- 初中幾何知識點(diǎn)總結 推薦度:
- 初中數學(xué)幾何知識點(diǎn)總結 推薦度:
- 相關(guān)推薦
初中幾何知識點(diǎn)總結(合集5篇)
總結是把一定階段內的有關(guān)情況分析研究,做出有指導性結論的書(shū)面材料,它可以幫助我們總結以往思想,發(fā)揚成績(jì),為此我們要做好回顧,寫(xiě)好總結。那么總結應該包括什么內容呢?以下是小編為大家收集的初中幾何知識點(diǎn)總結,希望對大家有所幫助。
初中幾何知識點(diǎn)總結1
三角形的知識點(diǎn)
1、三角形:由不在同一直線(xiàn)上的三條線(xiàn)段首尾順次相接所組成的圖形叫做三角形。
2、三角形的分類(lèi)
3、三角形的三邊關(guān)系:三角形任意兩邊的和大于第三邊,任意兩邊的差小于第三邊。
4、高:從三角形的一個(gè)頂點(diǎn)向它的對邊所在直線(xiàn)作垂線(xiàn),頂點(diǎn)和垂足間的線(xiàn)段叫做三角形的高。
5、中線(xiàn):在三角形中,連接一個(gè)頂點(diǎn)和它的對邊中點(diǎn)的線(xiàn)段叫做三角形的中線(xiàn)。
6、角平分線(xiàn):三角形的一個(gè)內角的平分線(xiàn)與這個(gè)角的對邊相交,這個(gè)角的頂點(diǎn)和交點(diǎn)之間的線(xiàn)段叫做三角形的角平分線(xiàn)。
7、高線(xiàn)、中線(xiàn)、角平分線(xiàn)的意義和做法
8、三角形的穩定性:三角形的形狀是固定的,三角形的這個(gè)性質(zhì)叫三角形的穩定性。
9、三角形內角和定理:三角形三個(gè)內角的和等于180°
推論1直角三角形的兩個(gè)銳角互余
推論2三角形的一個(gè)外角等于和它不相鄰的兩個(gè)內角和
推論3三角形的一個(gè)外角大于任何一個(gè)和它不相鄰的內角;三角形的內角和是外角和的一半
10、三角形的外角:三角形的一條邊與另一條邊延長(cháng)線(xiàn)的夾角,叫做三角形的外角。
11、三角形外角的性質(zhì)
(1)頂點(diǎn)是三角形的一個(gè)頂點(diǎn),一邊是三角形的一邊,另一邊是三角形的一邊的延長(cháng)線(xiàn);
(2)三角形的一個(gè)外角等于與它不相鄰的兩個(gè)內角和;
(3)三角形的一個(gè)外角大于與它不相鄰的任一內角;
(4)三角形的外角和是360°。
四邊形(含多邊形)知識點(diǎn)、概念總結
一、平行四邊形的定義、性質(zhì)及判定
1、兩組對邊平行的四邊形是平行四邊形。
2、性質(zhì):
(1)平行四邊形的對邊相等且平行
(2)平行四邊形的對角相等,鄰角互補
(3)平行四邊形的對角線(xiàn)互相平分
3、判定:
(1)兩組對邊分別平行的四邊形是平行四邊形
(2)兩組對邊分別相等的四邊形是平行四邊形
(3)一組對邊平行且相等的四邊形是平行四邊形
(4)兩組對角分別相等的四邊形是平行四邊形
(5)對角線(xiàn)互相平分的四邊形是平行四邊形
4、對稱(chēng)性:平行四邊形是中心對稱(chēng)圖形
二、矩形的定義、性質(zhì)及判定
1、定義:有一個(gè)角是直角的平行四邊形叫做矩形
2、性質(zhì):矩形的四個(gè)角都是直角,矩形的對角線(xiàn)相等
3、判定:
(1)有一個(gè)角是直角的平行四邊形叫做矩形
(2)有三個(gè)角是直角的四邊形是矩形
(3)兩條對角線(xiàn)相等的平行四邊形是矩形
4、對稱(chēng)性:矩形是軸對稱(chēng)圖形也是中心對稱(chēng)圖形。
三、菱形的定義、性質(zhì)及判定
1、定義:有一組鄰邊相等的平行四邊形叫做菱形
(1)菱形的四條邊都相等
(2)菱形的對角線(xiàn)互相垂直,并且每一條對角線(xiàn)平分一組對角
(3)菱形被兩條對角線(xiàn)分成四個(gè)全等的直角三角形
(4)菱形的面積等于兩條對角線(xiàn)長(cháng)的積的一半
2、s菱=爭6(n、6分別為對角線(xiàn)長(cháng))
3、判定:
(1)有一組鄰邊相等的平行四邊形叫做菱形
(2)四條邊都相等的四邊形是菱形
(3)對角線(xiàn)互相垂直的平行四邊形是菱形
4、對稱(chēng)性:菱形是軸對稱(chēng)圖形也是中心對稱(chēng)圖形
四、正方形定義、性質(zhì)及判定
1、定義:有一組鄰邊相等并且有一個(gè)角是直角的平行四邊形叫做正方形
2、性質(zhì):
(1)正方形四個(gè)角都是直角,四條邊都相等
(2)正方形的兩條對角線(xiàn)相等,并且互相垂直平分,每條對角線(xiàn)平分一組對角
(3)正方形的一條對角線(xiàn)把正方形分成兩個(gè)全等的等腰直角三角形
(4)正方形的對角線(xiàn)與邊的夾角是45°
(5)正方形的兩條對角線(xiàn)把這個(gè)正方形分成四個(gè)全等的等腰直角三角形
3、判定:
(1)先判定一個(gè)四邊形是矩形,再判定出有一組鄰邊相等
(2)先判定一個(gè)四邊形是菱形,再判定出有一個(gè)角是直角
4、對稱(chēng)性:正方形是軸對稱(chēng)圖形也是中心對稱(chēng)圖形
五、梯形的定義、等腰梯形的性質(zhì)及判定
1、定義:一組對邊平行,另一組對邊不平行的四邊形是梯形。兩腰相等的梯形是等腰梯形。一腰垂直于底的梯形是直角梯形
2、等腰梯形的性質(zhì):等腰梯形的兩腰相等;同一底上的兩個(gè)角相等;兩條對角線(xiàn)相等
