成人免费看黄网站无遮挡,caowo999,se94se欧美综合色,a级精品九九九大片免费看,欧美首页,波多野结衣一二三级,日韩亚洲欧美综合

初中數學(xué)知識點(diǎn)總結

時(shí)間:2024-08-28 09:04:44 志華 知識點(diǎn)總結 我要投稿

初中數學(xué)知識點(diǎn)總結匯總(通用16篇)

  總結是事后對某一時(shí)期、某一項目或某些工作進(jìn)行回顧和分析,從而做出帶有規律性的結論,通過(guò)它可以正確認識以往學(xué)習和工作中的優(yōu)缺點(diǎn),為此我們要做好回顧,寫(xiě)好總結。我們該怎么去寫(xiě)總結呢?以下是小編收集整理的初中數學(xué)知識點(diǎn)總結,僅供參考,歡迎大家閱讀。

初中數學(xué)知識點(diǎn)總結匯總(通用16篇)

  初中數學(xué)知識點(diǎn)總結 1

  有兩條邊相等的三角形叫等腰三角形

  相等的兩條邊叫腰;兩腰的夾角叫頂角;頂角所對的邊叫底;腰與底的夾角叫底角。

  等腰三角形性質(zhì)

  (1)具有一般三角形的`邊角關(guān)系

  (2)等邊對等角;

  (3)底邊上的高、底邊上的中線(xiàn)、頂角平分線(xiàn)互相重合;

  (4)是軸對稱(chēng)圖形,對稱(chēng)軸是頂角平分線(xiàn);

  (5)底邊小于腰長(cháng)的兩倍并且大于零,腰長(cháng)大于底邊的一半;

  (6)頂角等于180減去底角的兩倍;

  (7)頂角可以是銳角、直角、鈍角而底角只能是銳角

  等腰三角形分類(lèi):可分為腰和底邊不等的等腰三角形及等邊三角形

  等邊三角形性質(zhì)

 、倬邆涞妊切蔚囊磺行再|(zhì)。

 、诘冗吶切稳龡l邊都相等,三個(gè)內角都相等并且每個(gè)都是60。

  等腰三角形的判定

 、倮枚x;

 、诘冉菍Φ冗;

  等邊三角形的判定

 、倮枚x:三邊相等的三角形是等邊三角形

 、谟幸粋(gè)角是60的等腰三角形是等邊三角形.

  含30銳角的直角三角形邊角關(guān)系:在直角三角形中,30銳角所對的直角邊等于斜邊的一半。

  三角形邊角的不等關(guān)系;長(cháng)邊對大角,短邊對小角;大角對長(cháng)邊,小角對短邊。

  初中數學(xué)知識點(diǎn)總結 2

  一、在創(chuàng )新中培養學(xué)生的歸納意?R

  在初中數學(xué)教學(xué)中,重點(diǎn)是對學(xué)生的創(chuàng )新精神和實(shí)踐能力的培養,體現出現代素質(zhì)教育。學(xué)生創(chuàng )新能力的培養在學(xué)習中占據非常重要的作用,在創(chuàng )新中學(xué)生可以鞏固自身所學(xué)的知識,使數學(xué)知識在自己的頭腦中根深蒂固,各類(lèi)知識點(diǎn)在學(xué)生的頭腦中形成清晰的框架,有助于學(xué)生歸納意識的培養。歸納意識的培養,可以減輕學(xué)生的學(xué)習負擔,提升學(xué)生對知識的理解能力。

  初中生在學(xué)習數學(xué)的環(huán)節中,常常會(huì )接觸到大量的圖像,在數學(xué)學(xué)習中,老師應該鼓勵學(xué)生大膽創(chuàng )新,在創(chuàng )新環(huán)節中完成對知識點(diǎn)的歸納。數學(xué)學(xué)習并不死板,不僅僅學(xué)習教科書(shū)上的知識,還應該學(xué)習書(shū)本以外的知識,從而創(chuàng )新自己的.思維。例如在進(jìn)行函數的學(xué)習中,老師可以讓學(xué)生繪制函數圖像,對函數進(jìn)行分類(lèi)討論,從而掌握遞增函數和遞減函數的定義,在分類(lèi)討論后,學(xué)生結合圖像進(jìn)行歸納。在數學(xué)教學(xué)中,老師不僅僅要重視書(shū)本上的邏輯內容,而且在把握邏輯內容的基礎上,將圖像和數學(xué)知識有機結合起來(lái),使學(xué)生可以大膽創(chuàng )新。

  很多學(xué)生在數學(xué)學(xué)習中存在困難,認為數學(xué)的學(xué)習就是解答大量的難題,他們在大量的題海戰術(shù)后不善于歸納,導致數學(xué)學(xué)習的效率不高。

  二、在交流中歸納知識點(diǎn)

  在數學(xué)學(xué)習中,如果學(xué)生只是自己探究,那么在學(xué)習中不會(huì )得到靈感。數學(xué)學(xué)習不僅僅要求學(xué)生具有認真的鉆研態(tài)度,而且也需要老師幫助學(xué)生養成歸納的意識。溝通和交流不僅僅在語(yǔ)言的學(xué)習中發(fā)揮非常重要的作用,而且在數學(xué)學(xué)習中同樣非常重要。學(xué)生在解答數學(xué)問(wèn)題中,常常會(huì )遇到一些問(wèn)題,學(xué)生自己探究會(huì )陷入到死胡同中,需要老師和同學(xué)的幫助才能進(jìn)一步完成。

  為了切實(shí)在初中數學(xué)教學(xué)中培養學(xué)生的歸納意識,老師可以將班級內的學(xué)生分成幾個(gè)不同的小組,組內的同學(xué)可以通過(guò)合作的方式,對知識點(diǎn)進(jìn)行歸納,在數學(xué)的學(xué)習中更加變通,將數學(xué)這門(mén)學(xué)科應用到生活中。

  例如,在進(jìn)行二次函數的學(xué)習中,老師可以將學(xué)生分成不同的小組,留給學(xué)生充足的時(shí)間,讓他們互相幫助,在溝通中對知識點(diǎn)進(jìn)行歸納。學(xué)生很快就能得到結論,如果函數有兩個(gè)解,那么函數與數軸會(huì )有兩個(gè)交點(diǎn),如果方程只有一個(gè)解,那么函數與數軸只有一個(gè)交點(diǎn),如果方程沒(méi)有解,那么函數與數軸沒(méi)有交點(diǎn)。學(xué)生通過(guò)分組討論的方式得到結論,通過(guò)歸納,學(xué)生對二次函數知識點(diǎn)的印象非常深刻。

  三、學(xué)會(huì )正確歸納

  在數學(xué)學(xué)習中,歸納思想非常重要,數學(xué)這門(mén)學(xué)科的知識非常細碎,是一門(mén)系統性很強的學(xué)科。數學(xué)知識錯綜復雜,很多學(xué)生在學(xué)習數學(xué)中力不從心,掌握合理的歸納方式,可以切實(shí)提升學(xué)生的數學(xué)成績(jì)。初中生的思維還不是特別完善,在進(jìn)行數學(xué)學(xué)習環(huán)節中,對知識點(diǎn)進(jìn)行合理的歸納,是每位老師應該采取的方法。如果學(xué)生不懂得歸納,那么在數學(xué)考試中,學(xué)生會(huì )將知識點(diǎn)混淆。為了提升學(xué)生的歸納能力,老師在課堂上應該將一些容易混淆和容易出現錯誤的習題讓學(xué)生總結。

  例如,在學(xué)習圓和直線(xiàn)這部分內容中,老師都會(huì )將重點(diǎn)內容,圓和圓的位置關(guān)系,直線(xiàn)和圓的位置關(guān)系進(jìn)行重點(diǎn)分析。老師可以借助一些參考書(shū)目和資料,總結一些相似的題目,讓學(xué)生在課堂上解答這些題目,使學(xué)生對這部分知識點(diǎn)進(jìn)行總結,從而加深對這部分知識的理解。歸納思想在數學(xué)學(xué)習中應用非常多,在進(jìn)行初中數學(xué)教學(xué)環(huán)節中,學(xué)生應該花更多的時(shí)間進(jìn)行歸納。

  在進(jìn)行初中數學(xué)的學(xué)習中,學(xué)生歸納意識的養成可以完善學(xué)生的數學(xué)思維,學(xué)生學(xué)會(huì )歸納,在學(xué)習中就會(huì )如魚(yú)得水,在考試中取得好成績(jì)。

  四、在反思中完成知識點(diǎn)的歸納

  初中數學(xué)知識點(diǎn)總結 3

  1.有理數:

 。1)凡能寫(xiě)成形式的數,都是有理數。正整數、0、負整數統稱(chēng)整數;正分數、負分數統稱(chēng)分數;整數和分數統稱(chēng)有理數。注意:0即不是正數,也不是負數;—a不一定是負數,+a也不一定是正數;p不是有理數;

 。2)有理數的分類(lèi):① ②

  2.數軸:數軸是規定了原點(diǎn)、正方向、單位長(cháng)度的一條直線(xiàn)。

  3.相反數:

 。1)只有符號不同的兩個(gè)數,我們說(shuō)其中一個(gè)是另一個(gè)的相反數;0的相反數還是0;

 。2)相反數的和為0?a+b=0?a、b互為相反數。

  4.絕對值:

 。1)正數的絕對值是其本身,0的絕對值是0,負數的絕對值是它的相反數;注意:絕對值的意義是數軸上表示某數的點(diǎn)離開(kāi)原點(diǎn)的距離;

 。2)絕對值可表示為:或;絕對值的問(wèn)題經(jīng)常分類(lèi)討論;

  5.有理數比大。海1)正數的絕對值越大,這個(gè)數越大;(2)正數永遠比0大,負數永遠比0;(3)正數大于一切負數;(4)兩個(gè)負數比大小,絕對值大的反而;(5)數軸上的兩個(gè)數,右邊的數總比左邊的數大;(6)大數—小數> 0,小數—大數< 0。

  6.互為倒數:乘積為1的兩個(gè)數互為倒數;注意:0沒(méi)有倒數;若a≠0,那么的倒數是;若ab=1?a、b互為倒數;若ab=—1?a、b互為負倒數。

  7.有理數加法法則:

 。1)同號兩數相加,取相同的符號,并把絕對值相加;

 。2)異號兩數相加,取絕對值較大的符號,并用較大的絕對值減去較小的絕對值;

 。3)一個(gè)數與0相加,仍得這個(gè)數。

  8.有理數加法的運算律:

 。1)加法的交換律:a+b=b+a;(2)加法的結合律:(a+b)+c=a+(b+c)。

  9.有理數減法法則:減去一個(gè)數,等于加上這個(gè)數的相反數;即a—b=a+(—b)。

  10.有理數乘法法則:

 。1)兩數相乘,同號為正,異號為負,并把絕對值相乘;

 。2)任何數同零相乘都得零;

 。3)幾個(gè)數相乘,有一個(gè)因式為零,積為零;各個(gè)因式都不為零,積的符號由負因式的個(gè)數決定。

  11.有理數乘法的'運算律:

 。1)乘法的交換律:ab=ba;(2)乘法的結合律:(ab)c=a(bc);

 。3)乘法的分配律:a(b+c)=ab+ac 。

  12.有理數除法法則:除以一個(gè)數等于乘以這個(gè)數的倒數;注意:零不能做除數,。

  13.有理數乘方的法則:

 。1)正數的任何次冪都是正數;

 。2)負數的奇次冪是負數;負數的偶次冪是正數;注意:當n為正奇數時(shí):(—a)n=—an或(a —b)n=—(b—a)n,當n為正偶數時(shí):(—a)n =an或(a—b)n=(b—a)n 。

  14.乘方的定義:

 。1)求相同因式積的運算,叫做乘方;

 。2)乘方中,相同的因式叫做底數,相同因式的個(gè)數叫做指數,乘方的結果叫做冪;

  15.科學(xué)記數法:把一個(gè)大于10的數記成a×10n的形式,其中a是整數數位只有一位的數,這種記數法叫科學(xué)記數法。

  16.近似數的精確位:一個(gè)近似數,四舍五入到那一位,就說(shuō)這個(gè)近似數的精確到那一位。

  17.有效數字:從左邊第一個(gè)不為零的數字起,到精確的位數止,所有數字,都叫這個(gè)近似數的有效數字。

  18.混合運算法則:先乘方,后乘除,最后加減。

  本章內容要求學(xué)生正確認識有理數的概念,在實(shí)際生活和學(xué)習數軸的基礎上,理解正負數、相反數、絕對值的意義所在。重點(diǎn)利用有理數的運算法則解決實(shí)際問(wèn)題。

  體驗數學(xué)發(fā)展的一個(gè)重要原因是生活實(shí)際的需要。激發(fā)學(xué)生學(xué)習數學(xué)的興趣,教師培養學(xué)生的觀(guān)察、歸納與概括的能力,使學(xué)生建立正確的數感和解決實(shí)際問(wèn)題的能力。教師在講授本章內容時(shí),應該多創(chuàng )設情境,充分體現學(xué)生學(xué)習的主體性地位。

  初中數學(xué)知識點(diǎn)總結 4

  1、圓是定點(diǎn)的距離等于定長(cháng)的點(diǎn)的集合

  2、圓的內部可以看作是圓心的距離小于半徑的點(diǎn)的集合

  3、圓的外部可以看作是圓心的距離大于半徑的點(diǎn)的集合

  4、同圓或等圓的半徑相等

  5、到定點(diǎn)的距離等于定長(cháng)的點(diǎn)的軌跡,是以定點(diǎn)為圓心,定長(cháng)為半徑的圓

  6、和已知線(xiàn)段兩個(gè)端點(diǎn)的距離相等的點(diǎn)的軌跡,是著(zhù)條線(xiàn)段的垂直平分線(xiàn)7、到已知角的兩邊距離相等的點(diǎn)的軌跡,是這個(gè)角的平分線(xiàn)

