈A)中的x為橫坐標,函數值y為縱坐標的點(diǎn)P(x,y)的集合C,叫做函數y=f(x),(x∈A)的圖象。C上每一點(diǎn)的坐標(x,y)均滿(mǎn)足函數關(guān)系y=f(x),反過(guò)來(lái),以滿(mǎn)足y=f(x)的每一組有序實(shí)數對x、y為坐標的點(diǎn)(x,y),均在C上。即記為C={P(x,y)|y=f(x),x∈A}圖象C一般的是一條光滑的連續曲線(xiàn)(或直線(xiàn)),也可能是由與任意平行與Y軸的直線(xiàn)最多只有一個(gè)交點(diǎn)的若干條曲線(xiàn)或離散點(diǎn)組成。

 。2)畫(huà)法

  A、描點(diǎn)法:根據函數解析式和定義域,求出x,y的一些對應值并列表,以(x,y)為坐標在坐標系內描出相應的點(diǎn)P(x,y),最后用平滑的'曲線(xiàn)將這些點(diǎn)連接起來(lái)。

  B、圖象變換法

  常用變換方法有三種,即平移變換、伸縮變換和對稱(chēng)變換

 。3)作用:

  直觀(guān)的看出函數的性質(zhì);

  利用數形結合的方法分析解題的思路。提高解題的速度。

高一數學(xué)知識點(diǎn)總結5

  圓的方程定義:

  圓的標準方程(x—a)2+(y—b)2=r2中,有三個(gè)參數a、b、r,即圓心坐標為(a,b),只要求出a、b、r,這時(shí)圓的方程就被確定,因此確定圓方程,須三個(gè)獨立條件,其中圓心坐標是圓的定位條件,半徑是圓的定形條件。

  直線(xiàn)和圓的位置關(guān)系:

  1、直線(xiàn)和圓位置關(guān)系的判定方法一是方程的觀(guān)點(diǎn),即把圓的方程和直線(xiàn)的方程聯(lián)立成方程組,利用判別式Δ來(lái)討論位置關(guān)系。

 、佴>0,直線(xiàn)和圓相交、②Δ=0,直線(xiàn)和圓相切、③Δ<0,直線(xiàn)和圓相離。

  方法二是幾何的觀(guān)點(diǎn),即把圓心到直線(xiàn)的距離d和半徑R的大小加以比較。

 、賒R,直線(xiàn)和圓相離、

  2、直線(xiàn)和圓相切,這類(lèi)問(wèn)題主要是求圓的切線(xiàn)方程、求圓的切線(xiàn)方程主要可分為已知斜率k或已知直線(xiàn)上一點(diǎn)兩種情況,而已知直線(xiàn)上一點(diǎn)又可分為已知圓上一點(diǎn)和圓外一點(diǎn)兩種情況。

  3、直線(xiàn)和圓相交,這類(lèi)問(wèn)題主要是求弦長(cháng)以及弦的中點(diǎn)問(wèn)題。

  切線(xiàn)的性質(zhì)

 、艌A心到切線(xiàn)的距離等于圓的'半徑;

 、七^(guò)切點(diǎn)的半徑垂直于切線(xiàn);

 、墙(jīng)過(guò)圓心,與切線(xiàn)垂直的直線(xiàn)必經(jīng)過(guò)切點(diǎn);

 、冉(jīng)過(guò)切點(diǎn),與切線(xiàn)垂直的直線(xiàn)必經(jīng)過(guò)圓心;

  當一條直線(xiàn)滿(mǎn)足

 。1)過(guò)圓心;

 。2)過(guò)切點(diǎn);

 。3)垂直于切線(xiàn)三個(gè)性質(zhì)中的兩個(gè)時(shí),第三個(gè)性質(zhì)也滿(mǎn)足。

  切線(xiàn)的判定定理

  經(jīng)過(guò)半徑的外端點(diǎn)并且垂直于這條半徑的直線(xiàn)是圓的切線(xiàn)。

  切線(xiàn)長(cháng)定理

  從圓外一點(diǎn)作圓的兩條切線(xiàn),兩切線(xiàn)長(cháng)相等,圓心與這一點(diǎn)的連線(xiàn)平分兩條切線(xiàn)的夾角。

高一數學(xué)知識點(diǎn)總結6

  1、概念:

  (1)回歸直線(xiàn)方程

  (2)回歸系數

  2.最小二乘法

  3.直線(xiàn)回歸方程的應用

  (1)描述兩變量之間的依存關(guān)系;利用直線(xiàn)回歸方程即可定量描述兩個(gè)變量間依存的數量關(guān)系

  (2)利用回歸方程進(jìn)行預測;把預報因子(即自變量x)代入回歸方程對預報量(即因變量Y)進(jìn)行估計,即可得到個(gè)體Y值的容許區間。

  (3)利用回歸方程進(jìn)行統計控制規定Y值的變化,通過(guò)控制x的范圍來(lái)實(shí)現統計控制的目標。如已經(jīng)得到了空氣中NO2的濃度和汽車(chē)流量間的回歸方程,即可通過(guò)控制汽車(chē)流量來(lái)控制空氣中NO2的濃度。

  4.應用直線(xiàn)回歸的注意事項

  (1)做回歸分析要有實(shí)際意義;

  (2)回歸分析前,先作出散點(diǎn)圖;

  (3)回歸直線(xiàn)不要外延。

  高一數學(xué)復習方法推薦

  讀好課本,學(xué)會(huì )研究

  同學(xué)們應從高一開(kāi)始,增強自己從課本入手進(jìn)行研究的意識。同學(xué)們可以把每條定理、每道例題都當做習題,認真地重證、重解,并適當加些批注。要通過(guò)對典型例題的講解分析,歸納出解決這類(lèi)問(wèn)題的數學(xué)思想和方法,并做好解題后的反思,總結出解題的一般規律和特殊規律,以便推廣和靈活運用。另外,同學(xué)們要盡可能獨立解題,因為求解過(guò)程,也是培養分析問(wèn)題和解決問(wèn)題能力的一個(gè)過(guò)程,更是一個(gè)研究過(guò)程。

  記好筆記,注重課堂

  “要學(xué)好數學(xué),培養好的'聽(tīng)課習慣也很重要!蓖瑢W(xué)們在聽(tīng)課的時(shí)候要集中注意力,把老師講的關(guān)鍵性部分聽(tīng)懂、聽(tīng)會(huì )。聽(tīng)的時(shí)候要注意思考、分析問(wèn)題,但是光聽(tīng)不記,或光記不聽(tīng)必然顧此失彼,課堂效益低下,因此應適當地有目的性地記好筆記,領(lǐng)會(huì )課上老師的主要精神與意圖。