3、等腰梯形的判定:兩腰相等的梯形是等腰梯形;同一底上的兩個(gè)角相等的梯形是等腰梯形;兩條對角線(xiàn)相等的梯形是等腰梯形
4、對稱(chēng)性:等腰梯形是軸對稱(chēng)圖形
六、三角形的中位線(xiàn)平行于三角形的第三邊并等于第三邊的.一半;梯形的中位線(xiàn)平行于梯形的兩底并等于兩底和的一半。
七、線(xiàn)段的重心是線(xiàn)段的中點(diǎn);平行四邊形的重心是兩對角線(xiàn)的交點(diǎn);三角形的重心是三條中線(xiàn)的交點(diǎn)。
八、依次連接任意一個(gè)四邊形各邊中點(diǎn)所得的四邊形叫中點(diǎn)四邊形。
九、多邊形
1、多邊形:在平面內,由一些線(xiàn)段首尾順次相接組成的圖形叫做多邊形。
2、多邊形的內角:多邊形相鄰兩邊組成的角叫做它的內角。
3、多邊形的外角:多邊形的一邊與它的鄰邊的延長(cháng)線(xiàn)組成的角叫做多邊形的外角。
4、多邊形的對角線(xiàn):連接多邊形不相鄰的兩個(gè)頂點(diǎn)的線(xiàn)段,叫做多邊形的對角線(xiàn)。
5、多邊形的分類(lèi):分為凸多邊形及凹多邊形,凸多邊形又可稱(chēng)為平面多邊形,凹多邊形又稱(chēng)空間多邊形。多邊形還可以分為正多邊形和非正多邊形。正多邊形各邊相等且各內角相等。
6、正多邊形:在平面內,各個(gè)角都相等,各條邊都相等的多邊形叫做正多邊形。
7、平面鑲嵌:用一些不重疊擺放的多邊形把平面的一部分完全覆蓋,叫做用多邊形覆蓋平面。
8、公式與性質(zhì)
多邊形內角和公式:n邊形的內角和等于(n-2)·180°
9、多邊形外角和定理:
(1)n邊形外角和等于n·180°-(n-2)·180°=360°
(2)邊形的每個(gè)內角與它相鄰的外角是鄰補角,所以n邊形內角和加外角和等于n·180°
10、多邊形對角線(xiàn)的條數:
(1)從n邊形的一個(gè)頂點(diǎn)出發(fā)可以引(n-3)條對角線(xiàn),把多邊形分詞(n-2)個(gè)三角形
(2)n邊形共有n(n-3)/2條對角線(xiàn)
圓知識點(diǎn)、概念總結
1、不在同一直線(xiàn)上的三點(diǎn)確定一個(gè)圓。
2、垂徑定理:垂直于弦的直徑平分這條弦并且平分弦所對的兩條弧
推論1①(不是直徑)的直徑垂直于弦,并且平分弦所對的兩條弧
、谙业拇怪逼椒志(xiàn)經(jīng)過(guò)圓心,并且平分弦所對的兩條弧
、燮椒窒宜鶎Φ囊粭l弧的直徑,垂直平分弦,并且平分弦所對的另一條弧
推論2圓的兩條平行弦所夾的弧相等
3、圓是以圓心為對稱(chēng)中心的中心對稱(chēng)圖形
4、圓是定點(diǎn)的距離等于定長(cháng)的點(diǎn)的集合
5、圓的內部可以看作是圓心的距離小于半徑的點(diǎn)的集合
6、圓的外部可以看作是圓心的距離大于半徑的點(diǎn)的集合
7、同圓或等圓的半徑相等
8、到定點(diǎn)的距離等于定長(cháng)的點(diǎn)的軌跡,是以定點(diǎn)為圓心,定長(cháng)為半徑的圓
9、定理在同圓或等圓中,相等的圓心角所對的弧相等,所對的弦相等,所對的弦的弦心距相等
10、推論在同圓或等圓中,如果兩個(gè)圓心角、兩條弧、兩條弦或兩弦的弦心距中有一組量相等那么它們所對應的其余各組量都相等。
11、定理:圓的內接四邊形的對角互補,并且任何一個(gè)外角都等于它的內對角
12、①直線(xiàn)L和⊙O相交d
、谥本(xiàn)L和⊙O相切d=r
、壑本(xiàn)L和⊙O相離d>r
13、切線(xiàn)的判定定理:經(jīng)過(guò)半徑的外端并且垂直于這條半徑的直線(xiàn)是圓的切線(xiàn)
14、切線(xiàn)的性質(zhì)定理:圓的切線(xiàn)垂直于經(jīng)過(guò)切點(diǎn)的半徑
15、推論1經(jīng)過(guò)圓心且垂直于切線(xiàn)的直線(xiàn)必經(jīng)過(guò)切點(diǎn)
16、推論2經(jīng)過(guò)切點(diǎn)且垂直于切線(xiàn)的直線(xiàn)必經(jīng)過(guò)圓心
17、切線(xiàn)長(cháng)定理:從圓外一點(diǎn)引圓的兩條切線(xiàn),它們的切線(xiàn)長(cháng)相等,圓心和這一點(diǎn)的連線(xiàn)平分兩條切線(xiàn)的夾角
18、圓的外切四邊形的兩組對邊的和相等,外角等于內對角
19、如果兩個(gè)圓相切,那么切點(diǎn)一定在連心線(xiàn)上
20、①兩圓外離d>R+r
、趦蓤A外切d=R+r
、蹆蓤A相交R-rr)
、軆蓤A內切d=R-r(R>r)⑤兩圓內含dr)
21、定理:相交兩圓的連心線(xiàn)垂直平分兩圓的公共弦
22、定理:把圓分成n(n≥3):
(1)依次連結各分點(diǎn)所得的多邊形是這個(gè)圓的內接正n邊形
(2)經(jīng)過(guò)各分點(diǎn)作圓的切線(xiàn),以相鄰切線(xiàn)的交點(diǎn)為頂點(diǎn)的多邊形是這個(gè)圓的外切正n邊形
23、定理:任何正多邊形都有一個(gè)外接圓和一個(gè)內切圓,這兩個(gè)圓是同心圓
24、正n邊形的每個(gè)內角都等于(n-2)×180°/n
25、定理:正n邊形的半徑和邊心距把正n邊形分成2n個(gè)全等的直角三角形
26、正n邊形的面積Sn=pnrn/2p表示正n邊形的周長(cháng)
27、正三角形面積√3a/4a表示邊長(cháng)
