成人免费看黄网站无遮挡,caowo999,se94se欧美综合色,a级精品九九九大片免费看,欧美首页,波多野结衣一二三级,日韩亚洲欧美综合

高一數學(xué)必修一知識點(diǎn)總結

時(shí)間:2023-07-18 11:10:52 知識點(diǎn)總結 我要投稿

高一數學(xué)必修一知識點(diǎn)總結(通用19篇)

  總結是指社會(huì )團體、企業(yè)單位和個(gè)人對某一階段的學(xué)習、工作或其完成情況加以回顧和分析,得出教訓和一些規律性認識的一種書(shū)面材料,它在我們的學(xué)習、工作中起到呈上啟下的作用,不如立即行動(dòng)起來(lái)寫(xiě)一份總結吧。但是卻發(fā)現不知道該寫(xiě)些什么,下面是小編幫大家整理的高一數學(xué)必修一知識點(diǎn)總結,歡迎大家分享。

高一數學(xué)必修一知識點(diǎn)總結(通用19篇)

  高一數學(xué)必修一知識點(diǎn)總結1

  一:函數模型及其應用

  本節主要包括函數的模型、函數的應用等知識點(diǎn)。主要是理解函數解應用題的一般步驟靈活利用函數解答實(shí)際應用題。

  1、常見(jiàn)的函數模型有一次函數模型、二次函數模型、指數函數模型、對數函數模型、分段函數模型等。

  2、用函數解應用題的基本步驟是:

 。1)閱讀并且理解題意。(關(guān)鍵是數據、字母的實(shí)際意義);

 。2)設量建模;

 。3)求解函數模型;

 。4)簡(jiǎn)要回答實(shí)際問(wèn)題。

  常見(jiàn)考法:

  本節知識在段考和高考中考查的形式多樣,頻率較高,選擇題、填空題和解答題都有。多考查分段函數和較復雜的函數的最值等問(wèn)題,屬于拔高題,難度較大。

  誤區提醒:

  1、求解應用性問(wèn)題時(shí),不僅要考慮函數本身的定義域,還要結合實(shí)際問(wèn)題理解自變量的取值范圍。

  2、求解應用性問(wèn)題時(shí),首先要弄清題意,分清條件和結論,抓住關(guān)鍵詞和量,理順數量關(guān)系,然后將文字語(yǔ)言轉化成數學(xué)語(yǔ)言,建立相應的數學(xué)模型。

  【典型例題】

  例1:

 。1)某種儲蓄的月利率是0。36%,今存入本金100元,求本金與利息的和(即本息和)y(元)與所存月數x之間的函數關(guān)系式,并計算5個(gè)月后的本息和(不計復利)。

 。2)按復利計算利息的一種儲蓄,本金為a元,每期利率為r,設本利和為y,存期為x,寫(xiě)出本利和y隨存期x變化的函數式。如果存入本金1000元,每期利率2。25%,試計算5期后的`本利和是多少?解:(1)利息=本金×月利率×月數。y=100+100×0。36%·x=100+0。36x,當x=5時(shí),y=101。8,∴5個(gè)月后的本息和為101。8元。

  例2:

  某民營(yíng)企業(yè)生產(chǎn)A,B兩種產(chǎn)品,根據市場(chǎng)調查和預測,A產(chǎn)品的利潤與投資成正比,其關(guān)系如圖1,B產(chǎn)品的利潤與投資的算術(shù)平方根成正比,其關(guān)系如圖2(注:利潤與投資單位是萬(wàn)元)

 。1)分別將A,B兩種產(chǎn)品的利潤表示為投資的函數,并寫(xiě)出它們的函數關(guān)系式。

 。2)該企業(yè)已籌集到10萬(wàn)元資金,并全部投入A,B兩種產(chǎn)品的生產(chǎn),問(wèn):怎樣分配這10萬(wàn)元投資,才能是企業(yè)獲得利潤,其利潤約為多少萬(wàn)元。(精確到1萬(wàn)元)。

  高一數學(xué)必修一知識點(diǎn)總結2

  知識點(diǎn)1

  一、集合有關(guān)概念

  1、集合的含義:某些指定的對象集在一起就成為一個(gè)集合,其中每一個(gè)對象叫元素。

  2、集合的中元素的三個(gè)特性:

  1、元素的確定性;

  2、元素的互異性;

  3、元素的無(wú)序性

  說(shuō)明:(1)對于一個(gè)給定的集合,集合中的元素是確定的,任何一個(gè)對象或者是或者不是這個(gè)給定的集合的元素。

 。2)任何一個(gè)給定的集合中,任何兩個(gè)元素都是不同的對象,相同的對象歸入一個(gè)集合時(shí),僅算一個(gè)元素。

 。3)集合中的元素是平等的,沒(méi)有先后順序,因此判定兩個(gè)集合是否一樣,僅需比較它們的元素是否一樣,不需考查排列順序是否一樣。

 。4)集合元素的三個(gè)特性使集合本身具有了確定性和整體性。

  3、集合的表示:{…}如{我校的籃球隊員},{太平洋,大西洋,印度洋,北冰洋}

  1、用拉丁字母表示集合:A={我校的籃球隊員},B={1,2,3,4,5}

  2、集合的表示方法:列舉法與描述法。

  注意。撼S脭导捌溆浄ǎ

  非負整數集(即自然數集)記作:N

  正整數集N或N+整數集Z有理數集Q實(shí)數集R

  關(guān)于“屬于”的概念

  集合的.元素通常用小寫(xiě)的拉丁字母表示,如:a是集合A的元素,就說(shuō)a屬于集合A記作a∈A,相反,a不屬于集合A記作a?A

  列舉法:把集合中的元素一一列舉出來(lái),然后用一個(gè)大括號括上。

  描述法:將集合中的元素的公共屬性描述出來(lái),寫(xiě)在大括號內表示集合的方法。用確定的條件表示某些對象是否屬于這個(gè)集合的方法。

 、僬Z(yǔ)言描述法:例:{不是直角三角形的三角形}

 、跀祵W(xué)式子描述法:例:不等式x—3>2的解集是{x?R|x—3>2}或{x|x—3>2}

  4、集合的分類(lèi):

