- 初中數學(xué)函數知識點(diǎn)總結 推薦度:
- 相關(guān)推薦
初中數學(xué)函數知識點(diǎn)總結
總結是指對某一階段的工作、學(xué)習或思想中的經(jīng)驗或情況進(jìn)行分析研究,做出帶有規律性結論的書(shū)面材料,它可以有效鍛煉我們的語(yǔ)言組織能力,因此,讓我們寫(xiě)一份總結吧?偨Y一般是怎么寫(xiě)的呢?下面是小編收集整理的初中數學(xué)函數知識點(diǎn)總結,歡迎閱讀與收藏。
誘導公式的本質(zhì)
所謂三角函數誘導公式,就是將角n(/2)的三角函數轉化為角的三角函數。
常用的誘導公式
公式一: 設為任意角,終邊相同的角的同一三角函數的值相等:
sin(2k)=sin kz
cos(2k)=cos kz
tan(2k)=tan kz
cot(2k)=cot kz
公式二: 設為任意角,的三角函數值與的三角函數值之間的關(guān)系:
sin()=-sin
cos()=-cos
tan()=tan
cot()=cot
公式三: 任意角與 -的三角函數值之間的關(guān)系:
sin(-)=-sin
cos(-)=cos
tan(-)=-tan
cot(-)=-cot
公式四: 利用公式二和公式三可以得到與的三角函數值之間的關(guān)系:
sin()=sin
cos()=-cos
tan()=-tan
cot()=-cot
三角和的公式
sin(α+β+γ)=sinα·cosβ·cosγ+cosα·sinβ·cosγ+cosα·cosβ·sinγ-sinα·sinβ·sinγ
cos(α+β+γ)=cosα·cosβ·cosγ-cosα·sinβ·sinγ-sinα·cosβ·sinγ-sinα·sinβ·cosγ
tan(α+β+γ)=(tanα+tanβ+tanγ-tanα·tanβ·tanγ)/(1-tanα·tanβ-tanβ·tanγ-tanγ·tanα)
倍角公式
tan2A = 2tanA/(1-tan2 A)
Sin2A=2SinA?CosA
Cos2A = Cos^2 A--Sin2 A =2Cos2 A-1 =1-2sin^2 A
三倍角公式
sin3A = 3sinA-4(sinA)3;
cos3A = 4(cosA)3 -3cosA
tan3a = tan a ? tan(π/3+a)? tan(π/3-a)
常量和變量
在某變化過(guò)程中可以取不同數值的量,叫做變量.在某變化過(guò)程中保持同一數值的量或數,叫常量或常數.
函數
設在一個(gè)變化過(guò)程中有兩個(gè)變量x與y,如果對于x在某一范圍的每一個(gè)值,y都有唯一的值與它對應,那么就說(shuō)x是自變量,y是x的函數.
自變量的取值范圍
(1)整式:自變量取一切實(shí)數.
(2)分式:分母不為零.
(3)偶次方根:被開(kāi)方數為非負數.
(4)零指數與負整數指數冪:底數不為零.
函數值
對于自變量在取值范圍內的一個(gè)確定的值,如當x=a時(shí),函數有唯一確定的對應值,這個(gè)對應值,叫做x=a時(shí)的函數值.
函數的表示法
(1)解析法;(2)列表法;(3)圖象法.
函數的圖象
把自變量x的一個(gè)值和函數y的對應值分別作為點(diǎn)的橫坐標和縱坐標,可以在平面直角坐標系內描出一個(gè)點(diǎn),所有這些點(diǎn)的集合,叫做這個(gè)函數的圖象.由函數解析式畫(huà)函數圖象的步驟:
(1)寫(xiě)出函數解析式及自變量的取值范圍;
(2)列表:列表給出自變量與函數的一些對應值;
(3)描點(diǎn):以表中對應值為坐標,在坐標平面內描出相應的點(diǎn);
(4)連線(xiàn):用平滑曲線(xiàn),按照自變量由小到大的順序,把所描各點(diǎn)連接起來(lái).
一次函數
(1)一次函數
如果y=kx+b(k、b是常數,k≠0),那么y叫做x的一次函數.
特別地,當b=0時(shí),一次函數y=kx+b成為y=kx(k是常數,k≠0),這時(shí),y叫做x的正比例函數.
(2)一次函數的圖象
一次函數y=kx+b的圖象是一條經(jīng)過(guò)(0,b)點(diǎn)和點(diǎn)的直線(xiàn).特別地,正比例函數圖象是一條經(jīng)過(guò)原點(diǎn)的直線(xiàn).需要說(shuō)明的是,在平面直角坐標系中,“直線(xiàn)”并不等價(jià)于“一次函數y=kx+b(k≠0)的圖象”,因為還有直線(xiàn)y=m(此時(shí)k=0)和直線(xiàn)x=n(此時(shí)k不存在),它們不是一次函數圖象.