28、如果在一個(gè)頂點(diǎn)周?chē)衚個(gè)正n邊形的角,由于這些角的和應為360°,因此k×(n-2)180°/n=360°化為(n-2)(k-2)=4
29、弧長(cháng)計算公式:L=n兀R/180
30、扇形面積公式:S扇形=n兀R^2/360=LR/2
31、內公切線(xiàn)長(cháng)=d-(R-r)外公切線(xiàn)長(cháng)=d-(R+r)
32、定理:一條弧所對的圓周角等于它所對的圓心角的一半
33、推論1同弧或等弧所對的圓周角相等;同圓或等圓中,相等的圓周角所對的弧也相等
34、推論2半圓(或直徑)所對的圓周角是直角;90°的圓周角所對的弦是直徑
35、弧長(cháng)公式l=a*ra是圓心角的弧度數r>0扇形面積公式s=1/2*l*r
初中幾何知識點(diǎn)總結2
什么是幾何圖形:
點(diǎn)、線(xiàn)、面、體這些可幫助人們有效的刻畫(huà)錯綜復雜的`世界,它們都稱(chēng)為幾何圖形(geometricfigure)
幾何圖形一般分為立體圖形(solidfigure)和平面圖形(planefigure)。
我們所熟悉的幾何圖形:
正方形
a-----邊長(cháng)C=4aS=a2
長(cháng)方形
a和b-----邊長(cháng)C=2(a+b)S=ab
三角形
a,b,c-----三邊長(cháng)h-----a邊上的高s-----周長(cháng)的一半A,B,C-----內角
其中s=(a+b+c)/2S=ah/2=ab/2sinC=[s(s-a)(s-b)(s-c)]1/2=a2sinBsinC/(2sinA)
四邊形
d,D-----對角線(xiàn)長(cháng)-----對角線(xiàn)夾角S=dD/2sin
平行四邊形
a,b-----邊長(cháng)h-----a邊的高-----兩邊夾角S=ah=absin
菱形
a-----邊長(cháng)-----夾角D-----長(cháng)對角線(xiàn)長(cháng)d-----短對角線(xiàn)長(cháng)S=Dd/2=a2sin
梯形
a和b-----上、下底長(cháng)h-----高m-----中位線(xiàn)長(cháng)S=(a+b)h/2=mh
圓
r-----半徑d-----直徑C=d=2rS=r2=d2/4
扇形
r-----扇形半徑a-----圓心角度數C=2r+2(a/360)S=r2(a/360)
弓形
l-----弧長(cháng)b-----弦長(cháng)h-----矢高r-----半徑-----圓心角的度數
S=r2/2(/180-sin)=r2arccos[(r-h)/r]-(r-h)(2rh-h2)1/2=r2/360-b/2[r2-(b/2)2]1/2=r(l-b)/2+bh/22bh/3
圓環(huán)
R-----外圓半徑r-----內圓半徑D-----外圓直徑d-----內圓直徑S=(R2-r2)=(D2-d2)/4
初中幾何知識點(diǎn)總結3
什么是幾何圖形:
點(diǎn)、線(xiàn)、面、體這些可幫助人們有效的刻畫(huà)錯綜復雜的世界,它們都稱(chēng)為幾何圖形(geometricfigure)
幾何圖形一般分為立體圖形(solidfigure)和平面圖形(planefigure)。
我們所熟悉的`幾何圖形:
正方形
a-----邊長(cháng)C=4aS=a2
長(cháng)方形
a和b-----邊長(cháng)C=2(a+b)S=ab
三角形
a,b,c-----三邊長(cháng)h-----a邊上的高s-----周長(cháng)的一半A,B,C-----內角
其中s=(a+b+c)/2S=ah/2=ab/2sinC=[s(s-a)(s-b)(s-c)]1/2=a2sinBsinC/(2sinA) 四邊形
d,D-----對角線(xiàn)長(cháng)-----對角線(xiàn)夾角S=dD/2sin 平行四邊形
a,b-----邊長(cháng)h-----a邊的高-----兩邊夾角S=ah=absin 菱形
a-----邊長(cháng)-----夾角D-----長(cháng)對角線(xiàn)長(cháng)d-----短對角線(xiàn)長(cháng)S=Dd/2=a2sin
梯形
a和b-----上、下底長(cháng)h-----高m-----中位線(xiàn)長(cháng)S=(a+b)h/2=mh 圓
r-----半徑d-----直徑C=d=2rS=r2=d2/4 扇形
r-----扇形半徑a-----圓心角度數C=2r+2(a/360)S=r2(a/360) 弓形
l-----弧長(cháng)b-----弦長(cháng)h-----矢高r-----半徑-----圓心角的度數 S=r2/2(/180-sin)=r2arccos[(r-h)/r]-(r-h)(2rh-h2)1/2=r2/360-b/2[r2-(b/2)2]1/2=r(l-b)/2+bh/22bh/3
圓環(huán)
R-----外圓半徑r-----內圓半徑D-----外圓直徑d-----內圓直徑S=(R2-r2)=(D2-d2)/4
初中幾何知識點(diǎn)總結4
1、過(guò)兩點(diǎn)有且只有一條直線(xiàn)
2、兩點(diǎn)之間線(xiàn)段最短
3、同角或等角的補角相等
4、同角或等角的余角相等
5、過(guò)一點(diǎn)有且只有一條直線(xiàn)和已知直線(xiàn)垂直