  做好作業(yè),講究規范

  在課堂、課外練習中,培養良好的作業(yè)習慣也很有必要。同學(xué)們在做作業(yè)時(shí),不但要做得整齊、清潔,培養一種美感,還要有條理,這是培養邏輯能力的一條有效途徑。作業(yè)應獨立完成,這樣可以培養獨立思考的能力和解題正確的責任感。在作業(yè)時(shí)要提倡效率,應該十分鐘完成的作業(yè),不拖到半小時(shí)完成,拖沓的做作業(yè)習慣容易使思維松散、精力不集中,這對培養數學(xué)能力是有害而無(wú)益的。

  寫(xiě)好總結,把握規律

  “不會(huì )總結的同學(xué),他的能力就不會(huì )提高,挫折經(jīng)驗是成功的基石!币獙W(xué)好數學(xué),同學(xué)們就應該經(jīng)常做好總結,把握規律。通過(guò)與老師、同學(xué)平時(shí)的接觸交流,可以逐步總結出一般性的學(xué)習步驟,包括:制定計劃、課前自學(xué)、專(zhuān)心上課、及時(shí)復習、獨立作業(yè)、解決疑難、系統小結和課外學(xué)習幾個(gè)方面,簡(jiǎn)單概括為四個(gè)環(huán)節(預習、上課、整理、作業(yè))和一個(gè)步驟(復習總結)。每一個(gè)環(huán)節都有較深刻的內容,帶有較強的目的性、針對性,要落實(shí)到位。應堅持“兩先兩后一小結”(先預習后聽(tīng)課,先復習后做作業(yè),寫(xiě)好每個(gè)單元的總結)的學(xué)習習慣。

高一數學(xué)知識點(diǎn)總結7

  集合的分類(lèi):

  1.有限集含有有限個(gè)元素的集合

  2.無(wú)限集含有無(wú)限個(gè)元素的集合

  3.空集不含任何元素的集合例:{x|x2=-5}二、集合間的基本關(guān)系1.“包含”關(guān)系—子集注意:有兩種可能

  (1)A是B的一部分;

  (2)A與B是同一集合。反之:集合A不包含于集合B,或集合B不包含集合A,記作AB或BA2.“相等”關(guān)系(5≥5,且5≤5,則5=5)實(shí)例:設A={x|x2-1=0}B={-1,1}“元素相同”

  結論:對于兩個(gè)集合A與B,如果集合A的任何一個(gè)元素都是集合B的元素,同時(shí),集合B的任何一個(gè)元素都是集合A的'元素,我們就說(shuō)集合A等于集合B,即:A=B

 、偃魏我粋(gè)集合是它本身的子集。A?A

 、谡孀蛹:如果A?B,且A?B那就說(shuō)集合A是集合B的真子集,記作AB(或BA)

 、廴绻鸄?B,B?C,那么A?C

 、苋绻鸄?B同時(shí)B?A那么A=B

  3.不含任何元素的集合叫做空集,記為Φ

  規定:空集是任何集合的子集,空集是任何非空集合的真子集。

高一數學(xué)知識點(diǎn)總結8

  數學(xué)是利用符號語(yǔ)言研究數量、結構、變化以及空間模型等概念的一門(mén)學(xué)科。小編準備了高一數學(xué)必修1期末考知識點(diǎn),希望你喜歡。

  一、集合有關(guān)概念

  1、集合的含義:某些指定的對象集在一起就成為一個(gè)集合,其中每一個(gè)對象叫元素.

  2、集合的中元素的三個(gè)特性:

  1.元素的確定性; 2.元素的互異性; 3.元素的無(wú)序性

  說(shuō)明:(1)對于一個(gè)給定的集合,集合中的元素是確定的,任何一個(gè)對象或者是或者不是這個(gè)給定的集合的元素.

  (2)任何一個(gè)給定的集合中,任何兩個(gè)元素都是不同的對象,相同的對象歸入一個(gè)集合時(shí),僅算一個(gè)元素.

  (3)集合中的元素是平等的,沒(méi)有先后順序,因此判定兩個(gè)集合是否一樣,僅需比較它們的元素是否一樣,不需考查排列順序是否一樣.

  (4)集合元素的三個(gè)特性使集合本身具有了確定性和整體性.

  3、集合的表示:{ } 如{我校的籃球隊員},{太平洋,大西洋,印度洋,北冰洋}

  1. 用拉丁字母表示集合:A={我校的籃球隊員},B={1,2,3,4,5}

  2.集合的表示方法:列舉法與描述法.

  注意。撼S脭导捌溆浄ǎ

  非負整數集(即自然數集)記作:N

  正整數集 N*或N+ 整數集Z 有理數集Q 實(shí)數集R

  關(guān)于屬于的概念

  集合的元素通常用小寫(xiě)的拉丁字母表示,如:a是集合A的元素,就說(shuō)a屬于集合A 記作 aA ,相反,a不屬于集合A 記作 a?A

  列舉法:把集合中的元素一一列舉出來(lái),然后用一個(gè)大括號括上.

  描述法:將集合中的元素的公共屬性描述出來(lái),寫(xiě)在大括號內表示集合的方法.用確定的條件表示某些對象是否屬于這個(gè)集合的方法.

 、僬Z(yǔ)言描述法:例:{不是直角三角形的三角形}

 、跀祵W(xué)式子描述法:例:不等式x-32的解集是{x?R| x-32}或{x| x-32}

  4、集合的分類(lèi):

  1.有限集 含有有限個(gè)元素的集合

  2.無(wú)限集 含有無(wú)限個(gè)元素的集合

  3.空集 不含任何元素的集合 例:{x|x2=-5}

  二、集合間的基本關(guān)系

  1.包含關(guān)系子集

  注意: 有兩種可能(1)A是B的一部分,;(2)A與B是同一集合.