  8、到兩條平行線(xiàn)距離相等的點(diǎn)的軌跡,是和這兩條平行線(xiàn)平行且距離相等的一條直線(xiàn)

  9、定理不在同一直線(xiàn)上的三點(diǎn)確定一個(gè)圓。

  10、垂徑定理垂直于弦的直徑平分這條弦并且平分弦所對的兩條弧

  11、推論1:①平分弦(不是直徑)的直徑垂直于弦,并且平分弦所對的兩條、谙业拇怪逼椒志(xiàn)經(jīng)過(guò)圓心,并且平分弦所對的兩條、燮椒窒宜鶎Φ囊粭l弧的直徑,垂直平分弦,并且平分弦所對的另一條弧

  12、推論2:圓的兩條平行弦所夾的弧相等

  13、圓是以圓心為對稱(chēng)中心的中心對稱(chēng)圖形

  14、定理:在同圓或等圓中,相等的圓心角所對的弧相等,所對的弦相等,所對的弦的弦心距相等

  15、推論:在同圓或等圓中,如果兩個(gè)圓心角、兩條弧、兩條弦或兩弦的弦心距中有一組量相等那么它們所對應的其余各組量都相等

  16、定理:一條弧所對的圓周角等于它所對的圓心角的一半

  17、推論:1同弧或等弧所對的圓周角相等;同圓或等圓中,相等的圓周角所對的弧也相等

  18、推論:2半圓(或直徑)所對的圓周角是直角;90°的圓周角所對的弦是直徑

  19、推論:3如果三角形一邊上的中線(xiàn)等于這邊的一半,那么這個(gè)三角形是直角三角形

  20、定理:圓的內接四邊形的對角互補,并且任何一個(gè)外角都等于它的內對角

  21、①直線(xiàn)L和⊙O相交dr②直線(xiàn)L和⊙O相切d=r③直線(xiàn)L和⊙O相離dr

  22、切線(xiàn)的判定定理經(jīng)過(guò)半徑的外端并且垂直于這條半徑的直線(xiàn)是圓的切線(xiàn)23、切線(xiàn)的性質(zhì)定理圓的切線(xiàn)垂直于經(jīng)過(guò)切點(diǎn)的半徑24、推論1經(jīng)過(guò)圓心且垂直于切線(xiàn)的直線(xiàn)必經(jīng)過(guò)切點(diǎn)25、推論2經(jīng)過(guò)切點(diǎn)且垂直于切線(xiàn)的直線(xiàn)必經(jīng)過(guò)圓心

  26、切線(xiàn)長(cháng)定理:從圓外一點(diǎn)引圓的兩條切線(xiàn),它們的切線(xiàn)長(cháng)相等圓心和這一點(diǎn)的連線(xiàn)平分兩條切線(xiàn)的夾角

  27、圓的外切四邊形的兩組對邊的和相等

  28、弦切角定理:弦切角等于它所夾的弧對的圓周角

  29、推論:如果兩個(gè)弦切角所夾的`弧相等,那么這兩個(gè)弦切角也相等30、相交弦定理:圓內的兩條相交弦,被交點(diǎn)分成的兩條線(xiàn)段長(cháng)的積相等31、推論:如果弦與直徑垂直相交,那么弦的一半是它分直徑所成的兩條線(xiàn)段的比例中項

  32、切割線(xiàn)定理:從圓外一點(diǎn)引圓的切線(xiàn)和割線(xiàn),切線(xiàn)長(cháng)是這點(diǎn)到割線(xiàn)與圓交點(diǎn)的兩條線(xiàn)段長(cháng)的比例中項

  33、推論:從圓外一點(diǎn)引圓的兩條割線(xiàn),這一點(diǎn)到每條割線(xiàn)與圓的交點(diǎn)的兩條線(xiàn)段長(cháng)的積相等

  34、如果兩個(gè)圓相切,那么切點(diǎn)一定在連心線(xiàn)上

  35、①兩圓外離dR+r②兩圓外切d=R+r③兩圓相交R—rdR+r(Rr)④兩圓內切d=R—r(Rr)⑤兩圓內含dR—r(Rr)

  36、定理:相交兩圓的連心線(xiàn)垂直平分兩圓的公共弦

  37、定理:把圓分成n(n≥3):⑴依次連結各分點(diǎn)所得的多邊形是這個(gè)圓的內接正n邊形⑵經(jīng)過(guò)各分點(diǎn)作圓的切線(xiàn),以相鄰切線(xiàn)的交點(diǎn)為頂點(diǎn)的多邊形是這個(gè)圓的外切正n邊形

  38、定理:任何正多邊形都有一個(gè)外接圓和一個(gè)內切圓,這兩個(gè)圓是同心圓

  39、正n邊形的每個(gè)內角都等于(n—2)×180°/n40、定理:正n邊形的半徑和邊心距把正n邊形分成2n個(gè)全等的直角三角形

  41、正n邊形的面積Sn=pnrn/2p表示正n邊形的周長(cháng)42、正三角形面積√3a/4a表示邊長(cháng)

  43、如果在一個(gè)頂點(diǎn)周?chē)衚個(gè)正n邊形的角,由于這些角的和應為360°,因此k(n—2)180°/n=360°化為(n—2)(k—2)=444、弧長(cháng)計算公式:L=n兀R/180

  45、扇形面積公式:S扇形=n兀R^2/360=LR/246、內公切線(xiàn)長(cháng)=d—(R—r)外公切線(xiàn)長(cháng)=d—(R+r)

  初中數學(xué)知識點(diǎn)總結 5

  1.圓是以圓心為對稱(chēng)中心的中心對稱(chēng)圖形;同圓或等圓的半徑相等。

  2.到定點(diǎn)的距離等于定長(cháng)的點(diǎn)的軌跡,是以定點(diǎn)為圓心,定長(cháng)為半徑的圓。

  3.定理在同圓或等圓中,相等的圓心角所對的弧相等,所對的弦相等,所對的弦的弦心距相等。

  4.圓是定點(diǎn)的距離等于定長(cháng)的點(diǎn)的集合。

  5.圓的內部可以看作是圓心的距離小于半徑的點(diǎn)的集合;圓的外部可以看作是圓心的距離大于半徑的點(diǎn)的集合。

  6.不在同一直線(xiàn)上的三點(diǎn)確定一個(gè)圓。

  7.垂徑定理垂直于弦的直徑平分這條弦并且平分弦所對的兩條弧。

  推論1:

 、倨椒窒(不是直徑)的直徑垂直于弦,并且平分弦所對的兩條弧;

 、谙业拇怪逼椒志(xiàn)經(jīng)過(guò)圓心,并且平分弦所對的兩條弧;

 、燮椒窒宜鶎Φ囊粭l弧的直徑,垂直平分弦,并且平分弦所對的另一條弧。

  推論2:圓的`兩條平行弦所夾的弧相等。

  8.推論在同圓或等圓中,如果兩個(gè)圓心角、兩條弧、兩條弦或兩弦的弦心距中有一組量相等那么它們所對應的其余各組量都相等。

  9.定理圓的內接四邊形的對角互補,并且任何一個(gè)外角都等于它的內對角。

  10.經(jīng)過(guò)切點(diǎn)且垂直于切線(xiàn)的直線(xiàn)必經(jīng)過(guò)圓心。

  11.切線(xiàn)的判定定理經(jīng)過(guò)半徑的外端并且垂直于這條半徑的直線(xiàn)是圓的切線(xiàn)。

  12.切線(xiàn)的性質(zhì)定理圓的切線(xiàn)垂直于經(jīng)過(guò)切點(diǎn)的半徑。

  13.經(jīng)過(guò)圓心且垂直于切線(xiàn)的直線(xiàn)必經(jīng)過(guò)切點(diǎn)

  14.切線(xiàn)長(cháng)定理從圓外一點(diǎn)引圓的兩條切線(xiàn),它們的切線(xiàn)長(cháng)相等,圓心和這一點(diǎn)的連線(xiàn)平分兩條切線(xiàn)的夾角。

  15.圓的外切四邊形的兩組對邊的和相等外角等于內對角。

  16.如果兩個(gè)圓相切,那么切點(diǎn)一定在連心線(xiàn)上。

  17.

 、賰蓤A外離d>R+r

 、趦蓤A外切d=R+r

 、蹆蓤A相交d>R-r)

 、軆蓤A內切d=R-r(R>r)

 、輧蓤A內含d=r)

  18.定理把圓分成n(n≥3):

 、乓来芜B結各分點(diǎn)所得的多邊形是這個(gè)圓的內接正n邊形

 、平(jīng)過(guò)各分點(diǎn)作圓的切線(xiàn),以相鄰切線(xiàn)的交點(diǎn)為頂點(diǎn)的多邊形是這個(gè)圓的外切正n邊形。

  19.定理任何正多邊形都有一個(gè)外接圓和一個(gè)內切圓,這兩個(gè)圓是同心圓。

  20.弧長(cháng)計算公式:L=n兀R/180;扇形面積公式:S扇形=n兀R^2/360=LR/2。

  21.內公切線(xiàn)長(cháng)= d-(R-r)外公切線(xiàn)長(cháng)= d-(R+r)。

  22.定理一條弧所對的圓周角等于它所對的圓心角的一半。

  23.推論1同弧或等弧所對的圓周角相等;同圓或等圓中,相等的圓周角所對的弧也相等。

  24.推論2半圓(或直徑)所對的圓周角是直角;90°的圓周角所對的弦是直徑。

  初中數學(xué)知識點(diǎn)總結 6

  初中數學(xué)例題的知識點(diǎn)梳理

  有理數的加法運算:同號相加一邊倒;異號相加“大”減“小”,符號跟著(zhù)大的跑;絕對值相等“零”正好!咀ⅰ俊按蟆睖p“小”是指絕對值的大小。

  合并同類(lèi)項:合并同類(lèi)項,法則不能忘,只求系數和,字母、指數不變樣。

  去、添括號法則:去括號、添括號,關(guān)鍵看符號,括號前面是正號,去、添括號不變號,括號前面是負號,去、添括號都變號。

  恒等變換:兩個(gè)數字來(lái)相減,互換位置最常見(jiàn),正負只看其指數,奇數變號偶不變。(a—b)2n+1=—(b—a)2n+1(a—b)2n=(b—a)2n

  平方差公式:平方差公式有兩項,符號相反切記牢,首加尾乘首減尾,莫與完全公式相混淆。

  完全平方:完全平方有三項,首尾符號是同鄉,首平方、尾平方,首尾二倍放中央;首±尾括號帶平方,尾項符號隨中央。

  因式分解:一提(公因式)二套(公式)三分組,細看幾項不離譜,兩項只用平方差,三項十字相乘法,陣法熟練不馬虎,四項仔細看清楚,若有三個(gè)平方數(項),就用一三來(lái)分組,否則二二去分組,五項、六項更多項,二三、三三試分組,以上若都行不通,拆項、添項看清楚。

  “代入”口決:挖去字母換上數(式),數字、字母都保留;換上分數或負數,給它帶上小括弧,原括弧內出(現)括弧,逐級向下變括。ㄐ 小螅

  單項式運算:加、減、乘、除、乘(開(kāi))方,三級運算分得清,系數進(jìn)行同級(運)算,指數運算降級(進(jìn))行。

  一元一次不等式解題的一般步驟:去分母、去括號,移項時(shí)候要變號,同類(lèi)項、合并好,再把系數來(lái)除掉,兩邊除(以)負數時(shí),不等號改向別忘了。

  一元一次不等式組的解集:大大取較大,小小取較小,小大,大小取中間,大小,小大無(wú)處找。

  一元二次不等式、一元一次絕對值不等式的解集:大(魚(yú))于(吃)取兩邊,。~(yú))于(吃)取中間。

  分式混合運算法則:分式四則運算,順序乘除加減,乘除同級運算,除法符號須變(乘);乘法進(jìn)行化簡(jiǎn),因式分解在先,分子分母相約,然后再行運算;加減分母需同,分母化積關(guān)鍵;找出最簡(jiǎn)公分母,通分不是很難;變號必須兩處,結果要求最簡(jiǎn)。

  分式方程的解法步驟:同乘最簡(jiǎn)公分母,化成整式寫(xiě)清楚,求得解后須驗根,原(根)留、增(根)舍別含糊。

  最簡(jiǎn)根式的條件:最簡(jiǎn)根式三條件,號內不把分母含,冪指(數)根指(數)要互質(zhì),冪指比根指小一點(diǎn)。

  特殊點(diǎn)坐標特征:坐標平面點(diǎn)(x,y),橫在前來(lái)縱在后;(+,+),(—,+),(—,—)和(+,—),四個(gè)象限分前后;X軸上y為0,x為0在Y軸。

  象限角的平分線(xiàn):象限角的平分線(xiàn),坐標特征有特點(diǎn),一、三橫縱都相等,二、四橫縱確相反。

  平行某軸的直線(xiàn):平行某軸的直線(xiàn),點(diǎn)的坐標有講究,直線(xiàn)平行X軸,縱坐標相等橫不同;直線(xiàn)平行于Y軸,點(diǎn)的橫坐標仍照舊。

  對稱(chēng)點(diǎn)坐標:對稱(chēng)點(diǎn)坐標要記牢,相反數位置莫混淆,X軸對稱(chēng)y相反,Y軸對稱(chēng),x前面添負號;原點(diǎn)對稱(chēng)最好記,橫縱坐標變符號。

