成人免费看黄网站无遮挡,caowo999,se94se欧美综合色,a级精品九九九大片免费看,欧美首页,波多野结衣一二三级,日韩亚洲欧美综合

初中數學(xué)知識點(diǎn)總結

時(shí)間:2023-06-19 06:04:57 知識點(diǎn)總結 我要投稿

初中數學(xué)知識點(diǎn)總結21篇

  總結是事后對某一階段的學(xué)習或工作情況作加以回顧檢查并分析評價(jià)的書(shū)面材料,它可以明確下一步的工作方向,少走彎路,少犯錯誤,提高工作效益,我想我們需要寫(xiě)一份總結了吧。那么總結要注意有什么內容呢?以下是小編精心整理的初中數學(xué)知識點(diǎn)總結,歡迎大家借鑒與參考,希望對大家有所幫助。

初中數學(xué)知識點(diǎn)總結21篇

初中數學(xué)知識點(diǎn)總結1

  1、重心的定義:

  平面圖形中,幾何圖形的重心是當支撐或懸掛時(shí)圖形能在水平面處于平衡狀態(tài),此時(shí)的支撐點(diǎn)或者懸掛點(diǎn)叫做平衡點(diǎn),也叫做重心。

  2、幾種幾何圖形的重心:

 、啪(xiàn)段的重心就是線(xiàn)段的中點(diǎn);

 、破叫兴倪呅渭疤厥馄叫兴倪呅蔚闹匦氖撬膬蓷l對角線(xiàn)的交點(diǎn);

 、侨切蔚'三條中線(xiàn)交于一點(diǎn),這一點(diǎn)就是三角形的重心;

 、热我舛噙呅味加兄匦,以多邊形的任意兩個(gè)頂點(diǎn)作為懸掛點(diǎn),把多邊形懸掛時(shí),過(guò)這兩點(diǎn)鉛垂線(xiàn)的交點(diǎn)就是這個(gè)多邊形的重心。

  提示:⑴無(wú)論幾何圖形的形狀如何,重心都有且只有一個(gè);

 、茝奈锢韺W(xué)角度看,幾何圖形在懸掛或支撐時(shí),位于重心兩邊的力矩相同。

  3、常見(jiàn)圖形重心的性質(zhì):

 、啪(xiàn)段的重心把線(xiàn)段分為兩等份;

 、破叫兴倪呅蔚闹匦陌褜蔷(xiàn)分為兩等份;

 、侨切蔚闹匦陌阎芯(xiàn)分為1:2兩部分(重心到頂點(diǎn)距離占2份,重心到對邊中點(diǎn)距離占1份)。

  上面對重心知識點(diǎn)的鞏固學(xué)習,同學(xué)們都能熟練的掌握了吧,希望同學(xué)們很好的復習學(xué)習數學(xué)知識。

 、僦本(xiàn)和圓無(wú)公共點(diǎn),稱(chēng)相離。 AB與圓O相離,d>r。

 、谥本(xiàn)和圓有兩個(gè)公共點(diǎn),稱(chēng)相交,這條直線(xiàn)叫做圓的割線(xiàn)。AB與⊙O相交,d

 、壑本(xiàn)和圓有且只有一公共點(diǎn),稱(chēng)相切,這條直線(xiàn)叫做圓的切線(xiàn),這個(gè)唯一的公共點(diǎn)叫做切點(diǎn)。AB與⊙O相切,d=r。(d為圓心到直線(xiàn)的距離)

  平面內,直線(xiàn)Ax+By+C=0與圓x^2+y^2+Dx+Ey+F=0的位置關(guān)系判斷一般方法是:

  1.由Ax+By+C=0,可得y=(-C-Ax)/B,(其中B不等于0),代入x^2+y^2+Dx+Ey+F=0,即成為一個(gè)關(guān)于x的方程

  如果b^2-4ac>0,則圓與直線(xiàn)有2交點(diǎn),即圓與直線(xiàn)相交。

  如果b^2-4ac=0,則圓與直線(xiàn)有1交點(diǎn),即圓與直線(xiàn)相切。

  如果b^2-4ac<0,則圓與直線(xiàn)有0交點(diǎn),即圓與直線(xiàn)相離。

  2.如果B=0即直線(xiàn)為Ax+C=0,即x=-C/A,它平行于y軸(或垂直于x軸),將x^2+y^2+Dx+Ey+F=0化為(x-a)^2+(y-b)^2=r^2。令y=b,求出此時(shí)的兩個(gè)x值x1、x2,并且規定x1

  當x=-C/Ax2時(shí),直線(xiàn)與圓相離;

初中數學(xué)知識點(diǎn)總結2

  數軸

  規定了原點(diǎn)、正方向、單位長(cháng)度的直線(xiàn)叫做數軸。

  數軸的作用:所有的有理數都可以用數軸上的點(diǎn)來(lái)表達。

  注意事項:

 、艛递S的原點(diǎn)、正方向、單位長(cháng)度三要素,缺一不可。

 、仆桓鶖递S,單位長(cháng)度不能改變。

  一般地,設是一個(gè)正數,則數軸上表示a的點(diǎn)在原點(diǎn)的右邊,與原點(diǎn)的距離是a個(gè)單位長(cháng)度;表示數-a的'點(diǎn)在原點(diǎn)的左邊,與原點(diǎn)的距離是a個(gè)單位長(cháng)度。

初中數學(xué)知識點(diǎn)總結3

  常用數學(xué)公式

  乘法與因式分a2-b2=(a+b)(a-b)

  a3+b3=(a+b)(a2-ab+b2)a3-b3=(a-b(a2+ab+b2)

  三角不等式|a+b|≤|a|+|b||a-b|≤|a|+|b||a|≤b-b≤a≤b

  |a-b|≥|a|-|b|-|a|≤a≤|a|

  一元二次方程的解x1=-b+√(b2-4ac)/2ax2=-b-√(b2-4ac)/2a

  根與系數的關(guān)系X1+X2=-b/aX1*X2=c/a注:韋達定理

  判別式

  b2-4ac=0注:方程有兩個(gè)相等的實(shí)根b2-4ac>0注:方程有兩個(gè)不等的實(shí)根

  b2-4ac

  某些數列前n項和

  1+2+3+4+5+6+7+8+9+…+n=n(n+1)/21+3+5+7+9+11+13+15+…+(2n-1)=n2

  2+4+6+8+10+12+14+…+(2n)=n(n+1)12+22+32+42+52+62+72+82+…+n2=n(n+1)(2n+1)/613+23+33+43+53+63+…n3=n2(n+1)2/4

  1*2+2*3+3*4+4*5+5*6+6*7+…+n(n+1)=n(n+1)(n+2)/3

  正弦定理a/sinA=b/sinB=c/sinC=2R注:其中R表示三角形的外接圓半徑

  余弦定理b2=a2+c2-2accosB注:角B是邊a和邊c的夾角

  圓的標準方程(x-a)2+(y-b)2=r2注:(a,b)是圓心坐標圓的一般方程x2+y2+Dx+Ey+F=0注:D2+E2-4F>0拋物線(xiàn)標準方程y2=2pxy2=-2pxx2=2pyx2=-2py

  直棱柱側面積S=c*h斜棱柱側面積S=c"*h

  正棱錐側面積S=1/2c*h"正棱臺側面積S=1/2(c+c")h"圓臺側面積S=1/2(c+c")l=pi(R+r)l球的表面積S=4pi*r2圓柱側面積S=c*h=2pi*h圓錐側面積S=1/2*c*l=pi*r*l

  弧長(cháng)公式l=a*ra是圓心角的弧度數r>0扇形面積公式s=1/2*l*r

  錐體體積公式V=1/3*S*H圓錐體體積公式V=1/3*pi*r2h斜棱柱體積V=S"L注:其中,S"是直截面面積,L是側棱長(cháng)柱體體積公式V=s*h圓柱體V=pi*r2h

  1過(guò)兩點(diǎn)有且只有一條直線(xiàn)2兩點(diǎn)之間線(xiàn)段最短3同角或等角的補角相等4同角或等角的余角相等

  5過(guò)一點(diǎn)有且只有一條直線(xiàn)和已知直線(xiàn)垂直

  6直線(xiàn)外一點(diǎn)與直線(xiàn)上各點(diǎn)連接的所有線(xiàn)段中,垂線(xiàn)段最短

  7平行公理經(jīng)過(guò)直線(xiàn)外一點(diǎn),有且只有一條直線(xiàn)與這條直線(xiàn)平行8如果兩條直線(xiàn)都和第三條直線(xiàn)平行,這兩條直線(xiàn)也互相平行9同位角相等,兩直線(xiàn)平行10內錯角相等,兩直線(xiàn)平行11同旁?xún)冉腔パa,兩直線(xiàn)平行12兩直線(xiàn)平行,同位角相等13兩直線(xiàn)平行,內錯角相等14兩直線(xiàn)平行,同旁?xún)冉腔パa

  15定理三角形兩邊的和大于第三邊16推論三角形兩邊的差小于第三邊

  17三角形內角和定理三角形三個(gè)內角的和等于180°18推論1直角三角形的兩個(gè)銳角互余

  19推論2三角形的一個(gè)外角等于和它不相鄰的兩個(gè)內角的和20推論3三角形的一個(gè)外角大于任何一個(gè)和它不相鄰的內角21全等三角形的對應邊、對應角相等

  22邊角邊公理(SAS)有兩邊和它們的夾角對應相等的兩個(gè)三角形全等23角邊角公理(ASA)有兩角和它們的夾邊對應相等的兩個(gè)三角形全等24推論(AAS)有兩角和其中一角的對邊對應相等的兩個(gè)三角形全等25邊邊邊公理(SSS)有三邊對應相等的兩個(gè)三角形全等

  26斜邊、直角邊公理(HL)有斜邊和一條直角邊對應相等的兩個(gè)直角三角形全等27定理1在角的平分線(xiàn)上的點(diǎn)到這個(gè)角的兩邊的距離相等

  28定理2到一個(gè)角的兩邊的距離相同的點(diǎn),在這個(gè)角的平分線(xiàn)上29角的平分線(xiàn)是到角的兩邊距離相等的所有點(diǎn)的集合

  30等腰三角形的性質(zhì)定理等腰三角形的兩個(gè)底角相等(即等邊對等角)31推論1等腰三角形頂角的平分線(xiàn)平分底邊并且垂直于底邊

  32等腰三角形的頂角平分線(xiàn)、底邊上的中線(xiàn)和底邊上的高互相重合33推論3等邊三角形的各角都相等,并且每一個(gè)角都等于60°

  34等腰三角形的判定定理如果一個(gè)三角形有兩個(gè)角相等,那么這兩個(gè)角所對的邊也相等(等角對等邊)

  35推論1三個(gè)角都相等的三角形是等邊三角形36推論2有一個(gè)角等于60°的等腰三角形是等邊三角形37在直角三角形中,如果一個(gè)銳角等于30°那么它所對的直角邊等于斜邊的一半38直角三角形斜邊上的中線(xiàn)等于斜邊上的一半

  39定理線(xiàn)段垂直平分線(xiàn)上的點(diǎn)和這條線(xiàn)段兩個(gè)端點(diǎn)的距離相等

  40逆定理和一條線(xiàn)段兩個(gè)端點(diǎn)距離相等的點(diǎn),在這條線(xiàn)段的垂直平分線(xiàn)上41線(xiàn)段的垂直平分線(xiàn)可看作和線(xiàn)段兩端點(diǎn)距離相等的所有點(diǎn)的集合42定理1關(guān)于某條直線(xiàn)對稱(chēng)的兩個(gè)圖形是全等形

  43定理2如果兩個(gè)圖形關(guān)于某直線(xiàn)對稱(chēng),那么對稱(chēng)軸是對應點(diǎn)連線(xiàn)的垂直平分線(xiàn)