  反之: 集合A不包含于集合B,或集合B不包含集合A,記作A B或B A

  2.相等關(guān)系(55,且55,則5=5)

  實(shí)例:設 A={x|x2-1=0} B={-1,1} 元素相同

  結論:對于兩個(gè)集合A與B,如果集合A的任何一個(gè)元素都是集合B的元素,同時(shí),集合B的任何一個(gè)元素都是集合A的元素,我們就說(shuō)集合A等于集合B,即:A=B

 、 任何一個(gè)集合是它本身的子集.AA

 、谡孀蛹:如果AB,且A1 B那就說(shuō)集合A是集合B的`真子集,記作A B(或B A)

 、廴绻 AB, BC ,那么 AC

 、 如果AB 同時(shí) BA 那么A=B

  3. 不含任何元素的集合叫做空集,記為

  規定: 空集是任何集合的子集, 空集是任何非空集合的真子集.

  三、集合的運算

  1.交集的定義:一般地,由所有屬于A(yíng)且屬于B的元素所組成的集合,叫做A,B的交集.

  記作AB(讀作A交B),即AB={x|xA,且xB}.

  2、并集的定義:一般地,由所有屬于集合A或屬于集合B的元素所組成的集合,叫做A,B的并集.記作:AB(讀作A并B),即AB={x|xA,或xB}.

  3、交集與并集的性質(zhì):AA = A, A=, AB = BA,AA = A,

  A= A ,AB = BA.

  4、全集與補集

  (1)補集:設S是一個(gè)集合,A是S的一個(gè)子集(即 ),由S中所有不屬于A(yíng)的元素組成的集合,叫做S中子集A的補集(或余集)

  (2)全集:如果集合S含有我們所要研究的各個(gè)集合的全部元素,這個(gè)集合就可以看作一個(gè)全集.通常用U來(lái)表示.

  (3)性質(zhì):⑴CU(C UA)=A ⑵(C UA) ⑶(CUA)A=U

高一數學(xué)知識點(diǎn)總結9

  練習

  1.下列幾種關(guān)于投影的說(shuō)法不正確的是( )

  A.平行投影的投影線(xiàn)是互相平行的

  B.中心投影的投影線(xiàn)是互相垂直的

  C.線(xiàn)段上的點(diǎn)在中心投影下仍然在線(xiàn)段上

  D.平行的.直線(xiàn)在中心投影中不平行

  2.根據下列對于幾何結構特征的描述,說(shuō)出幾何體的名稱(chēng):

  (1)由7個(gè)面圍成,其中兩個(gè)面是互相平行且全等的五邊形,其他面都是全等的矩形;

  (2)一個(gè)等腰三角形繞著(zhù)底邊上的高所在的直線(xiàn)旋轉180度形成的封閉曲面所圍成的圖形;

  (3)一個(gè)等腰直角三角形繞著(zhù)底邊上所在的直線(xiàn)旋轉360度形成的封閉曲面所圍成的圖形.

高一數學(xué)知識點(diǎn)總結10

  1、集合的概念

  集合是集合論中的不定義的原始概念,教材中對集合的概念進(jìn)行了描述性說(shuō)明:“一般地,把一些能夠確定的不同的對象看成一個(gè)整體,就說(shuō)這個(gè)整體是由這些對象的全體構成的集合(或集)”。理解這句話(huà),應該把握4個(gè)關(guān)鍵詞:對象、確定的、不同的、整體。

  對象――即集合中的元素。集合是由它的元素確定的。

  整體――集合不是研究某一單一對象的,它關(guān)注的`是這些對象的全體。

  確定的――集合元素的確定性――元素與集合的“從屬”關(guān)系。

  不同的――集合元素的互異性。

  2、有限集、無(wú)限集、空集的意義

  有限集和無(wú)限集是針對非空集合來(lái)說(shuō)的。我們理解起來(lái)并不困難。

  我們把不含有任何元素的集合叫做空集,記做Φ。理解它時(shí)不妨思考一下“0與Φ”及“Φ與{Φ}”的關(guān)系。

  幾個(gè)常用數集N、N_N+、Z、Q、R要記牢。

  3、集合的表示方法

  (1)列舉法的表示形式比較容易掌握,并不是所有的集合都能用列舉法表示,同學(xué)們需要知道能用列舉法表示的三種集合:

 、僭夭惶嗟挠邢藜,如{0,1,8}

 、谠剌^多但呈現一定的規律的有限集,如{1,2,3,…,100}

 、鄢尸F一定規律的無(wú)限集,如{1,2,3,…,n,…}

  ●注意a與{a}的區別

  ●注意用列舉法表示集合時(shí),集合元素的“無(wú)序性”。

  (2)特征性質(zhì)描述法的關(guān)鍵是把所研究的集合的“特征性質(zhì)”找準,然后適當地表示出來(lái)就行了。但關(guān)鍵點(diǎn)也是難點(diǎn)。學(xué)習時(shí)多加練習就可以了。另外,弄清“代表元素”也是非常重要的。如{x|y=x2},{y|y=x2},{(x,y)|y=x2}是三個(gè)不同的集合。

  4、集合之間的關(guān)系

  ●注意區分“從屬”關(guān)系與“包含”關(guān)系

  “從屬”關(guān)系是元素與集合之間的關(guān)系。

  “包含”關(guān)系是集合與集合之間的關(guān)系。掌握子集、真子集的概念,掌握集合相等的概念,學(xué)會(huì )正確使用“”等符號,會(huì )用Venn圖描述集合之間的關(guān)系是基本要求。

  ●注意辨清Φ與{Φ}兩種關(guān)系。

高一數學(xué)知識點(diǎn)總結11

  圓的方程定義:

  圓的標準方程(x-a)2+(y-b)2=r2中,有三個(gè)參數a、b、r,即圓心坐標為(a,b),只要求出a、b、r,這時(shí)圓的方程就被確定,因此確定圓方程,須三個(gè)獨立條件,其中圓心坐標是圓的定位條件,半徑是圓的定形條件。

  直線(xiàn)和圓的位置關(guān)系:

  1.直線(xiàn)和圓位置關(guān)系的判定方法一是方程的觀(guān)點(diǎn),即把圓的方程和直線(xiàn)的方程聯(lián)立成方程組,利用判別式Δ來(lái)討論位置關(guān)系.

 、佴>0,直線(xiàn)和圓相交.②Δ=0,直線(xiàn)和圓相切.③Δ<0,直線(xiàn)和圓相離.

  方法二是幾何的觀(guān)點(diǎn),即把圓心到直線(xiàn)的距離d和半徑R的大小加以比較.

 、賒R,直線(xiàn)和圓相離.