6、直線(xiàn)外一點(diǎn)與直線(xiàn)上各點(diǎn)連接的所有線(xiàn)段中,垂線(xiàn)段最短
7、平行公理經(jīng)過(guò)直線(xiàn)外一點(diǎn),有且只有一條直線(xiàn)與這條直線(xiàn)平行
8、如果兩條直線(xiàn)都和第三條直線(xiàn)平行,這兩條直線(xiàn)也互相平行
9、同位角相等,兩直線(xiàn)平行
10、內錯角相等,兩直線(xiàn)平行
11、同旁?xún)冉腔パa,兩直線(xiàn)平行
12、兩直線(xiàn)平行,同位角相等
13、兩直線(xiàn)平行,內錯角相等
14、兩直線(xiàn)平行,同旁?xún)冉腔パa
15、定理三角形兩邊的和大于第三邊
16、推論三角形兩邊的差小于第三邊
17、三角形內角和定理三角形三個(gè)內角的和等于180
18、推論1直角三角形的兩個(gè)銳角互余
19、推論2三角形的一個(gè)外角等于和它不相鄰的兩個(gè)內角的和
20、推論3三角形的一個(gè)外角大于任何一個(gè)和它不相鄰的內角
21、全等三角形的對應邊、對應角相等
22、邊角邊公理有兩邊和它們的夾角對應相等的兩個(gè)三角形全等
23、角邊角公理有兩角和它們的夾邊對應相等的兩個(gè)三角形全等
24、推論有兩角和其中一角的對邊對應相等的兩個(gè)三角形全等25邊邊邊公理有三邊對應相等的兩個(gè)三角形全等
25、斜邊、直角邊公理有斜邊和一條直角邊對應相等的兩個(gè)直角三角形全等
26、定理1在角的平分線(xiàn)上的點(diǎn)到這個(gè)角的兩邊的距離相等
27、定理2到一個(gè)角的兩邊的距離相同的點(diǎn),在這個(gè)角的平分線(xiàn)上
28、角的平分線(xiàn)是到角的兩邊距離相等的所有點(diǎn)的集合
29、等腰三角形的性質(zhì)定理等腰三角形的兩個(gè)底角相等
30、推論1等腰三角形頂角的平分線(xiàn)平分底邊并且垂直于底邊
31、等腰三角形的頂角平分線(xiàn)、底邊上的中線(xiàn)和高互相重合
32、推論3等邊三角形的各角都相等,并且每一個(gè)角都等于6034等腰三角形的判定定理如果一個(gè)三角形有兩個(gè)角相等,那么這兩個(gè)角所對的邊也相等(等角對等邊)
33、推論1三個(gè)角都相等的三角形是等邊三角形
34、推論2有一個(gè)角等于60的等腰三角形是等邊三角形
35、在直角三角形中,如果一個(gè)銳角等于30那么它所對的直角邊等于斜邊的一半
36、直角三角形斜邊上的中線(xiàn)等于斜邊上的一半
37、定理線(xiàn)段垂直平分線(xiàn)上的點(diǎn)和這條線(xiàn)段兩個(gè)端點(diǎn)的距離相等
38、逆定理和一條線(xiàn)段兩個(gè)端點(diǎn)距離相等的點(diǎn),在這條線(xiàn)段的垂直平分線(xiàn)上
39、線(xiàn)段的垂直平分線(xiàn)可看作和線(xiàn)段兩端點(diǎn)距離相等的所有點(diǎn)的集合
40、定理1關(guān)于某條直線(xiàn)對稱(chēng)的兩個(gè)圖形是全等形
41、定理2如果兩個(gè)圖形關(guān)于某直線(xiàn)對稱(chēng),那么對稱(chēng)軸是對應點(diǎn)連線(xiàn)的垂直平分線(xiàn)
42、定理3兩個(gè)圖形關(guān)于某直線(xiàn)對稱(chēng),如果它們的對應線(xiàn)段或延長(cháng)線(xiàn)相交,那么交點(diǎn)在對稱(chēng)軸上
43、逆定理如果兩個(gè)圖形的對應點(diǎn)連線(xiàn)被同一條直線(xiàn)垂直平分,那么這兩個(gè)圖形關(guān)于這條直線(xiàn)對稱(chēng)
44、勾股定理直角三角形兩直角邊a、b的平方和、等于斜邊c的平方,即a+b=c
45、勾股定理的逆定理如果三角形的三邊長(cháng)a、b、c有關(guān)系a+b=c,那么這個(gè)三角形是直角三角形
46、定理四邊形的內角和等于360
47、四邊形的外角和等于360
48、多邊形內角和定理n邊形的內角的和等于(n—2)180
49、推論任意多邊的外角和等于360
50、平行四邊形性質(zhì)定理1平行四邊形的對角相等
51、平行四邊形性質(zhì)定理2平行四邊形的對邊相等
52、推論夾在兩條平行線(xiàn)間的平行線(xiàn)段相等
53、平行四邊形性質(zhì)定理3平行四邊形的對角線(xiàn)互相平分
54、平行四邊形判定定理1兩組對角分別相等的四邊形是平行四邊形
55、平行四邊形判定定理2兩組對邊分別相等的四邊形是平行四邊形
56、平行四邊形判定定理3對角線(xiàn)互相平分的四邊形是平行四邊形
57、平行四邊形判定定理4一組對邊平行相等的四邊形是平行四邊形
58、矩形性質(zhì)定理1矩形的四個(gè)角都是直角
59、矩形性質(zhì)定理2矩形的對角線(xiàn)相等
60、矩形判定定理1有三個(gè)角是直角的四邊形是矩形
61、矩形判定定理2對角線(xiàn)相等的平行四邊形是矩形
62、菱形性質(zhì)定理1菱形的四條邊都相等
63、菱形性質(zhì)定理2菱形的對角線(xiàn)互相垂直,并且每一條對角線(xiàn)平分一組對角
64、菱形面積=對角線(xiàn)乘積的一半,即S=(ab)2
65、菱形判定定理1四邊都相等的四邊形是菱形
66、菱形判定定理2對角線(xiàn)互相垂直的平行四邊形是菱形
67、正方形性質(zhì)定理1正方形的四個(gè)角都是直角,四條邊都相等