  1、有限集含有有限個(gè)元素的集合

  2、無(wú)限集含有無(wú)限個(gè)元素的集合

  3、空集不含任何元素的集合例:{x|x2=—5}

  知識點(diǎn)2

  I、定義與定義表達式

  一般地,自變量x和因變量y之間存在如下關(guān)系:y=ax^2+bx+c

 。╝,b,c為常數,a≠0,且a決定函數的開(kāi)口方向,a>0時(shí),開(kāi)口方向向上,a<0時(shí),開(kāi)口方向向下,IaI還可以決定開(kāi)口大小,IaI越大開(kāi)口就越小,IaI越小開(kāi)口就越大、)

  則稱(chēng)y為x的二次函數。

  二次函數表達式的右邊通常為二次三項式。

  II、二次函數的三種表達式

  一般式:y=ax^2+bx+c(a,b,c為常數,a≠0)

  頂點(diǎn)式:y=a(x—h)^2+k[拋物線(xiàn)的頂點(diǎn)P(h,k)]

  交點(diǎn)式:y=a(x—x?)(x—x?)[僅限于與x軸有交點(diǎn)A(x?,0)和B(x?,0)的拋物線(xiàn)]

  注:在3種形式的互相轉化中,有如下關(guān)系:

  h=—b/2ak=(4ac—b^2)/4ax?,x?=(—b±√b^2—4ac)/2a

  III、二次函數的圖像

  在平面直角坐標系中作出二次函數y=x^2的圖像,可以看出,二次函數的圖像是一條拋物線(xiàn)。

  IV、拋物線(xiàn)的性質(zhì)

  1、拋物線(xiàn)是軸對稱(chēng)圖形。對稱(chēng)軸為直線(xiàn)x=—b/2a。對稱(chēng)軸與拋物線(xiàn)的交點(diǎn)為拋物線(xiàn)的頂點(diǎn)P。

  特別地,當b=0時(shí),拋物線(xiàn)的對稱(chēng)軸是y軸(即直線(xiàn)x=0)

  2、拋物線(xiàn)有一個(gè)頂點(diǎn)P,坐標為

  P(—b/2a,(4ac—b^2)/4a)

  當—b/2a=0時(shí),P在y軸上;當Δ=b^2—4ac=0時(shí),P在x軸上。

  3、二次項系數a決定拋物線(xiàn)的開(kāi)口方向和大小。

  當a>0時(shí),拋物線(xiàn)向上開(kāi)口;當a<0時(shí),拋物線(xiàn)向下開(kāi)口。

  |a|越大,則拋物線(xiàn)的開(kāi)口越小。

  知識點(diǎn)3

  1、拋物線(xiàn)是軸對稱(chēng)圖形。對稱(chēng)軸為直線(xiàn)

  x=—b/2a。

  對稱(chēng)軸與拋物線(xiàn)的交點(diǎn)為拋物線(xiàn)的頂點(diǎn)P。

  特別地,當b=0時(shí),拋物線(xiàn)的對稱(chēng)軸是y軸(即直線(xiàn)x=0)

  2、拋物線(xiàn)有一個(gè)頂點(diǎn)P,坐標為

  P(—b/2a,(4ac—b’2)/4a)

  當—b/2a=0時(shí),P在y軸上;當Δ=b’2—4ac=0時(shí),P在x軸上。

  3、二次項系數a決定拋物線(xiàn)的開(kāi)口方向和大小。

  當a>0時(shí),拋物線(xiàn)向上開(kāi)口;當a<0時(shí),拋物線(xiàn)向下開(kāi)口。

  |a|越大,則拋物線(xiàn)的開(kāi)口越小。

  4、一次項系數b和二次項系數a共同決定對稱(chēng)軸的位置。

  當a與b同號時(shí)(即ab>0),對稱(chēng)軸在y軸左;

  當a與b異號時(shí)(即ab<0),對稱(chēng)軸在y軸右。

  5、常數項c決定拋物線(xiàn)與y軸交點(diǎn)。

  拋物線(xiàn)與y軸交于(0,c)

  6、拋物線(xiàn)與x軸交點(diǎn)個(gè)數

  Δ=b’2—4ac>0時(shí),拋物線(xiàn)與x軸有2個(gè)交點(diǎn)。

  Δ=b’2—4ac=0時(shí),拋物線(xiàn)與x軸有1個(gè)交點(diǎn)。

  Δ=b’2—4ac<0時(shí),拋物線(xiàn)與x軸沒(méi)有交點(diǎn)。X的取值是虛數(x=—b±√b’2—4ac的值的相反數,乘上虛數i,整個(gè)式子除以2a)

  知識點(diǎn)4

  對數函數

  對數函數的一般形式為,它實(shí)際上就是指數函數的反函數。因此指數函數里對于a的規定,同樣適用于對數函數。

  右圖給出對于不同大小a所表示的函數圖形:

  可以看到對數函數的圖形只不過(guò)的指數函數的圖形的關(guān)于直線(xiàn)y=x的對稱(chēng)圖形,因為它們互為反函數。

 。1)對數函數的定義域為大于0的實(shí)數集合。

 。2)對數函數的值域為全部實(shí)數集合。

 。3)函數總是通過(guò)(1,0)這點(diǎn)。

 。4)a大于1時(shí),為單調遞增函數,并且上凸;a小于1大于0時(shí),函數為單調遞減函數,并且下凹。

 。5)顯然對數函數。

  知識點(diǎn)5

  方程的根與函數的零點(diǎn)

  1、函數零點(diǎn)的概念:對于函數,把使成立的實(shí)數叫做函數的零點(diǎn)。

  2、函數零點(diǎn)的意義:函數的零點(diǎn)就是方程實(shí)數根,亦即函數的圖象與軸交點(diǎn)的橫坐標。即:方程有實(shí)數根,函數的圖象與坐標軸有交點(diǎn),函數有零點(diǎn)。

  3、函數零點(diǎn)的求法:

 。1)(代數法)求方程的實(shí)數根;

 。2)(幾何法)對于不能用求根公式的方程,可以將它與函數的圖象聯(lián)系起來(lái),并利用函數的性質(zhì)找出零點(diǎn)。

  4、二次函數的零點(diǎn):

 。1)△>0,方程有兩不等實(shí)根,二次函數的圖象與軸有兩個(gè)交點(diǎn),二次函數有兩個(gè)零點(diǎn)。

 。2)△=0,方程有兩相等實(shí)根(二重根),二次函數的圖象與軸有一個(gè)交點(diǎn),二次函數有一個(gè)二重零點(diǎn)或二階零點(diǎn)。

 。3)△<0,方程無(wú)實(shí)根,二次函數的圖象與軸無(wú)交點(diǎn),二次函數無(wú)零點(diǎn)。

  高一數學(xué)必修一知識點(diǎn)總結3

  一、指數函數

  (一)指數與指數冪的運算

  1.根式的概念:一般地,如果,那么叫做的次方根(nthroot),其中>1,且∈_.

  當是奇數時(shí),正數的次方根是一個(gè)正數,負數的次方根是一個(gè)負數.此時(shí),的次方根用符號表示.式子叫做根式(radical),這里叫做根指數(radicalexponent),叫做被開(kāi)方數(radicand).

  當是偶數時(shí),正數的次方根有兩個(gè),這兩個(gè)數互為相反數.此時(shí),正數的正的次方根用符號表示,負的.次方根用符號-表示.正的次方根與負的次方根可以合并成±(>0).由此可得:負數沒(méi)有偶次方根;0的任何次方根都是0,記作。

  注意:當是奇數時(shí),當是偶數時(shí),

  2.分數指數冪

  正數的分數指數冪的意義,規定:

  0的正分數指數冪等于0,0的負分數指數冪沒(méi)有意義

  指出:規定了分數指數冪的意義后,指數的概念就從整數指數推廣到了有理數指數,那么整數指數冪的運算性質(zhì)也同樣可以推廣到有理數指數冪.

  3.實(shí)數指數冪的運算性質(zhì)

  (二)指數函數及其性質(zhì)

  1、指數函數的概念:一般地,函數叫做指數函數(exponential),其中x是自變量,函數的定義域為R.

  注意:指數函數的底數的取值范圍,底數不能是負數、零和1.

  2、指數函數的圖象和性質(zhì)

  【函數的應用】

  1、函數零點(diǎn)的概念:對于函數,把使成立的實(shí)數叫做函數的零點(diǎn)。

  2、函數零點(diǎn)的意義:函數的零點(diǎn)就是方程實(shí)數根,亦即函數的圖象與軸交點(diǎn)的橫坐標。即:

  方程有實(shí)數根函數的圖象與軸有交點(diǎn)函數有零點(diǎn).

  3、函數零點(diǎn)的求法:

  求函數的零點(diǎn):

  1(代數法)求方程的實(shí)數根;

  2(幾何法)對于不能用求根公式的方程,可以將它與函數的圖象聯(lián)系起來(lái),并利用函數的性質(zhì)找出零點(diǎn).

  4、二次函數的零點(diǎn):

  二次函數.

  1)△>0,方程有兩不等實(shí)根,二次函數的圖象與軸有兩個(gè)交點(diǎn),二次函數有兩個(gè)零點(diǎn).

  2)△=0,方程有兩相等實(shí)根(二重根),二次函數的圖象與軸有一個(gè)交點(diǎn),二次函數有一個(gè)二重零點(diǎn)或二階零點(diǎn).

  3)△<0,方程無(wú)實(shí)根,二次函數的圖象與軸無(wú)交點(diǎn),二次函數無(wú)零點(diǎn).