  44定理3兩個(gè)圖形關(guān)于某直線(xiàn)對稱(chēng),如果它們的對應線(xiàn)段或延長(cháng)線(xiàn)相交,那么交點(diǎn)在對稱(chēng)軸上

  45逆定理如果兩個(gè)圖形的對應點(diǎn)連線(xiàn)被同一條直線(xiàn)垂直平分,那么這兩個(gè)圖形關(guān)于這條直線(xiàn)對稱(chēng)

  46勾股定理直角三角形兩直角邊a、b的平方和、等于斜邊c的平方,即a^2+b^2=c^247勾股定理的逆定理如果三角形的三邊長(cháng)a、b、c有關(guān)系a^2+b^2=c^2,那么這個(gè)三角形是直角三角形48定理四邊形的內角和等于360°49四邊形的外角和等于360°

  50多邊形內角和定理n邊形的內角的和等于(n-2)×180°51推論任意多邊的外角和等于360°

  52平行四邊形性質(zhì)定理1平行四邊形的對角相等53平行四邊形性質(zhì)定理2平行四邊形的對邊相等54推論夾在兩條平行線(xiàn)間的平行線(xiàn)段相等

  55平行四邊形性質(zhì)定理3平行四邊形的對角線(xiàn)互相平分

  56平行四邊形判定定理1兩組對角分別相等的四邊形是平行四邊形57平行四邊形判定定理2兩組對邊分別相等的四邊形是平行四邊形58平行四邊形判定定理3對角線(xiàn)互相平分的四邊形是平行四邊形

  59平行四邊形判定定理4一組對邊平行相等的四邊形是平行四邊形60矩形性質(zhì)定理1矩形的四個(gè)角都是直角61矩形性質(zhì)定理2矩形的對角線(xiàn)相等

  62矩形判定定理1有三個(gè)角是直角的四邊形是矩形63矩形判定定理2對角線(xiàn)相等的平行四邊形是矩形64菱形性質(zhì)定理1菱形的四條邊都相等

  65菱形性質(zhì)定理2菱形的對角線(xiàn)互相垂直,并且每一條對角線(xiàn)平分一組對角66菱形面積=對角線(xiàn)乘積的一半,即S=(a×b)÷267菱形判定定理1四邊都相等的四邊形是菱形

  68菱形判定定理2對角線(xiàn)互相垂直的平行四邊形是菱形

  69正方形性質(zhì)定理1正方形的四個(gè)角都是直角,四條邊都相等

  70正方形性質(zhì)定理2正方形的兩條對角線(xiàn)相等,并且互相垂直平分,每條對角線(xiàn)平分一組對角

  71定理1關(guān)于中心對稱(chēng)的兩個(gè)圖形是全等的

  72定理2關(guān)于中心對稱(chēng)的'兩個(gè)圖形,對稱(chēng)點(diǎn)連線(xiàn)都經(jīng)過(guò)對稱(chēng)中心,并且被對稱(chēng)中心平分73逆定理如果兩個(gè)圖形的對應點(diǎn)連線(xiàn)都經(jīng)過(guò)某一點(diǎn),并且被這一點(diǎn)平分,那么這兩個(gè)圖形關(guān)于這一點(diǎn)對稱(chēng)

  74等腰梯形性質(zhì)定理等腰梯形在同一底上的兩個(gè)角相等75等腰梯形的兩條對角線(xiàn)相等

  76等腰梯形判定定理在同一底上的兩個(gè)角相等的梯形是等腰梯形77對角線(xiàn)相等的梯形是等腰梯形

  78平行線(xiàn)等分線(xiàn)段定理如果一組平行線(xiàn)在一條直線(xiàn)上截得的線(xiàn)段相等,那么在其他直線(xiàn)上截得的線(xiàn)段也相等

  79推論1經(jīng)過(guò)梯形一腰的中點(diǎn)與底平行的直線(xiàn),必平分另一腰

  80推論2經(jīng)過(guò)三角形一邊的中點(diǎn)與另一邊平行的直線(xiàn),必平分第三邊81三角形中位線(xiàn)定理三角形的中位線(xiàn)平行于第三邊,并且等于它的一半82梯形中位線(xiàn)定理梯形的中位線(xiàn)平行于兩底,并且等于兩底和的一半L=(a+b)÷2S=L×h83(1)比例的基本性質(zhì)如果a:b=c:d,那么ad=bc如果ad=bc,那么a:b=c:d84(2)合比性質(zhì)如果a/b=c/d,那么(a±b)/b=(c±d)/d

  85(3)等比性質(zhì)如果a/b=c/d=…=m/n(b+d+…+n≠0),那么(a+c+…+m)/(b+d+…+n)=a/b

  86平行線(xiàn)分線(xiàn)段成比例定理三條平行線(xiàn)截兩條直線(xiàn),所得的對應線(xiàn)段成比例87推論平行于三角形一邊的直線(xiàn)截其他兩邊(或兩邊的延長(cháng)線(xiàn)),所得的對應線(xiàn)段成比例88定理如果一條直線(xiàn)截三角形的兩邊(或兩邊的延長(cháng)線(xiàn))所得的對應線(xiàn)段成比例,那么這條直線(xiàn)平行于三角形的第三邊

  89平行于三角形的一邊,并且和其他兩邊相交的直線(xiàn),所截得的三角形的三邊與原三角形三邊對應成比例

  90定理平行于三角形一邊的直線(xiàn)和其他兩邊(或兩邊的延長(cháng)線(xiàn))相交,所構成的三角形與原三角形相似

  91相似三角形判定定理1兩角對應相等,兩三角形相似(ASA)92直角三角形被斜邊上的高分成的兩個(gè)直角三角形和原三角形相似93判定定理2兩邊對應成比例且?jiàn)A角相等,兩三角形相似(SAS)

  94判定定理3三邊對應成比例,兩三角形相似(SSS)

  95定理如果一個(gè)直角三角形的斜邊和一條直角邊與另一個(gè)直角三角形的斜邊和一條直角邊對應成比例,那么這兩個(gè)直角三角形相似96性質(zhì)定理1相似三角形對應高的比,對應中線(xiàn)的比與對應角平分線(xiàn)的比都等于相似比

  97性質(zhì)定理2相似三角形周長(cháng)的比等于相似比

  98性質(zhì)定理3相似三角形面積的比等于相似比的平方

  99任意銳角的正弦值等于它的余角的余弦值,任意銳角的余弦值等于它的余角的正弦值

  100任意銳角的正切值等于它的余角的余切值,任意銳角的余切值等于它的余角的正切值

  101圓是定點(diǎn)的距離等于定長(cháng)的點(diǎn)的集合

  102圓的內部可以看作是圓心的距離小于半徑的點(diǎn)的集合103圓的外部可以看作是圓心的距離大于半徑的點(diǎn)的集合104同圓或等圓的半徑相等

  105到定點(diǎn)的距離等于定長(cháng)的點(diǎn)的軌跡,是以定點(diǎn)為圓心,定長(cháng)為半徑的圓

  106和已知線(xiàn)段兩個(gè)端點(diǎn)的距離相等的點(diǎn)的軌跡,是著(zhù)條線(xiàn)段的垂直平分線(xiàn)

  107到已知角的兩邊距離相等的點(diǎn)的軌跡,是這個(gè)角的平分線(xiàn)

  108到兩條平行線(xiàn)距離相等的點(diǎn)的軌跡,是和這兩條平行線(xiàn)平行且距離相等的一條直線(xiàn)

  109定理不在同一直線(xiàn)上的三點(diǎn)確定一個(gè)圓。110垂徑定理垂直于弦的直徑平分這條弦并且平分弦所對的兩條弧

  111推論1①平分弦(不是直徑)的直徑垂直于弦,并且平分弦所對的兩條、谙业拇怪逼椒志(xiàn)經(jīng)過(guò)圓心,并且平分弦所對的兩條弧

 、燮椒窒宜鶎Φ囊粭l弧的直徑,垂直平分弦,并且平分弦所對的另一條弧112推論2圓的兩條平行弦所夾的弧相等113圓是以圓心為對稱(chēng)中心的中心對稱(chēng)圖形

  114定理在同圓或等圓中,相等的圓心角所對的弧相等,所對的弦相等,所對的弦的弦心距相等

  115推論在同圓或等圓中,如果兩個(gè)圓心角、兩條弧、兩條弦或兩弦的弦心距中有一組量相等那么它們所對應的其余各組量都相等116定理一條弧所對的圓周角等于它所對的圓心角的一半

  117推論1同弧或等弧所對的圓周角相等;同圓或等圓中,相等的圓周角所對的弧也相等118推論2半圓(或直徑)所對的圓周角是直角;90°的圓周角所對的弦是直徑

  119推論3如果三角形一邊上的中線(xiàn)等于這邊的一半,那么這個(gè)三角形是直角三角形120定理圓的內接四邊形的對角互補,并且任何一個(gè)外角都等于它的內對角

  121①直線(xiàn)L和⊙O相交d<r②直線(xiàn)L和⊙O相切d=r③直線(xiàn)L和⊙O相離d>r

  122切線(xiàn)的判定定理經(jīng)過(guò)半徑的外端并且垂直于這條半徑的直線(xiàn)是圓的切線(xiàn)

  123切線(xiàn)的性質(zhì)定理圓的切線(xiàn)垂直于經(jīng)過(guò)切點(diǎn)的半徑124推論1經(jīng)過(guò)圓心且垂直于切線(xiàn)的直線(xiàn)必經(jīng)過(guò)切點(diǎn)125推論2經(jīng)過(guò)切點(diǎn)且垂直于切線(xiàn)的直線(xiàn)必經(jīng)過(guò)圓心

  126切線(xiàn)長(cháng)定理從圓外一點(diǎn)引圓的兩條切線(xiàn),它們的切線(xiàn)長(cháng)相等,圓心和這一點(diǎn)的連線(xiàn)平分兩條切線(xiàn)的夾角127圓的外切四邊形的兩組對邊的和相等

  128弦切角定理弦切角等于它所夾的弧對的圓周角

  129推論如果兩個(gè)弦切角所夾的弧相等,那么這兩個(gè)弦切角也相等130相交弦定理圓內的兩條相交弦,被交點(diǎn)分成的兩條線(xiàn)段長(cháng)的積相等

  131推論如果弦與直徑垂直相交,那么弦的一半是它分直徑所成的兩條線(xiàn)段的比例中項

  132切割線(xiàn)定理從圓外一點(diǎn)引圓的切線(xiàn)和割線(xiàn),切線(xiàn)長(cháng)是這點(diǎn)到割線(xiàn)與圓交點(diǎn)的兩條線(xiàn)段長(cháng)的比例中項

  133推論從圓外一點(diǎn)引圓的兩條割線(xiàn),這一點(diǎn)到每條割線(xiàn)與圓的交點(diǎn)的兩條線(xiàn)段長(cháng)的積相等

  134如果兩個(gè)圓相切,那么切點(diǎn)一定在連心線(xiàn)上135①兩圓外離d>R+r②兩圓外切d=R+r③兩圓相交R-r<d<R+r(R>r)

 、軆蓤A內切d=R-r(R>r)⑤兩圓內含d<R-r(R>r)136定理相交兩圓的連心線(xiàn)垂直平分兩圓的公共弦137定理把圓分成n(n≥3):

 、乓来芜B結各分點(diǎn)所得的多邊形是這個(gè)圓的內接正n邊形

 、平(jīng)過(guò)各分點(diǎn)作圓的切線(xiàn),以相鄰切線(xiàn)的交點(diǎn)為頂點(diǎn)的多邊形是這個(gè)圓的外切正n邊形138定理任何正多邊形都有一個(gè)外接圓和一個(gè)內切圓,這兩個(gè)圓是同心圓139正n邊形的每個(gè)內角都等于(n-2)×180°/n

  140定理正n邊形的半徑和邊心距把正n邊形分成2n個(gè)全等的直角三角形141正n邊形的面積Sn=pnrn/2p表示正n邊形的周長(cháng)142正三角形面積√3a/4a表示邊長(cháng)