68、正方形性質(zhì)定理2正方形的兩條對角線(xiàn)相等,并且互相垂直平分,每條對角線(xiàn)平分一組對角
69、定理1關(guān)于中心對稱(chēng)的兩個(gè)圖形是全等的
70、定理2關(guān)于中心對稱(chēng)的兩個(gè)圖形,對稱(chēng)點(diǎn)連線(xiàn)都經(jīng)過(guò)對稱(chēng)中心,并且被對稱(chēng)中心平分
71、逆定理如果兩個(gè)圖形的對應點(diǎn)連線(xiàn)都經(jīng)過(guò)某一點(diǎn),并且被這一點(diǎn)平分,那么這兩個(gè)圖形關(guān)于這一點(diǎn)對稱(chēng)
72、等腰梯形性質(zhì)定理等腰梯形在同一底上的兩個(gè)角相等
73、等腰梯形的兩條對角線(xiàn)相等
74、等腰梯形判定定理在同一底上的兩個(gè)角相等的梯形是等腰梯形
75、對角線(xiàn)相等的梯形是等腰梯形
76、平行線(xiàn)等分線(xiàn)段定理如果一組平行線(xiàn)在一條直線(xiàn)上截得的線(xiàn)段相等,那么在其他直線(xiàn)上截得的線(xiàn)段也相等
77、推論1經(jīng)過(guò)梯形一腰的中點(diǎn)與底平行的直線(xiàn),必平分另一腰
78、推論2經(jīng)過(guò)三角形一邊的`中點(diǎn)與另一邊平行的直線(xiàn),必平分第三邊
79、三角形中位線(xiàn)定理三角形的中位線(xiàn)平行于第三邊,并且等于它的一半
80、梯形中位線(xiàn)定理梯形的中位線(xiàn)平行于兩底,并且等于兩底和的一半L=(a+b)2S=Lh
81、比例的基本性質(zhì)如果a:b=c:d,那么ad=bc
82、如果ad=bc,那么a:b=c:d
83、合比性質(zhì)如果a/b=c/d,那么(ab)/b=(cd)/d
84、等比性質(zhì)如果a/b=c/d=…=m/n(b+d+…+n0),那么(a+c+…+m)/(b+d+…+n)=a/b
85、平行線(xiàn)分線(xiàn)段成比例定理三條平行線(xiàn)截兩條直線(xiàn),所得的對應線(xiàn)段成比例
86、推論平行于三角形一邊的直線(xiàn)截其他兩邊(或兩邊的延長(cháng)線(xiàn)),所得的對應線(xiàn)段成比例
87、定理如果一條直線(xiàn)截三角形的兩邊(或兩邊的延長(cháng)線(xiàn))所得的對應線(xiàn)段成比例,那么這條直線(xiàn)平行于三角形的第三邊
88、平行于三角形的一邊,并且和其他兩邊相交的直線(xiàn),所截得的三角形的三邊與原三角形三邊對應成比例
89、定理平行于三角形一邊的直線(xiàn)和其他兩邊(或兩邊的延長(cháng)線(xiàn))相交,所構成的三角形與原三角形相似
90、相似三角形判定定理1兩角對應相等,兩三角形相似(ASA)
91、直角三角形被斜邊上的高分成的兩個(gè)直角三角形和原三角形相似
92、判定定理2兩邊對應成比例且?jiàn)A角相等,兩三角形相似(SAS)
93、判定定理3三邊對應成比例,兩三角形相似(SSS)
94、定理如果一個(gè)直角三角形的斜邊和一條直角邊與另一個(gè)直角三角形的斜邊和一條直角邊對應成比例,那么這兩個(gè)直角三角形相似
95、性質(zhì)定理1相似三角形對應高的比,對應中線(xiàn)的比與對應角平分線(xiàn)的比都等于相似比
96、性質(zhì)定理2相似三角形周長(cháng)的比等于相似比
97、性質(zhì)定理3相似三角形面積的比等于相似比的平方
98、任意銳角的正弦值等于它的余角的余弦值,任意銳角的余弦值等于它的余角的正弦值
99、任意銳角的正切值等于它的余角的余切值,任意銳角的余切值等于它的余角的正切值
100、圓是定點(diǎn)的距離等于定長(cháng)的點(diǎn)的集合
101、圓的內部可以看作是圓心的距離小于半徑的點(diǎn)的集合
102、圓的外部可以看作是圓心的距離大于半徑的點(diǎn)的集合
103、同圓或等圓的半徑相等
104、到定點(diǎn)的距離等于定長(cháng)的點(diǎn)的軌跡,是以定點(diǎn)為圓心,定長(cháng)為半徑的圓
105、和已知線(xiàn)段兩個(gè)端點(diǎn)的距離相等的點(diǎn)的軌跡,是著(zhù)條線(xiàn)段的垂直平分線(xiàn)
106、到已知角的兩邊距離相等的點(diǎn)的軌跡,是這個(gè)角的平分線(xiàn)
107、到兩條平行線(xiàn)距離相等的點(diǎn)的軌跡,是和這兩條平行線(xiàn)平行且距離相等的一條直線(xiàn)
108、定理不在同一直線(xiàn)上的三個(gè)點(diǎn)確定一條直線(xiàn)
109、垂徑定理垂直于弦的直徑平分這條弦并且平分弦所對的兩條弧
110、推論1①平分弦(不是直徑)的直徑垂直于弦,并且平分弦所對的兩條弧、②弦的垂直平分線(xiàn)經(jīng)過(guò)圓心,并且平分弦所對的兩條弧、③平分弦所對的一條弧的直徑,垂直平分弦,并且平分弦所對的另一條弧
111、推論2圓的兩條平行弦所夾的弧相等
112、圓是以圓心為對稱(chēng)中心的中心對稱(chēng)圖形
113、定理在同圓或等圓中,相等的圓心角所對的弧相等,所對的弦相等,所對的弦的弦心距相等
114、推論在同圓或等圓中,如果兩個(gè)圓心角、兩條弧、兩條弦或兩弦的弦心距中有一組量相等那么它們所對應的其余各組量都相等
115、定理一條弧所對的圓周角等于它所對的圓心角的一半