  高一數學(xué)必修一知識點(diǎn)總結4

  1.函數知識:基本初等函數性質(zhì)的考查,以導數知識為背景的函數問(wèn)題;以向量知識為背景的函數問(wèn)題;從具體函數的考查轉向抽象函數考查;從重結果考查轉向重過(guò)程考查;從熟悉情景的考查轉向新穎情景的考查。

  2.向量知識:向量具有數與形的雙重性,高考中向量試題的命題趨向:考查平面向量的基本概念和運算律;考查平面向量的坐標運算;考查平面向量與幾何、三角、代數等學(xué)科的綜合性問(wèn)題。

  3.不等式知識:突出工具性,淡化獨立性,突出解,是不等式命題的新取向。高考中不等式試題的命題趨向:基本的線(xiàn)性規劃問(wèn)題為必考內容,不等式的性質(zhì)與指數函數、對數函數、三角函數、二交函數等結合起來(lái),考查不等式的性質(zhì)、最值、函數的單調性等;證明不等式的試題,多以函數、數列、解析幾何等知識為背景,在知識網(wǎng)絡(luò )的交匯處命題,綜合性強,能力要求高;解不等式的試題,往往與公式、根式和參數的討論聯(lián)系在一起?疾閷W(xué)生的等價(jià)轉化能力和分類(lèi)討論能力;以當前經(jīng)濟、社會(huì )生產(chǎn)、生活為背景與不等式綜合的應用題仍將是高考的熱點(diǎn),主要考查學(xué)生閱讀理解能力以及分析問(wèn)題、解決問(wèn)題的能力。

  4.立體幾何知識:20xx年已經(jīng)變得簡(jiǎn)單,20xx年難度依然不大,基本的三視圖的考查難點(diǎn)不大,以及球與幾何體的組合體,涉及切,接的問(wèn)題,線(xiàn)面垂直、平行位置關(guān)系的考查,已經(jīng)線(xiàn)面角,面面角和幾何體的體積計算等問(wèn)題,都是重點(diǎn)考查內容。

  5.解析幾何知識:小題主要涉及圓錐曲線(xiàn)方程,和直線(xiàn)與圓的'位置關(guān)系,以及圓錐曲線(xiàn)幾何性質(zhì)的考查,極坐標下的解析幾何知識,解答題主要考查直線(xiàn)和圓的知識,直線(xiàn)與圓錐曲線(xiàn)的知識,涉及圓錐曲線(xiàn)方程,直線(xiàn)與圓錐曲線(xiàn)方程聯(lián)立,定點(diǎn),定值,范圍的考查,考試的難度降低。

  6.導數知識:導數的考查還是以理科19題,文科20題的形式給出,從常見(jiàn)函數入手,導數工具作用(切線(xiàn)和單調性)的考查,綜合性強,能力要求高;往往與公式、導數往往與參數的討論聯(lián)系在一起,考查轉化與化歸能力,但今年的難點(diǎn)整體偏低。

  7.開(kāi)放型創(chuàng )新題:答案不,或是邏輯推理題,以及解答題中的開(kāi)放型試題的考查,都是重點(diǎn),理科13,文科14題。

  高一數學(xué)必修一知識點(diǎn)總結5

  1.二次函數y=ax^2,y=a(x-h)^2,y=a(x-h)^2+k,y=ax^2+bx+c(各式中,a≠0)的圖象形狀相同,只是位置不同,它們的頂點(diǎn)坐標及對稱(chēng)軸如下表:

  解析式

  頂點(diǎn)坐標

  對稱(chēng)軸

  y=ax^2

  (0,0)

  x=0

  y=a(x-h)^2

  (h,0)

  x=h

  y=a(x-h)^2+k

  (h,k)

  x=h

  y=ax^2+bx+c

  (-b/2a,[4ac-b^2]/4a)

  x=-b/2a

  當h>0時(shí),y=a(x-h)^2的圖象可由拋物線(xiàn)y=ax^2向右平行移動(dòng)h個(gè)單位得到,

  當h<0時(shí),則向左平行移動(dòng)|h|個(gè)單位得到.

  當h>0,k>0時(shí),將拋物線(xiàn)y=ax^2向右平行移動(dòng)h個(gè)單位,再向上移動(dòng)k個(gè)單位,就可以得到y=a(x-h)^2+k的圖象;

  當h>0,k<0時(shí),將拋物線(xiàn)y=ax^2向右平行移動(dòng)h個(gè)單位,再向下移動(dòng)|k|個(gè)單位可得到y=a(x-h)^2+k的圖象;

  當h<0,k>0時(shí),將拋物線(xiàn)向左平行移動(dòng)|h|個(gè)單位,再向上移動(dòng)k個(gè)單位可得到y=a(x-h)^2+k的圖象;

  當h<0,k<0時(shí),將拋物線(xiàn)向左平行移動(dòng)|h|個(gè)單位,再向下移動(dòng)|k|個(gè)單位可得到y=a(x-h)^2+k的圖象;

  因此,研究拋物線(xiàn)y=ax^2+bx+c(a≠0)的圖象,通過(guò)配方,將一般式化為y=a(x-h)^2+k的形式,可確定其頂點(diǎn)坐標、對稱(chēng)軸,拋物線(xiàn)的大體位置就很清楚了.這給畫(huà)圖象提供了方便.

  2.拋物線(xiàn)y=ax^2+bx+c(a≠0)的圖象:當a>0時(shí),開(kāi)口向上,當a<0時(shí)開(kāi)口向下,對稱(chēng)軸是直線(xiàn)x=-b/2a,頂點(diǎn)坐標是(-b/2a,[4ac-b^2]/4a).

  3.拋物線(xiàn)y=ax^2+bx+c(a≠0),若a>0,當x≤-b/2a時(shí),y隨x的增大而減小;當x≥-b/2a時(shí),y隨x的增大而增大.若a<0,當x≤-b/2a時(shí),y隨x的增大而增大;當x≥-b/2a時(shí),y隨x的增大而減小.