  自變量的取值范圍:分式分母不為零,偶次根下負不行;零次冪底數不為零,整式、奇次根全能行。

  函數圖像的移動(dòng)規律:若把一次函數解析式寫(xiě)成y=k(x+0)+b、二次函數的解析式寫(xiě)成y=a(x+h)2+k的形式,則用下面后的口訣“左右平移在括號,上下平移在末稍,左正右負須牢記,上正下負錯不了”。

  一次函數圖像與性質(zhì)口訣:一次函數是直線(xiàn),圖像經(jīng)過(guò)仨象限;正比例函數更簡(jiǎn)單,經(jīng)過(guò)原點(diǎn)一直線(xiàn);兩個(gè)系數k與b,作用之大莫小看,k是斜率定夾角,b與Y軸來(lái)相見(jiàn),k為正來(lái)右上斜,x增減y增減;k為負來(lái)左下展,變化規律正相反;k的絕對值越大,線(xiàn)離橫軸就越遠。

  二次函數圖像與性質(zhì)口訣:二次函數拋物線(xiàn),圖象對稱(chēng)是關(guān)鍵;開(kāi)口、頂點(diǎn)和交點(diǎn),它們確定圖象現;開(kāi)口、大小由a斷,c與Y軸來(lái)相見(jiàn),b的符號較特別,符號與a相關(guān)聯(lián);頂點(diǎn)位置先找見(jiàn),Y軸作為參考線(xiàn),左同右異中為0,牢記心中莫混亂;頂點(diǎn)坐標最重要,一般式配方它就現,橫標即為對稱(chēng)軸,縱標函數最值見(jiàn)。若求對稱(chēng)軸位置,符號反,一般、頂點(diǎn)、交點(diǎn)式,不同表達能互換。

  反比例函數圖像與性質(zhì)口訣:反比例函數有特點(diǎn),雙曲線(xiàn)相背離的遠;k為正,圖在一、三(象)限,k為負,圖在二、四(象)限;圖在一、三函數減,兩個(gè)分支分別減。圖在二、四正相反,兩個(gè)分支分別添;線(xiàn)越長(cháng)越近軸,永遠與軸不沾邊。

  巧記三角函數定義:初中所學(xué)的三角函數有正弦、余弦、正切、余切,它們實(shí)際是三角形邊的比值,可以把兩個(gè)字用/隔開(kāi),再用下面的一句話(huà)記定義:一位不高明的廚子教徒弟殺魚(yú),說(shuō)了這么一句話(huà):正對魚(yú)磷(余鄰)直刀切。正:

  正弦或正切,對:對邊即正是對;余:余弦或余弦,鄰:鄰邊即余是鄰;切是直角邊。

  三角函數的增減性:正增余減。

  特殊三角函數值記憶:首先記住30度、45度、60度的正弦值、余弦值的分母都是2、正切、余切的分母都是3,分子記口訣“123,321,三九二十七”既可。

  數字巧記:=1.414(意思意思而已)=1.7321(三人一起商量)=2.236(吾量量山路)=2.449(糧食是酒)=2.645(二流是我)=2.828(二爸二爸)=3.16(山藥,六兩)

  平行四邊形的判定:要證平行四邊形,兩個(gè)條件才能行,一證對邊都相等,或證對邊都平行,一組對邊也可以,必須相等且平行。對角線(xiàn),是個(gè)寶,互相平分“跑不了”,對角相等也有用,“兩組對角”才能成。

  梯形問(wèn)題的輔助線(xiàn):移動(dòng)梯形對角線(xiàn),兩腰之和成一線(xiàn);平行移動(dòng)一條腰,兩腰同在“△”現;延長(cháng)兩腰交一點(diǎn),“△”中有平行線(xiàn);作出梯形兩高線(xiàn),矩形顯示在眼前;已知腰上一中線(xiàn),莫忘作出中位線(xiàn)。

  添加輔助線(xiàn)歌:輔助線(xiàn),怎么添?找出規律是關(guān)鍵,題中若有角(平)分線(xiàn),可向兩邊作垂線(xiàn);線(xiàn)段垂直平分線(xiàn),引向兩端把線(xiàn)連,三角形邊兩中點(diǎn),連接則成中位線(xiàn);三角形中有中線(xiàn),延長(cháng)中線(xiàn)翻一番。

  圓的證明歌:圓的證明不算難,常把半徑直徑連;有弦可作弦心距,它定垂直平分弦;直徑是圓最大弦,直圓周角立上邊,它若垂直平分弦,垂徑、射影響耳邊;還有與圓有關(guān)角,勿忘相互有關(guān)聯(lián),圓周、圓心、弦切角,細找關(guān)系把線(xiàn)連。同弧圓周角相等,證題用它最多見(jiàn),圓中若有弦切角,夾弧找到就好辦;圓有內接四邊形,對角互補記心間,外角等于內對角,四邊形定內接圓;直角相對或共弦,試試加個(gè)輔助圓;若是證題打轉轉,四點(diǎn)共圓可解難;要想證明圓切線(xiàn),垂直半徑過(guò)外端,直線(xiàn)與圓有共點(diǎn),證垂直來(lái)半徑連,直線(xiàn)與圓未給點(diǎn),需證半徑作垂線(xiàn);四邊形有內切圓,對邊和等是條件;如果遇到圓與圓,弄清位置很關(guān)鍵,兩圓相切作公切,兩圓相交連公弦。

  學(xué)霸分享的數學(xué)復習技巧

  1、把答案蓋住看例題

  例題不能帶著(zhù)答案去看,不然會(huì )認為自己就是這么,其實(shí)自己并沒(méi)有理解透徹。

  所以,在看例題時(shí),把解答蓋住,自己去做,做完或做不出時(shí)再去看。這時(shí)要想一想,自己做的哪里與解答不同,哪里沒(méi)想到,該注意什么,哪一種方法更好,還有沒(méi)有另外的解法。

  經(jīng)過(guò)上面的訓練,自己的思維空間擴展了,看問(wèn)題也全面了。如果把題目徹底搞清了,在題后精煉幾個(gè)批注,說(shuō)明此題的“題眼”及巧妙之處,收獲會(huì )更大。

  2、研究每題都考什么

  數學(xué)能力的提高離不開(kāi)做題,“熟能生巧”這個(gè)簡(jiǎn)單的道理大家都懂。但做題不是搞題海戰術(shù),而是要通過(guò)一題聯(lián)想到很多題。

  3、錯一次反思一次

  每次業(yè)及考試或多或少會(huì )發(fā)生些錯誤,這并不可怕,要緊的是避免類(lèi)似的錯誤再次重現。因此平時(shí)注意把錯題記下來(lái)。

  學(xué)生若能將每次考試或練習中出現的錯誤記錄下來(lái)分析,并盡力保證在下次考試時(shí)不發(fā)生同樣錯誤,那么以后人生中最重要的高考也就能避免犯錯了。

  4、分析試卷總結經(jīng)驗

  每次考試結束試卷發(fā)下來(lái),要認真分析得失,總結經(jīng)驗教訓。特別是將試卷中出現的錯誤進(jìn)行分類(lèi)。

  數學(xué)解題方法分別有哪些

  1、配方法

  所謂的公式是使用變換解析方程的`同構方法,并將其中的一些分配給一個(gè)或多個(gè)多項式正整數冪的和形式。通過(guò)配方解決數學(xué)問(wèn)題的公式。其中,用的最多的是配成完全平方式。匹配方法是數學(xué)中不斷變形的重要方法,其應用非常廣泛,在分解,簡(jiǎn)化根,它通常用于求解方程,證明方程和不等式,找到函數的極值和解析表達式。

  2、因式分解法

  因式分解是將多項式轉換為幾個(gè)積分產(chǎn)品的乘積。分解是恒定變形的基礎。除了引入中學(xué)教科書(shū)中介紹的公因子法,公式法,群體分解法,交叉乘法法等外,還有很多方法可以進(jìn)行因式分解。還有一些項目,如拆除物品的使用,根分解,替換,未確定的系數等等。

  3、換元法

  替代方法是數學(xué)中一個(gè)非常重要和廣泛使用的解決問(wèn)題的方法。我們通常稱(chēng)未知或變元。用新的參數替換原始公式的一部分或重新構建原始公式可以更簡(jiǎn)單,更容易解決。

  4、判別式法與韋達定理

  一元二次方程ax2+ bx+ c=0(a、 b、 c屬于R,a≠0)根的判別,= b2—4 ac,不僅用來(lái)確定根的性質(zhì),還作為一個(gè)問(wèn)題解決方法,代數變形,求解方程(組),求解不等式,研究函數,甚至幾何以及三角函數都有非常廣泛的應用。

  韋達定理除了知道二次方程的根外,還找到另一根;考慮到兩個(gè)數的和和乘積的簡(jiǎn)單應用并尋找這兩個(gè)數,也可以找到根的對稱(chēng)函數并量化二次方程根的符號。求解對稱(chēng)方程并解決一些與二次曲線(xiàn)有關(guān)的問(wèn)題等,具有非常廣泛的應用。

  5、待定系數法

  在解決數學(xué)問(wèn)題時(shí),如果我們首先判斷我們所尋找的結果具有一定的形式,其中包含某些未決的系數,然后根據問(wèn)題的條件列出未確定系數的方程,最后找到未確定系數的值或這些待定系數之間的關(guān)系。為了解決數學(xué)問(wèn)題,這種問(wèn)題解決方法被稱(chēng)為待定系數法。它是中學(xué)數學(xué)中常用的方法之一。

  6、構造法

  在解決問(wèn)題時(shí),我們通常通過(guò)分析條件和結論來(lái)使用這些方法來(lái)構建輔助元素。它可以是一個(gè)圖表,一個(gè)方程(組),一個(gè)方程,一個(gè)函數,一個(gè)等價(jià)的命題等,架起連接條件和結論的橋梁。為了解決這個(gè)問(wèn)題,這種解決問(wèn)題的數學(xué)方法,我們稱(chēng)之為構造方法。運用結構方法解決問(wèn)題可以使代數,三角形,幾何等數學(xué)知識相互滲透,有助于解決問(wèn)題。

  數學(xué)經(jīng)常遇到的問(wèn)題解答

  1、要提高數學(xué)成績(jì)首先要做什么?

  這一點(diǎn),是很多學(xué)生所關(guān)注的,要提高數學(xué)成績(jì),首先就應該從基礎知識學(xué)起。不少同學(xué)覺(jué)得基礎知識過(guò)于簡(jiǎn)單,看兩遍基本上就都會(huì )了。這種“自我感覺(jué)良好”其實(shí)是一種錯覺(jué),而真正考試時(shí)又覺(jué)得無(wú)從下手,這還是基礎不牢的表現,因此要提高數學(xué)成績(jì)先要把基礎夯實(shí)。

  2、基礎不好怎么學(xué)好數學(xué)?

  對于基礎差的同學(xué)來(lái)說(shuō),課本是就是學(xué)好數學(xué)的秘籍,把課本上的定義、公式、定理全部弄懂,力爭在理解的基礎上全部背熟,每一道例題、每一道課后題都要掌握。我們知道只有把公式、定理爛熟于心,才能舉一反三、活學(xué)活用,把課本的知識學(xué)透有兩個(gè)好處,第一,強化基礎;第二,提高得分能力。

  3、是否要采用題海戰術(shù)?

  方法君曾不止一次提到了“題海戰術(shù)”,題海戰術(shù)究竟可不可取呢?“題海戰術(shù)”其實(shí)也是一種學(xué)習方法,但很多學(xué)生只知道做題,不懂得總結,體現不出任何的學(xué)習效果。因此在做題后要總結至關(guān)重要,只有認真總結才能不斷積累做題經(jīng)驗,這樣才能取得理想成績(jì)。

  4、做題總是粗心怎么辦?