116、推論1同弧或等弧所對的圓周角相等;同圓或等圓中,相等的圓周角所對的弧也相等
117、推論2半圓(或直徑)所對的圓周角是直角;90的圓周角所對的弦是直徑
118、推論3如果三角形一邊上的中線(xiàn)等于這邊的一半,那么這個(gè)三角形是直角三角形
119、定理圓的內接四邊形的對角互補,并且任何一個(gè)外角都等于它的內對角
120、①直線(xiàn)L和⊙O相交d﹤r、②直線(xiàn)L和⊙O相切d=r、③直線(xiàn)L和⊙O相離d﹥r(jià)
121、切線(xiàn)的判定定理經(jīng)過(guò)半徑的外端并且垂直于這條半徑的直線(xiàn)是圓的切線(xiàn)
122、切線(xiàn)的性質(zhì)定理圓的切線(xiàn)垂直于經(jīng)過(guò)切點(diǎn)的半徑
123、推論1經(jīng)過(guò)圓心且垂直于切線(xiàn)的直線(xiàn)必經(jīng)過(guò)切點(diǎn)
124、推論2經(jīng)過(guò)切點(diǎn)且垂直于切線(xiàn)的直線(xiàn)必經(jīng)過(guò)圓心
125、切線(xiàn)長(cháng)定理從圓外一點(diǎn)引圓的兩條切線(xiàn),它們的切線(xiàn)長(cháng)相等,圓心和這一點(diǎn)的連線(xiàn)平分兩條切線(xiàn)的夾角
126、圓的外切四邊形的兩組對邊的和相等
127、弦切角定理弦切角等于它所夾的弧對的圓周角
128、推論如果兩個(gè)弦切角所夾的弧相等,那么這兩個(gè)弦切角也相等
129、相交弦定理圓內的兩條相交弦,被交點(diǎn)分成的兩條線(xiàn)段長(cháng)的積相等
130、推論如果弦與直徑垂直相交,那么弦的一半是它分直徑所成的兩條線(xiàn)段的比例中項
131、切割線(xiàn)定理從圓外一點(diǎn)引圓的切線(xiàn)和割線(xiàn),切線(xiàn)長(cháng)是這點(diǎn)到割線(xiàn)與圓交點(diǎn)的兩條線(xiàn)段長(cháng)的比例中項
132、推論從圓外一點(diǎn)引圓的兩條割線(xiàn),這一點(diǎn)到每條割線(xiàn)與圓的交點(diǎn)的兩條線(xiàn)段長(cháng)的積相等
133、如果兩個(gè)圓相切,那么切點(diǎn)一定在連心線(xiàn)上
134、①兩圓外離d﹥R+r、②兩圓外切d=R+r、③兩圓相交R—r﹤d﹤R+r(R﹥r(jià))、④兩圓內切d=R—r(R﹥r(jià))、⑤兩圓內含d﹤R—r(R﹥r(jià))
135、定理相交兩圓的連心線(xiàn)垂直平分兩圓的公共弦
138、定理把圓分成n(n3):
、乓来芜B結各分點(diǎn)所得的多邊形是這個(gè)圓的內接正n邊形
、平(jīng)過(guò)各分點(diǎn)作圓的切線(xiàn),以相鄰切線(xiàn)的交點(diǎn)為頂點(diǎn)的多邊形是這個(gè)圓的外切正n邊形
136、定理任何正多邊形都有一個(gè)外接圓和一個(gè)內切圓,這兩個(gè)圓是同心圓
137、正n邊形的每個(gè)內角都等于(n—2)180/n
138、定理正n邊形的半徑和邊心距把正n邊形分成2n個(gè)全等的直角三角形
139、正n邊形的面積Sn=pnrn/2p表示正n邊形的周長(cháng)
140、正三角形面積3a/4a表示邊長(cháng)
141、如果在一個(gè)頂點(diǎn)周?chē)衚個(gè)正n邊形的角,由于這些角的和應為360,因此k(n—2)180/n=360化為(n—2)(k—2)=4
142、弧長(cháng)計算公式:L=nR/180
143、扇形面積公式:S扇形=nR/360=LR/2
144、內公切線(xiàn)長(cháng)=d—(R—r)外公切線(xiàn)長(cháng)=d—(R+r)
初中幾何知識點(diǎn)總結5
關(guān)于初中數學(xué)幾何知識點(diǎn)總結
1、三角形:由不在同一直線(xiàn)上的三條線(xiàn)段首尾順次相接所組成的圖形叫做三角形。
2、三角形的分類(lèi)
3、三角形的三邊關(guān)系:三角形任意兩邊的和大于第三邊,任意兩邊的差小于第三邊。
4、高:從三角形的一個(gè)頂點(diǎn)向它的對邊所在直線(xiàn)作垂線(xiàn),頂點(diǎn)和垂足間的線(xiàn)段叫做三角形的高。
5、中線(xiàn):在三角形中,連接一個(gè)頂點(diǎn)和它的對邊中點(diǎn)的線(xiàn)段叫做三角形的中線(xiàn)。
6、角平分線(xiàn):三角形的一個(gè)內角的平分線(xiàn)與這個(gè)角的對邊相交,這個(gè)角的頂點(diǎn)和交點(diǎn)之間的線(xiàn)段叫做三角形的角平分線(xiàn)。
7、高線(xiàn)、中線(xiàn)、角平分線(xiàn)的意義和做法
8、三角形的穩定性:三角形的形狀是固定的,三角形的這個(gè)性質(zhì)叫三角形的穩定性。
9、三角形內角和定理:三角形三個(gè)內角的和等于180°
推論1直角三角形的兩個(gè)銳角互余
推論2三角形的一個(gè)外角等于和它不相鄰的兩個(gè)內角和
推論3三角形的一個(gè)外角大于任何一個(gè)和它不相鄰的內角;三角形的內角和是外角和的一半
10、三角形的外角:三角形的一條邊與另一條邊延長(cháng)線(xiàn)的夾角,叫做三角形的外角。
11、三角形外角的性質(zhì)