  4.拋物線(xiàn)y=ax^2+bx+c的圖象與坐標軸的交點(diǎn):

  (1)圖象與y軸一定相交,交點(diǎn)坐標為(0,c);

  (2)當△=b^2-4ac>0,圖象與x軸交于兩點(diǎn)A(x?,0)和B(x?,0),其中的x1,x2是一元二次方程ax^2+bx+c=0

  (a≠0)的.兩根.這兩點(diǎn)間的距離AB=|x?-x?|

  當△=0.圖象與x軸只有一個(gè)交點(diǎn);

  當△<0.圖象與x軸沒(méi)有交點(diǎn).當a>0時(shí),圖象落在x軸的上方,x為任何實(shí)數時(shí),都有y>0;當a<0時(shí),圖象落在x軸的下方,x為任何實(shí)數時(shí),都有y<0.

  5.拋物線(xiàn)y=ax^2+bx+c的最值:如果a>0(a<0),則當x=-b/2a時(shí),y最小(大)值=(4ac-b^2)/4a.

  頂點(diǎn)的橫坐標,是取得最值時(shí)的自變量值,頂點(diǎn)的縱坐標,是最值的取值.

  6.用待定系數法求二次函數的解析式

  (1)當題給條件為已知圖象經(jīng)過(guò)三個(gè)已知點(diǎn)或已知x、y的三對對應值時(shí),可設解析式為一般形式:

  y=ax^2+bx+c(a≠0).

  (2)當題給條件為已知圖象的頂點(diǎn)坐標或對稱(chēng)軸時(shí),可設解析式為頂點(diǎn)式:y=a(x-h)^2+k(a≠0).

  (3)當題給條件為已知圖象與x軸的兩個(gè)交點(diǎn)坐標時(shí),可設解析式為兩根式:y=a(x-x?)(x-x?)(a≠0).

  7.二次函數知識很容易與其它知識綜合應用,而形成較為復雜的綜合題目。因此,以二次函數知識為主的綜合性題目是中考的熱點(diǎn)考題,往往以大題形式出現.

  高一數學(xué)必修一知識點(diǎn)總結6

  數學(xué)是利用符號語(yǔ)言研究數量、結構、變化以及空間模型等概念的一門(mén)學(xué)科。小編準備了高一數學(xué)必修1期末考知識點(diǎn),希望你喜歡。

  一、集合有關(guān)概念

  1、集合的含義:某些指定的對象集在一起就成為一個(gè)集合,其中每一個(gè)對象叫元素.

  2、集合的中元素的三個(gè)特性:

  1.元素的確定性; 2.元素的互異性; 3.元素的無(wú)序性

  說(shuō)明:(1)對于一個(gè)給定的集合,集合中的元素是確定的,任何一個(gè)對象或者是或者不是這個(gè)給定的集合的元素.

  (2)任何一個(gè)給定的集合中,任何兩個(gè)元素都是不同的對象,相同的對象歸入一個(gè)集合時(shí),僅算一個(gè)元素.

  (3)集合中的元素是平等的,沒(méi)有先后順序,因此判定兩個(gè)集合是否一樣,僅需比較它們的元素是否一樣,不需考查排列順序是否一樣.

  (4)集合元素的三個(gè)特性使集合本身具有了確定性和整體性.

  3、集合的表示:{ } 如{我校的籃球隊員},{太平洋,大西洋,印度洋,北冰洋}

  1. 用拉丁字母表示集合:A={我校的籃球隊員},B={1,2,3,4,5}

  2.集合的表示方法:列舉法與描述法.

  注意。撼S脭导捌溆浄ǎ

  非負整數集(即自然數集)記作:N

  正整數集 N*或N+ 整數集Z 有理數集Q 實(shí)數集R

  關(guān)于屬于的概念

  集合的元素通常用小寫(xiě)的拉丁字母表示,如:a是集合A的元素,就說(shuō)a屬于集合A 記作 aA ,相反,a不屬于集合A 記作 a?A

  列舉法:把集合中的元素一一列舉出來(lái),然后用一個(gè)大括號括上.

  描述法:將集合中的元素的公共屬性描述出來(lái),寫(xiě)在大括號內表示集合的`方法.用確定的條件表示某些對象是否屬于這個(gè)集合的方法.

 、僬Z(yǔ)言描述法:例:{不是直角三角形的三角形}

 、跀祵W(xué)式子描述法:例:不等式x-32的解集是{x?R| x-32}或{x| x-32}

  4、集合的分類(lèi):

  1.有限集 含有有限個(gè)元素的集合

  2.無(wú)限集 含有無(wú)限個(gè)元素的集合

  3.空集 不含任何元素的集合 例:{x|x2=-5}

  二、集合間的基本關(guān)系

  1.包含關(guān)系子集

  注意: 有兩種可能(1)A是B的一部分,;(2)A與B是同一集合.

  反之: 集合A不包含于集合B,或集合B不包含集合A,記作A B或B A

  2.相等關(guān)系(55,且55,則5=5)

  實(shí)例:設 A={x|x2-1=0} B={-1,1} 元素相同

  結論:對于兩個(gè)集合A與B,如果集合A的任何一個(gè)元素都是集合B的元素,同時(shí),集合B的任何一個(gè)元素都是集合A的元素,我們就說(shuō)集合A等于集合B,即:A=B

 、 任何一個(gè)集合是它本身的子集.AA

 、谡孀蛹:如果AB,且A1 B那就說(shuō)集合A是集合B的真子集,記作A B(或B A)

 、廴绻 AB, BC ,那么 AC

 、 如果AB 同時(shí) BA 那么A=B

  3. 不含任何元素的集合叫做空集,記為

  規定: 空集是任何集合的子集, 空集是任何非空集合的真子集.