  很多學(xué)生成績(jì)不好,會(huì )說(shuō)自己是因為粗心導致的,其實(shí)“粗心”只是借口,真正的原因就是題做得少、基礎知識不牢、沒(méi)有清晰的解題思路、計算能力不強。因此在平時(shí)的學(xué)習中,一定要注重熟練度和精準度的練習。如果總是給自己找“粗心”的借口,也就變相否定了自己的學(xué)習弱點(diǎn),所以,要告訴自己,高中數學(xué)沒(méi)有“粗心”只有“不用心”。

  初中數學(xué)知識點(diǎn)總結 7

  一、初中數學(xué)基本概念

  1.方程:含有未知數的等式叫做方程。

  2.一元一次方程:只含有一個(gè)未知數,并且未知數的次數是1,并且含未知數項的系數不是零的整式方程是一元一次方程。

  3.方程的解:使方程左右兩邊相等的未知數的值叫做方程的解。

  4.解方程:求方程的解的過(guò)程叫做解方程。

  5.恒等式:兩個(gè)含有相同的未知數,并且含未知數項的系數都是零的整式方程是一元一次方程。

  二、初中數學(xué)基本公式

  1.三角形面積的公式:三角形面積=底×高÷2,用字母表示為“S=ah÷2”。

  2.平行四邊形面積的公式:平行四邊形面積=底×高,用字母表示為“S=ah”。

  3.梯形面積的公式:梯形面積=(上底+下底)×高÷2,用字母表示為“S=(a+b)h÷2”。

  4.圓的面積公式:圓面積=半徑×半徑×π,用字母表示為“S=πr2”。

  5.菱形的面積公式:菱形面積=底×高,用字母表示為“S=ab”。

  6.正方形面積公式:正方形面積=邊長(cháng)×邊長(cháng),用字母表示為“S=a2”。

  7.一元一次方程求解公式:ax=b,其中a和b為方程的系數,x為未知數。當a≠0時(shí),有唯一解;當a=0且b≠0時(shí),無(wú)解;當a=0且b=0時(shí),有無(wú)數解。

  三、初中數學(xué)基本定理

  1.等式的性質(zhì):等式兩邊同時(shí)加上(或減去)同一個(gè)代數式,所得結果仍是等式;等式兩邊同時(shí)乘以(或除以)同一個(gè)不為0的數或代數式,所得結果仍是等式。

  2.方程的解法:通過(guò)移項、合并同類(lèi)項、去括號、去分母等方式,將一元一次方程轉化為ax=b的形式,求解得到方程的解。

  3.一元一次不等式的解法:將一元一次不等式轉化為ax>b或ax

  4.二元一次方程組的解法:通過(guò)代入消元法或加減消元法,將二元一次方程組轉化為一個(gè)一元一次方程,然后求解得到方程組的解。

  5.菱形的`性質(zhì):菱形的四條邊相等,對角線(xiàn)互相垂直平分,并且每一組對角線(xiàn)平分一組對角。

  6.正方形的性質(zhì):正方形具有平行四邊形、矩形、菱形的一切性質(zhì),并且四條邊相等,四個(gè)角都是直角。

  7.相似三角形的判定定理:兩個(gè)三角形對應邊成比例且對應角相等,則這兩個(gè)三角形相似。

  8.全等三角形的判定定理:兩個(gè)三角形三邊相等、兩邊夾角相等、兩角夾邊相等、兩角和一邊相等,則這兩個(gè)三角形全等。

  9.垂徑定理:在圓中,直徑平分弦(不是直徑的弦)所對的兩條弧,平分弦所對的圓周弧的弦垂直平分弦。

  10.圓的切線(xiàn)的判定定理:經(jīng)過(guò)半徑的外端且垂直于這條半徑的直線(xiàn)是圓的切線(xiàn);經(jīng)過(guò)圓的半徑外端且垂直于切線(xiàn)的直線(xiàn)是圓的切線(xiàn);圓的割線(xiàn)定理:一條直線(xiàn)與一個(gè)圓有兩個(gè)不同的交點(diǎn),則這條直線(xiàn)被圓截得的線(xiàn)段長(cháng)的平方等于這個(gè)圓上兩點(diǎn)所對應的弦長(cháng)的平方差。

  11.相交弦定理:圓內的兩條相交弦被交點(diǎn)分成的兩條線(xiàn)段長(cháng)的積相等。

  12.切割線(xiàn)定理:從圓外一點(diǎn)引圓的切線(xiàn)和割線(xiàn),切線(xiàn)長(cháng)是這點(diǎn)到割線(xiàn)與圓交點(diǎn)的兩條線(xiàn)段長(cháng)的積相等。

  13.圓心角、弧、弦的關(guān)系定理:在同圓或等圓中,相等的圓心角所對的弧相等;相等的弧所對的弦也相等;相等的弦所對的弧也相等;在同圓或等圓中,如果兩個(gè)圓心角、兩條弧、兩條弦中有一組量相等,那么它們所對應的其余各組量都分別相等;弧的度數等于它所對的圓心角度數;一個(gè)圓心角等于它所對的弧的度數;半圓(或直徑)所對的圓周角是直角;90°的圓周

  初中數學(xué)知識點(diǎn)總結 8

  1、不在同一直線(xiàn)上的三點(diǎn)確定一個(gè)圓。

  2、垂徑定理:垂直于弦的直徑平分這條弦并且平分弦所對的兩條弧

  推論1

 、(不是直徑)的直徑垂直于弦,并且平分弦所對的兩條弧

 、谙业拇怪逼椒志(xiàn)經(jīng)過(guò)圓心,并且平分弦所對的兩條弧

 、燮椒窒宜鶎Φ囊粭l弧的直徑,垂直平分弦,并且平分弦所對的另一條弧

  推論2

  圓的兩條平行弦所夾的弧相等

  3、圓是以圓心為對稱(chēng)中心的中心對稱(chēng)圖形

  4、圓是定點(diǎn)的距離等于定長(cháng)的點(diǎn)的集合

  5、圓的內部可以看作是圓心的距離小于半徑的點(diǎn)的集合

  6、圓的外部可以看作是圓心的距離大于半徑的點(diǎn)的集合

  7、同圓或等圓的半徑相等

  8、到定點(diǎn)的距離等于定長(cháng)的點(diǎn)的軌跡,是以定點(diǎn)為圓心,定長(cháng)為半徑的圓

  9、定理在同圓或等圓中,相等的圓心角所對的弧相等,所對的弦相等,所對的弦的弦心距相等

  10、推論在同圓或等圓中,如果兩個(gè)圓心角、兩條弧、兩條弦或兩弦的弦心距中有一組量相等那么它們所對應的其余各組量都相等。

  11、定理:圓的內接四邊形的對角互補,并且任何一個(gè)外角都等于它的內對角

  12、①直線(xiàn)L和⊙O相交d

 、谥本(xiàn)L和⊙O相切d=r

 、壑本(xiàn)L和⊙O相離d>r

  13、切線(xiàn)的`判定定理:經(jīng)過(guò)半徑的外端并且垂直于這條半徑的直線(xiàn)是圓的切線(xiàn)

  14、切線(xiàn)的性質(zhì)定理:圓的切線(xiàn)垂直于經(jīng)過(guò)切點(diǎn)的半徑

  15、推論1經(jīng)過(guò)圓心且垂直于切線(xiàn)的直線(xiàn)必經(jīng)過(guò)切點(diǎn)

  16、推論2經(jīng)過(guò)切點(diǎn)且垂直于切線(xiàn)的直線(xiàn)必經(jīng)過(guò)圓心

  17、切線(xiàn)長(cháng)定理:從圓外一點(diǎn)引圓的兩條切線(xiàn),它們的切線(xiàn)長(cháng)相等,圓心和這一點(diǎn)的連線(xiàn)平分兩條切線(xiàn)的夾角

  18、圓的外切四邊形的兩組對邊的和相等,外角等于內對角

  19、如果兩個(gè)圓相切,那么切點(diǎn)一定在連心線(xiàn)上

  20、

 、賰蓤A外離d>R+r

 、趦蓤A外切d=R+r

 、蹆蓤A相交R-rr)

 、軆蓤A內切d=R-r(R>r)

 、輧蓤A內含dr)

  初中數學(xué)知識點(diǎn)總結 9

  銳角三角函數定義

  銳角角A的正弦(sin),余弦(cos)和正切(tan),余切(cot)以及正割(sec),余割(csc)都叫做角A的銳角三角函數。

  正弦(sin):對邊比斜邊,即sinA=a/c;

  余弦(cos):鄰邊比斜邊,即cosA=b/c;

  正切(tan):對邊比鄰邊,即tanA=a/b;

  余切(cot):鄰邊比對邊,即cotA=b/a;

  正割(sec):斜邊比鄰邊,即secA=c/b;

  余割(csc):斜邊比對邊,即cscA=c/a。

  三角函數關(guān)系

  1、互余角的關(guān)系

  sin(90°—α)=cosα,cos(90°—α)=sinα,tan(90°—α)=cotα,cot(90°—α)=tanα。

  2、平方關(guān)系

  sin^2(α)+cos^2(α)=1

  tan^2(α)+1=sec^2(α)

  cot^2(α)+1=csc^2(α)

  3、積的關(guān)系

  sinα=tanα·cosα

  cosα=cotα·sinα

  tanα=sinα·secα

  cotα=cosα·cscα

  secα=tanα·cscα

  cscα=secα·cotα

  4、倒數關(guān)系

  tanα·cotα=1

  sinα·cscα=1

  cosα·secα=1

  兩角和差公式

  sin(A+B)= sinAcosB+cosAsinB

  sin(A—B)= sinAcosB—cosAsinB

  cos(A+B)= cosAcosB—sinAsinB

  cos(A—B)= cosAcosB+sinAsinB

  tan(A+B)=(tanA+tanB)/(1—tanAtanB)

  tan(A—B)=(tanA—tanB)/(1+tanAtanB)

  cot(A+B)=(cotAcotB—1)/(cotB+cotA)

  cot(A—B)=(cotAcotB+1)/(cotB—cotA)

  1、不在同一直線(xiàn)上的三點(diǎn)確定一個(gè)圓。

  2、垂徑定理:垂直于弦的直徑平分這條弦并且平分弦所對的兩條弧。

  3、圓是以圓心為對稱(chēng)中心的中心對稱(chēng)圖形。

  4、圓是定點(diǎn)的距離等于定長(cháng)的點(diǎn)的集合

  5、圓的內部可以看作是圓心的距離小于半徑的點(diǎn)的集合。

  6、圓的外部可以看作是圓心的距離大于半徑的點(diǎn)的集合。

  7、同圓或等圓的半徑相等。

  8、到定點(diǎn)的距離等于定長(cháng)的點(diǎn)的軌跡,是以定點(diǎn)為圓心,定長(cháng)為半徑的圓。

  9、定理在同圓或等圓中,相等的圓心角所對的弧相等,所對的弦相等,所對的.弦的弦心距相等。

  10、推論在同圓或等圓中,如果兩個(gè)圓心角、兩條弧、兩條弦或兩弦的弦心距中有一組量相等那么它們所對應的其余各組量都相等。

  11、定理圓的內接四邊形的對角互補,并且任何一個(gè)外角都等于它的內對角。

  13、切線(xiàn)的判定定理經(jīng)過(guò)半徑的外端并且垂直于這條半徑的直線(xiàn)是圓的切線(xiàn)。

  14、切線(xiàn)的性質(zhì)定理圓的切線(xiàn)垂直于經(jīng)過(guò)切點(diǎn)的半徑。

  15、推論1經(jīng)過(guò)圓心且垂直于切線(xiàn)的直線(xiàn)必經(jīng)過(guò)切點(diǎn)。

  初中數學(xué)知識點(diǎn)總結 10

  動(dòng)點(diǎn)與函數圖象問(wèn)題常見(jiàn)的四種類(lèi)型:

  1、三角形中的動(dòng)點(diǎn)問(wèn)題:動(dòng)點(diǎn)沿三角形的邊運動(dòng),根據問(wèn)題中的常量與變量之間的關(guān)系,判斷函數圖象.

  2、四邊形中的動(dòng)點(diǎn)問(wèn)題:動(dòng)點(diǎn)沿四邊形的邊運動(dòng),根據問(wèn)題中的常量與變量之間的關(guān)系,判斷函數圖象.

  3、圓中的動(dòng)點(diǎn)問(wèn)題:動(dòng)點(diǎn)沿圓周運動(dòng),根據問(wèn)題中的常量與變量之間的關(guān)系,判斷函數圖象.

  4、直線(xiàn)、雙曲線(xiàn)、拋物線(xiàn)中的動(dòng)點(diǎn)問(wèn)題:動(dòng)點(diǎn)沿直線(xiàn)、雙曲線(xiàn)、拋物線(xiàn)運動(dòng),根據問(wèn)題中的常量與變量之間的關(guān)系,判斷函數圖象.

  圖形運動(dòng)與函數圖象問(wèn)題常見(jiàn)的三種類(lèi)型:

  1、線(xiàn)段與多邊形的運動(dòng)圖形問(wèn)題:把一條線(xiàn)段沿一定方向運動(dòng)經(jīng)過(guò)三角形或四邊形,根據問(wèn)題中的常量與變量之間的關(guān)系,進(jìn)行分段,判斷函數圖象.

  2、多邊形與多邊形的運動(dòng)圖形問(wèn)題:把一個(gè)三角形或四邊形沿一定方向運動(dòng)經(jīng)過(guò)另一個(gè)多邊形,根據問(wèn)題中的常量與變量之間的關(guān)系,進(jìn)行分段,判斷函數圖象.

  3、多邊形與圓的運動(dòng)圖形問(wèn)題:把一個(gè)圓沿一定方向運動(dòng)經(jīng)過(guò)一個(gè)三角形或四邊形,或把一個(gè)三角形或四邊形沿一定方向運動(dòng)經(jīng)過(guò)一個(gè)圓,根據問(wèn)題中的常量與變量之間的關(guān)系,進(jìn)行分段,判斷函數圖象.

  動(dòng)點(diǎn)問(wèn)題常見(jiàn)的四種類(lèi)型:

  1、三角形中的動(dòng)點(diǎn)問(wèn)題:動(dòng)點(diǎn)沿三角形的邊運動(dòng),通過(guò)全等或相似,探究構成的新圖形與原圖形的邊或角的關(guān)系.

  2、四邊形中的動(dòng)點(diǎn)問(wèn)題:動(dòng)點(diǎn)沿四邊形的邊運動(dòng),通過(guò)探究構成的新圖形與原圖形的全等或相似,得出它們的邊或角的關(guān)系.

  3、圓中的'動(dòng)點(diǎn)問(wèn)題:動(dòng)點(diǎn)沿圓周運動(dòng),探究構成的新圖形的邊角等關(guān)系.

  4、直線(xiàn)、雙曲線(xiàn)、拋物線(xiàn)中的動(dòng)點(diǎn)問(wèn)題:動(dòng)點(diǎn)沿直線(xiàn)、雙曲線(xiàn)、拋物線(xiàn)運動(dòng),探究是否存在動(dòng)點(diǎn)構成的三角形是等腰三角形或與已知圖形相似等問(wèn)題.

  總結反思:

  本題是二次函數的綜合題,考查了待定系數法求二次函數的解析式,一次函數的解析式,三角形全等的判定和性質(zhì),等腰直角三角形的性質(zhì),平行線(xiàn)的性質(zhì)等,數形結合思想的應用是解題的關(guān)鍵.