  2.直線(xiàn)和圓相切,這類(lèi)問(wèn)題主要是求圓的切線(xiàn)方程.求圓的切線(xiàn)方程主要可分為已知斜率k或已知直線(xiàn)上一點(diǎn)兩種情況,而已知直線(xiàn)上一點(diǎn)又可分為已知圓上一點(diǎn)和圓外一點(diǎn)兩種情況.

  3.直線(xiàn)和圓相交,這類(lèi)問(wèn)題主要是求弦長(cháng)以及弦的中點(diǎn)問(wèn)題.

  切線(xiàn)的性質(zhì)

 、艌A心到切線(xiàn)的距離等于圓的半徑;

 、七^(guò)切點(diǎn)的半徑垂直于切線(xiàn);

 、墙(jīng)過(guò)圓心,與切線(xiàn)垂直的直線(xiàn)必經(jīng)過(guò)切點(diǎn);

 、冉(jīng)過(guò)切點(diǎn),與切線(xiàn)垂直的直線(xiàn)必經(jīng)過(guò)圓心;

  當一條直線(xiàn)滿(mǎn)足

  (1)過(guò)圓心;

  (2)過(guò)切點(diǎn);

  (3)垂直于切線(xiàn)三個(gè)性質(zhì)中的兩個(gè)時(shí),第三個(gè)性質(zhì)也滿(mǎn)足.

  切線(xiàn)的判定定理

  經(jīng)過(guò)半徑的外端點(diǎn)并且垂直于這條半徑的.直線(xiàn)是圓的切線(xiàn).

  切線(xiàn)長(cháng)定理

  從圓外一點(diǎn)作圓的兩條切線(xiàn),兩切線(xiàn)長(cháng)相等,圓心與這一點(diǎn)的連線(xiàn)平分兩條切線(xiàn)的夾角.

  圓錐曲線(xiàn)性質(zhì):

  一、圓錐曲線(xiàn)的定義

  1.橢圓:到兩個(gè)定點(diǎn)的距離之和等于定長(cháng)(定長(cháng)大于兩個(gè)定點(diǎn)間的距離)的動(dòng)點(diǎn)的軌跡叫做橢圓.

  2.雙曲線(xiàn):到兩個(gè)定點(diǎn)的距離的差的絕對值為定值(定值小于兩個(gè)定點(diǎn)的距離)的動(dòng)點(diǎn)軌跡叫做雙曲線(xiàn).即.

  3.圓錐曲線(xiàn)的統一定義:到定點(diǎn)的距離與到定直線(xiàn)的距離的比e是常數的點(diǎn)的軌跡叫做圓錐曲線(xiàn).當01時(shí)為雙曲線(xiàn).

  二、圓錐曲線(xiàn)的方程

  1.橢圓:+=1(a>b>0)或+=1(a>b>0)(其中,a2=b2+c2)

  2.雙曲線(xiàn):-=1(a>0,b>0)或-=1(a>0,b>0)(其中,c2=a2+b2)

  3.拋物線(xiàn):y2=±2px(p>0),x2=±2py(p>0)

  三、圓錐曲線(xiàn)的性質(zhì)

  1.橢圓:+=1(a>b>0)

  (1)范圍:|x|≤a,|y|≤b(2)頂點(diǎn):(±a,0),(0,±b)(3)焦點(diǎn):(±c,0)(4)離心率:e=∈(0,1)(5)準線(xiàn):x=±

  2.雙曲線(xiàn):-=1(a>0,b>0)(1)范圍:|x|≥a,y∈R(2)頂點(diǎn):(±a,0)(3)焦點(diǎn):(±c,0)(4)離心率:e=∈(1,+∞)(5)準線(xiàn):x=±(6)漸近線(xiàn):y=±x

  3.拋物線(xiàn):y2=2px(p>0)(1)范圍:x≥0,y∈R(2)頂點(diǎn):(0,0)(3)焦點(diǎn):(,0)(4)離心率:e=1(5)準線(xiàn):x=-

高一數學(xué)知識點(diǎn)總結12

  一、指數函數

  (一)指數與指數冪的運算

  1.根式的概念:一般地,如果,那么叫做的次方根(nthroot),其中>1,且∈_.

  當是奇數時(shí),正數的次方根是一個(gè)正數,負數的次方根是一個(gè)負數.此時(shí),的次方根用符號表示.式子叫做根式(radical),這里叫做根指數(radicalexponent),叫做被開(kāi)方數(radicand).

  當是偶數時(shí),正數的次方根有兩個(gè),這兩個(gè)數互為相反數.此時(shí),正數的正的次方根用符號表示,負的次方根用符號-表示.正的次方根與負的次方根可以合并成±(>0).由此可得:負數沒(méi)有偶次方根;0的任何次方根都是0,記作。

  注意:當是奇數時(shí),當是偶數時(shí),

  2.分數指數冪

  正數的分數指數冪的意義,規定:

  0的正分數指數冪等于0,0的負分數指數冪沒(méi)有意義

  指出:規定了分數指數冪的意義后,指數的概念就從整數指數推廣到了有理數指數,那么整數指數冪的運算性質(zhì)也同樣可以推廣到有理數指數冪.

  3.實(shí)數指數冪的運算性質(zhì)

  (二)指數函數及其性質(zhì)

  1、指數函數的概念:一般地,函數叫做指數函數(exponential),其中x是自變量,函數的定義域為R.

  注意:指數函數的底數的取值范圍,底數不能是負數、零和1.

  2、指數函數的圖象和性質(zhì)

  【第三章:第三章函數的應用】

  1、函數零點(diǎn)的概念:對于函數,把使成立的實(shí)數叫做函數的零點(diǎn)。

  2、函數零點(diǎn)的意義:函數的零點(diǎn)就是方程實(shí)數根,亦即函數的圖象與軸交點(diǎn)的橫坐標。即:

  方程有實(shí)數根函數的圖象與軸有交點(diǎn)函數有零點(diǎn).

  3、函數零點(diǎn)的求法:

  求函數的零點(diǎn):

  (1)(代數法)求方程的實(shí)數根;

  (2)(幾何法)對于不能用求根公式的方程,可以將它與函數的圖象聯(lián)系起來(lái),并利用函數的性質(zhì)找出零點(diǎn).

  4、二次函數的零點(diǎn):

  二次函數.

  1)△>0,方程有兩不等實(shí)根,二次函數的圖象與軸有兩個(gè)交點(diǎn),二次函數有兩個(gè)零點(diǎn).  2)△=0,方程有兩相等實(shí)根(二重根),二次函數的圖象與軸有一個(gè)交點(diǎn),二次函數有一個(gè)二重零點(diǎn)或二階零點(diǎn).