  143如果在一個(gè)頂點(diǎn)周?chē)衚個(gè)正n邊形的角,由于這些角的和應為360°,因此k×(n-2)180°/n=360°化為(n-2)(k-2)=4144弧長(cháng)計算公式:L=n兀R/180

  145扇形面積公式:S扇形=n兀R^2/360=LR/2146內公切線(xiàn)長(cháng)=d-(R-r)外公切線(xiàn)長(cháng)=d-(R+r)147完全平方公式:(a+b)^2=a^2+2ab+b^2(a-b)^2=a^2-2ab+b^2148平方差公式:(a+b)(a-b)=a^2-b^2

初中數學(xué)知識點(diǎn)總結4

  關(guān)于軸對稱(chēng)知識點(diǎn)總結內容,希望同學(xué)們很好的掌握下面的內容。

  1、軸對稱(chēng)圖形:

  一個(gè)圖形沿一條直線(xiàn)對折,直線(xiàn)兩旁的部分能夠完全重合。

  這條直線(xiàn)叫做對稱(chēng)軸;ハ嘀睾系狞c(diǎn)叫做對應點(diǎn)。

  2、軸對稱(chēng):

  兩個(gè)圖形沿一條直線(xiàn)對折,其中一個(gè)圖形能夠與另一個(gè)圖形完全重合。

  這條直線(xiàn)叫做對稱(chēng)軸;ハ嘀睾系狞c(diǎn)叫做對應點(diǎn)。

  3、軸對稱(chēng)圖形與軸對稱(chēng)的區別與聯(lián)系:

 。1)區別。

  軸對稱(chēng)圖形討論的是"一個(gè)圖形與一條直線(xiàn)的對稱(chēng)關(guān)系";軸對稱(chēng)討論的是"兩個(gè)圖形與一條直線(xiàn)的對稱(chēng)關(guān)系"。

 。2)聯(lián)系。

  把軸對稱(chēng)圖形中"對稱(chēng)軸兩旁的`部分看作兩個(gè)圖形"便是軸對稱(chēng);把軸對稱(chēng)的"兩個(gè)圖形看作一個(gè)整體"便是軸對稱(chēng)圖形。

  希望上面對軸對稱(chēng)知識點(diǎn)總結內容,可以很好的幫助同學(xué)們對此知識的鞏固學(xué)習,相信同學(xué)們會(huì )從中學(xué)習的很棒的吧。

初中數學(xué)知識點(diǎn)總結5

  1、正數和負數的有關(guān)概念

  (1)正數:比0大的數叫做正數;

  負數:比0小的數叫做負數;

  0既不是正數,也不是負數。

  (2)正數和負數表示相反意義的量。

  2、有理數的概念及分類(lèi)

  3、有關(guān)數軸

  (1)數軸的三要素:原點(diǎn)、正方向、單位長(cháng)度。數軸是一條直線(xiàn)。

  (2)所有有理數都可以用數軸上的點(diǎn)來(lái)表示,但數軸上的點(diǎn)不一定都是有理數。

  (3)數軸上,右邊的數總比左邊的數大;表示正數的點(diǎn)在原點(diǎn)的右側,表示負數的點(diǎn)在原點(diǎn)的左側。

  (2)相反數:符號不同、絕對值相等的兩個(gè)數互為相反數。

  若a、b互為相反數,則a+b=0;

  相反數是本身的是0,正數的相反數是負數,負數的相反數是正數。

  (3)絕對值最小的數是0;絕對值是本身的數是非負數。

  4、任何數的絕對值是非負數。

  最小的正整數是1,最大的負整數是-1。

  5、利用絕對值比較大小

  兩個(gè)正數比較:絕對值大的那個(gè)數大;

  兩個(gè)負數比較:先算出它們的絕對值,絕對值大的反而小。

  6、有理數加法

  (1)符號相同的兩數相加:和的符號與兩個(gè)加數的符號一致,和的絕對值等于兩個(gè)加數絕對值之和.

  (2)符號相反的兩數相加:當兩個(gè)加數絕對值不等時(shí),和的符號與絕對值較大的加數的符號相同,和的.絕對值等于加數中較大的絕對值減去較小的絕對值;當兩個(gè)加數絕對值相等時(shí),兩個(gè)加數互為相反數,和為零.

  (3)一個(gè)數同零相加,仍得這個(gè)數.

  加法的交換律:a+b=b+a

  加法的結合律:(a+b)+c=a+(b+c)

  7、有理數減法:減去一個(gè)數,等于加上這個(gè)數的相反數。

  8、在把有理數加減混合運算統一為最簡(jiǎn)的形式,負數前面的加號可以省略不寫(xiě).

  例如:14+12+(-25)+(-17)可以寫(xiě)成省略括號的形式:14+12 -25-17,可以讀作“正14加12減25減17”,也可以讀作“正14、正12、負25、負17的和.”

  9、有理數的乘法

  兩個(gè)數相乘,同號得正,異號得負,再把絕對值相乘;任何數與0相乘都得0。

  第一步:確定積的符號第二步:絕對值相乘

  10、乘積的符號的確定

  幾個(gè)有理數相乘,因數都不為0時(shí),積的符號由負因數的個(gè)數確定:當負因數有奇數個(gè)時(shí),積為負;

  當負因數有偶數個(gè)時(shí),積為正。幾個(gè)有理數相乘,有一個(gè)因數為零,積就為零。

  11、倒數:乘積為1的兩個(gè)數互為倒數,0沒(méi)有倒數。

  正數的倒數是正數,負數的倒數是負數。(互為倒數的兩個(gè)數符號一定相同)

  倒數是本身的只有1和-1。

初中數學(xué)知識點(diǎn)總結6

  動(dòng)點(diǎn)與函數圖象問(wèn)題常見(jiàn)的四種類(lèi)型:

  1、三角形中的動(dòng)點(diǎn)問(wèn)題:動(dòng)點(diǎn)沿三角形的邊運動(dòng),根據問(wèn)題中的常量與變量之間的關(guān)系,判斷函數圖象.

  2、四邊形中的動(dòng)點(diǎn)問(wèn)題:動(dòng)點(diǎn)沿四邊形的邊運動(dòng),根據問(wèn)題中的常量與變量之間的關(guān)系,判斷函數圖象.

  3、圓中的動(dòng)點(diǎn)問(wèn)題:動(dòng)點(diǎn)沿圓周運動(dòng),根據問(wèn)題中的常量與變量之間的關(guān)系,判斷函數圖象.

  4、直線(xiàn)、雙曲線(xiàn)、拋物線(xiàn)中的動(dòng)點(diǎn)問(wèn)題:動(dòng)點(diǎn)沿直線(xiàn)、雙曲線(xiàn)、拋物線(xiàn)運動(dòng),根據問(wèn)題中的常量與變量之間的關(guān)系,判斷函數圖象.

  圖形運動(dòng)與函數圖象問(wèn)題常見(jiàn)的三種類(lèi)型:

  1、線(xiàn)段與多邊形的運動(dòng)圖形問(wèn)題:把一條線(xiàn)段沿一定方向運動(dòng)經(jīng)過(guò)三角形或四邊形,根據問(wèn)題中的常量與變量之間的`關(guān)系,進(jìn)行分段,判斷函數圖象.

  2、多邊形與多邊形的運動(dòng)圖形問(wèn)題:把一個(gè)三角形或四邊形沿一定方向運動(dòng)經(jīng)過(guò)另一個(gè)多邊形,根據問(wèn)題中的常量與變量之間的關(guān)系,進(jìn)行分段,判斷函數圖象.

  3、多邊形與圓的運動(dòng)圖形問(wèn)題:把一個(gè)圓沿一定方向運動(dòng)經(jīng)過(guò)一個(gè)三角形或四邊形,或把一個(gè)三角形或四邊形沿一定方向運動(dòng)經(jīng)過(guò)一個(gè)圓,根據問(wèn)題中的常量與變量之間的關(guān)系,進(jìn)行分段,判斷函數圖象.

  動(dòng)點(diǎn)問(wèn)題常見(jiàn)的四種類(lèi)型:

  1、三角形中的動(dòng)點(diǎn)問(wèn)題:動(dòng)點(diǎn)沿三角形的邊運動(dòng),通過(guò)全等或相似,探究構成的新圖形與原圖形的邊或角的關(guān)系.

  2、四邊形中的動(dòng)點(diǎn)問(wèn)題:動(dòng)點(diǎn)沿四邊形的邊運動(dòng),通過(guò)探究構成的新圖形與原圖形的全等或相似,得出它們的邊或角的關(guān)系.

  3、圓中的動(dòng)點(diǎn)問(wèn)題:動(dòng)點(diǎn)沿圓周運動(dòng),探究構成的新圖形的邊角等關(guān)系.

  4、直線(xiàn)、雙曲線(xiàn)、拋物線(xiàn)中的動(dòng)點(diǎn)問(wèn)題:動(dòng)點(diǎn)沿直線(xiàn)、雙曲線(xiàn)、拋物線(xiàn)運動(dòng),探究是否存在動(dòng)點(diǎn)構成的三角形是等腰三角形或與已知圖形相似等問(wèn)題.

  總結反思:

  本題是二次函數的綜合題,考查了待定系數法求二次函數的解析式,一次函數的解析式,三角形全等的判定和性質(zhì),等腰直角三角形的性質(zhì),平行線(xiàn)的性質(zhì)等,數形結合思想的應用是解題的關(guān)鍵.

  解答動(dòng)態(tài)性問(wèn)題通常是對幾何圖形運動(dòng)過(guò)程有一個(gè)完整、清晰的認識,發(fā)掘“動(dòng)”與“靜”的內在聯(lián)系,尋求變化規律,從變中求不變,從而達到解題目的

  解答函數的圖象問(wèn)題一般遵循的步驟:

  1、根據自變量的取值范圍對函數進(jìn)行分段.

  2、求出每段的解析式.

  3、由每段的解析式確定每段圖象的形狀.

  對于用圖象描述分段函數的實(shí)際問(wèn)題,要抓住以下幾點(diǎn):

  1、自變量變化而函數值不變化的圖象用水平線(xiàn)段表示.

  2、自變量變化函數值也變化的增減變化情況.

  3、函數圖象的最低點(diǎn)和最高點(diǎn).

初中數學(xué)知識點(diǎn)總結7

  圓周角知識點(diǎn)

  1、定義:頂點(diǎn)在圓上,角的兩邊都與圓相交的角。(兩條件缺一不可)

  2、定理:在同圓或等圓中,同弧或等弧所對的圓周角相等,都等于這條弧所對的圓心角的一半。

  3、推論:1)在同圓或等圓中,相等的圓周角所對的弧相等。

  2)直徑(半圓)所對的圓周角是直角;900的圓周角所對的弦為直徑

  4、圓內接四邊形的性質(zhì)定理:圓內接四邊形的對角互補。(任意一個(gè)外角等于它的內對角)

  補充:1、兩條平行弦所夾的弧相等。

  2、圓的兩條弦1)在圓外相交時(shí),所夾角等于它所對的兩條弧度數差的一半。2)在圓內相交時(shí),所夾的角等于它所夾兩條弧度數和的一半。

  3、同弧所對的(在弧的同側)圓內部角其次是圓周角,最小的是圓外角。

  平均數中位數與眾數知識點(diǎn)

  1.數據13,10,12,8,7的平均數是10.

  2.數據3,4,2,4,4的眾數是4.

  3.數據1,2,3,4,5的中位數是3.