  解答動(dòng)態(tài)性問(wèn)題通常是對幾何圖形運動(dòng)過(guò)程有一個(gè)完整、清晰的認識,發(fā)掘“動(dòng)”與“靜”的內在聯(lián)系,尋求變化規律,從變中求不變,從而達到解題目的.

  解答函數的圖象問(wèn)題一般遵循的步驟:

  1、根據自變量的取值范圍對函數進(jìn)行分段.

  2、求出每段的解析式.

  3、由每段的解析式確定每段圖象的形狀.

  對于用圖象描述分段函數的實(shí)際問(wèn)題,要抓住以下幾點(diǎn):

  1、自變量變化而函數值不變化的圖象用水平線(xiàn)段表示.

  2、自變量變化函數值也變化的增減變化情況.

  3、函數圖象的最低點(diǎn)和最高點(diǎn).

  初中數學(xué)知識點(diǎn)總結 11

  1、xxx:由不在同一直線(xiàn)上的三條線(xiàn)段首尾順次相接所組成的圖形叫做xxx。

  2、xxx的分類(lèi)

  3、xxx的三邊關(guān)系:xxx任意兩邊的和大于第三邊,任意兩邊的差小于第三邊。

  4、高:從xxx的一個(gè)頂點(diǎn)向它的對邊所在直線(xiàn)作垂線(xiàn),頂點(diǎn)和垂足間的線(xiàn)段叫做xxx的高。

  5、中線(xiàn):在xxx中,連接一個(gè)頂點(diǎn)和它的對邊中點(diǎn)的線(xiàn)段叫做xxx的中線(xiàn)。

  6、角平分線(xiàn):xxx的一個(gè)內角的平分線(xiàn)與這個(gè)角的對邊相交,這個(gè)角的頂點(diǎn)和交點(diǎn)之間的'線(xiàn)段叫做xxx的角平分線(xiàn)。

  7、高線(xiàn)、中線(xiàn)、角平分線(xiàn)的意義和做法

  8、xxx的穩定性:xxx的形狀是固定的,xxx的這個(gè)性質(zhì)叫xxx的穩定性。

  9、xxx內角和定理:xxx三個(gè)內角的和等于180°

  推論1直角xxx的兩個(gè)銳角互余

  推論2xxx的一個(gè)外角等于和它不相鄰的兩個(gè)內角和

  推論3xxx的一個(gè)外角大于任何一個(gè)和它不相鄰的內角;xxx的內角和是外角和的一半

  10、xxx的外角:xxx的一條邊與另一條邊延長(cháng)線(xiàn)的夾角,叫做xxx的外角。

  11、xxx外角的性質(zhì)

  (1)頂點(diǎn)是xxx的一個(gè)頂點(diǎn),一邊是xxx的一邊,另一邊是xxx的一邊的延長(cháng)線(xiàn);

  (2)xxx的一個(gè)外角等于與它不相鄰的兩個(gè)內角和;

  (3)xxx的一個(gè)外角大于與它不相鄰的任一內角;

  (4)xxx的外角和是360°。

  初中數學(xué)知識點(diǎn)總結 12

  三角形的知識點(diǎn)

  1、三角形:由不在同一直線(xiàn)上的三條線(xiàn)段首尾順次相接所組成的圖形叫做三角形。

  2、三角形的分類(lèi)

  3、三角形的三邊關(guān)系:三角形任意兩邊的和大于第三邊,任意兩邊的差小于第三邊。

  4、高:從三角形的一個(gè)頂點(diǎn)向它的對邊所在直線(xiàn)作垂線(xiàn),頂點(diǎn)和垂足間的線(xiàn)段叫做三角形的高。

  5、中線(xiàn):在三角形中,連接一個(gè)頂點(diǎn)和它的對邊中點(diǎn)的線(xiàn)段叫做三角形的中線(xiàn)。

  6、角平分線(xiàn):三角形的一個(gè)內角的平分線(xiàn)與這個(gè)角的對邊相交,這個(gè)角的頂點(diǎn)和交點(diǎn)之間的線(xiàn)段叫做三角形的角平分線(xiàn)。

  7、高線(xiàn)、中線(xiàn)、角平分線(xiàn)的意義和做法

  8、三角形的穩定性:三角形的形狀是固定的,三角形的這個(gè)性質(zhì)叫三角形的穩定性。

  9、三角形內角和定理:三角形三個(gè)內角的和等于180°

  推論1直角三角形的兩個(gè)銳角互余

  推論2三角形的一個(gè)外角等于和它不相鄰的兩個(gè)內角和

  推論3三角形的一個(gè)外角大于任何一個(gè)和它不相鄰的內角;三角形的內角和是外角和的一半

  10、三角形的外角:三角形的一條邊與另一條邊延長(cháng)線(xiàn)的夾角,叫做三角形的外角。

  11、三角形外角的性質(zhì)

  (1)頂點(diǎn)是三角形的一個(gè)頂點(diǎn),一邊是三角形的一邊,另一邊是三角形的一邊的延長(cháng)線(xiàn);

  (2)三角形的一個(gè)外角等于與它不相鄰的兩個(gè)內角和;

  (3)三角形的一個(gè)外角大于與它不相鄰的任一內角;

  (4)三角形的外角和是360°。

  四邊形(含多邊形)知識點(diǎn)、概念總結

  一、平行四邊形的定義、性質(zhì)及判定

  1、兩組對邊平行的四邊形是平行四邊形。

  2、性質(zhì):

  (1)平行四邊形的對邊相等且平行

  (2)平行四邊形的對角相等,鄰角互補

  (3)平行四邊形的對角線(xiàn)互相平分

  3、判定:

  (1)兩組對邊分別平行的.四邊形是平行四邊形

  (2)兩組對邊分別相等的四邊形是平行四邊形

  (3)一組對邊平行且相等的四邊形是平行四邊形

  (4)兩組對角分別相等的四邊形是平行四邊形

  (5)對角線(xiàn)互相平分的四邊形是平行四邊形

  4、對稱(chēng)性:平行四邊形是中心對稱(chēng)圖形

  二、矩形的定義、性質(zhì)及判定

  1、定義:有一個(gè)角是直角的平行四邊形叫做矩形

  2、性質(zhì):矩形的四個(gè)角都是直角,矩形的對角線(xiàn)相等

  3、判定:

  (1)有一個(gè)角是直角的平行四邊形叫做矩形

  (2)有三個(gè)角是直角的四邊形是矩形

  (3)兩條對角線(xiàn)相等的平行四邊形是矩形

  4、對稱(chēng)性:矩形是軸對稱(chēng)圖形也是中心對稱(chēng)圖形。

  三、菱形的定義、性質(zhì)及判定

  1、定義:有一組鄰邊相等的平行四邊形叫做菱形

  (1)菱形的四條邊都相等

  (2)菱形的對角線(xiàn)互相垂直,并且每一條對角線(xiàn)平分一組對角

  (3)菱形被兩條對角線(xiàn)分成四個(gè)全等的直角三角形

  (4)菱形的面積等于兩條對角線(xiàn)長(cháng)的積的一半

  2、s菱=爭6(n、6分別為對角線(xiàn)長(cháng))

  3、判定:

  (1)有一組鄰邊相等的平行四邊形叫做菱形

  (2)四條邊都相等的四邊形是菱形

  (3)對角線(xiàn)互相垂直的平行四邊形是菱形

  4、對稱(chēng)性:菱形是軸對稱(chēng)圖形也是中心對稱(chēng)圖形

  四、正方形定義、性質(zhì)及判定

  1、定義:有一組鄰邊相等并且有一個(gè)角是直角的平行四邊形叫做正方形

  2、性質(zhì):

  (1)正方形四個(gè)角都是直角,四條邊都相等

  (2)正方形的兩條對角線(xiàn)相等,并且互相垂直平分,每條對角線(xiàn)平分一組對角

  (3)正方形的一條對角線(xiàn)把正方形分成兩個(gè)全等的等腰直角三角形

  (4)正方形的對角線(xiàn)與邊的夾角是45°

  (5)正方形的兩條對角線(xiàn)把這個(gè)正方形分成四個(gè)全等的等腰直角三角形

  3、判定:

  (1)先判定一個(gè)四邊形是矩形,再判定出有一組鄰邊相等

  (2)先判定一個(gè)四邊形是菱形,再判定出有一個(gè)角是直角

  4、對稱(chēng)性:正方形是軸對稱(chēng)圖形也是中心對稱(chēng)圖形

  五、梯形的定義、等腰梯形的性質(zhì)及判定

  1、定義:一組對邊平行,另一組對邊不平行的四邊形是梯形。兩腰相等的梯形是等腰梯形。一腰垂直于底的梯形是直角梯形

  2、等腰梯形的性質(zhì):等腰梯形的兩腰相等;同一底上的兩個(gè)角相等;兩條對角線(xiàn)相等

  3、等腰梯形的判定:兩腰相等的梯形是等腰梯形;同一底上的兩個(gè)角相等的梯形是等腰梯形;兩條對角線(xiàn)相等的梯形是等腰梯形

  4、對稱(chēng)性:等腰梯形是軸對稱(chēng)圖形

  六、三角形的中位線(xiàn)平行于三角形的第三邊并等于第三邊的一半;梯形的中位線(xiàn)平行于梯形的兩底并等于兩底和的一半。

  七、線(xiàn)段的重心是線(xiàn)段的中點(diǎn);平行四邊形的重心是兩對角線(xiàn)的交點(diǎn);三角形的重心是三條中線(xiàn)的交點(diǎn)。

  八、依次連接任意一個(gè)四邊形各邊中點(diǎn)所得的四邊形叫中點(diǎn)四邊形。

  九、多邊形

  1、多邊形:在平面內,由一些線(xiàn)段首尾順次相接組成的圖形叫做多邊形。

  2、多邊形的內角:多邊形相鄰兩邊組成的角叫做它的內角。

  3、多邊形的外角:多邊形的一邊與它的鄰邊的延長(cháng)線(xiàn)組成的角叫做多邊形的外角。

  4、多邊形的對角線(xiàn):連接多邊形不相鄰的兩個(gè)頂點(diǎn)的線(xiàn)段,叫做多邊形的對角線(xiàn)。

  5、多邊形的分類(lèi):分為凸多邊形及凹多邊形,凸多邊形又可稱(chēng)為平面多邊形,凹多邊形又稱(chēng)空間多邊形。多邊形還可以分為正多邊形和非正多邊形。正多邊形各邊相等且各內角相等。

  6、正多邊形:在平面內,各個(gè)角都相等,各條邊都相等的多邊形叫做正多邊形。

  7、平面鑲嵌:用一些不重疊擺放的多邊形把平面的一部分完全覆蓋,叫做用多邊形覆蓋平面。

  8、公式與性質(zhì)

  多邊形內角和公式:n邊形的內角和等于(n-2)·180°

  9、多邊形外角和定理:

  (1)n邊形外角和等于n·180°-(n-2)·180°=360°

  (2)邊形的每個(gè)內角與它相鄰的外角是鄰補角,所以n邊形內角和加外角和等于n·180°

  10、多邊形對角線(xiàn)的條數:

  (1)從n邊形的一個(gè)頂點(diǎn)出發(fā)可以引(n-3)條對角線(xiàn),把多邊形分詞(n-2)個(gè)三角形

  (2)n邊形共有n(n-3)/2條對角線(xiàn)

  圓知識點(diǎn)、概念總結

  1、不在同一直線(xiàn)上的三點(diǎn)確定一個(gè)圓。

  2、垂徑定理:垂直于弦的直徑平分這條弦并且平分弦所對的兩條弧

  推論1①(不是直徑)的直徑垂直于弦,并且平分弦所對的兩條弧

 、谙业拇怪逼椒志(xiàn)經(jīng)過(guò)圓心,并且平分弦所對的兩條弧

 、燮椒窒宜鶎Φ囊粭l弧的直徑,垂直平分弦,并且平分弦所對的另一條弧

  推論2圓的兩條平行弦所夾的弧相等

  3、圓是以圓心為對稱(chēng)中心的中心對稱(chēng)圖形

  4、圓是定點(diǎn)的距離等于定長(cháng)的點(diǎn)的集合

  5、圓的內部可以看作是圓心的距離小于半徑的點(diǎn)的集合

  6、圓的外部可以看作是圓心的距離大于半徑的點(diǎn)的集合

  7、同圓或等圓的半徑相等

  8、到定點(diǎn)的距離等于定長(cháng)的點(diǎn)的軌跡,是以定點(diǎn)為圓心,定長(cháng)為半徑的圓

  9、定理在同圓或等圓中,相等的圓心角所對的弧相等,所對的弦相等,所對的弦的弦心距相等

  10、推論在同圓或等圓中,如果兩個(gè)圓心角、兩條弧、兩條弦或兩弦的弦心距中有一組量相等那么它們所對應的其余各組量都相等。

  11、定理:圓的內接四邊形的對角互補,并且任何一個(gè)外角都等于它的內對角

  12、①直線(xiàn)L和⊙O相交d

 、谥本(xiàn)L和⊙O相切d=r

 、壑本(xiàn)L和⊙O相離d>r

  13、切線(xiàn)的判定定理:經(jīng)過(guò)半徑的外端并且垂直于這條半徑的直線(xiàn)是圓的切線(xiàn)

  14、切線(xiàn)的性質(zhì)定理:圓的切線(xiàn)垂直于經(jīng)過(guò)切點(diǎn)的半徑

  15、推論1經(jīng)過(guò)圓心且垂直于切線(xiàn)的直線(xiàn)必經(jīng)過(guò)切點(diǎn)