  3)△<0,方程無(wú)實(shí)根,二次函數的圖象與軸無(wú)交點(diǎn),二次函數無(wú)零點(diǎn).

  3.2.1幾類(lèi)不同增長(cháng)的函數模型

  【課 型】新授課

  【教學(xué)目標】

  結合實(shí)例體會(huì )直線(xiàn)上升、指數爆炸、對數增長(cháng)等不同增長(cháng)的函數模型意義, 理解它們的.增長(cháng)差異性.

  【教學(xué)重點(diǎn)、難點(diǎn)】

  1. 教學(xué)重點(diǎn) 將實(shí)際問(wèn)題轉化為函數模型,比較常數函數、一次函數、指數函數、對數函數模型的增長(cháng)差異,結合實(shí)例體會(huì )直線(xiàn)上升、指數爆炸、對數增長(cháng)等不同函數類(lèi)型增長(cháng)的含義.

  2.教學(xué)難點(diǎn) 選擇合適的數學(xué)模型分析解決實(shí)際問(wèn)題.

  【學(xué)法與教學(xué)用具】

  1. 學(xué)法:學(xué)生通過(guò)閱讀教材,動(dòng)手畫(huà)圖,自主學(xué)習、思考,并相互討論,進(jìn)行探索.

  2.教學(xué)用具:多媒體.

  【教學(xué)過(guò)程】

  (一)引入實(shí)例,創(chuàng )設情景.

  教師引導學(xué)生閱讀例1,分析其中的數量關(guān)系,思考應當選擇怎樣的函數模型來(lái)描述;由學(xué)生自己根據數量關(guān)系,歸納概括出相應的函數模型,寫(xiě)出每個(gè)方案的函數解析式,教師在數量關(guān)系的分析、函數模型的選擇上作指導.

  (二)互動(dòng)交流,探求新知.

  1. 觀(guān)察數據,體會(huì )模型.

  教師引導學(xué)生觀(guān)察例1表格中三種方案的數量變化情況,體會(huì )三種函數的增長(cháng)差異,說(shuō)出自己的發(fā)現,并進(jìn)行交流.

  2. 作出圖象,描述特點(diǎn).

  教師引導學(xué)生借助計算器作出三個(gè)方案的函數圖象,分析三種方案的不同變化趨勢,并進(jìn)行描述,為方案選擇提供依據.

  (三)實(shí)例運用,鞏固提高.

  1. 教師引導學(xué)生分析影響方案選擇的因素,使學(xué)生認識到要做出正確選擇除了考慮每天的收益,還要考慮一段時(shí)間內的總收益.學(xué)生通過(guò)自主活動(dòng),分析整理數據,并根據其中的信息做出推理判斷,獲得累計收益并給出本例的完整解答,然后全班進(jìn)行交流.

  2. 教師引導學(xué)生分析例2中三種函數的不同增長(cháng)情況對于獎勵模型的影響,使學(xué)生明確問(wèn)題的實(shí)質(zhì)就是比較三個(gè)函數的增長(cháng)情況,進(jìn)一步體會(huì )三種基本函數模型在實(shí)際中廣泛應用,體會(huì )它們的增長(cháng)差異.

  3.教師引導學(xué)生分析得出:要對每一個(gè)獎勵模型的獎金總額是否超出5萬(wàn)元,以及獎勵比例是否超過(guò)25%進(jìn)行分析,才能做出正確選擇,學(xué)會(huì )對數據的特點(diǎn)與作用進(jìn)行分析、判斷。

  4.教師引導學(xué)生利用解析式,結合圖象,對例2的三個(gè)模型的增長(cháng)情況進(jìn)行分析比較,寫(xiě)出完整的解答過(guò)程.進(jìn)一步認識三個(gè)函數模型的增長(cháng)差異,并掌握解答的規范要求.

  5.教師引導學(xué)生通過(guò)以上具體函數進(jìn)行比較分析,探究?jì)绾瘮?>0)、指數函數(>1)、對數函數(>1)在區間(0,+∞)上的增長(cháng)差異,并從函數的性質(zhì)上進(jìn)行研究、論證,同學(xué)之間進(jìn)行交流總結,形成結論性報告.教師對學(xué)生的結論進(jìn)行評析,借助信息技術(shù)手段進(jìn)行驗證演示.

  6. 課堂練習

  教材P98練習1、2,并由學(xué)生演示,進(jìn)行講評。

  (四)歸納總結,提升認識.

  教師通過(guò)計算機作圖進(jìn)行總結,使學(xué)生認識直線(xiàn)上升、指數爆炸、對數增長(cháng)等不同函數模型的含義及其差異,認識數學(xué)與現實(shí)生活、與其他學(xué)科的密切聯(lián)系,從而體會(huì )數學(xué)的實(shí)用價(jià)值和內在變化規律.

  (五)布置作業(yè)

  教材P107練習第2題

  收集一些社會(huì )生活中普遍使用的遞增的一次函數、指數函數、對數函數的實(shí)例,對它們的增長(cháng)速度進(jìn)行比較,了解函數模型的廣泛應用,并思考。有時(shí)同一個(gè)實(shí)際問(wèn)題可以建立多個(gè)函數模型,在具體應用函數模型時(shí),應該怎樣選用合理的函數模型.

  3.2.2 函數模型的應用實(shí)例(Ⅰ)

  【課 型】新授課

  【教學(xué)目標】

  能夠找出簡(jiǎn)單實(shí)際問(wèn)題中的函數關(guān)系式,初步體會(huì )應用一次函數、二次函數模型解決實(shí)際問(wèn)題.

  【教學(xué)重點(diǎn)與難點(diǎn)】

  1.教學(xué)重點(diǎn):運用一次函數、二次函數模型解決一些實(shí)際問(wèn)題.

  2. 教學(xué)難點(diǎn):將實(shí)際問(wèn)題轉變?yōu)閿祵W(xué)模型.

  【學(xué)法與教學(xué)用具】

  1. 學(xué)法:學(xué)生自主閱讀教材,采用嘗試、討論方式進(jìn)行探究.