  有理數知識點(diǎn)

  1.大于0的數叫做正數。

  2.在正數前面加上負號“-”的數叫做負數。

  3.整數和分數統稱(chēng)為有理數。

  4.人們通常用一條直線(xiàn)上的點(diǎn)表示數,這條直線(xiàn)叫做數軸。

  5.在直線(xiàn)上任取一個(gè)點(diǎn)表示數0,這個(gè)點(diǎn)叫做原點(diǎn)。

  6.一般的,數軸上表示數a的點(diǎn)與原點(diǎn)的距離叫做數a的絕對值。

  7.由絕對值的定義可知:

  一個(gè)正數的絕對值是它本身;

  一個(gè)負數的'絕對值是它的相反數;

  0的絕對值是0。

  8.正數大于0,0大于負數,正數大于負數。

  9.兩個(gè)負數,絕對值大的反而小。

  10.有理數加法法則:

  (1)同號兩數相加,取相同的符號,并把絕對值相加。

  (2)絕對值不相等的異號兩數相加,取絕對值較大的加數的負號,并用較大的絕對值減去較小的絕對值,互為相反數的兩個(gè)數相加得0。

  (3)一個(gè)數同0相加,仍得這個(gè)數。

  11.有理數的加法中,兩個(gè)數相加,交換交換加數的位置,和不變。

  12.有理數的加法中,三個(gè)數相加,先把前兩個(gè)數相加,或者先把后兩個(gè)數相加,和不變。

  13.有理數減法法則:減去一個(gè)數,等于加上這個(gè)數的相反數。

  14.有理數乘法法則:兩數相乘,同號得正,異號得負,并把絕對值向乘。任何數同0相乘,都得0。

  15.有理數中仍然有:乘積是1的兩個(gè)數互為倒數。

  16.一般的,有理數乘法中,兩個(gè)數相乘,交換因數的位置,積相等。

  17.三個(gè)數相乘,先把前兩個(gè)數相乘,或者先把后兩個(gè)數相乘,積相等。

  18.一般地,一個(gè)數同兩個(gè)數的和相乘,等于把這個(gè)數分別同這兩個(gè)數相乘,再把積相加。

  19.有理數除法法則:除以一個(gè)不等于0的數,等于乘這個(gè)數的倒數。

  20.兩數相除,同號得正,異號得負,并把絕對值相除。0除以任何一個(gè)不等于0的數,都得0。

初中數學(xué)知識點(diǎn)總結8

  一、一次函數圖象y=kx+b

  一次函數的圖象可以由k、b的正負來(lái)決定:

  k大于零是一撇(由左下至右上,增函數)

  k小于零是一捺(由右上至左下,減函數)

  b等于零必過(guò)原點(diǎn);

  b大于零交點(diǎn)(指圖象與y軸的交點(diǎn))在上方(指x軸上方)

  b小于零交點(diǎn)(指圖象與y軸的交點(diǎn))在下方(指x軸下方)

  其圖象經(jīng)過(guò)(0,b)和(-b/k , 0)這兩點(diǎn)(兩點(diǎn)就可以決定一條直線(xiàn)),且(0,b)在y軸上,(-b/k , 0)在x軸上。

  b的數值就是一次函數在y軸上的截距(不是距離,有正、負、零之分)。

  二、不等式組的解集

  1、步驟:去分母(后分子應加上括號)、去括號、移項、合并同類(lèi)項、系數化為1 。

  2、解一元一次不等式組時(shí),先求出各個(gè)不等式的解集,然后按不等式組解集的四種類(lèi)型所反映的規律,寫(xiě)出不等式組的解集:不等式組解集的確定方法,若a

  A的解集是解集小小的`取小

  B的解集是解集大大的取大

  C的解集是解集大小的小大的取中間

  D的解集是空集解集大大的小小的無(wú)解

  另需注意等于的問(wèn)題。

  三、零的描述

  1、零既不是正數也不是負數,是介于正數和負數之間的數。零是自然數,是整數,是偶數。

  A、零是表示具有相反意義的量的基準數。

  B、零是判定正、負數的界限。

  C、在一切非負數中有一個(gè)最小值是0;在一切非正數中有一個(gè)最大值是0。

初中數學(xué)知識點(diǎn)總結9

  一、旋轉

  1、定義

  把一個(gè)圖形繞某一點(diǎn)O轉動(dòng)一個(gè)角度的圖形變換叫做旋轉,其中O叫做旋轉中心,轉動(dòng)的角叫做旋轉角。

  2、性質(zhì)

 。1)對應點(diǎn)到旋轉中心的距離相等。

 。2)對應點(diǎn)與旋轉中心所連線(xiàn)段的夾角等于旋轉角。

  二、中心對稱(chēng)

  1、定義

  把一個(gè)圖形繞著(zhù)某一個(gè)點(diǎn)旋轉180°,如果旋轉后的圖形能夠和原來(lái)的圖形互相重合,那么這個(gè)圖形叫做中心對稱(chēng)圖形,這個(gè)點(diǎn)就是它的對稱(chēng)中心。

  2、性質(zhì)

 。1)關(guān)于中心對稱(chēng)的兩個(gè)圖形是全等形。

 。2)關(guān)于中心對稱(chēng)的兩個(gè)圖形,對稱(chēng)點(diǎn)連線(xiàn)都經(jīng)過(guò)對稱(chēng)中心,并且被對稱(chēng)中心平分。

 。3)關(guān)于中心對稱(chēng)的兩個(gè)圖形,對應線(xiàn)段平行(或在同一直線(xiàn)上)且相等。

  3、判定

  如果兩個(gè)圖形的對應點(diǎn)連線(xiàn)都經(jīng)過(guò)某一點(diǎn),并且被這一點(diǎn)平分,那么這兩個(gè)圖形關(guān)于這一點(diǎn)對稱(chēng)。

  4、中心對稱(chēng)圖形

  把一個(gè)圖形繞某一個(gè)點(diǎn)旋轉180°,如果旋轉后的圖形能夠和原來(lái)的圖形互相重合,那么這個(gè)圖形叫做中心對稱(chēng)圖形,這個(gè)店就是它的對稱(chēng)中心。

  考點(diǎn)五、坐標系中對稱(chēng)點(diǎn)的特征(3分)

  1、關(guān)于原點(diǎn)對稱(chēng)的點(diǎn)的特征

  兩個(gè)點(diǎn)關(guān)于原點(diǎn)對稱(chēng)時(shí),它們的坐標的符號相反,即點(diǎn)P(x,y)關(guān)于原點(diǎn)的對稱(chēng)點(diǎn)為P’(—x,—y)

  2、關(guān)于x軸對稱(chēng)的點(diǎn)的特征

  兩個(gè)點(diǎn)關(guān)于x軸對稱(chēng)時(shí),它們的坐標中,x相等,y的符號相反,即點(diǎn)P(x,y)關(guān)于x軸的對稱(chēng)點(diǎn)為P’(x,—y)

  3、關(guān)于y軸對稱(chēng)的點(diǎn)的特征

  兩個(gè)點(diǎn)關(guān)于y軸對稱(chēng)時(shí),它們的坐標中,y相等,x的符號相反,即點(diǎn)P(x,y)關(guān)于y軸的.對稱(chēng)點(diǎn)為P’(—x,y)

  數學(xué)學(xué)習中常見(jiàn)問(wèn)題分析

  大部分學(xué)生在學(xué)習中或多或少的都會(huì )積累一些問(wèn)題,這些問(wèn)題平時(shí)我們可能不是很在意,那么到了初二后就會(huì )突顯出來(lái)。首先新生在學(xué)習數學(xué)的時(shí)候常遇到的就是對于知識點(diǎn)的理解不到位,還停留在一知半解的層次上面。有的學(xué)生在解答數學(xué)題的時(shí)候始終不能把握解題技巧,也就是說(shuō)學(xué)生缺乏對待數學(xué)的舉一反三能力。

  還有的學(xué)生在解答數學(xué)題時(shí)效率太低,無(wú)法再規定的時(shí)間內完成解題,對于初中的考試節奏還沒(méi)辦法適應。一些學(xué)生還沒(méi)有養成一個(gè)總結歸納的習慣,不會(huì )歸納知識點(diǎn),不會(huì )歸納錯題。這些都是導致學(xué)生學(xué)不好數學(xué)的原因。

  常見(jiàn)面積定理

  1、一個(gè)圖形的面積等于它的各部分面積的和;

  2、兩個(gè)全等圖形的面積相等;

  3、等底等高的三角形、平行四邊形、梯形(梯形等底應理解為兩底的和相等)的面積相等;

  4、等底(或等高)的三角形、平行四邊形、梯形的面積比等于其所對應的高(或底)的比;

  5、相似三角形的面積比等于相似比的平方;

  6、等角或補角的三角形面積的比,等于夾等角或補角的兩邊的乘積的比;等角的平行四邊形面積比等于夾等角的兩邊乘積的比;

  7、任何一條曲線(xiàn)都可以用一個(gè)函數y=f(x)來(lái)表示,那么,這條曲線(xiàn)所圍成的面積就是對X求積分。

初中數學(xué)知識點(diǎn)總結10

  平面直角坐標系:

  在平面內畫(huà)兩條互相垂直、原點(diǎn)重合的數軸,組成平面直角坐標系。

  水平的數軸稱(chēng)為x軸或橫軸,豎直的數軸稱(chēng)為y軸或縱軸,兩坐標軸的交點(diǎn)為平面直角坐標系的原點(diǎn)。

  平面直角坐標系的要素:

 、僭谕黄矫

 、趦蓷l數軸

 、刍ハ啻怪

 、茉c(diǎn)重合

  三個(gè)規定:

 、僬较虻囊幎M軸取向右為正方向,縱軸取向上為正方向

 、趩挝婚L(cháng)度的.規定;一般情況,橫軸、縱軸單位長(cháng)度相同;實(shí)際有時(shí)也可不同,但同一數軸上必須相同。

 、巯笙薜囊幎ǎ河疑蠟榈谝幌笙、左上為第二象限、左下為第三象限、右下為第四象限。

  相信上面對平面直角坐標系知識的講解學(xué)習,同學(xué)們已經(jīng)能很好的掌握了吧,希望同學(xué)們都能考試成功。

初中數學(xué)知識點(diǎn)總結11

  1過(guò)兩點(diǎn)有且只有一條直線(xiàn)2兩點(diǎn)之間線(xiàn)段最短3同角或等角的補角相等4同角或等角的余角相等

  5過(guò)一點(diǎn)有且只有一條直線(xiàn)和已知直線(xiàn)垂直

  6直線(xiàn)外一點(diǎn)與直線(xiàn)上各點(diǎn)連接的所有線(xiàn)段中,垂線(xiàn)段最短7平行公理經(jīng)過(guò)直線(xiàn)外一點(diǎn),有且只有一條直線(xiàn)與這條直線(xiàn)平行8如果兩條直線(xiàn)都和第三條直線(xiàn)平行,這兩條直線(xiàn)也互相平行15定理三角形兩邊的和大于第三邊16推論三角形兩邊的差小于第三邊

  17三角形內角和定理三角形三個(gè)內角的和等于180°18推論1直角三角形的兩個(gè)銳角互余

  19推論2三角形的一個(gè)外角等于和它不相鄰的兩個(gè)內角的和20推論3三角形的一個(gè)外角大于任何一個(gè)和它不相鄰的內角21全等三角形的對應邊、對應角相等

  22邊角邊公理(SAS)有兩邊和它們的夾角對應相等的兩個(gè)三角形全等23角邊角公理(ASA)有兩角和它們的夾邊對應相等的兩個(gè)三角形全等24推論(AAS)有兩角和其中一角的對邊對應相等的兩個(gè)三角形全等25邊邊邊公理(SSS)有三邊對應相等的兩個(gè)三角形全等

  26斜邊、直角邊公理(HL)有斜邊和一條直角邊對應相等的兩個(gè)直角三角形全等27定理1在角的平分線(xiàn)上的點(diǎn)到這個(gè)角的兩邊的距離相等28定理2到一個(gè)角的兩邊的距離相同的點(diǎn),在這個(gè)角的平分線(xiàn)上29角的平分線(xiàn)是到角的兩邊距離相等的所有點(diǎn)的集合