  三、集合的運算

  1.交集的定義:一般地,由所有屬于A(yíng)且屬于B的元素所組成的集合,叫做A,B的交集.

  記作AB(讀作A交B),即AB={x|xA,且xB}.

  2、并集的定義:一般地,由所有屬于集合A或屬于集合B的元素所組成的集合,叫做A,B的并集.記作:AB(讀作A并B),即AB={x|xA,或xB}.

  3、交集與并集的性質(zhì):AA = A, A=, AB = BA,AA = A,

  A= A ,AB = BA.

  4、全集與補集

  (1)補集:設S是一個(gè)集合,A是S的一個(gè)子集(即 ),由S中所有不屬于A(yíng)的元素組成的集合,叫做S中子集A的補集(或余集)

  (2)全集:如果集合S含有我們所要研究的各個(gè)集合的全部元素,這個(gè)集合就可以看作一個(gè)全集.通常用U來(lái)表示.

  (3)性質(zhì):⑴CU(C UA)=A ⑵(C UA) ⑶(CUA)A=U

  高一數學(xué)必修一知識點(diǎn)總結7

  集合間的基本關(guān)系

  1.“包含”關(guān)系—子集

  注意: 有兩種可能(1)A是B的一部分,;(2)A與B是同一集合。 反之: 集合A不包含于集合B,或集合B不包含集合A,記作A B或B A

  2.“相等”關(guān)系(5≥5,且5≤5,則5=5)

  實(shí)例:設 A={x|x2-1=0} B={-1,1} “元素相同”

  結論:對于兩個(gè)集合A與B,如果集合A的任何一個(gè)元素都是集合B的元素,同時(shí),集合B的任何一個(gè)元素都是集合A的元素,我們就說(shuō)集合A等于集合B,即:A=B

  A?① 任何一個(gè)集合是它本身的子集。A

  B那就說(shuō)集合A是集合B的真子集,記作A B(或B A)?B,且A?②真子集:如果A

  C?C ,那么 A?B, B?③如果 A

  A 那么A=B?B 同時(shí) B?④ 如果A

  3. 不含任何元素的集合叫做空集,記為Φ

  規定: 空集是任何集合的子集, 空集是任何非空集合的真子集。

  集合的運算

  1.交集的定義:一般地,由所有屬于A(yíng)且屬于B的元素所組成的集合,叫做A,B的交集.

  記作A∩B(讀作”A交B”),即A∩B={x|x∈A,且x∈B}.

  2、并集的定義:一般地,由所有屬于集合A或屬于集合B的元素所組成的`集合,叫做A,B的并集。記作:A∪B(讀作”A并B”),即A∪B={x|x∈A,或x∈B}.

  3、交集與并集的性質(zhì):A∩A = A, A∩φ= φ, A∩B = B∩A,A∪A = A, A∪φ= A ,A∪B = B∪A.

  4、全集與補集

  (1)補集:設S是一個(gè)集合,A是S的一個(gè)子集(即 ),由S中所有不屬于A(yíng)的元素組成的集合,叫做S中子集A的補集(或余集)

  A}?S且 x? x?記作: CSA 即 CSA ={x

  (2)全集:如果集合S含有我們所要研究的各個(gè)集合的全部元素,這個(gè)集合就可以看作一個(gè)全集。通常用U來(lái)表示。

  (3)性質(zhì):⑴CU(C UA)=A ⑵(C UA)∩A=Φ ⑶(CUA)∪A=U

  高一數學(xué)必修一知識點(diǎn)總結8

  棱錐

  棱錐的定義:有一個(gè)面是多邊形,其余各面都是有一個(gè)公共頂點(diǎn)的三角形,這些面圍成的幾何體叫做棱錐

  棱錐的的性質(zhì):

  (1)側棱交于一點(diǎn)。側面都是三角形

  (2)平行于底面的截面與底面是相似的多邊形。且其面積比等于截得的棱錐的高與遠棱錐高的比的平方

  正棱錐

  正棱錐的定義:如果一個(gè)棱錐底面是正多邊形,并且頂點(diǎn)在底面內的射影是底面的中心,這樣的棱錐叫做正棱錐。

  正棱錐的性質(zhì):

  (1)各側棱交于一點(diǎn)且相等,各側面都是全等的等腰三角形。各等腰三角形底邊上的高相等,它叫做正棱錐的'斜高。

  (3)多個(gè)特殊的直角三角形

  esp:

  a、相鄰兩側棱互相垂直的正三棱錐,由三垂線(xiàn)定理可得頂點(diǎn)在底面的射影為底面三角形的垂心。

  b、四面體中有三對異面直線(xiàn),若有兩對互相垂直,則可得第三對也互相垂直。且頂點(diǎn)在底面的射影為底面三角形的垂心。

  高一數學(xué)必修一知識點(diǎn)總結9

  集合的運算

  運算類(lèi)型交 集并 集補 集

  定義域 R定義域 R

  值域>0值域>0

  在R上單調遞增在R上單調遞減

  非奇非偶函數非奇非偶函數

  函數圖象都過(guò)定點(diǎn)(0,1)函數圖象都過(guò)定點(diǎn)(0,1)

  注意:利用函數的單調性,結合圖象還可以看出:

 。1)在[a,b]上, 值域是 或 ;

 。2)若 ,則 ; 取遍所有正數當且僅當 ;

 。3)對于指數函數 ,總有 ;

  二、對數函數

 。ㄒ唬⿲

  1.對數的概念:

  一般地,如果 ,那么數 叫做以 為底 的對數,記作: ( — 底數, — 真數, — 對數式)

  說(shuō)明:○1 注意底數的限制 ,且 ;

  ○2 ;

  ○3 注意對數的書(shū)寫(xiě)格式.