  2. 教學(xué)用具:多媒體

  【教學(xué)過(guò)程】

  (一)創(chuàng )設情景,揭示課題

  引例:大約在一千五百年前,大數學(xué)家孫子在《孫子算經(jīng)》中記載了這樣的一道題:“今有雛兔同籠,上有三十五頭,下有九十四足,問(wèn)雛兔各幾何?”這四句的意思就是:有若干只有幾只雞和兔?你知道孫子是如何解答這個(gè)“雞兔同籠”問(wèn)題的嗎?你有什么更好的方法?老師介紹孫子的大膽解法:他假設砍去每只雞和兔一半的腳,則每只雞和兔就變成了“獨腳雞”和“雙腳兔”.這樣,“獨腳雞”和“雙腳兔”腳的數量與它們頭的數量之差,就是兔子數,即:47-35=12;雞數就是:35-12=23.

  比例激發(fā)學(xué)生學(xué)習興趣,增強其求知欲望.

  可引導學(xué)生運用方程的思想解答“雞兔同籠”問(wèn)題.

  (二)結合實(shí)例,探求新知

  例1. 某列火車(chē)眾北京西站開(kāi)往石家莊,全程277km,火車(chē)出發(fā)10min開(kāi)出13km后,以120km/h勻速行駛.試寫(xiě)出火車(chē)行駛的總路程S與勻速行駛的時(shí)間t之間的關(guān)系式,并求火車(chē)離開(kāi)北京2h內行駛的路程.

  探索:

  1)本例所涉及的變量有哪些?它們的取值范圍怎樣;

  2)所涉及的變量的關(guān)系如何?

  3)寫(xiě)出本例的解答過(guò)程.

  老師提示:路程S和自變量t的取值范圍(即函數的定義域),注意t的實(shí)際意義.

  學(xué)生獨立思考,完成解答,并相互討論、交流、評析.

  例2.某商店出售茶壺和茶杯,茶壺每只定價(jià)20元,茶杯每只定價(jià)5元,該商店制定了兩種優(yōu)惠辦法:

  1)本例所涉及的變量之間的關(guān)系可用何種函數模型來(lái)描述?

  2)本例涉及到幾個(gè)函數模型?

  3)如何理解“更省錢(qián)?”;

  4)寫(xiě)出具體的解答過(guò)程.

  在學(xué)生自主思考,相互討論完成本例題解答之后,老師小結:通過(guò)以上兩例,數學(xué)模型是用數學(xué)語(yǔ)言模擬現實(shí)的一種模型,它把實(shí)際問(wèn)題中某些事物的主要特征和關(guān)系抽象出來(lái),并用數學(xué)語(yǔ)言來(lái)表達,這一過(guò)程稱(chēng)為建模,是解應用題的關(guān)鍵。數學(xué)模型可采用各種形式,如方程(組),函數解析式,圖形與網(wǎng)絡(luò )等.

高一數學(xué)知識點(diǎn)總結13

  對于a的取值為非零有理數,有必要分成幾種情況來(lái)討論各自的特性:

  首先我們知道如果a=p/q,q和p都是整數,則x^(p/q)=q次根號(x的p次方),如果q是奇數,函數的定義域是R,如果q是偶數,函數的定義域是[0,+∞)。當指數n是負整數時(shí),設a=-k,則x=1/(x^k),顯然x≠0,函數的定義域是(-∞,0)∪(0,+∞)。因此可以看到x所受到的限制來(lái)源于兩點(diǎn),一是有可能作為分母而不能是0,一是有可能在偶數次的根號下而不能為負數,那么我們就可以知道:

  排除了為0與負數兩種可能,即對于x>0,則a可以是任意實(shí)數;

  排除了為0這種可能,即對于x<0和x>0的所有實(shí)數,q不能是偶數;

  排除了為負數這種可能,即對于x為大于且等于0的所有實(shí)數,a就不能是負數。

  總結起來(lái),就可以得到當a為不同的數值時(shí),冪函數的定義域的不同情況如下:如果a為任意實(shí)數,則函數的定義域為大于0的所有實(shí)數;

  如果a為負數,則x肯定不能為0,不過(guò)這時(shí)函數的定義域還必須根據q的奇偶性來(lái)確定,即如果同時(shí)q為偶數,則x不能小于0,這時(shí)函數的定義域為大于0的所有實(shí)數;如果同時(shí)q為奇數,則函數的定義域為不等于0的所有實(shí)數。

  在x大于0時(shí),函數的.值域總是大于0的實(shí)數。

  在x小于0時(shí),則只有同時(shí)q為奇數,函數的值域為非零的實(shí)數。

  而只有a為正數,0才進(jìn)入函數的值域。

  由于x大于0是對a的任意取值都有意義的,因此下面給出冪函數在第一象限的各自情況。

  (1)所有的圖形都通過(guò)(1,1)這點(diǎn)。

  (2)當a大于0時(shí),冪函數為單調遞增的,而a小于0時(shí),冪函數為單調遞減函數。

  (3)當a大于1時(shí),冪函數圖形下凹;當a小于1大于0時(shí),冪函數圖形上凸。

  (4)當a小于0時(shí),a越小,圖形傾斜程度越大。

  (5)a大于0,函數過(guò)(0,0);a小于0,函數不過(guò)(0,0)點(diǎn)。

  (6)顯然冪函數無(wú)界。

  拓展閱讀:高一數學(xué)學(xué)習方法技巧

  1、課后及時(shí)回憶

  如果等到把課堂內容遺忘得差不多時(shí)才復習,就幾乎等于重新學(xué)習,所以課堂學(xué)習的新知識必須及時(shí)復習,可以一個(gè)人單獨回憶,也可以幾個(gè)人在一起互相啟發(fā),補充回憶。一般按照教師板書(shū)的提綱和要領(lǐng)進(jìn)行,也可以按教材綱目結構進(jìn)行,從課題到重點(diǎn)內容,再到例題的每部分的細節,循序漸進(jìn)地進(jìn)行復習。在復習過(guò)程中要不失時(shí)機整理筆記,因為整理筆記也是一種有效的復習方法。

  2、定期重復鞏固

  即使是復習過(guò)的內容仍須定期鞏固,但是復習的次數應隨時(shí)間的增長(cháng)而逐步減小,間隔也可以逐漸拉長(cháng)?梢援斕祆柟绦轮R,每周進(jìn)行周小結,每月進(jìn)行階段性總結,期中、期末進(jìn)行全面系統的學(xué)期復習。從內容上看,每課知識即時(shí)回顧,每單元進(jìn)行知識梳理,每章節進(jìn)行知識歸納總結,必須把相關(guān)知識串聯(lián)在一起,形成知識網(wǎng)絡(luò ),達到對知識和方法的整體把握。