  30等腰三角形的性質(zhì)定理等腰三角形的兩個(gè)底角相等(即等邊對等角)31推論1等腰三角形頂角的平分線(xiàn)平分底邊并且垂直于底邊32等腰三角形的頂角平分線(xiàn)、底邊上的中線(xiàn)和底邊上的高互相重合33推論3等邊三角形的各角都相等,并且每一個(gè)角都等于60°

  34等腰三角形的判定定理如果一個(gè)三角形有兩個(gè)角相等,那么這兩個(gè)角所對的邊也相等(等角對等邊)

  35推論1三個(gè)角都相等的三角形是等邊三角形36推論2有一個(gè)角等于60°的等腰三角形是等邊三角形

  37在直角三角形中,如果一個(gè)銳角等于30°那么它所對的直角邊等于斜邊的一半38直角三角形斜邊上的中線(xiàn)等于斜邊上的一半

  39定理線(xiàn)段垂直平分線(xiàn)上的點(diǎn)和這條線(xiàn)段兩個(gè)端點(diǎn)的距離相等

  40逆定理和一條線(xiàn)段兩個(gè)端點(diǎn)距離相等的點(diǎn),在這條線(xiàn)段的垂直平分線(xiàn)上

  41線(xiàn)段的垂直平分線(xiàn)可看作和線(xiàn)段兩端點(diǎn)距離相等的所有點(diǎn)的集合42定理1關(guān)于某條直線(xiàn)對稱(chēng)的兩個(gè)圖形是全等形

  43定理2如果兩個(gè)圖形關(guān)于某直線(xiàn)對稱(chēng),那么對稱(chēng)軸是對應點(diǎn)連線(xiàn)的垂直平分線(xiàn)44定理3兩個(gè)圖形關(guān)于某直線(xiàn)對稱(chēng),如果它們的對應線(xiàn)段或延長(cháng)線(xiàn)相交,那么交點(diǎn)在對稱(chēng)軸上

  45逆定理如果兩個(gè)圖形的對應點(diǎn)連線(xiàn)被同一條直線(xiàn)垂直平分,那么這兩個(gè)圖形關(guān)于這條直線(xiàn)對稱(chēng)

  46勾股定理直角三角形兩直角邊a、b的平方和、等于斜邊c的平方,即a2+b2=c2

  47勾股定理的逆定理如果三角形的三邊長(cháng)a、b、c有關(guān)系a2+b2=c2,那么這個(gè)三角形是直角三角形

  48定理四邊形的內角和等于360°49四邊形的外角和等于360°

  50多邊形內角和定理n邊形的內角的和等于(n-2)×180°51推論任意多邊的外角和等于360°

  52平行四邊形性質(zhì)定理1平行四邊形的對角相等53平行四邊形性質(zhì)定理2平行四邊形的對邊相等54推論夾在兩條平行線(xiàn)間的平行線(xiàn)段相等

  55平行四邊形性質(zhì)定理3平行四邊形的對角線(xiàn)互相平分

  56平行四邊形判定定理1兩組對角分別相等的四邊形是平行四邊形57平行四邊形判定定理2兩組對邊分別相等的四邊形是平行四邊形58平行四邊形判定定理3對角線(xiàn)互相平分的四邊形是平行四邊形59平行四邊形判定定理4一組對邊平行相等的四邊形是平行四邊形60矩形性質(zhì)定理1矩形的四個(gè)角都是直角61矩形性質(zhì)定理2矩形的對角線(xiàn)相等

  62矩形判定定理1有三個(gè)角是直角的四邊形是矩形63矩形判定定理2對角線(xiàn)相等的平行四邊形是矩形64菱形性質(zhì)定理1菱形的四條邊都相等

  65菱形性質(zhì)定理2菱形的對角線(xiàn)互相垂直,并且每一條對角線(xiàn)平分一組對角66菱形面積=對角線(xiàn)乘積的一半,即S=(a×b)÷267菱形判定定理1四邊都相等的四邊形是菱形68菱形判定定理2對角線(xiàn)互相垂直的平行四邊形是菱形69正方形性質(zhì)定理1正方形的四個(gè)角都是直角,四條邊都相等

  70正方形性質(zhì)定理2正方形的兩條對角線(xiàn)相等,并且互相垂直平分,每條對角線(xiàn)平分一組對角

  71定理1關(guān)于中心對稱(chēng)的兩個(gè)圖形是全等的

  72定理2關(guān)于中心對稱(chēng)的兩個(gè)圖形,對稱(chēng)點(diǎn)連線(xiàn)都經(jīng)過(guò)對稱(chēng)中心,并且被對稱(chēng)中心平分

  73逆定理如果兩個(gè)圖形的對應點(diǎn)連線(xiàn)都經(jīng)過(guò)某一點(diǎn),并且被這一點(diǎn)平分,那么這兩個(gè)圖形關(guān)于這一點(diǎn)對稱(chēng)

  74等腰梯形性質(zhì)定理等腰梯形在同一底上的兩個(gè)角相等75等腰梯形的兩條對角線(xiàn)相等

  76等腰梯形判定定理在同一底上的兩個(gè)角相等的梯形是等腰梯形77對角線(xiàn)相等的梯形是等腰梯形

  78平行線(xiàn)等分線(xiàn)段定理如果一組平行線(xiàn)在一條直線(xiàn)上截得的線(xiàn)段相等,那么在其他直線(xiàn)上截得的線(xiàn)段也相等

  79推論1經(jīng)過(guò)梯形一腰的中點(diǎn)與底平行的`直線(xiàn),必平分另一腰80推論2經(jīng)過(guò)三角形一邊的中點(diǎn)與另一邊平行的直線(xiàn),必平分第三邊81三角形中位線(xiàn)定理三角形的中位線(xiàn)平行于第三邊,并且等于它的一半82梯形中位線(xiàn)定理梯形的中位線(xiàn)平行于兩底,并且等于兩底和的一半

  L=(a+b)÷2S=L×h

  83(1)比例的基本性質(zhì)如果a:b=c:d,那么ad=bc,如果ad=bc,那么a:b=c:d84(2)合比性質(zhì)如果a/b=c/d,那么(a±b)/b=(c±d)/d85(3)等比性質(zhì)如果a/b=c/d=…=m/n(b+d+…+n≠0),

  那么(a+c+…+m)/(b+d+…+n)=a/b

  86平行線(xiàn)分線(xiàn)段成比例定理三條平行線(xiàn)截兩條直線(xiàn),所得的對應線(xiàn)段成比例

  87推論平行于三角形一邊的直線(xiàn)截其他兩邊(或兩邊的延長(cháng)線(xiàn)),所得的對應線(xiàn)段成比例88定理如果一條直線(xiàn)截三角形的兩邊(或兩邊的延長(cháng)線(xiàn))所得的對應線(xiàn)段成比例,那么這條直線(xiàn)平行于三角形的第三邊

  89平行于三角形的一邊,并且和其他兩邊相交的直線(xiàn),所截得的三角形的三邊與原三角形三邊對應成比例

  90定理平行于三角形一邊的直線(xiàn)和其他兩邊(或兩邊的延長(cháng)線(xiàn))相交,所構成的三角形與原三角形相似

  91相似三角形判定定理1兩角對應相等,兩三角形相似(ASA)92直角三角形被斜邊上的高分成的兩個(gè)直角三角形和原三角形相似93判定定理2兩邊對應成比例且?jiàn)A角相等,兩三角形相似(SAS)94判定定理3三邊對應成比例,兩三角形相似(SSS)

  95定理如果一個(gè)直角三角形的斜邊和一條直角邊與另一個(gè)直角三角形的斜邊和一條直角邊對應成比例,那么這兩個(gè)直角三角形相似

  96性質(zhì)定理1相似三角形對應高的比,對應中線(xiàn)的比與對應角平分線(xiàn)的比都等于相似比97性質(zhì)定理2相似三角形周長(cháng)的比等于相似比98性質(zhì)定理3相似三角形面積的比等于相似比的平方

  99任意銳角的正弦值等于它的余角的余弦值,任意銳角的余弦值等于它的余角的正弦值100任意銳角的正切值等于它的余角的余切值,任意銳角的余切值等于它的余角的正切值

  101圓是定點(diǎn)的距離等于定長(cháng)的點(diǎn)的集合

  102圓的內部可以看作是圓心的距離小于半徑的點(diǎn)的集合103圓的外部可以看作是圓心的距離大于半徑的點(diǎn)的集合104同圓或等圓的半徑相等

  105到定點(diǎn)的距離等于定長(cháng)的點(diǎn)的軌跡,是以定點(diǎn)為圓心,定長(cháng)為半徑的圓106和已知線(xiàn)段兩個(gè)端點(diǎn)的距離相等的點(diǎn)的軌跡,是著(zhù)條線(xiàn)段的垂直平分線(xiàn)107到已知角的兩邊距離相等的點(diǎn)的軌跡,是這個(gè)角的平分線(xiàn)

  108到兩條平行線(xiàn)距離相等的點(diǎn)的軌跡,是和這兩條平行線(xiàn)平行且距離相等的一條直線(xiàn)109定理不在同一直線(xiàn)上的三點(diǎn)確定一個(gè)圓。

  110垂徑定理垂直于弦的直徑平分這條弦并且平分弦所對的兩條弧

  111推論1①平分弦(不是直徑)的直徑垂直于弦,并且平分弦所對的兩條弧

 、谙业拇怪逼椒志(xiàn)經(jīng)過(guò)圓心,并且平分弦所對的兩條弧

 、燮椒窒宜鶎Φ囊粭l弧的直徑,垂直平分弦,并且平分弦所對的另一條弧

  112推論2圓的兩條平行弦所夾的弧相等113圓是以圓心為對稱(chēng)中心的中心對稱(chēng)圖形

  114定理在同圓或等圓中,相等的圓心角所對的弧相等,所對的弦相等,所對的弦的弦心距相等

  115推論在同圓或等圓中,如果兩個(gè)圓心角、兩條弧、兩條弦或兩弦的弦心距中有一組量相等那么它們所對應的其余各組量都相等

  116定理一條弧所對的圓周角等于它所對的圓心角的一半

  117推論1同弧或等弧所對的圓周角相等;同圓或等圓中,相等的圓周角所對的弧也相等118推論2半圓(或直徑)所對的圓周角是直角;90°的圓周角所對的弦是直徑119推論3如果三角形一邊上的中線(xiàn)等于這邊的一半,那么這個(gè)三角形是直角三角形120定理圓的內接四邊形的對角互補,并且任何一個(gè)外角都等于它的內對角121①直線(xiàn)L和⊙O相交d<r②直線(xiàn)L和⊙O相切d=r③直線(xiàn)L和⊙O相離d>r122切線(xiàn)的判定定理經(jīng)過(guò)半徑的外端并且垂直于這條半徑的直線(xiàn)是圓的切線(xiàn)123切線(xiàn)的性質(zhì)定理圓的切線(xiàn)垂直于經(jīng)過(guò)切點(diǎn)的半徑124推論1經(jīng)過(guò)圓心且垂直于切線(xiàn)的直線(xiàn)必經(jīng)過(guò)切點(diǎn)125推論2經(jīng)過(guò)切點(diǎn)且垂直于切線(xiàn)的直線(xiàn)必經(jīng)過(guò)圓心

  126切線(xiàn)長(cháng)定理從圓外一點(diǎn)引圓的兩條切線(xiàn),它們的切線(xiàn)長(cháng)相等,圓心和這一點(diǎn)的連線(xiàn)平分兩條切線(xiàn)的夾角

  127圓的外切四邊形的兩組對邊的和相等128弦切角定理弦切角等于它所夾的弧對的圓周角

  129推論如果兩個(gè)弦切角所夾的弧相等,那么這兩個(gè)弦切角也相等130相交弦定理圓內的兩條相交弦,被交點(diǎn)分成的兩條線(xiàn)段長(cháng)的積相等