  16、推論2經(jīng)過(guò)切點(diǎn)且垂直于切線(xiàn)的直線(xiàn)必經(jīng)過(guò)圓心

  17、切線(xiàn)長(cháng)定理:從圓外一點(diǎn)引圓的兩條切線(xiàn),它們的切線(xiàn)長(cháng)相等,圓心和這一點(diǎn)的連線(xiàn)平分兩條切線(xiàn)的夾角

  18、圓的外切四邊形的兩組對邊的和相等,外角等于內對角

  19、如果兩個(gè)圓相切,那么切點(diǎn)一定在連心線(xiàn)上

  20、①兩圓外離d>R+r

 、趦蓤A外切d=R+r

 、蹆蓤A相交R-rr)

 、軆蓤A內切d=R-r(R>r)⑤兩圓內含dr)

  21、定理:相交兩圓的連心線(xiàn)垂直平分兩圓的公共弦

  22、定理:把圓分成n(n≥3):

  (1)依次連結各分點(diǎn)所得的多邊形是這個(gè)圓的內接正n邊形

  (2)經(jīng)過(guò)各分點(diǎn)作圓的切線(xiàn),以相鄰切線(xiàn)的交點(diǎn)為頂點(diǎn)的多邊形是這個(gè)圓的外切正n邊形

  23、定理:任何正多邊形都有一個(gè)外接圓和一個(gè)內切圓,這兩個(gè)圓是同心圓

  24、正n邊形的每個(gè)內角都等于(n-2)×180°/n

  25、定理:正n邊形的半徑和邊心距把正n邊形分成2n個(gè)全等的直角三角形

  26、正n邊形的面積Sn=pnrn/2p表示正n邊形的周長(cháng)

  27、正三角形面積√3a/4a表示邊長(cháng)

  28、如果在一個(gè)頂點(diǎn)周?chē)衚個(gè)正n邊形的角,由于這些角的和應為360°,因此k×(n-2)180°/n=360°化為(n-2)(k-2)=4

  29、弧長(cháng)計算公式:L=n兀R/180

  30、扇形面積公式:S扇形=n兀R^2/360=LR/2

  31、內公切線(xiàn)長(cháng)=d-(R-r)外公切線(xiàn)長(cháng)=d-(R+r)

  32、定理:一條弧所對的圓周角等于它所對的圓心角的一半

  33、推論1同弧或等弧所對的圓周角相等;同圓或等圓中,相等的圓周角所對的弧也相等

  34、推論2半圓(或直徑)所對的圓周角是直角;90°的圓周角所對的弦是直徑

  35、弧長(cháng)公式l=a*ra是圓心角的弧度數r>0扇形面積公式s=1/2*l*r

  初中數學(xué)知識點(diǎn)總結 13

  中考沖刺數學(xué)知識點(diǎn)的幾個(gè)復習建議:

  1)所有的知識點(diǎn)自己先復習一遍,標記好那些掌握不扎實(shí)的知識,第二輪復習的重點(diǎn)!

  2)對于標記不扎實(shí)的知識,如果實(shí)在不理解,回到課本中查收相應的內容,特別是結合例題理解

  3)平常學(xué)校一定有很多練習,把做錯的題目和難題當成寶貝,因為我們要想進(jìn)步就這是捷徑——理解消化錯題,所有保持積極的心態(tài)去面對那些錯題難題吧。

  4)對于學(xué)過(guò)思維導圖的同學(xué),建議將這些知識點(diǎn)按章節梳理成知識體系,平常復習太好用了。

  以下是詳細的知識點(diǎn):

  一、一元一次方程根的情況

  △=b2-4ac

  當△>0時(shí),一元二次方程有2個(gè)不相等的實(shí)數根;

  當△=0時(shí),一元二次方程有2個(gè)相同的實(shí)數根;

  當△<0時(shí),一元二次方程沒(méi)有實(shí)數根

  2、平行四邊形的性質(zhì):

 、賰山M對邊分別平行的四邊形叫做平行四邊形。

 、谄叫兴倪呅尾幌噜彽膬蓚(gè)頂點(diǎn)連成的線(xiàn)段叫他的對角線(xiàn)。

 、燮叫兴倪呅蔚膶/對角相等。

 、芷叫兴倪呅蔚膶蔷(xiàn)互相平分。

  菱形:

 、僖唤M鄰邊相等的平行四邊形是菱形

 、陬I(lǐng)心的四條邊相等,兩條對角線(xiàn)互相垂直平分,每一組對角線(xiàn)平分一組對角。

 、叟卸l件:定義/對角線(xiàn)互相垂直的平行四邊形/四條邊都相等的四邊形。

  矩形與正方形:

 、儆幸粋(gè)內角是直角的平行四邊形叫做矩形。

 、诰匦蔚膶蔷(xiàn)相等,四個(gè)角都是直角。

 、蹖蔷(xiàn)相等的平行四邊形是矩形。

 、苷叫尉哂衅叫兴倪呅,矩形,菱形的一切性質(zhì)。

 、菀唤M鄰邊相等的矩形是正方形。

  多邊形:

 、貼邊形的內角和等于(N-2)180度

 、诙噙呅膬冉堑囊贿吪c另一邊的反向延長(cháng)線(xiàn)所組成的角叫做這個(gè)多邊形的外角,在每個(gè)頂點(diǎn)處取這個(gè)多邊形的一個(gè)外角,他們的和叫做這個(gè)多邊形的內角和(都等于360度)

  平均數:對于N個(gè)數X1,X2…XN,我們把(X1+X2+…+XN)/N叫做這個(gè)N個(gè)數的算術(shù)平均數,記為X

  加權平均數:一組數據里各個(gè)數據的重要程度未必相同,因而,在計算這組數據的平均數時(shí)往往給每個(gè)數據加一個(gè)權,這就是加權平均數。

  二、基本定理

  1、過(guò)兩點(diǎn)有且只有一條直線(xiàn)

  2、兩點(diǎn)之間線(xiàn)段最短

  3、同角或等角的補角相等

  4、同角或等角的余角相等

  5、過(guò)一點(diǎn)有且只有一條直線(xiàn)和已知直線(xiàn)垂直

  6、直線(xiàn)外一點(diǎn)與直線(xiàn)上各點(diǎn)連接的所有線(xiàn)段中,垂線(xiàn)段最短

  7、平行公理經(jīng)過(guò)直線(xiàn)外一點(diǎn),有且只有一條直線(xiàn)與這條直線(xiàn)平行

  8、如果兩條直線(xiàn)都和第三條直線(xiàn)平行,這兩條直線(xiàn)也互相平行

  9、同位角相等,兩直線(xiàn)平行

  10、內錯角相等,兩直線(xiàn)平行

  11、同旁?xún)冉腔パa,兩直線(xiàn)平行

  12、兩直線(xiàn)平行,同位角相等

  13、兩直線(xiàn)平行,內錯角相等

  14、兩直線(xiàn)平行,同旁?xún)冉腔パa

  15、定理三角形兩邊的和大于第三邊

  16、推論三角形兩邊的差小于第三邊

  17、三角形內角和定理三角形三個(gè)內角的和等于180°

  18、推論1直角三角形的兩個(gè)銳角互余

  19、推論2三角形的一個(gè)外角等于和它不相鄰的兩個(gè)內角的和

  20、推論3三角形的一個(gè)外角大于任何一個(gè)和它不相鄰的內角

  21、全等三角形的對應邊、對應角相等

  22、邊角邊公理(SAS)有兩邊和它們的夾角對應相等的兩個(gè)三角形全等

  23、角邊角公理( ASA)有兩角和它們的夾邊對應相等的兩個(gè)三角形全等

  24、推論(AAS)有兩角和其中一角的對邊對應相等的兩個(gè)三角形全等

  25、邊邊邊公理(SSS)有三邊對應相等的兩個(gè)三角形全等

  26、斜邊、直角邊公理(HL)有斜邊和一條直角邊對應相等的兩個(gè)直角三角形全等

  27、定理1在角的平分線(xiàn)上的點(diǎn)到這個(gè)角的兩邊的距離相等

  28、定理2到一個(gè)角的兩邊的距離相同的點(diǎn),在這個(gè)角的平分線(xiàn)上

  29、角的平分線(xiàn)是到角的兩邊距離相等的所有點(diǎn)的集合

  30、等腰三角形的性質(zhì)定理等腰三角形的兩個(gè)底角相等(即等邊對等角)

  31、推論1等腰三角形頂角的平分線(xiàn)平分底邊并且垂直于底邊

  32、等腰三角形的頂角平分線(xiàn)、底邊上的中線(xiàn)和底邊上的高互相重合

  33、推論3等邊三角形的各角都相等,并且每一個(gè)角都等于60°

  34、等腰三角形的判定定理如果一個(gè)三角形有兩個(gè)角相等,那么這兩個(gè)角所對的邊也相等(等角對等邊)

  35、推論1三個(gè)角都相等的三角形是等邊三角形

  36、推論2有一個(gè)角等于60°的等腰三角形是等邊三角形

  37、在直角三角形中,如果一個(gè)銳角等于30°那么它所對的直角邊等于斜邊的一半

  38、直角三角形斜邊上的中線(xiàn)等于斜邊上的一半

  39、定理線(xiàn)段垂直平分線(xiàn)上的點(diǎn)和這條線(xiàn)段兩個(gè)端點(diǎn)的距離相等

  40、逆定理和一條線(xiàn)段兩個(gè)端點(diǎn)距離相等的點(diǎn),在這條線(xiàn)段的垂直平分線(xiàn)上

  41、線(xiàn)段的`垂直平分線(xiàn)可看作和線(xiàn)段兩端點(diǎn)距離相等的所有點(diǎn)的集合

  42、定理1關(guān)于某條直線(xiàn)對稱(chēng)的兩個(gè)圖形是全等形

  43、定理2如果兩個(gè)圖形關(guān)于某直線(xiàn)對稱(chēng),那么對稱(chēng)軸是對應點(diǎn)連線(xiàn)的垂直平分線(xiàn)

  44、定理3兩個(gè)圖形關(guān)于某直線(xiàn)對稱(chēng),如果它們的對應線(xiàn)段或延長(cháng)線(xiàn)相交,那么交點(diǎn)在對稱(chēng)軸上

  45、逆定理如果兩個(gè)圖形的對應點(diǎn)連線(xiàn)被同一條直線(xiàn)垂直平分,那么這兩個(gè)圖形關(guān)于這條直線(xiàn)對稱(chēng)

  46、勾股定理直角三角形兩直角邊a、b的平方和、等于斜邊c的平方,即a2+b2=c2

  47、勾股定理的逆定理如果三角形的三邊長(cháng)a、b、c有關(guān)系a2+b2=c2,那么這個(gè)三角形是直角三角形

  48、定理四邊形的內角和等于360°

  49、四邊形的外角和等于360°

  50、多邊形內角和定理n邊形的內角的和等于(n-2)×180°

  51、推論任意多邊的外角和等于360°

  52、平行四邊形性質(zhì)定理1平行四邊形的對角相等

  53、平行四邊形性質(zhì)定理2平行四邊形的對邊相等

  54、推論夾在兩條平行線(xiàn)間的平行線(xiàn)段相等

  55、平行四邊形性質(zhì)定理3平行四邊形的對角線(xiàn)互相平分

  56、平行四邊形判定定理1兩組對角分別相等的四邊形是平行四邊形

  57、平行四邊形判定定理2兩組對邊分別相等的四邊形是平行四邊形

  58、平行四邊形判定定理3對角線(xiàn)互相平分的四邊形是平行四邊形

  59、平行四邊形判定定理4一組對邊平行相等的四邊形是平行四邊形

  60、矩形性質(zhì)定理1矩形的四個(gè)角都是直角

  61、矩形性質(zhì)定理2矩形的對角線(xiàn)相等

  62、矩形判定定理1有三個(gè)角是直角的四邊形是矩形

  63、矩形判定定理2對角線(xiàn)相等的平行四邊形是矩形

  64、菱形性質(zhì)定理1菱形的四條邊都相等

  65、菱形性質(zhì)定理2菱形的對角線(xiàn)互相垂直,并且每一條對角線(xiàn)平分一組對角

  66、菱形面積=對角線(xiàn)乘積的一半,即S=(a×b)÷2

  67、菱形判定定理1四邊都相等的四邊形是菱形

  68、菱形判定定理2對角線(xiàn)互相垂直的平行四邊形是菱形

  69、正方形性質(zhì)定理1正方形的四個(gè)角都是直角,四條邊都相等

  70、正方形性質(zhì)定理2正方形的兩條對角線(xiàn)相等,并且互相垂直平分,每條對角線(xiàn)平分一組對角

  71、定理1關(guān)于中心對稱(chēng)的兩個(gè)圖形是全等的

  72、定理2關(guān)于中心對稱(chēng)的兩個(gè)圖形,對稱(chēng)點(diǎn)連線(xiàn)都經(jīng)過(guò)對稱(chēng)中心,并且被對稱(chēng)中心平分

  73、逆定理如果兩個(gè)圖形的對應點(diǎn)連線(xiàn)都經(jīng)過(guò)某一點(diǎn),并且被這一點(diǎn)平分,那么這兩個(gè)圖形關(guān)于這一點(diǎn)對稱(chēng)

  74、等腰梯形性質(zhì)定理等腰梯形在同一底上的兩個(gè)角相等

  75、等腰梯形的兩條對角線(xiàn)相等

  76、等腰梯形判定定理在同一底上的兩個(gè)角相等的梯形是等腰梯形

  77、對角線(xiàn)相等的梯形是等腰梯形

  78、平行線(xiàn)等分線(xiàn)段定理如果一組平行線(xiàn)在一條直線(xiàn)上截得的線(xiàn)段相等,那么在其他直線(xiàn)上截得的線(xiàn)段也相等