(1)頂點(diǎn)是三角形的一個(gè)頂點(diǎn),一邊是三角形的一邊,另一邊是三角形的一邊的延長(cháng)線(xiàn);
(2)三角形的一個(gè)外角等于與它不相鄰的兩個(gè)內角和;
(3)三角形的一個(gè)外角大于與它不相鄰的任一內角;
(4)三角形的外角和是360°。
四邊形(含多邊形)知識點(diǎn)、概念總結
一、平行四邊形的定義、性質(zhì)及判定
1、兩組對邊平行的四邊形是平行四邊形。
2、性質(zhì):
(1)平行四邊形的對邊相等且平行
(2)平行四邊形的對角相等,鄰角互補
(3)平行四邊形的對角線(xiàn)互相平分
3、判定:
(1)兩組對邊分別平行的四邊形是平行四邊形
(2)兩組對邊分別相等的四邊形是平行四邊形
(3)一組對邊平行且相等的四邊形是平行四邊形
(4)兩組對角分別相等的四邊形是平行四邊形
(5)對角線(xiàn)互相平分的四邊形是平行四邊形
4、對稱(chēng)性:平行四邊形是中心對稱(chēng)圖形
二、矩形的定義、性質(zhì)及判定
1、定義:有一個(gè)角是直角的平行四邊形叫做矩形
2、性質(zhì):矩形的四個(gè)角都是直角,矩形的對角線(xiàn)相等
3、判定:
(1)有一個(gè)角是直角的平行四邊形叫做矩形
(2)有三個(gè)角是直角的四邊形是矩形
(3)兩條對角線(xiàn)相等的平行四邊形是矩形
4、對稱(chēng)性:矩形是軸對稱(chēng)圖形也是中心對稱(chēng)圖形。
三、菱形的定義、性質(zhì)及判定
1、定義:有一組鄰邊相等的平行四邊形叫做菱形
(1)菱形的四條邊都相等
(2)菱形的對角線(xiàn)互相垂直,并且每一條對角線(xiàn)平分一組對角
(3)菱形被兩條對角線(xiàn)分成四個(gè)全等的直角三角形
(4)菱形的面積等于兩條對角線(xiàn)長(cháng)的積的一半
2、s菱=爭6(n、6分別為對角線(xiàn)長(cháng))
3、判定:
(1)有一組鄰邊相等的平行四邊形叫做菱形
(2)四條邊都相等的四邊形是菱形
(3)對角線(xiàn)互相垂直的平行四邊形是菱形
4、對稱(chēng)性:菱形是軸對稱(chēng)圖形也是中心對稱(chēng)圖形
四、正方形定義、性質(zhì)及判定
1、定義:有一組鄰邊相等并且有一個(gè)角是直角的平行四邊形叫做正方形
2、性質(zhì):
(1)正方形四個(gè)角都是直角,四條邊都相等
(2)正方形的兩條對角線(xiàn)相等,并且互相垂直平分,每條對角線(xiàn)平分一組對角
(3)正方形的一條對角線(xiàn)把正方形分成兩個(gè)全等的等腰直角三角形
(4)正方形的對角線(xiàn)與邊的夾角是45°
(5)正方形的兩條對角線(xiàn)把這個(gè)正方形分成四個(gè)全等的等腰直角三角形
3、判定:
(1)先判定一個(gè)四邊形是矩形,再判定出有一組鄰邊相等
(2)先判定一個(gè)四邊形是菱形,再判定出有一個(gè)角是直角
4、對稱(chēng)性:正方形是軸對稱(chēng)圖形也是中心對稱(chēng)圖形
五、梯形的定義、等腰梯形的'性質(zhì)及判定
1、定義:一組對邊平行,另一組對邊不平行的四邊形是梯形。兩腰相等的梯形是等腰梯形。一腰垂直于底的梯形是直角梯形
2、等腰梯形的性質(zhì):等腰梯形的兩腰相等;同一底上的兩個(gè)角相等;兩條對角線(xiàn)相等
3、等腰梯形的判定:兩腰相等的梯形是等腰梯形;同一底上的兩個(gè)角相等的梯形是等腰梯形;兩條對角線(xiàn)相等的梯形是等腰梯形
4、對稱(chēng)性:等腰梯形是軸對稱(chēng)圖形
六、三角形的中位線(xiàn)平行于三角形的第三邊并等于第三邊的一半;梯形的中位線(xiàn)平行于梯形的兩底并等于兩底和的一半。
七、線(xiàn)段的重心是線(xiàn)段的中點(diǎn);平行四邊形的重心是兩對角線(xiàn)的交點(diǎn);三角形的重心是三條中線(xiàn)的交點(diǎn)。
八、依次連接任意一個(gè)四邊形各邊中點(diǎn)所得的四邊形叫中點(diǎn)四邊形。
九、多邊形
為什么要學(xué)習數學(xué)
作為一門(mén)普及度極廣的學(xué)科,數學(xué)在人類(lèi)文明的發(fā)展史上一直占據著(zhù)重要的地位。雖然很多人可能會(huì )對數學(xué)產(chǎn)生排斥,認為它枯燥無(wú)味,但事實(shí)上,數學(xué)是所有學(xué)科的基石之一,對我們日常生活以及未來(lái)的職業(yè)發(fā)展有著(zhù)重大影響。下面我將詳細闡述學(xué)習數學(xué)的重要性。
首先,數學(xué)可以幫助我們提高邏輯思維能力。數學(xué)的學(xué)科性質(zhì)使我們在學(xué)習的過(guò)程中時(shí)時(shí)刻刻面臨著(zhù)思考、推理、證明等諸多問(wèn)題,而這些問(wèn)題正是鍛煉我們邏輯思維的好機會(huì )。通過(guò)長(cháng)期的學(xué)習和練習,我們的思維能力得到提升,可以更加清晰地分析問(wèn)題,更快速地找到正確的答案。這對我們在工作和生活中都非常有幫助,尤其是在解決復雜問(wèn)題時(shí)更能得心應手。