  131推論如果弦與直徑垂直相交,那么弦的一半是它分直徑所成的兩條線(xiàn)段的比例中項132切割線(xiàn)定理從圓外一點(diǎn)引圓的切線(xiàn)和割線(xiàn),切線(xiàn)長(cháng)是這點(diǎn)到割線(xiàn)與圓交點(diǎn)的兩條線(xiàn)段長(cháng)的比例中項

  133推論從圓外一點(diǎn)引圓的兩條割線(xiàn),這一點(diǎn)到每條割線(xiàn)與圓的交點(diǎn)的兩條線(xiàn)段長(cháng)的積相等

  134如果兩個(gè)圓相切,那么切點(diǎn)一定在連心線(xiàn)上135①兩圓外離d>R+r

 、趦蓤A外切d=R+r

 、蹆蓤A相交R-r<d<R+r(R>r)④兩圓內切d=R-r(R>r)⑤兩圓內含d<R-r(R>r)

  136定理相交兩圓的連心線(xiàn)垂直平分兩圓的公共弦137定理把圓分成n(n≥3):

 、乓来芜B結各分點(diǎn)所得的多邊形是這個(gè)圓的內接正n邊形

 、平(jīng)過(guò)各分點(diǎn)作圓的切線(xiàn),以相鄰切線(xiàn)的交點(diǎn)為頂點(diǎn)的多邊形是這個(gè)圓的外切正n邊形138定理任何正多邊形都有一個(gè)外接圓和一個(gè)內切圓,這兩個(gè)圓是同心圓

  (n2)180139正n邊形的每個(gè)內角都等于

  n140定理正n邊形的半徑和邊心距把正n邊形分成2n個(gè)全等的直角三角形

  pnrn141正n邊形的面積Sn=p表示正n邊形的周長(cháng)

  2142正三角形面積

  32aa表示邊長(cháng)4143如果在一個(gè)頂點(diǎn)周?chē)衚個(gè)正n邊形的角,由于這些角的和應為360°,

  k(n2)180360化為(n-2)(k-2)=4因此

  n144弧長(cháng)計算公式:L=

  nR180nR2LR145扇形面積公式:S扇形==

  3602146內公切線(xiàn)長(cháng)=d-(R-r)外公切線(xiàn)長(cháng)=d-(R+r)

  公式分類(lèi)及公式表達式

  乘法與因式分:a2-b2=(a+b)(a-b)a3+b3=(a+b)(a2-ab+b2)a3-b3=(a-b(a2+ab+b2)三角不等式:|a+b|≤|a|+|b||a-b|≤|a|+|b||a|≤b-b≤a≤b|a-b|≥|a|-|b|-|a|≤a≤|a|

  一元二次方程的解

  bb24ac2a

  根與系數的關(guān)系:X1+X2=-b/aX1*X2=c/a注:韋達定理判別式

  b2-4ac=0注:方程有兩個(gè)相等的實(shí)根b2-4ac>0注:方程有兩個(gè)不等的實(shí)根b2-4ac

初中數學(xué)知識點(diǎn)總結12

  知識要領(lǐng):非負數,顧名思義,就是不是負數的數,也就是零和正實(shí)數。例如:0、3.4、9/10、π(圓周率)。

  非負數

  非負數大于或等于0。

  非負數中含有有理數和無(wú)理數。

  非負數的和或積仍是非負數。

  非負數的和為零,則每個(gè)非負數必等于零。

  非負數的'積為零,則至少有一個(gè)非負數為零。

  非負數的絕對值等于本身。

  常見(jiàn)的非負數

  實(shí)數的絕對值、實(shí)數的偶次冪、算術(shù)根等都是常見(jiàn)的非負數。

  常見(jiàn)表現形式

  非負數的準確數學(xué)表達是a≥0、│a│、a^2n是常見(jiàn)的非負數。

  知識歸納:任何一個(gè)非負數乘以-1都會(huì )得到一個(gè)非正數。

初中數學(xué)知識點(diǎn)總結13

  定義:使一元一次方程左右兩邊相等的未知數的值叫做一元一次方程的解。

  把方程的解代入原方程,等式左右兩邊相等。

  解一元一次方程:

  1、解一元一次方程的一般步驟

  去分母、去括號、移項、合并同類(lèi)項、系數化為1,這僅是解一元一次方程的一般步驟,針對方程的特點(diǎn),靈活應用,各種步驟都是為使方程逐漸向x=a形式轉化。

  2、解一元一次方程時(shí)先觀(guān)察方程的形式和特點(diǎn),若有分母一般先去分母;若既有分母又有括號,且括號外的項在乘括號內各項后能消去分母,就先去括號。

  3、在解類(lèi)似于“ax+bx=c”的方程時(shí),將方程左邊,按合并同類(lèi)項的方法并為一項即(a+b)x=c。

  使方程逐漸轉化為ax=b的最簡(jiǎn)形式體現化歸思想。

  將ax=b系數化為1時(shí),要準確計算,一弄清求x時(shí),方程兩邊除以的是a還是b,尤其a為分數時(shí);二要準確判斷符號,a、b同號x為正,a、b異號x為負。

  一元一次方程的應用

  1、一元一次方程解應用題的類(lèi)型

 。1)探索規律型問(wèn)題;

 。2)數字問(wèn)題;

 。3)銷(xiāo)售問(wèn)題(利潤=售價(jià)﹣進(jìn)價(jià),利潤率=利潤進(jìn)價(jià)×100%);

 。4)工程問(wèn)題(①工作量=人均效率×人數×時(shí)間;②如果一件工作分幾個(gè)階段完成,那么各階段的工作量的和=工作總量);

 。5)行程問(wèn)題(路程=速度×時(shí)間);

 。6)等值變換問(wèn)題;

 。7)和,差,倍,分問(wèn)題;

 。8)分配問(wèn)題;

 。9)比賽積分問(wèn)題;

 。10)水流航行問(wèn)題(順水速度=靜水速度+水流速度;逆水速度=靜水速度﹣水流速度)。

  2、利用方程解決實(shí)際問(wèn)題的基本思路:

  首先審題找出題中的未知量和所有的已知量,直接設要求的未知量或間接設一關(guān)鍵的未知量為x,然后用含x的`式子表示相關(guān)的量,找出之間的相等關(guān)系列方程、求解、作答,即設、列、解、答。

  列一元一次方程解應用題的五個(gè)步驟

 。1)審:仔細審題,確定已知量和未知量,找出它們之間的等量關(guān)系。

 。2)設:設未知數(x),根據實(shí)際情況,可設直接未知數(問(wèn)什么設什么),也可設間接未知數。

 。3)列:根據等量關(guān)系列出方程。

 。4)解:解方程,求得未知數的值。

 。5)答:檢驗未知數的值是否正確,是否符合題意,完整地寫(xiě)出答句。

初中數學(xué)知識點(diǎn)總結14

  直線(xiàn)、射線(xiàn)、線(xiàn)段

 。1)直線(xiàn)、射線(xiàn)、線(xiàn)段的表示方法

 、僦本(xiàn):用一個(gè)小寫(xiě)字母表示,如:直線(xiàn)l,或用兩個(gè)大寫(xiě)字母(直線(xiàn)上的)表示,如直線(xiàn)AB。

 、谏渚(xiàn):是直線(xiàn)的一部分,用一個(gè)小寫(xiě)字母表示,如:射線(xiàn)l;用兩個(gè)大寫(xiě)字母表示,端點(diǎn)在前,如:射線(xiàn)OA。注意:用兩個(gè)字母表示時(shí),端點(diǎn)的字母放在前邊。

 、劬(xiàn)段:線(xiàn)段是直線(xiàn)的一部分,用一個(gè)小寫(xiě)字母表示,如線(xiàn)段a;用兩個(gè)表示端點(diǎn)的字母表示,如:線(xiàn)段AB(或線(xiàn)段BA)。

 。2)點(diǎn)與直線(xiàn)的位置關(guān)系:

 、冱c(diǎn)經(jīng)過(guò)直線(xiàn),說(shuō)明點(diǎn)在直線(xiàn)上;

 、邳c(diǎn)不經(jīng)過(guò)直線(xiàn),說(shuō)明點(diǎn)在直線(xiàn)外。

  兩點(diǎn)間的距離

 。1)兩點(diǎn)間的距離:連接兩點(diǎn)間的線(xiàn)段的長(cháng)度叫兩點(diǎn)間的`距離。

 。2)平面上任意兩點(diǎn)間都有一定距離,它指的是連接這兩點(diǎn)的線(xiàn)段的長(cháng)度,學(xué)習此概念時(shí),注意強調最后的兩個(gè)字“長(cháng)度”,也就是說(shuō),它是一個(gè)量,有大小,區別于線(xiàn)段,線(xiàn)段是圖形。線(xiàn)段的長(cháng)度才是兩點(diǎn)的距離?梢哉f(shuō)畫(huà)線(xiàn)段,但不能說(shuō)畫(huà)距離。

  正方體

 。1)對于此類(lèi)問(wèn)題一般方法是用紙按圖的樣子折疊后可以解決,或是在對展開(kāi)圖理解的基礎上直接想象。

 。2)從實(shí)物出發(fā),結合具體的問(wèn)題,辨析幾何體的展開(kāi)圖,通過(guò)結合立體圖形與平面圖形的轉化,建立空間觀(guān)念,是解決此類(lèi)問(wèn)題的關(guān)鍵。

 。3)正方體的展開(kāi)圖有11種情況,分析平面展開(kāi)圖的各種情況后再認真確定哪兩個(gè)面的對面。

初中數學(xué)知識點(diǎn)總結15

  平面直角坐標系

  下面是對平面直角坐標系的內容學(xué)習,希望同學(xué)們很好的掌握下面的內容。

  平面直角坐標系:

  在平面內畫(huà)兩條互相垂直、原點(diǎn)重合的數軸,組成平面直角坐標系。

  水平的數軸稱(chēng)為x軸或橫軸,豎直的數軸稱(chēng)為y軸或縱軸,兩坐標軸的交點(diǎn)為平面直角坐標系的原點(diǎn)。

  平面直角坐標系的要素:①在同一平面②兩條數軸③互相垂直④原點(diǎn)重合

  三個(gè)規定:

 、僬较虻囊幎M軸取向右為正方向,縱軸取向上為正方向

 、趩挝婚L(cháng)度的規定;一般情況,橫軸、縱軸單位長(cháng)度相同;實(shí)際有時(shí)也可不同,但同一數軸上必須相同。

 、巯笙薜囊幎ǎ河疑蠟榈谝幌笙、左上為第二象限、左下為第三象限、右下為第四象限。

  相信上面對平面直角坐標系知識的講解學(xué)習,同學(xué)們已經(jīng)能很好的掌握了吧,希望同學(xué)們都能考試成功。

  初中數學(xué)知識點(diǎn):平面直角坐標系的構成

  對于平面直角坐標系的構成內容,下面我們一起來(lái)學(xué)習哦。

  平面直角坐標系的構成

  在同一個(gè)平面上互相垂直且有公共原點(diǎn)的兩條數軸構成平面直角坐標系,簡(jiǎn)稱(chēng)為直角坐標系。通常,兩條數軸分別置于水平位置與鉛直位置,取向右與向上的方向分別為兩條數軸的正方向。水平的數軸叫做X軸或橫軸,鉛直的數軸叫做Y軸或縱軸,X軸或Y軸統稱(chēng)為坐標軸,它們的公共原點(diǎn)O稱(chēng)為直角坐標系的原點(diǎn)。

  通過(guò)上面對平面直角坐標系的構成知識的講解學(xué)習,希望同學(xué)們對上面的內容都能很好的掌握,同學(xué)們認真學(xué)習吧。

  初中數學(xué)知識點(diǎn):點(diǎn)的坐標的性質(zhì)

  下面是對數學(xué)中點(diǎn)的坐標的性質(zhì)知識學(xué)習,同學(xué)們認真看看哦。

  點(diǎn)的`坐標的性質(zhì)