(3)一次函數的性質(zhì)
當k>0時(shí),y隨x的增大而增大;當k<0時(shí),y隨x的增大而減。本(xiàn)y=kx+b與y軸的交點(diǎn)坐標為(0,b),與x軸的交點(diǎn)坐標為.
(4)用函數觀(guān)點(diǎn)看方程(組)與不等式
、偃魏我辉淮畏匠潭伎梢赞D化為ax+b=0(a,b為常數,a≠0)的形式,所以解一元一次方程可以轉化為:一次函數y=kx+b(k,b為常數,k≠0),當y=0時(shí),求相應的自變量的值,從圖象上看,相當于已知直線(xiàn)y=kx+b,確定它與x軸交點(diǎn)的橫坐標.
、诙淮畏匠探M對應兩個(gè)一次函數,于是也對應兩條直線(xiàn),從“數”的角度看,解方程組相當于考慮自變量為何值時(shí)兩個(gè)函數值相等,以及這兩個(gè)函數值是何值;從“形”的角度看,解方程組相當于確定兩條直線(xiàn)的交點(diǎn)的坐標.
、廴魏我辉淮尾坏仁蕉伎梢赞D化ax+b>0或ax+b<0(a、b為常數,a≠0)的形式,解一元一次不等式可以看做:當一次函數值大于0或小于0時(shí),求自變量相應的取值范圍.
二次函數基本知識點(diǎn)
1.定義與定義表達式
一般地,自變量x和因變量y之間存在如下關(guān)系:y=ax^2+bx+c
(a,b,c為常數,a≠0,且a決定函數的開(kāi)口方向,a>0時(shí),開(kāi)口方向向上,a
二次函數表達式的右邊通常為二次三項式。
2.二次函數的三種表達式
一般式:y=ax^2+bx+c(a,b,c為常數,a≠0)
頂點(diǎn)式:y=a(x-h)^2+k[拋物線(xiàn)的頂點(diǎn)P(h,k)]
交點(diǎn)式:y=a(x-x)(x-x)[僅限于與x軸有交點(diǎn)A(x,0)和B(x,0)的拋物線(xiàn)]
注:在3種形式的互相轉化中,有如下關(guān)系:
h=-b/2ak=(4ac-b^2)/4ax,x=(-b±√b^2-4ac)/2a
拋物線(xiàn)的性質(zhì)
1.拋物線(xiàn)是軸對稱(chēng)圖形。對稱(chēng)軸為直線(xiàn)
x=-b/2a。
對稱(chēng)軸與拋物線(xiàn)唯一的交點(diǎn)為拋物線(xiàn)的頂點(diǎn)P。
特別地,當b=0時(shí),拋物線(xiàn)的對稱(chēng)軸是y軸(即直線(xiàn)x=0)
2.拋物線(xiàn)有一個(gè)頂點(diǎn)P,坐標為
P[-b/2a,(4ac-b^2;)/4a]。
當-b/2a=0時(shí),P在y軸上;當Δ=b^2-4ac=0時(shí),P在x軸上。
3.二次項系數a決定拋物線(xiàn)的開(kāi)口方向和大小。
當a>0時(shí),拋物線(xiàn)向上開(kāi)口;當a<0時(shí),拋物線(xiàn)向下開(kāi)口。
|a|越大,則拋物線(xiàn)的開(kāi)口越小。
4.一次項系數b和二次項系數a共同決定對稱(chēng)軸的位置。
當a與b同號時(shí)(即ab>0),對稱(chēng)軸在y軸左;
當a與b異號時(shí)(即ab<0),對稱(chēng)軸在y軸右。
一次函數與一元一次方程的關(guān)系
一元一次方程ax+b=0(a,b為常數,且a≠0)可看作一次函數y=ax+b的函數值是0的一種特例,其解是直線(xiàn)y=ax+b與x軸交點(diǎn)的橫坐標,所以解一元一次方程ax+b=0可以轉化為當一次函數y=ax+b的值為0時(shí),求相應自變量x的值,因此可以利用圖像來(lái)解一元一次方程。
求直線(xiàn)y=kx+b與x軸交點(diǎn)時(shí),可令y=0,得到一元一次方程kx+b=0,解方程得x=-,則- 就是直線(xiàn)y=kx+b與x軸交點(diǎn)的橫坐標。
反過(guò)來(lái)解一元一次方程也可以看作是求直線(xiàn)y=kx+b與x軸交點(diǎn)的橫坐標的值。
待定系數法
先設出函數解析式,在根據條件確定解析式中的未知的系數,從而寫(xiě)出這個(gè)式子的方法,叫待定系數法。
用待定系數法確定解析式的步驟:
、僭O函數表達式為:y=kx 或 y=kx+b
、趯⒁阎c(diǎn)的坐標代入函數表達式,得到方程(組)
、劢夥匠袒蚪M,求出待定的系數的值。
、馨训闹荡厮O表達式,從而寫(xiě)出需要的解析式。