其次,數學(xué)在現代科技中起著(zhù)至關(guān)重要的作用。在計算機科學(xué)、物理學(xué)、經(jīng)濟學(xué)、工程學(xué)等領(lǐng)域,數學(xué)可以幫助我們建立模型、分析數據、預測趨勢,并且可以在實(shí)際應用中優(yōu)化和改進(jìn)。例如,在人工智能領(lǐng)域,深度學(xué)習技術(shù)所涉及的數學(xué)概念包括線(xiàn)性代數、微積分和概率論等,如果沒(méi)有深厚的數學(xué)基礎,很難理解和應用這些技術(shù)。同時(shí),在工程學(xué)領(lǐng)域,許多機械、電子、化工等產(chǎn)品的設計和制造過(guò)程,也需要運用到數學(xué)知識,因此學(xué)習數學(xué)可以使我們更好地參與到現代科技的發(fā)展中。
除此之外,數學(xué)也是一種普遍使用的語(yǔ)言,許多學(xué)科和領(lǐng)域都使用數學(xué)語(yǔ)言進(jìn)行表達和交流。例如,在自然科學(xué)領(lǐng)域,生物學(xué)、化學(xué)、物理學(xué)等學(xué)科都使用數學(xué)語(yǔ)言來(lái)描述自然世界的規律和現象。在社會(huì )科學(xué)和商科領(lǐng)域,經(jīng)濟學(xué)和金融學(xué)運用的數學(xué)概念,如微積分、線(xiàn)性代數和統計學(xué)等,使得我們能夠更好地理解經(jīng)濟和財務(wù)數據,并進(jìn)行決策。因此,學(xué)習數學(xué)可以讓我們更好地理解、溝通和交流各個(gè)領(lǐng)域的知識。
最后,學(xué)習數學(xué)也可以為我們的職業(yè)發(fā)展帶來(lái)廣泛的機遇和發(fā)展空間。在許多領(lǐng)域,數學(xué)專(zhuān)業(yè)的畢業(yè)生都有很廣泛的就業(yè)機會(huì ),如金融界、數據科學(xué)、研究機構、教育等。數學(xué)專(zhuān)業(yè)的人才,不只會(huì )提供理論支持,同時(shí)也能夠解決現實(shí)中具體的問(wèn)題,使其在各自領(lǐng)域脫穎而出。
怎樣快速提高數學(xué)成績(jì)?
一、查缺補漏,主攻薄弱
請制作“失分分析表”,包括“不會(huì )做的”和“不該丟分的”兩部分,分析模擬考試等試卷失分情況,在緊跟老師復習的基礎上,針對自己的薄弱環(huán)節重點(diǎn)彌補、改進(jìn)。
別一味沖刺難題。做題是對理論知識的進(jìn)一步鞏固與實(shí)檢,我們要在理解的基礎上加強練習,以達到鞏固的目的,但不能一味追求難題偏題。
因為中考試卷中有30%是比較靈活的題型,只有10%是真正的難題。30%那部分題目是我們能拿但容易失分的題目,我們要做到盡量多拿分,但如果我們一味求難求險,就會(huì )因為忽視基礎題型的夯實(shí)和鞏固而失掉這部分該得的分。在基礎掌握后,有條件的同學(xué)可再進(jìn)行一些難題怪題的攻關(guān),這樣的策略才更能保證效率。
二、反思錯題
不要盲目找題做,陷入題海中,不要“就題論題”停留在“這題我會(huì )了”的低水平上。解題能力是在反思中提升的。懂、會(huì )、悟是數學(xué)水平的三個(gè)層次。簡(jiǎn)單說(shuō),聽(tīng)懂了,但不一定會(huì ),更不意味著(zhù)真正領(lǐng)悟了。
三、克服無(wú)謂失分
如何避免審題出錯?
原因:看太快。
應對策略:
1.默讀法;2.重點(diǎn)字詞圈點(diǎn)勾畫(huà)法;3.審圖法。
如何降低計算失誤?
表面原因是粗心,其實(shí)是計算能力不足。平時(shí)對計算不以為然,認為“沒(méi)有技術(shù)含量”。事實(shí)上計算也有很多“聰明算法”,如:邊化簡(jiǎn)邊計算、寧加勿減、寧乘勿除、小數化分數、找最小最短的設元、放縮法、湊整法、圖象法等等計算技巧。
應對策略:
1.不要為了趕時(shí)間而跳步計算;
2.寧可筆算,少用口算,更不要再抱著(zhù)計算器;
3.對平時(shí)易算錯的題型,可以驗算一遍。
四、關(guān)注幾個(gè)重點(diǎn)問(wèn)題
1.新定義題型、非常規題型、存在性問(wèn)題。
2.分析法—執果索因,逆向思維,倒過(guò)來(lái)想,假設存在;不完全歸納法—根據例子,大膽猜想、努力驗證。反例排除法、特殊圖形(特殊位置、極端值)探究法等。
提高數學(xué)成績(jì)常用方法有哪些
1、預習
預期常常由于“沒(méi)時(shí)間,看不懂,不必要”等等原因被忽略。實(shí)際上預習是學(xué)習的必要過(guò)程,更是提高自學(xué)能力的好方法。
2、學(xué)會(huì )聽(tīng)課
聽(tīng)分析、聽(tīng)思路、聽(tīng)應用,關(guān)鍵內容一字不漏,注意記錄。
3、做好錯題本
每個(gè)會(huì )學(xué)習的學(xué)生都會(huì )有錯題本。調查發(fā)現那些沒(méi)有錯題本,或者是只做不用的同學(xué),學(xué)習效果都不好。
4、用好課外書(shū)
正確認識網(wǎng)絡(luò )課程和課外書(shū)籍,是副食,是幫助吸收的良藥。
5、注重數學(xué)思維方法的培養
要注意數學(xué)思想和方法的指導,站得高,才能看得遠。
【初中幾何知識點(diǎn)總結】相關(guān)文章:
初中幾何知識點(diǎn)總結11-03
初中幾何知識點(diǎn)總結大全01-25
初中幾何知識點(diǎn)總結歸納05-14
初中數學(xué)幾何知識點(diǎn)總結(精選10篇)05-26
小學(xué)幾何知識點(diǎn)總結06-07
初中數學(xué)重要的知識點(diǎn)幾何專(zhuān)題10-01
立體幾何知識點(diǎn)總結08-28