  建立了平面直角坐標系后,對于坐標系平面內的任何一點(diǎn),我們可以確定它的坐標。反過(guò)來(lái),對于任何一個(gè)坐標,我們可以在坐標平面內確定它所表示的一個(gè)點(diǎn)。

  對于平面內任意一點(diǎn)C,過(guò)點(diǎn)C分別向X軸、Y軸作垂線(xiàn),垂足在X軸、Y軸上的對應點(diǎn)a,b分別叫做點(diǎn)C的橫坐標、縱坐標,有序實(shí)數對(a,b)叫做點(diǎn)C的坐標。

  一個(gè)點(diǎn)在不同的象限或坐標軸上,點(diǎn)的坐標不一樣。

  希望上面對點(diǎn)的坐標的性質(zhì)知識講解學(xué)習,同學(xué)們都能很好的掌握,相信同學(xué)們會(huì )在考試中取得優(yōu)異成績(jì)的。

  初中數學(xué)知識點(diǎn):因式分解的一般步驟

  關(guān)于數學(xué)中因式分解的一般步驟內容學(xué)習,我們做下面的知識講解。

  因式分解的一般步驟

  如果多項式有公因式就先提公因式,沒(méi)有公因式的多項式就考慮運用公式法;若是四項或四項以上的多項式,

  通常采用分組分解法,最后運用十字相乘法分解因式。因此,可以概括為:“一提”、“二套”、“三分組”、“四十字”。

  注意:因式分解一定要分解到每一個(gè)因式都不能再分解為止,否則就是不完全的因式分解,若題目沒(méi)有明確指出在哪個(gè)范圍內因式分解,應該是指在有理數范圍內因式分解,因此分解因式的結果,必須是幾個(gè)整式的積的形式。

  相信上面對因式分解的一般步驟知識的內容講解學(xué)習,同學(xué)們已經(jīng)能很好的掌握了吧,希望同學(xué)們會(huì )考出好成績(jì)。

  初中數學(xué)知識點(diǎn):因式分解

  下面是對數學(xué)中因式分解內容的知識講解,希望同學(xué)們認真學(xué)習。

  因式分解定義

  把一個(gè)多項式化成幾個(gè)整式的積的形式的變形叫把這個(gè)多項式因式分解。

  因式分解要素

 、俳Y果必須是整式

 、诮Y果必須是積的形式

 、劢Y果是等式

 、芤蚴椒纸馀c整式乘法的關(guān)系:m(a+b+c)

  公因式:

  一個(gè)多項式每項都含有的公共的因式,叫做這個(gè)多項式各項的公因式。

  公因式確定方法

 、傧禂凳钦麛禃r(shí)取各項最大公約數。

 、谙嗤帜溉∽畹痛蝺

 、巯禂底畲蠊s數與相同字母取最低次冪的積就是這個(gè)多項式各項的公因式。

  提取公因式步驟:

 、俅_定公因式。

 、诖_定商式

 、酃蚴脚c商式寫(xiě)成積的形式。

  分解因式注意;

 、俨粶蕘G字母

 、诓粶蕘G常數項注意查項數

 、垭p重括號化成單括號

 、芙Y果按數單字母單項式多項式順序排列

 、菹嗤蚴綄(xiě)成冪的形式

 、奘醉椮撎柗爬ㄌ柾

 、呃ㄌ杻韧(lèi)項合并。

  通過(guò)上面對因式分解內容知識的講解學(xué)習,相信同學(xué)們已經(jīng)能很好的掌握了吧,希望上面的內容給同學(xué)們的學(xué)習很好的幫助。

初中數學(xué)知識點(diǎn)總結16

  知識要點(diǎn):梯形的中位線(xiàn)平行于兩底,并且等于兩底和的一半。

  1.中位線(xiàn)概念

  (1)三角形中位線(xiàn)定義:連接三角形兩邊中點(diǎn)的線(xiàn)段叫做三角形的中位線(xiàn)。

  (2)梯形中位線(xiàn)定義:連結梯形兩腰中點(diǎn)的線(xiàn)段叫做梯形的中位線(xiàn)。

  注意:

  (1)要把三角形的中位線(xiàn)與三角形的中線(xiàn)區分開(kāi)。三角形中線(xiàn)是連結一頂點(diǎn)和它對邊的中點(diǎn),而三角形中位線(xiàn)是連結三角形兩邊中點(diǎn)的線(xiàn)段。

  (2)梯形的中位線(xiàn)是連結兩腰中點(diǎn)的'線(xiàn)段而不是連結兩底中點(diǎn)的線(xiàn)段。

  (3)兩個(gè)中位線(xiàn)定義間的聯(lián)系:可以把三角形看成是上底為零時(shí)的梯形,這時(shí)梯形的中位線(xiàn)就變成三角形的中位線(xiàn)。

  2.中位線(xiàn)定理

  (1)三角形中位線(xiàn)定理:三角形的中位線(xiàn)平行于第三邊并且等于它的一半.

  三角形兩邊中點(diǎn)的連線(xiàn)(中位線(xiàn))平行于第BC邊,且等于第三邊的一半。

  知識要領(lǐng)總結:三角形的中位線(xiàn)所構成的小三角形(中點(diǎn)三角形)面積是原三角形面積的四分之一。

初中數學(xué)知識點(diǎn)總結17

  課題

  3.5正比例函數、反比例函數、一次函數和二次函數

  教學(xué)目標

  1、掌握正(反)比例函數、一次函數和二次函數的概念及其圖形和性質(zhì)2、會(huì )用待定系數法確定函數的解析式

  教學(xué)重點(diǎn)

  掌握正(反)比例函數、一次函數和二次函數的概念及其圖形和性質(zhì)

  教學(xué)難點(diǎn)

  掌握正(反)比例函數、一次函數和二次函數的概念及其圖形和性質(zhì)

  教學(xué)方法

  講練結合法

  教學(xué)過(guò)程

 。↖)知識要點(diǎn)(見(jiàn)下表:)

  第三章第29頁(yè)函數名稱(chēng)解析式圖像正比例函數ykx(k0)0x反比例函數一次函數ykxb(k0)0x二次函數yax2bxc(a0)y0xy0xky(k0)xyxy0xyy0xy0xyk0k0k0k0k0k0a0a0圖像過(guò)點(diǎn)(0,0)及(1,k)的直線(xiàn)雙曲線(xiàn),x軸、y軸是它的漸近線(xiàn)與直線(xiàn)ykx平行且過(guò)點(diǎn)(0,b)的直線(xiàn)拋物線(xiàn)定義域RxxR且xoyyR且yoRR4acb2a0時(shí),y,4aR值域R4acb2a0時(shí),y,4aba0時(shí),在-,上為增2a函數,在,-單調性k0時(shí),在,0,k0時(shí)為增函數0,上為減函數k0時(shí),為增函數b上為減函數2ak0時(shí)為減函數k0時(shí),在,0,k0時(shí),為減函數0,上為增函數ba0時(shí),在-,上為減2a函數,在,-b上為增函數2a奇偶性奇函數奇函數b=0時(shí)奇函數b=0時(shí)偶函數a0且x-ymin最值無(wú)無(wú)無(wú)b時(shí),2a24acb4ab時(shí),2a24acb4aa0且x-ymax

  第三章第30頁(yè)b24acb2注:二次函數yaxbxca(x(a0))a(xm)(xn)2a4abb4acb2對稱(chēng)軸x,頂點(diǎn)(,)

  2a2a4a2拋物線(xiàn)與x軸交點(diǎn)坐標(m,0),(n,0)(II)例題講解

  例1、求滿(mǎn)足下列條件的'二次函數的解析式:(1)拋物線(xiàn)過(guò)點(diǎn)A(1,1),B(2,2),C(4,2)(2)拋物線(xiàn)的頂點(diǎn)為P(1,5)且過(guò)點(diǎn)Q(3,3)

 。3)拋物線(xiàn)對稱(chēng)軸是x2,它在x軸上截出的線(xiàn)段AB長(cháng)為2且拋物線(xiàn)過(guò)點(diǎn)(1,7)。2,

  解:(1)設yax2bxc(a0),將A、B、C三點(diǎn)坐標分別代入,可得方程組為

  abc1a1解得b4yx24x24a2bc216a4bc2c2(2)設二次函數為ya(x1)25,將Q點(diǎn)坐標代入,即a(31)253,得

  a2,故y2(x1)252x24x3

 。3)∵拋物線(xiàn)對稱(chēng)軸為x2;

  ∴拋物線(xiàn)與x軸的兩個(gè)交點(diǎn)A、B應關(guān)于x2對稱(chēng);∴由題設條件可得兩個(gè)交點(diǎn)坐標分別為A(2∴可設函數解析式為:ya(x2代入方程可得a1

  ∴所求二次函數為yx24x2,

  2,0)、B(222,0)

  2)(x22)a(x2)22a,將(1,7)

  5),例2:二次函數的圖像過(guò)點(diǎn)(0,8),(1,(4,0)

 。1)求函數圖像的頂點(diǎn)坐標、對稱(chēng)軸、最值及單調區間(2)當x取何值時(shí),①y≥0,②y(2)由y0可得x22x80,解得x4或x2由y0可得x22x80,解得2x4

  例3:求函數f(x)x2x1,x[1,1]的最值及相應的x值

  113x1(x)2,知函數的圖像開(kāi)口向上,對稱(chēng)軸為x

  224111]上是增函數!嘁李}設條件可得f(x)在[1,]上是減函數,在[,22131]時(shí),函數取得最小值,且ymin∴當x[1,24131又∵11

初中數學(xué)知識點(diǎn)總結18

  相關(guān)的角:

  1、對頂角:一個(gè)角的兩邊分別是另一個(gè)角的兩邊的反向延長(cháng)線(xiàn),這兩個(gè)角叫做對頂角。

  2、互為補角:如果兩個(gè)角的和是一個(gè)平角,這兩個(gè)角做互為補角。

  3、互為余角:如果兩個(gè)角的和是一個(gè)直角,這兩個(gè)角叫做互為余角。

  4、鄰補角:有公共頂點(diǎn),一條公共邊,另兩條邊互為反向延長(cháng)線(xiàn)的.兩個(gè)角做互為鄰補角。

  注意:互余、互補是指兩個(gè)角的數量關(guān)系,與兩個(gè)角的位置無(wú)關(guān),而互為鄰補角則要求兩個(gè)角有特殊的位置關(guān)系。

  角的性質(zhì)

  1、對頂角相等。

  2、同角或等角的余角相等。

  3、同角或等角的補角相等。

初中數學(xué)知識點(diǎn)總結19

  相關(guān)的角:

  1、對頂角:一個(gè)角的'兩邊分別是另一個(gè)角的兩邊的反向延長(cháng)線(xiàn),這兩個(gè)角叫做對頂角。

  2、互為補角:如果兩個(gè)角的'和是一個(gè)平角,這兩個(gè)角做互為補角。

  3、互為余角:如果兩個(gè)角的和是一個(gè)直角,這兩個(gè)角叫做互為余角。

  4、鄰補角:有公共頂點(diǎn),一條公共邊,另兩條邊互為反向延長(cháng)線(xiàn)的兩個(gè)角做互為鄰補角。

  注意:互余、互補是指兩個(gè)角的數量關(guān)系,與兩個(gè)角的位置無(wú)關(guān),而互為鄰補角則要求兩個(gè)角有特殊的位置關(guān)系。

  角的性質(zhì)

  1、對頂角相等。

  2、同角或等角的余角相等。

  3、同角或等角的補角相等。

初中數學(xué)知識點(diǎn)總結20

  一、函數及其相關(guān)概念

  1、變量與常量

  在某一變化過(guò)程中,可以取不同數值的量叫做變量,數值保持不變的量叫做常量。

  一般地,在某一變化過(guò)程中有兩個(gè)變量x與y,如果對于x的每一個(gè)值,y都有確定的值與它對應,那么就說(shuō)x是自變量,y是x的函數。

  2、函數解析式

  用來(lái)表示函數關(guān)系的數學(xué)式子叫做函數解析式或函數關(guān)系式。

  使函數有意義的自變量的取值的全體,叫做自變量的取值范圍。

  3、函數的三種表示法及其優(yōu)缺點(diǎn)