  79、推論1經(jīng)過(guò)梯形一腰的中點(diǎn)與底平行的直線(xiàn),必平分另一腰

  80、推論2經(jīng)過(guò)三角形一邊的中點(diǎn)與另一邊平行的直線(xiàn),必平分第三邊

  81、三角形中位線(xiàn)定理三角形的中位線(xiàn)平行于第三邊,并且等于它的一半

  82、梯形中位線(xiàn)定理梯形的中位線(xiàn)平行于兩底,并且等于兩底和的一半L=(a+b)÷2 S=L×h

  83、(1)比例的基本性質(zhì):

  如果a:b=c:d,那么ad=bc

  如果ad=bc ,那么a:b=c:d

  84、(2)合比性質(zhì):

  如果a/b=c/d,那么(a±b)/b=(c±d)/d

  85、(3)等比性質(zhì):

  如果a/b=c/d=…=m/n(b+d+…+n≠0),那么(a+c+…+m)/(b+d+…+n)=a/b

  86、平行線(xiàn)分線(xiàn)段成比例定理三條平行線(xiàn)截兩條直線(xiàn),所得的對應線(xiàn)段成比例

  87、推論平行于三角形一邊的直線(xiàn)截其他兩邊(或兩邊的延長(cháng)線(xiàn)),所得的對應線(xiàn)段成比例

  88、定理如果一條直線(xiàn)截三角形的兩邊(或兩邊的延長(cháng)線(xiàn))所得的對應線(xiàn)段成比例,那么這條直線(xiàn)平行于三角形的第三邊

  89、平行于三角形的一邊,并且和其他兩邊相交的直線(xiàn),所截得的三角形的三邊與原三角形三邊對應成比例

  90、定理平行于三角形一邊的直線(xiàn)和其他兩邊(或兩邊的延長(cháng)線(xiàn))相交,所構成的三角形與原三角形相似

  91、相似三角形判定定理1兩角對應相等,兩三角形相似(ASA)

  92、直角三角形被斜邊上的高分成的兩個(gè)直角三角形和原三角形相似

  93、判定定理2兩邊對應成比例且?jiàn)A角相等,兩三角形相似(SAS)

  94、判定定理3三邊對應成比例,兩三角形相似(SSS)

  95、定理如果一個(gè)直角三角形的斜邊和一條直角邊與另一個(gè)直角三角形的斜邊和一條直角邊對應成比例,那么這兩個(gè)直角三角形相似

  96、性質(zhì)定理1相似三角形對應高的比,對應中線(xiàn)的比與對應角平分線(xiàn)的比都等于相似比

  97、性質(zhì)定理2相似三角形周長(cháng)的比等于相似比

  98、性質(zhì)定理3相似三角形面積的比等于相似比的平方

  99、任意銳角的正弦值等于它的余角的余弦值,任意銳角的余弦值等于它的余角的正弦值

  100、任意銳角的正切值等于它的余角的余切值,任意銳角的余切值等于它的余角的正切值

  101、圓是定點(diǎn)的距離等于定長(cháng)的點(diǎn)的集合

  102、圓的內部可以看作是圓心的距離小于半徑的點(diǎn)的集合

  103、圓的外部可以看作是圓心的距離大于半徑的點(diǎn)的集合

  104、同圓或等圓的半徑相等

  105、到定點(diǎn)的距離等于定長(cháng)的點(diǎn)的軌跡,是以定點(diǎn)為圓心,定長(cháng)為半徑的圓

  106、和已知線(xiàn)段兩個(gè)端點(diǎn)的距離相等的點(diǎn)的軌跡,是著(zhù)條線(xiàn)段的垂直平分線(xiàn)

  107、到已知角的兩邊距離相等的點(diǎn)的軌跡,是這個(gè)角的平分線(xiàn)

  108、到兩條平行線(xiàn)距離相等的點(diǎn)的軌跡,是和這兩條平行線(xiàn)平行且距離相等的一條直線(xiàn)

  109、定理不在同一直線(xiàn)上的三點(diǎn)確定一個(gè)圓。

  110、垂徑定理垂直于弦的直徑平分這條弦并且平分弦所對的兩條弧

  初中數學(xué)知識點(diǎn)總結 14

  1.平方差公式:平方差公式有兩項,符號相反切記牢,首加尾乘首減尾,莫與完全公式相混淆。

  2.完全平方:完全平方有三項,首尾符號是同鄉,首平方、尾平方,首尾二倍放中央;首±尾括號帶平方,尾項符號隨中央。

  3.一元一次不等式解題的一般步驟:去分母、去括號,移項時(shí)候要變號,同類(lèi)項、合并好,再把系數來(lái)除掉,兩邊除(以)負數時(shí),不等號改向別忘了。

  4. 一元一次不等式組的解集:大大取較大,小小取較小,小大,大小取中間,大小,小大無(wú)處找。

  5.一元二次不等式、一元一次絕對值不等式的解集:大(魚(yú))于(吃)取兩邊,小(魚(yú))于(吃)取中間。

  6.分式混合運算法則:分式四則運算,順序乘除加減,乘除同級運算,除法符號須變(乘);乘法進(jìn)行化簡(jiǎn),因式分解在先,分子分母相約,然后再行運算;加減分母需同,分母化積關(guān)鍵;找出最簡(jiǎn)公分母,通分不是很難;變號必須兩處,結果要求最簡(jiǎn)。

  7.分式方程的解法步驟:同乘最簡(jiǎn)公分母,化成整式寫(xiě)清楚,求得解后須驗根,原(根)留、增(根)舍別含糊。

  8.最簡(jiǎn)根式的條件:最簡(jiǎn)根式三條件,號內不把分母含,冪指(數)根指(數)要互質(zhì),冪指比根指小一點(diǎn)。

  9.特殊點(diǎn)坐標特征:坐標平面點(diǎn)(x,y),橫在前來(lái)縱在后;(+,+),(-,+),(-,-)和(+,-),四個(gè)象限分前后;X軸上y為0,x為0在Y軸。

  10.象限角的平分線(xiàn):象限角的平分線(xiàn),坐標特征有特點(diǎn),一、三橫縱都相等,二、四橫縱確相反。

  11.平行某軸的直線(xiàn):平行某軸的直線(xiàn),點(diǎn)的坐標有講究,直線(xiàn)平行X軸,縱坐標相等橫不同;直線(xiàn)平行于Y軸,點(diǎn)的橫坐標仍照舊。

  12.對稱(chēng)點(diǎn)坐標:對稱(chēng)點(diǎn)坐標要記牢,相反數位置莫混淆,X軸對稱(chēng)y相反, Y軸對稱(chēng),x前面添負號;原點(diǎn)對稱(chēng)記,橫縱坐標變符號。

  13.自變量的取值范圍:分式分母不為零,偶次根下負不行;零次冪底數不為零,整式、奇次根全能行。

  14.函數圖像的移動(dòng)規律: 若把一次函數解析式寫(xiě)成y=k(x+0)+b、二次函數的解析式寫(xiě)成y=a(x+h)2+k的形式,則用下面后的口訣“左右平移在括號,上下平移在末稍,左正右負須牢記,上正下負錯不了”。

  15.巧記三角函數定義:初中所學(xué)的三角函數有正弦、余弦、正切、余切,它們實(shí)際是三角形邊的比值,可以把兩個(gè)字用/隔開(kāi),再用下面的一句話(huà)記定義:一位不高明的廚子教徒弟殺魚(yú),說(shuō)了這么一句話(huà):正對魚(yú)磷(余鄰)直刀切。正:正弦或正切,對:對邊即正是對;余:余弦或余弦,鄰:鄰邊即余是鄰;切是直角邊。

  初三數學(xué)上冊期末知識點(diǎn)歸納

  單項式與多項式

  僅含有一些數和字母的乘法(包括乘方)運算的式子叫做單項式單獨的一個(gè)數或字母也是單項式。

  單項式中的數字因數叫做這個(gè)單項式(或字母因數)的數字系數,簡(jiǎn)稱(chēng)系數。

  當一個(gè)單項式的系數是1或-1時(shí),“1”通常省略不寫(xiě)。

  一個(gè)單項式中,所有字母的指數的和叫做這個(gè)單項式的次數。

  如果在幾個(gè)單項式中,不管它們的系數是不是相同,只要他們所含的字母相同,并且相同字母的指數也分別相同,那么,這幾個(gè)單項式就叫做同類(lèi)單項式,簡(jiǎn)稱(chēng)同類(lèi)項所有的常數都是同類(lèi)項。

  1、多項式

  有有限個(gè)單項式的代數和組成的式子,叫做多項式。

  多項式里每個(gè)單項式叫做多項式的項,不含字母的項,叫做常數項。

  單項式可以看作是多項式的特例

  把同類(lèi)單項式的系數相加或相減,而單項式中的字母的乘方指數不變。

  在多項式中,所含的不同未知數的個(gè)數,稱(chēng)做這個(gè)多項式的元數經(jīng)過(guò)合并同類(lèi)項后,多項式所含單項式的個(gè)數,稱(chēng)為這個(gè)多項式的項數所含個(gè)單項式中次項的次數,就稱(chēng)為這個(gè)多項式的次數。

  2、多項式的`值

  任何一個(gè)多項式,就是一個(gè)用加、減、乘、乘方運算把已知數和未知數連接起來(lái)的式子。

  3、多項式的恒等

  對于兩個(gè)一元多項式f(x)、g(x)來(lái)說(shuō),當未知數x同取任一個(gè)數值a時(shí),如果它們所得的值都是相等的,即f(a)=g(a),那么,這兩個(gè)多項式就稱(chēng)為是恒等的記為f(x)==g(x),或簡(jiǎn)記為f(x)=g(x)。

  性質(zhì)1如果f(x)==g(x),那么,對于任一個(gè)數值a,都有f(a)=g(a)。

  性質(zhì)2如果f(x)==g(x),那么,這兩個(gè)多項式的個(gè)同類(lèi)項系數就一定對應相等。

  4、一元多項式的根

  一般地,能夠使多項式f(x)的值等于0的未知數x的值,叫做多項式f(x)的根。

  多項式的加、減法,乘法

  1、多項式的加、減法

  2、多項式的乘法

  單項式相乘,用它們系數作為積的系數,對于相同的字母因式,則連同它的指數作為積的一個(gè)因式。

  3、多項式的乘法

  多項式與多項式相乘,先用一個(gè)多項式等每一項乘以另一個(gè)多項式的各項,再把所得的積相加。

  常用乘法公式

  公式I平方差公式

  (a+b)(a-b)=a^2-b^2

  兩個(gè)數的和與這兩個(gè)數的差的積等于這兩個(gè)數的平方差。

  關(guān)于數學(xué)常見(jiàn)誤區有哪些

  1、被動(dòng)學(xué)習

  許多同學(xué)進(jìn)入高中后,還像初中那樣,有很強的依賴(lài)心理,跟隨老師慣性運轉,沒(méi)有掌握學(xué)習主動(dòng)權.表現在不定計劃,坐等上課,課前沒(méi)有預習,對老師要上課的內容不了解,上課忙于記筆記,沒(méi)聽(tīng)到“門(mén)道”,沒(méi)有真正理解所學(xué)內容。

  2、學(xué)不得法

  老師上課一般都要講清知識的來(lái)龍去脈,剖析概念的內涵,分析重點(diǎn)難點(diǎn),突出思想方法。而一部分同學(xué)上課沒(méi)能專(zhuān)心聽(tīng)課,對要點(diǎn)沒(méi)聽(tīng)到或聽(tīng)不全,筆記記了一大本,問(wèn)題也有一大堆,課后又不能及時(shí)鞏固、總結、尋找知識間的聯(lián)系,只是趕做作業(yè),亂套題型,對概念、法則、公式、定理一知半解,機械模仿,死記硬背。也有的晚上加班加點(diǎn),白天無(wú)精打采,或是上課根本不聽(tīng),自己另搞一套,結果是事倍功半,收效甚微。

  3、不重視基礎

  一些“自我感覺(jué)良好”的同學(xué),常輕視基本知識、基本技能和基本方法的學(xué)習與訓練,經(jīng)常是知道怎么做就算了,而不去認真演算書(shū)寫(xiě),但對難題很感興趣,以顯示自己的“水平”,好高鶩遠,重“量”輕“質(zhì)”,陷入題海。到正規作業(yè)或考試中不是演算出錯就是中途“卡殼”。

  4、進(jìn)一步學(xué)習條件不具備

  高中數學(xué)與初中數學(xué)相比,知識的深度、廣度,能力要求都是一次飛躍.這就要求必須掌握基礎知識與技能為進(jìn)一步學(xué)習作好準備。高中數學(xué)很多地方難度大、方法新、分析能力要求高。

  如二次函數在閉區間上的最值問(wèn)題,函數值域的求法,實(shí)根分布與參變量方程,三角公式的變形與靈活運用,空間概念的形成,排列組合應用題及實(shí)際應用問(wèn)題等?陀^(guān)上這些觀(guān)點(diǎn)就是分化點(diǎn),有的內容還是高初中教材都不講的脫節內容,如不采取補救措施,查缺補漏,分化是不可避免的。

  如何整理數學(xué)學(xué)科課堂筆記

  一、內容提綱。老師講課大多有提綱,并且講課時(shí)老師會(huì )將一堂課的線(xiàn)索脈絡(luò )、重點(diǎn)難點(diǎn)等,簡(jiǎn)明清晰地呈現在黑板上。同時(shí),教師會(huì )使之富有條理性和直觀(guān)性。記下這些內容提綱,便于課后復習回顧,整體把握知識框架,對所學(xué)知識做到胸有成竹、清晰完整。