  兩個(gè)重要對數:

  ○1 常用對數:以10為底的對數 ;

  ○2 自然對數:以無(wú)理數 為底的對數的對數 .

  指數式與對數式的互化

  冪值 真數

 。 N = b

  底數

  指數 對數

 。ǘ⿲档倪\算性質(zhì)

  如果 ,且 , , ,那么:

  ○1 + ;

  ○2 - ;

  ○3 .

  注意:換底公式: ( ,且 ; ,且 ; ).

  利用換底公式推導下面的結論:(1) ;(2) .

 。3)、重要的公式 ①、負數與零沒(méi)有對數; ②、 , ③、對數恒等式

 。ǘ⿲岛瘮

  1、對數函數的概念:函數 ,且 叫做對數函數,其中 是自變量,函數的`定義域是(0,+∞).

  注意:○1 對數函數的定義與指數函數類(lèi)似,都是形式定義,注意辨別。如: , 都不是對數函數,而只能稱(chēng)其為對數型函數.

  ○2 對數函數對底數的限制: ,且 .

  2、對數函數的性質(zhì):

  a>10

  定義域x>0定義域x>0

  值域為R值域為R

  在R上遞增在R上遞減

  函數圖象都過(guò)定點(diǎn)(1,0)函數圖象都過(guò)定點(diǎn)(1,0)

 。ㄈ﹥绾瘮

  1、冪函數定義:一般地,形如 的函數稱(chēng)為冪函數,其中 為常數.

  2、冪函數性質(zhì)歸納.

 。1)所有的冪函數在(0,+∞)都有定義并且圖象都過(guò)點(diǎn)(1,1);

 。2) 時(shí),冪函數的圖象通過(guò)原點(diǎn),并且在區間 上是增函數.特別地,當 時(shí),冪函數的圖象下凸;當 時(shí),冪函數的圖象上凸;

 。3) 時(shí),冪函數的圖象在區間 上是減函數.在第一象限內,當 從右邊趨向原點(diǎn)時(shí),圖象在 軸右方無(wú)限地逼近 軸正半軸,當 趨于 時(shí),圖象在 軸上方無(wú)限地逼近 軸正半軸.

  第四章 函數的應用

  一、方程的根與函數的零點(diǎn)

  1、函數零點(diǎn)的概念:對于函數 ,把使 成立的實(shí)數 叫做函數 的零點(diǎn)。

  2、函數零點(diǎn)的意義:函數 的零點(diǎn)就是方程 實(shí)數根,亦即函數 的圖象與 軸交點(diǎn)的橫坐標。

  即:方程 有實(shí)數根 函數 的圖象與 軸有交點(diǎn) 函數 有零點(diǎn).

  3、函數零點(diǎn)的求法:

  ○1 (代數法)求方程 的實(shí)數根;

  ○2 (幾何法)對于不能用求根公式的方程,可以將它與函數 的圖象聯(lián)系起來(lái),并利用函數的性質(zhì)找出零點(diǎn).

  4、二次函數的零點(diǎn):

  二次函數 .

 。1)△>0,方程 有兩不等實(shí)根,二次函數的圖象與 軸有兩個(gè)交點(diǎn),二次函數有兩個(gè)零點(diǎn).

 。2)△=0,方程 有兩相等實(shí)根,二次函數的圖象與 軸有一個(gè)交點(diǎn),二次函數有一個(gè)二重零點(diǎn)或二階零點(diǎn).

 。3)△<0,方程 無(wú)實(shí)根,二次函數的圖象與 軸無(wú)交點(diǎn),二次函數無(wú)零點(diǎn).

  5.函數的模型

  高一數學(xué)必修一知識點(diǎn)總結10

  【基本初等函數】

  一、指數函數

 。ㄒ唬┲笖蹬c指數冪的運算

  1、根式的概念:一般地,如果,那么叫做的次方根(nthroot),其中>1,且∈

  當是奇數時(shí),正數的次方根是一個(gè)正數,負數的次方根是一個(gè)負數。此時(shí),的次方根用符號表示。式子叫做根式(radical),這里叫做根指數(radicalexponent),叫做被開(kāi)方數(radicand)。

  當是偶數時(shí),正數的次方根有兩個(gè),這兩個(gè)數互為相反數。此時(shí),正數的正的次方根用符號表示,負的次方根用符號—表示。正的次方根與負的次方根可以合并成±(>0)。由此可得:負數沒(méi)有偶次方根;0的任何次方根都是0,記作。

  注意:當是奇數時(shí),當是偶數時(shí),

  2、分數指數冪

  正數的分數指數冪的意義,規定:

  0的正分數指數冪等于0,0的負分數指數冪沒(méi)有意義

  指出:規定了分數指數冪的意義后,指數的.概念就從整數指數推廣到了有理數指數,那么整數指數冪的運算性質(zhì)也同樣可以推廣到有理數指數冪。

  3、實(shí)數指數冪的運算性質(zhì)