注意; 正比例函數y=kx只要有一個(gè)條件就可以。而一次函數y=kx+b需要有兩個(gè)條件。
性質(zhì)
、賵D像形:是一條直線(xiàn)。稱(chēng)為直線(xiàn)y=kx+b
、谙笙扌:
當k>0、b>0時(shí),直線(xiàn)經(jīng)過(guò)第一、二、三象限,不過(guò)四象限。
當k>0、b<0時(shí),直線(xiàn)經(jīng)過(guò)第一、三、四象限。不過(guò)二象限
當k<0 b="">0時(shí),直線(xiàn)經(jīng)過(guò)第一、二,四象限。不過(guò)三象限
當k<0 、b<0時(shí),直線(xiàn)經(jīng)過(guò)第二,三、四象限。不過(guò)一象限
、墼鰷p性:當k>0時(shí),直線(xiàn)從左向右上升,隨著(zhù)x的增大(減小) y也增大(減小)
當k<0時(shí),直線(xiàn)從左向右下降。隨著(zhù)x的增大(減小) y反而而減小(增大)
、苓B續性:由于自變量取值是全體實(shí)數,所以圖像具有連續性。(沒(méi)有最大或最小值)
、萁鼐嘈;
當b>0時(shí),直線(xiàn)與y軸交于y軸正半軸(交點(diǎn)位于軸上方)
當b<0時(shí),直線(xiàn)與y軸交于y軸負半軸(交點(diǎn)位于軸下方)
、迌A斜性:︱k︱越大,直線(xiàn)越靠向y軸,與x軸正方向的夾角度數越大,越陡。
、咂揭菩; 直線(xiàn)y=kx+b
當b>0時(shí),是由直線(xiàn)y=kx 向上平移得到的。
當b<0時(shí),是由直線(xiàn)y=kx 向下平移得到的。
一次函數與正比例函數關(guān)系
正比例函數包含于一次函數,即正比例函數是一次函數;正比例函數是一次函數當b=0時(shí)的特殊情況。
一次函數定義
一般地,形如y=kx+b(k、b是常數,k≠0)的函數,叫一次函數。
(存在條件: ①兩個(gè)變量x、y,②k、b是常數且k≠0,③自變量x的次數是1,④自變量x的是整式形式)
函數
。1)定義:設在某變化過(guò)程中有兩個(gè)變量x、y,對于x的每一個(gè)值,y都有唯一的值與之對應,那么就說(shuō)x是自變量,y是因變量,此時(shí),也稱(chēng)y是x的函數。
。2)本質(zhì):一一對應關(guān)系或多一對應關(guān)系。
有序實(shí)數對平面直角坐標系上的點(diǎn)
。3)表示方法:解析法、列表法、圖象法。
。4)自變量取值范圍:
對于實(shí)際問(wèn)題,自變量取值必須使實(shí)際問(wèn)題有意義;
對于純數學(xué)問(wèn)題,自變量取值必須保證函數關(guān)系式有意義:
、俜质街,分母≠0;
、诙胃街,被開(kāi)方數≥0;
、壅街,自變量取全體實(shí)數;
、芑旌线\算式中,自變量取各解集的公共部份。
正比例函數與反比例函數
兩函數的異同點(diǎn)
一次函數(圖象為直線(xiàn))
。1)定義式:y=kx+b(k、b為常數,k≠0);自變量取全體實(shí)數。
。2)性質(zhì):
、賙>0,過(guò)第一、三象限,y隨x的增大而增大;
k<0,過(guò)第二、四象限,y隨x的增大而減小。
、赽=0,圖象過(guò)(0,0);
b>0,圖象與y軸的交點(diǎn)(0,b)在x軸上方;
b<0,圖象與y軸的交點(diǎn)(0,b)在x軸下方。
二次函數(圖象為拋物線(xiàn))
。1)自變量取全體實(shí)數
一般式:y=ax2+bx+c(a、b、c為常數,a≠0),其中(0,c)為拋物線(xiàn)與y軸的交點(diǎn);
頂點(diǎn)式:y=a(x—h)2+k(a、h、k為常數,a≠0),其中(h,k)為拋物線(xiàn)頂點(diǎn);
h=—,k=零點(diǎn)式:y=a(x—x1)(x—x2)(a、x1、x2為常數,a≠0)其中(x1,0)、(x2,0)為拋物線(xiàn)與x軸的交點(diǎn)。x1、x2 =(b 2 —4ac ≥0)
。2)性質(zhì):
、賹ΨQ(chēng)軸:x=—或x=h;
、陧旤c(diǎn):(—,)或(h,k);
、圩钪担寒攛=—時(shí),y有最大(。┲,為或當x=h時(shí),y有最大(。┲,為k;
【初中數學(xué)函數知識點(diǎn)總結】相關(guān)文章:
函數知識點(diǎn)總結02-10
初中數學(xué)函數教案01-03