  二、疑難問(wèn)題。將課堂上未聽(tīng)懂的問(wèn)題及時(shí)記下來(lái),便于課后請教同學(xué)或老師,把問(wèn)題弄懂弄通。教師在組織課堂教學(xué)時(shí),受到時(shí)空的限制,不可能做到顧及每一位同學(xué)。相應的,一些問(wèn)題對部分學(xué)生來(lái)說(shuō),是屬于疑難問(wèn)題,由于課堂上來(lái)不及思考成熟,記下疑難問(wèn)題,可在課后繼續加以思考和探究,加以理解和掌握,不致出現知識的斷層、方法的缺陷。

  三、思路方法。對老師在課堂上介紹的解題方法和分析思路也應及時(shí)記下,課后加以消化,若有疑惑,先作獨立分析,因為有可能是自己理解錯誤造成的,也有可能是老師講課疏忽造成的,記下來(lái)后,便于課后及時(shí)與老師商榷和探討。勤記老師講的解題技巧、思路及方法,這對于啟迪思維,開(kāi)闊視野,開(kāi)發(fā)智力,培養能力,并對提高解題水平大有益處。在這基礎上,若能主動(dòng)鉆研,另辟蹊徑,則更難能可貴。

  四、歸納總結。注意記下老師的課后總結,這對于濃縮一堂課的內容,找出重點(diǎn)及各部分之間的聯(lián)系,掌握基本概念、公式、定理,尋找規律,融會(huì )貫通課堂內容都很有作用。同時(shí),很多有經(jīng)驗的老師在課后小結時(shí),一方面是承上歸納所學(xué)內容,另一方面又是啟下布置預習任務(wù)或點(diǎn)明后面所要學(xué)的內容,做好筆記可以把握學(xué)習的主動(dòng)權,提前作準備,做到目標任務(wù)明確。

  五、錯誤反思。學(xué)習過(guò)程中不可避免地會(huì )犯這樣或那樣的錯誤,記下自己所犯的錯誤,并用紅筆醒目地加以標注,以警示自己,同時(shí)也應注明錯誤成因,正確思路及方法,在反思中成熟,在反思中提高。

  數學(xué)常用解題技巧有哪些

  第一,應堅持由易到難的做題順序。近年來(lái)高考數學(xué)試題的設置是8道選擇題、6道填空題、6到大題,通常稱(chēng)為866結構。在實(shí)體設置的結構中有三個(gè)小高峰,選擇題是由易到難,最難的題是第8題。填空題同樣是這樣設置的。也是第9題容易到第14題最難,大題從第15題到第20題,它們的設置也是這樣的。根據這樣的試題結構,應先做前面容易的,基礎好一點(diǎn)的考生就先做前7個(gè)選擇,前5個(gè)填空、前5個(gè)大題,稱(chēng)為是755結構;A差的就是644,先把自己能做的、會(huì )做的拿到手。這是第一點(diǎn)。

  第二,審題是關(guān)鍵。把題給看清楚了再動(dòng)筆答題,看清楚題以后問(wèn)什么、已知什么、讓你做什么,把這些問(wèn)題搞清楚了,自己制訂了一個(gè)完整的解題策略,在開(kāi)始寫(xiě)的時(shí)候,這個(gè)時(shí)候是很快就可以完成的。

  第三,屬于非智力因素導致想不起來(lái)。本來(lái)是很簡(jiǎn)單的題比如說(shuō)是做到第三題、第四題的時(shí)候不是難題,但想不起來(lái)了,卡住了,這時(shí)候怎么辦?雖然是簡(jiǎn)單題卻不會(huì )做怎么辦?應先跳過(guò)去,不是這道題不會(huì )做嗎?后面還有很多的簡(jiǎn)單題呢,把后面的題做一做,不要在考場(chǎng)上愣神,先跳過(guò)去做其他的題,等穩定下來(lái)以后再回過(guò)頭來(lái)看會(huì )頓悟,豁然開(kāi)朗。

  第四,做選擇題的時(shí)候應運用最好的解題方法。因為選擇題和填空題都是看結果不看過(guò)程,因此在這個(gè)過(guò)程中都應不擇手段,只要是能把正確的結論找到就行?忌S玫姆椒ㄊ侵苯臃,從已知的開(kāi)始也不看它的四個(gè)選項,從頭到尾寫(xiě)完了之后一看答案就寫(xiě)上去了。另外就是特質(zhì)法(音),一些出現字母、特別是不等式,這時(shí)候給它賦一個(gè)值,代進(jìn)去這時(shí)候速度會(huì )比較快,正確地找出結果來(lái)。再就是數形結合法。最后實(shí)在不行了,就將四個(gè)選項代入驗證,看看哪個(gè)符合就是哪個(gè)了。填空題用上述的直接法、特質(zhì)法、數形結合法三種方法都適合。做大題的時(shí)候要特別注意解題步驟,規范答題可以減少失分。簡(jiǎn)單地說(shuō),規范答題就是從上一步的原因到下一步的結論,這是一個(gè)必然的過(guò)程,讓誰(shuí)寫(xiě)、誰(shuí)看都是這樣的。因為什么所以什么是一個(gè)必然的過(guò)程,這是規范答題。

  初中數學(xué)知識點(diǎn)總結 15

  1、正數和負數的有關(guān)概念

  (1)正數:

  比0大的數叫做正數;

  負數:比0小的數叫做負數;

  0既不是正數,也不是負數。

  (2)正數和負數表示相反意義的量。

  2、有理數的概念及分類(lèi)

  3、有關(guān)數軸

  (1)數軸的三要素:原點(diǎn)、正方向、單位長(cháng)度。數軸是一條直線(xiàn)。

  (2)所有有理數都可以用數軸上的點(diǎn)來(lái)表示,但數軸上的點(diǎn)不一定都是有理數。

  (3)數軸上,右邊的數總比左邊的數大;表示正數的點(diǎn)在原點(diǎn)的右側,表示負數的點(diǎn)在原點(diǎn)的左側。

  (2)相反數:符號不同、絕對值相等的兩個(gè)數互為相反數。

  若a、b互為相反數,則a+b=0;

  相反數是本身的是0,正數的相反數是負數,負數的相反數是正數。

  (3)絕對值最小的數是0;絕對值是本身的數是非負數。

  4、任何數的絕對值是非負數。

  最小的正整數是1,最大的負整數是-1。

  5、利用絕對值比較大小

  兩個(gè)正數比較:絕對值大的那個(gè)數大;

  兩個(gè)負數比較:先算出它們的絕對值,絕對值大的反而小。

  6、有理數加法

  (1)符號相同的兩數相加:和的符號與兩個(gè)加數的符號一致,和的絕對值等于兩個(gè)加數絕對值之和。

  (2)符號相反的兩數相加:當兩個(gè)加數絕對值不等時(shí),和的符號與絕對值較大的加數的符號相同,和的絕對值等于加數中較大的絕對值減去較小的絕對值;當兩個(gè)加數絕對值相等時(shí),兩個(gè)加數互為相反數,和為零。

  (3)一個(gè)數同零相加,仍得這個(gè)數。

  加法的交換律:a+b=b+a

  加法的結合律:(a+b)+c=a+(b+c)

  7、有理數減法:

  減去一個(gè)數,等于加上這個(gè)數的相反數。

  8、在把有理數加減混合運算統一為最簡(jiǎn)的形式,負數前面的加號可以省略不寫(xiě)。

  例如:14+12+(-25)+(-17)可以寫(xiě)成省略括號的形式:14+12 -25-17,可以讀作“正14加12減25減17”,也可以讀作“正14、正12、負25、負17的和!

  9、有理數的乘法

  兩個(gè)數相乘,同號得正,異號得負,再把絕對值相乘;任何數與0相乘都得0。

  第一步:確定積的符號第二步:絕對值相乘

  10、乘積的符號的確定

  幾個(gè)有理數相乘,因數都不為0時(shí),積的符號由負因數的個(gè)數確定:當負因數有奇數個(gè)時(shí),積為負;

  當負因數有偶數個(gè)時(shí),積為正。幾個(gè)有理數相乘,有一個(gè)因數為零,積就為零。

  11、倒數:

  乘積為1的`兩個(gè)數互為倒數,0沒(méi)有倒數。

  正數的倒數是正數,負數的倒數是負數。(互為倒數的兩個(gè)數符號一定相同)

  倒數是本身的只有1和-1。

  初中數學(xué)知識點(diǎn)總結2平面直角坐標系

  平面直角坐標系:在平面內畫(huà)兩條互相垂直、原點(diǎn)重合的數軸,組成平面直角坐標系。

  水平的數軸稱(chēng)為x軸或橫軸,豎直的數軸稱(chēng)為y軸或縱軸,兩坐標軸的交點(diǎn)為平面直角坐標系的原點(diǎn)。

  平面直角坐標系的要素:

 、僭谕黄矫

 、趦蓷l數軸

 、刍ハ啻怪

 、茉c(diǎn)重合

  三個(gè)規定:

 、僬较虻囊幎M軸取向右為正方向,縱軸取向上為正方向。

 、趩挝婚L(cháng)度的規定;一般情況,橫軸、縱軸單位長(cháng)度相同;實(shí)際有時(shí)也可不同,但同一數軸上必須相同。

 、巯笙薜囊幎ǎ河疑蠟榈谝幌笙、左上為第二象限、左下為第三象限、右下為第四象限。

  相信上面對平面直角坐標系知識的講解學(xué)習,同學(xué)們已經(jīng)能很好的掌握了吧,希望同學(xué)們都能考試成功。

  初中數學(xué)知識點(diǎn):平面直角坐標系的構成。

  對于平面直角坐標系的構成內容,下面我們一起來(lái)學(xué)習哦。

  平面直角坐標系的構成。

  在同一個(gè)平面上互相垂直且有公共原點(diǎn)的兩條數軸構成平面直角坐標系,簡(jiǎn)稱(chēng)為直角坐標系。通常,兩條數軸分別置于水平位置與鉛直位置,取向右與向上的方向分別為兩條數軸的正方向。水平的數軸叫做X軸或橫軸,鉛直的數軸叫做Y軸或縱軸,X軸或Y軸統稱(chēng)為坐標軸,它們的公共原點(diǎn)O稱(chēng)為直角坐標系的原點(diǎn)。

  初中數學(xué)知識點(diǎn)總結 16

  三角形兩邊:

  定理三角形兩邊的和大于第三邊。

  推論三角形兩邊的差小于第三邊。

  三角形中位線(xiàn)定理:

  三角形的中位線(xiàn)平行于第三邊,并且等于它的一半。

  三角形的重心:

  三角形的重心到頂點(diǎn)的距離是它到對邊中點(diǎn)距離的2倍。

  在三角形中,連接一個(gè)頂點(diǎn)和它對邊中點(diǎn)的.線(xiàn)段叫做三角形的中線(xiàn),三角形的三條中線(xiàn)交于一點(diǎn),這一點(diǎn)叫做“三角形的重心”。

  與三角形有關(guān)的角:

  1、三角形的內角和定理:三角形的內角和為180°,與三角形的形狀無(wú)關(guān)。

  2、直角三角形兩個(gè)銳角的關(guān)系:直角三角形的兩個(gè)銳角互余(相加為90°)。有兩個(gè)角互余的三角形是直角三角形。

  3、三角形外角的性質(zhì):三角形的一個(gè)外角等于與它不相鄰的兩個(gè)內角之和;三角形的一個(gè)外角大于與它不相鄰的任何一個(gè)內角;三角形三個(gè)外角和為360°。

  全等三角形的性質(zhì)和判定:

  全等三角形共有5種判定方式:SSS、SAS、ASA、AAS、HL。特殊情況下平移、旋轉、對折也會(huì )構成全等三角形。

 。ㄟ呥呥叄,即三邊對應相等的兩個(gè)三角形全等。

 。ㄟ吔沁叄,即三角形的其中兩條邊對應相等,且兩條邊的夾角也對應相等的兩個(gè)三角形全等。

 。ń沁吔牵,即三角形的其中兩個(gè)角對應相等,且兩個(gè)角夾的的邊也對應相等的兩個(gè)三角形全等。

 。ń墙沁叄,即三角形的其中兩個(gè)角對應相等,且對應相等的角所對應的邊也對應相等的兩個(gè)三角形全等。

 。ㄐ边、直角邊),即在直角三角形中一條斜邊和一條直角邊對應相等的兩個(gè)直角三角形全等。

  等邊三角形的判定:

  1、三邊相等的三角形是等邊三角形(定義)。

  2、三個(gè)內角都相等的三角形是等邊三角形。

  3、有一個(gè)角是60度的等腰三角形是等邊三角形。

  4、有兩個(gè)角等于60度的三角形是等邊三角形。

【初中數學(xué)知識點(diǎn)總結】相關(guān)文章:

初中數學(xué)的知識點(diǎn)總結06-21

初中數學(xué)的知識點(diǎn)總結03-11

數學(xué)初中知識點(diǎn)總結01-15

初中數學(xué)函數知識點(diǎn)總結04-08

初中數學(xué)知識點(diǎn)總結11-03

初中數學(xué)《整式》知識點(diǎn)總結10-21

初中數學(xué)知識點(diǎn)總結05-30

初中數學(xué)知識點(diǎn)總結06-24

初中數學(xué)必學(xué)的知識點(diǎn)總結01-14

初中數學(xué)圓的知識點(diǎn)總結06-07