  (1)解析法

  兩個(gè)變量間的函數關(guān)系,有時(shí)可以用一個(gè)含有這兩個(gè)變量及數字運算符號的等式表示,這種表示法叫做解析法。

  (2)列表法

  把自變量x的一系列值和函數y的對應值列成一個(gè)表來(lái)表示函數關(guān)系,這種表示法叫做列表法。

  (3)圖像法

  用圖像表示函數關(guān)系的方法叫做圖像法。

  4、由函數解析式畫(huà)其圖像的一般步驟

  (1)列表:列表給出自變量與函數的一些對應值

  (2)描點(diǎn):以表中每對對應值為坐標,在坐標平面內描出相應的點(diǎn)

  (3)連線(xiàn):按照自變量由小到大的順序,把所描各點(diǎn)用平滑的曲線(xiàn)連接起來(lái)。

  二、相交線(xiàn)與平行線(xiàn)

  1、知識網(wǎng)絡(luò )結構

  2、知識要點(diǎn)

 。1)在同一平面內,兩條直線(xiàn)的位置關(guān)系有兩種:相交和平行,垂直是相交的一種特殊情況。

 。2)在同一平面內,不相交的兩條直線(xiàn)叫平行線(xiàn)。如果兩條直線(xiàn)只有一個(gè)公共點(diǎn),稱(chēng)這兩條直線(xiàn)相交;如果兩條直線(xiàn)沒(méi)有公共點(diǎn),稱(chēng)這兩條直線(xiàn)平行。

 。3)兩條直線(xiàn)相交所構成的四個(gè)角中,有公共頂點(diǎn)且有一條公共邊的兩個(gè)角是

  鄰補角。鄰補角的性質(zhì):鄰補角互補。如圖1所示,與互為鄰補角,

  與互為鄰補角。+=180°;+=180°;+=180°;+=180°。

  3、兩條直線(xiàn)相交所構成的四個(gè)角中,一個(gè)角的兩邊分別是另一個(gè)角的兩邊的反向延長(cháng)線(xiàn),這樣的兩個(gè)角互為對頂角。對頂角的性質(zhì):對頂角相等。如圖1所示,與互為對頂角。=; =。

  4、兩條直線(xiàn)相交所成的角中,如果有一個(gè)是直角或90°時(shí),稱(chēng)這兩條直線(xiàn)互相垂直,

  其中一條叫做另一條的垂線(xiàn)。如圖2所示,當=90°時(shí),⊥。

  垂線(xiàn)的.性質(zhì):

  性質(zhì)1:過(guò)一點(diǎn)有且只有一條直線(xiàn)與已知直線(xiàn)垂直。

  性質(zhì)2:連接直線(xiàn)外一點(diǎn)與直線(xiàn)上各點(diǎn)的所有線(xiàn)段中,垂線(xiàn)段最短。

  性質(zhì)3:如圖2所示,當a⊥b時(shí),====90°。

  點(diǎn)到直線(xiàn)的距離:直線(xiàn)外一點(diǎn)到這條直線(xiàn)的垂線(xiàn)段的長(cháng)度叫點(diǎn)到直線(xiàn)的距離。

  5、同位角、內錯角、同旁?xún)冉腔咎卣鳎?/p>

  在兩條直線(xiàn)(被截線(xiàn))的同一方,都在第三條直線(xiàn)(截線(xiàn))的同一側,這樣的兩個(gè)角叫同位角。圖3中,共有對同位角:與是同位角;與是同位角;與是同位角;與是同位角。

  在兩條直線(xiàn)(被截線(xiàn))之間,并且在第三條直線(xiàn)(截線(xiàn))的兩側,這樣的兩個(gè)角叫內錯角。圖3中,共有對內錯角:與是內錯角;與是內錯角。

  在兩條直線(xiàn)(被截線(xiàn))的之間,都在第三條直線(xiàn)(截線(xiàn))的同一旁,這樣的兩個(gè)角叫同旁?xún)冉。圖3中,共有對同旁?xún)冉牵号c是同旁?xún)冉?與是同旁?xún)冉恰?/p>

  三、實(shí)數

  1、實(shí)數的分類(lèi)

 。1)按定義分類(lèi):

 。2)按性質(zhì)符號分類(lèi):

  注:0既不是正數也不是負數.

  2、實(shí)數的相關(guān)概念

 。1)相反數

 、俅鷶狄饬x:只有符號不同的兩個(gè)數,我們說(shuō)其中一個(gè)是另一個(gè)的相反數.0的相反數是0.

 、趲缀我饬x:在數軸上原點(diǎn)的兩側,與原點(diǎn)距離相等的兩個(gè)點(diǎn)表示的兩個(gè)數互為相反數,或數軸上,互為相反數的兩個(gè)數所對應的點(diǎn)關(guān)于原點(diǎn)對稱(chēng).

 、刍橄喾磾档膬蓚(gè)數之和等于0.a、b互為相反數a+b=0.

 。2)絕對值|a|≥0.

 。3)倒數(1)0沒(méi)有倒數(2)乘積是1的兩個(gè)數互為倒數.a、b互為倒數.

 。4)平方根

 、偃绻粋(gè)數的平方等于a,這個(gè)數就叫做a的平方根.一個(gè)正數有兩個(gè)平方根,它們互為相反數;0有一個(gè)平方根,它是0本身;負數沒(méi)有平方根.a(a≥0)的平方根記作.

 、谝粋(gè)正數a的正的平方根,叫做a的算術(shù)平方根.a(a≥0)的算術(shù)平方根記作.

 。5)立方根

  如果x3=a,那么x叫做a的立方根.一個(gè)正數有一個(gè)正的立方根;一個(gè)負數有一個(gè)負的立方根;零的立方根是零.

  3、實(shí)數與數軸

  數軸定義:規定了原點(diǎn),正方向和單位長(cháng)度的直線(xiàn)叫做數軸,數軸的三要素缺一不可.

  4、實(shí)數大小的比較

 。1)對于數軸上的任意兩個(gè)點(diǎn),靠右邊的點(diǎn)所表示的數較大.

 。2)正數都大于0,負數都小于0,兩個(gè)正數,絕對值較大的那個(gè)正數大;兩個(gè)負數;絕對值大的反而小.

 。3)無(wú)理數的比較大。

初中數學(xué)知識點(diǎn)總結21

  一、圓

  1、圓的有關(guān)性質(zhì)

  在一個(gè)平面內,線(xiàn)段OA繞它固定的一個(gè)端點(diǎn)O旋轉一周,另一個(gè)端點(diǎn)A隨之旋轉所形成的圖形叫圓,固定的端點(diǎn)O叫圓心,線(xiàn)段OA叫半徑。

  由圓的意義可知:

  圓上各點(diǎn)到定點(diǎn)(圓心O)的距離等于定長(cháng)的點(diǎn)都在圓上。

  就是說(shuō):圓是到定點(diǎn)的距離等于定長(cháng)的點(diǎn)的集合,圓的內部可以看作是到圓。心的距離小于半徑的點(diǎn)的集合。

  圓的外部可以看作是到圓心的距離大于半徑的點(diǎn)的集合。連結圓上任意兩點(diǎn)的線(xiàn)段叫做弦,經(jīng)過(guò)圓心的弦叫直徑。圓上任意兩點(diǎn)間的部分叫圓弧,簡(jiǎn)稱(chēng)弧。

  圓的任意一條直徑的兩個(gè)端點(diǎn)分圓成兩條弧,每一條弧都叫半圓,大于半圓的弧叫優(yōu);小于半圓的弧叫劣弧。由弦及其所對的弧組成的圓形叫弓形。

  圓心相同,半徑不相等的兩個(gè)圓叫同心圓。

  能夠重合的兩個(gè)圓叫等圓。

  同圓或等圓的半徑相等。

  在同圓或等圓中,能夠互相重合的弧叫等弧。

  二、過(guò)三點(diǎn)的圓

  l、過(guò)三點(diǎn)的圓

  過(guò)三點(diǎn)的圓的`作法:利用中垂線(xiàn)找圓心

  定理不在同一直線(xiàn)上的三個(gè)點(diǎn)確定一個(gè)圓。

  經(jīng)過(guò)三角形各頂點(diǎn)的圓叫三角形的外接圓,外接圓的圓心叫外心,這個(gè)三角形叫圓的內接三角形。

  2、反證法

  反證法的三個(gè)步驟:

 、偌僭O命題的結論不成立;

 、趶倪@個(gè)假設出發(fā),經(jīng)過(guò)推理論證,得出矛盾;

 、塾擅艿贸黾僭O不正確,從而肯定命題的結論正確。

  例如:求證三角形中最多只有一個(gè)角是鈍角。

  證明:設有兩個(gè)以上是鈍角

  則兩個(gè)鈍角之和>180°

  與三角形內角和等于180°矛盾。

  ∴不可能有二個(gè)以上是鈍角。

  即最多只能有一個(gè)是鈍角。

  三、垂直于弦的直徑

  圓是軸對稱(chēng)圖形,經(jīng)過(guò)圓心的每一條直線(xiàn)都是它的對稱(chēng)軸。

  垂徑定理:垂直于弦的直徑平分這條弦,并且平分弦所對的兩條弧。

  推理1:平分弦(不是直徑)的直徑垂直于弦,并且平分弦所對兩條弧。

  弦的垂直平分線(xiàn)經(jīng)過(guò)圓心,并且平分弦所對的兩條弧。

  平分弦所對的一條弧的直徑,垂直平分弦,并且平分弦所對的另一個(gè)條弧。

  推理2:圓兩條平行弦所夾的弧相等。

  四、圓心角、弧、弦、弦心距之間的關(guān)系

  圓是以圓心為對稱(chēng)中心的中心對稱(chēng)圖形。

  實(shí)際上,圓繞圓心旋轉任意一個(gè)角度,都能夠與原來(lái)的圖形重合。

  頂點(diǎn)是圓心的角叫圓心角,從圓心到弦的距離叫弦心距。

  定理:在同圓或等圓中,相等的圓心角所對的弧相等,所對的弦相等,所對的弦心距相等。

  推理:在同圓或等圓中,如果兩個(gè)圓心角、兩條弧、兩條弦或兩條弦的弦心距中,有一組量相等,那么它們所對應的其余各組量都分別相等。

  五、圓周角

  頂點(diǎn)在圓上,并且兩邊都和圓相交的角叫圓周角。

  推理1:同弧或等弧所對的圓周角相等;同圓或等圓中,相等的圓周角所對的弧也相等。

  推理2:半圓(或直徑)所對的圓周角是直角;90°的圓周角所對的弦是直徑。

  推理3:如果三角形一邊上的中線(xiàn)等于這邊的一半,那么這個(gè)三角形是直角三角形。

  由于以上的定理、推理,所添加輔助線(xiàn)往往是添加能構成直徑上的圓周角的輔助線(xiàn)。

【初中數學(xué)知識點(diǎn)總結】相關(guān)文章:

初中數學(xué)的知識點(diǎn)總結12-12

初中數學(xué)的知識點(diǎn)總結03-11

初中數學(xué)函數知識點(diǎn)總結04-08

初中數學(xué)《整式》知識點(diǎn)總結10-21

初中數學(xué)知識點(diǎn)總結11-03

初中數學(xué)幾何知識點(diǎn)總結03-01

初中數學(xué)圓的知識點(diǎn)總結06-07

初中數學(xué)知識點(diǎn)總結03-07

初中數學(xué)圓的知識點(diǎn)總結歸納08-26

初中數學(xué)的知識點(diǎn)總結20篇07-28