  3、科學(xué)合理安排

  復習一般可以分為集中復習和分散復習。實(shí)驗證明,分散復習的效果優(yōu)于集中復習,特殊情況除外。分散復習,可以把需要識記的材料適當分類(lèi),并且與其他的學(xué)習或娛樂(lè )或休息交替進(jìn)行,不至于單調使用某種思維方式,形成疲勞。分散復習也應結合各自認知水平,以及識記素材的特點(diǎn),把握重復次數與間隔時(shí)間,并非間隔時(shí)間越長(cháng)越好,而要適合自己的復習規律。

高一數學(xué)知識點(diǎn)總結14

  1、高一數學(xué)知識點(diǎn)總結:集合一、集合有關(guān)概念

  1.集合的含義

  2.集合的中元素的三個(gè)特性:

  (1)元素的確定性如:世界上最高的山

  (2)元素的互異性如:由HAPPY的字母組成的集合{H,A,P,Y}

  (3)元素的無(wú)序性:如:{a,b,c}和{a,c,b}是表示同一個(gè)集合

  3.集合的表示:{…}如:{我校的籃球隊員},{太平洋,大西洋,印度洋,北冰洋}

  (1)用拉丁字母表示集合:A={我校的籃球隊員},B={1,2,3,4,5}

  (2)集合的表示方法:列舉法與描述法。

  注意:常用數集及其記法:

  非負整數集(即自然數集)記作:N

  正整數集N或N+整數集Z有理數集Q實(shí)數集R

  1)列舉法:{a,b,c……}

  2)描述法:將集合中的元素的公共屬性描述出來(lái),寫(xiě)在大

  括號內表示集合的方法。{x∈R|x-3>2},{x|x-3>2}

  3)語(yǔ)言描述法:例:{不是直角三角形的三角形}

  4)Venn圖:

  4、集合的分類(lèi):

  (1)有限集含有有限個(gè)元素的集合

  (2)無(wú)限集含有無(wú)限個(gè)元素的集合

  (3)空集不含任何元素的集合例:{x|x2=-5}

  2、高一數學(xué)知識點(diǎn)總結:集合間的基本關(guān)系

  1.“包含”關(guān)系—子集

  注意:A?B有兩種可能(1)A是B的一部分;(2)A與B是同一集合。

  反之:集合A不包含于集合B,或集合B不包含集合A,記作A?/B或B?/A

  2.“相等”關(guān)系:A=B(5≥5,且5≤5,則5=5)

  實(shí)例:設A={x|x2

  -1=0}B={-1,1}“元素相同則兩集合相等”即:①任何一個(gè)集合是它本身的子集。A?A

 、谡孀蛹:如果A?B,且A≠B那就說(shuō)集合A是集合B的真子集,記作AB(或BA)

 、廴绻鸄?B,B?C,那么A?C

 、苋绻鸄?B同時(shí)B?A那么A=B

  3.不含任何元素的集合叫做空集,記為Φ

  規定:空集是任何集合的子集,空集是任何非空集合的真子集。

  有n個(gè)元素的集合,含有2n個(gè)子集,2n-1個(gè)真子集,一般我們把不含任何元素的集合叫做空集。

  3、高一數學(xué)知識點(diǎn)總結:集合的分類(lèi)(1)按元素屬性分類(lèi),如點(diǎn)集,數集。(2)按元素的個(gè)數多少,分為有/無(wú)限集

  關(guān)于集合的概念:

  (1)確定性:作為一個(gè)集合的元素,必須是確定的,這就是說(shuō),不能確定的對象就不能構成集合,也就是說(shuō),給定一個(gè)集合,任何一個(gè)對象是不是這個(gè)集合的元素也就確定了。

  (2)互異性:對于一個(gè)給定的集合,集合中的元素一定是不同的(或說(shuō)是互異的),這就是說(shuō),集合中的任何兩個(gè)元素都是不同的對象,相同的對象歸入同一個(gè)集合時(shí)只能算作集合的一個(gè)元素。

  (3)無(wú)序性:判斷一些對象時(shí)候構成集合,關(guān)鍵在于看這些對象是否有明確的標準。

  集合可以根據它含有的元素的個(gè)數分為兩類(lèi):

  含有有限個(gè)元素的集合叫做有限集,含有無(wú)限個(gè)元素的集合叫做無(wú)限集。

  非負整數全體構成的集合,叫做自然數集,記作N;

  在自然數集內排除0的`集合叫做正整數集,記作N+或N;

  整數全體構成的集合,叫做整數集,記作Z;

  有理數全體構成的集合,叫做有理數集,記作Q;(有理數是整數和分數的統稱(chēng),一切有理數都可以化成分數的形式。)

  實(shí)數全體構成的集合,叫做實(shí)數集,記作R。(包括有理數和無(wú)理數。其中無(wú)理數就是無(wú)限不循環(huán)小數,有理數就包括整數和分數。數學(xué)上,實(shí)數直觀(guān)地定義為和數軸上的點(diǎn)一一對應的數。)

  1.列舉法:如果一個(gè)集合是有限集,元素又不太多,常常把集合的所有元素都列舉出來(lái),寫(xiě)在花括號“{}”內表示這個(gè)集合,例如,由兩個(gè)元素0,1構成的集合可表示為{0,1}.

  有些集合的元素較多,元素的排列又呈現一定的規律,在不致于發(fā)生誤解的情況下,也可以列出幾個(gè)元素作為代表,其他元素用省略號表示。

  例如:不大于100的自然數的全體構成的集合,可表示為{0,1,2,3,…,100}.

  無(wú)限集有時(shí)也用上述的列舉法表示,例如,自然數集N可表示為{1,2,3,…,n,…}.

  2.描述法:一種更有效地描述集合的方法,是用集合中元素的特征性質(zhì)來(lái)描述。

  例如:正偶數構成的集合,它的每一個(gè)元素都具有性質(zhì):“能被2整除,且大于0”

  而這個(gè)集合外的其他元素都不具有這種性質(zhì),因此,我們可以用上述性質(zhì)把正偶數集合表示為

  {x∈R│x能被2整除,且大于0}或{x∈R│x=2n,n∈N+},

  大括號內豎線(xiàn)左邊的X表示這個(gè)集合的任意一個(gè)元素,元素X從實(shí)數集合中取值,在豎線(xiàn)右邊寫(xiě)出只有集合內的元素x才具有的性質(zhì)。

  一般地,如果在集合I中,屬于集合A的任意一個(gè)元素x都具有性質(zhì)p(x),而不屬于集合A的元素都不具有的性質(zhì)p(x),則性質(zhì)p(x)叫做集合A的一個(gè)特征性質(zhì)。于是,集合A可以用它的性質(zhì)p(x)描述為{x∈I│p(x)}

  它表示集合A是由集合I中具有性質(zhì)p(x)的所有元素構成的,這種表示集合的方法,叫做特征性質(zhì)描述法,簡(jiǎn)稱(chēng)描述法。

  例如:集合A={x∈R│x2-1=0}的特征是X2-1=0

高一數學(xué)知識點(diǎn)總結15

  一、集合

  1.集合的含義

  2.集合的中元素的三個(gè)特性:

  (1)元素的確定性如:世界上最高的山

  (2)元素的互異性如:由HAPPY的字母組成的集合{H,A,P,Y}

  (3)元素的無(wú)序性: 如:{a,b,c}和{a,c,b}是表示同一個(gè)集合

  3.集合的表示:{ … } 如:{我校的籃球隊員},{太平洋,大西洋,印度洋,北冰洋}

  (1)用拉丁字母表示集合:A={我校的籃球隊員},B={1,2,3,4,5}

  (2)集合的表示方法:列舉法與描述法。

  u注意:常用數集及其記法:

  非負整數集(即自然數集) 記作:N

  正整數集 N*或 N+ 整數集Z 有理數集Q 實(shí)數集R

  1)列舉法:{a,b,c……}

  2)描述法:將集合中的元素的公共屬性描述出來(lái),寫(xiě)在大括號內表示集合的`方法。{xR| x-3>2} ,{x| x-3>2}

  3)語(yǔ)言描述法:例:{不是直角三角形的三角形}

  4)Venn圖:

  4、集合的分類(lèi):

  (1)有限集-含有有限個(gè)元素的集合

  (2)無(wú)限集-含有無(wú)限個(gè)元素的集合

  (3)空集-不含任何元素的集合;例:{x|x2=-5}

  二、集合間的基本關(guān)系

  1.“包含”關(guān)系—子集

  注意:

  有兩種可能(1)A是B的一部分,;(2)A與B是同一集合。反之: 集合A不包含于集合B,或集合B不包含集合A,記作A

  2.“相等”關(guān)系:A=B (5≥5,且5≤5,則5=5)

  實(shí)例:設 A={x|x2-1=0} B={-1,1} “元素相同則兩集合相等”

  即:① 任何一個(gè)集合是它本身的子集。AA

 、谡孀蛹:如果AB,且A B那就說(shuō)集合A是集合B的真子集,記作A

 、廴绻 AB, BC ,那么 AC

 、 如果AB 同時(shí) BA 那么A=B

  3. 不含任何元素的集合叫做空集,記為Φ

  規定: 空集是任何集合的子集,空集是任何非空集合的真子集。

  u有n個(gè)元素的集合,含有2n個(gè)子集,2n-1個(gè)真子集

  二、函數

  1、函數定義域、值域求法綜合

  2.、函數奇偶性與單調性問(wèn)題的解題策略

  3、恒成立問(wèn)題的求解策略

  4、反函數的幾種題型及方法

  5、二次函數根的問(wèn)題——一題多解

  &指數函數y=a^x

  a^a*a^b=a^a+b(a>0,a、b屬于Q)

  (a^a)^b=a^ab(a>0,a、b屬于Q)

  (ab)^a=a^a*b^a(a>0,a、b屬于Q)

  指數函數對稱(chēng)規律:

  1、函數y=a^x與y=a^-x關(guān)于y軸對稱(chēng)

  2、函數y=a^x與y=-a^x關(guān)于x軸對稱(chēng)

  3、函數y=a^x與y=-a^-x關(guān)于坐標原點(diǎn)對稱(chēng)為常數.

  2、冪函數性質(zhì)歸納.

  (1)所有的冪函數在(0,+∞)都有定義并且圖象都過(guò)點(diǎn)(1,1);

  三、平面向量

  已知兩個(gè)從同一點(diǎn)O出發(fā)的兩個(gè)向量OA、OB,以OA、OB為鄰邊作平行四邊形OACB,則以O為起點(diǎn)的對角線(xiàn)OC就是向量OA、OB的和,這種計算法則叫做向量加法的平行四邊形法則。對于零向量和任意向量a,有:0+a=a+0=a。|a+b|≤|a|+|b|。向量的加法滿(mǎn)足所有的加法運算定律。數乘運算實(shí)數λ與向量a的積是一個(gè)向量,這種運算叫做向量的數乘,記作λa|λa|=|λ||a|,當λ > 0時(shí),λa的方向和a的方向相同,當λ < 0時(shí),λa的方向和a的方向相反,當λ = 0時(shí),λa = 0。設λ、μ是實(shí)數,那么:(1)(λμ)a = λ(μa)(2)(λ μ)a = λa μa(3)λ(a ± b) = λa ± λb(4)(-λ)a =-(λa) = λ(-a)。向量的加法運算、減法運算、數乘運算統稱(chēng)線(xiàn)性運算。向量的數量積已知兩個(gè)非零向量a、b,那么|a||b|cos θ叫做a與b的數量積或內積,記作a?b,θ是a與b的夾角|a|cos θ(|b|cos θ)叫做向量a在b方向上(b在a方向上)的投影。零向量與任意向量的數量積為0。a?b的幾何意義:數量積a?b等于a的長(cháng)度|a|與b在a的方向上的投影|b|cos θ的乘積。兩個(gè)向量的數量積等于它們對應坐標的乘積的和。

【高一數學(xué)知識點(diǎn)總結】相關(guān)文章:

高一數學(xué)知識點(diǎn)總結11-09

高一數學(xué)知識點(diǎn)總結06-06

高一數學(xué)函數知識點(diǎn)總結12-01

高一數學(xué)知識點(diǎn)總結06-10

高一數學(xué)必修知識點(diǎn)總結12-15

高一數學(xué)必修知識點(diǎn)總結08-01

高一數學(xué)集合知識點(diǎn)總結12-01

高一數學(xué)的知識點(diǎn)歸納總結07-11

高一數學(xué)函數的知識點(diǎn)總結05-28

高一數學(xué)必修知識點(diǎn)總結08-30