 。ǘ┲笖岛瘮导捌湫再|(zhì)

  1、指數函數的概念:一般地,函數叫做指數函數(exponential),其中x是自變量,函數的定義域為R。

  注意:指數函數的底數的取值范圍,底數不能是負數、零和1。

  2、指數函數的圖象和性質(zhì)

  高一數學(xué)必修一知識點(diǎn)總結11

  集合間的基本關(guān)系

  1.子集,A包含于B,記為:,有兩種可能

  (1)A是B的一部分,

  (2)A與B是同一集合,A=B,A、B兩集合中元素都相同。

  反之:集合A不包含于集合B,記作。

  如:集合A={1,2,3},B={1,2,3,4},C={1,2,3,4},三個(gè)集合的關(guān)系可以表示為,,B=C。A是C的子集,同時(shí)A也是C的真子集。

  2.真子集:如果A?B,且A?B那就說(shuō)集合A是集合B的真子集,記作AB(或BA)

  3、不含任何元素的集合叫做空集,記為Φ。Φ是任何集合的子集。

  4、有n個(gè)元素的集合,含有2n個(gè)子集,2n-1個(gè)真子集,含有2n-2個(gè)非空真子集。如A={1,2,3,4,5},則集合A有25=32個(gè)子集,25-1=31個(gè)真子集,25-2=30個(gè)非空真子集。

  例:集合共有個(gè)子集。(13年高考第4題,簡(jiǎn)單)

  練習:A={1,2,3},B={1,2,3,4},請問(wèn)A集合有多少個(gè)子集,并寫(xiě)出子集,B集合有多少個(gè)非空真子集,并將其寫(xiě)出來(lái)。

  解析:

  集合A有3個(gè)元素,所以有23=8個(gè)子集。分別為:①不含任何元素的子集Φ;②含有1個(gè)元素的子集{1}{2}{3};③含有兩個(gè)元素的子集{1,2}{1,3}{2,3};④含有三個(gè)元素的子集{1,2,3}。

  集合B有4個(gè)元素,所以有24-2=14個(gè)非空真子集。具體的.子集自己寫(xiě)出來(lái)。

  此處這么羅嗦主要是為了讓同學(xué)們注意寫(xiě)的順序,數學(xué)就是要講究嚴謹性和邏輯性的。一定要養成自己的邏輯習慣。如果就是為了提高計算能力倒不如直接去菜場(chǎng)賣(mài)菜算了,絕對能飛速提高的,那學(xué)數學(xué)也沒(méi)什么必要了。

  高一數學(xué)必修一知識點(diǎn)總結12

  高一數學(xué)集合有關(guān)概念

  集合的含義

  集合的中元素的三個(gè)特性:

  元素的確定性如:世界上的山

  元素的互異性如:由HAPPY的字母組成的集合{H,A,P,Y}

  元素的無(wú)序性:如:{a,b,c}和{a,c,b}是表示同一個(gè)集合

  3。集合的表示:{…}如:{我校的籃球隊員},{太平洋,大西洋,印度洋,北冰洋}

  用拉丁字母表示集合:A={我校的籃球隊員},B={1,2,3,4,5}

  集合的表示方法:列舉法與描述法。

  注意:常用數集及其記法:

  非負整數集(即自然數集)記作:N

  正整數集N_N+整數集Z有理數集Q實(shí)數集R

  列舉法:{a,b,c……}

  描述法:將集合中的元素的公共屬性描述出來(lái),寫(xiě)在大括號內表示集合的方法。{x(R|x—3>2},{x|x—3>2}

  語(yǔ)言描述法:例:{不是直角三角形的.三角形}

  Venn圖:

  4、集合的分類(lèi):

  有限集含有有限個(gè)元素的集合

  無(wú)限集含有無(wú)限個(gè)元素的集合

  空集不含任何元素的集合例:{x|x2=—5}

  高一數學(xué)必修一知識點(diǎn)總結13

  一、集合及其表示

  1、集合的含義:

  “集合”這個(gè)詞首先讓我們想到的是上體育課或者開(kāi)會(huì )時(shí)老師經(jīng)常喊的“全體集合”。數學(xué)上的“集合”和這個(gè)意思是一樣的,只不過(guò)一個(gè)是動(dòng)詞一個(gè)是名詞而已。

  所以集合的含義是:某些指定的對象集在一起就成為一個(gè)集合,簡(jiǎn)稱(chēng)集,其中每一個(gè)對象叫元素。比如高一二班集合,那么所有高一二班的同學(xué)就構成了一個(gè)集合,每一個(gè)同學(xué)就稱(chēng)為這個(gè)集合的元素。

  2、集合的表示

  通常用大寫(xiě)字母表示集合,用小寫(xiě)字母表示元素,如集合A={a,b,c}。a、b、c就是集合A中的元素,記作a∈A,相反,d不屬于集合A,記作d?A。

  有一些特殊的集合需要記憶:

  非負整數集(即自然數集)N正整數集N_或N+

  整數集Z有理數集Q實(shí)數集R

  集合的表示方法:列舉法與描述法。

 、倭信e法:{a,b,c……}

 、诿枋龇ǎ簩⒓现械脑氐墓矊傩悦枋龀鰜(lái)。如{x?R|x-3>2},{x|x-3>2},{(x,y)|y=x2+1}

 、壅Z(yǔ)言描述法:例:{不是直角三角形的`三角形}

  例:不等式x-3>2的解集是{x?R|x-3>2}或{x|x-3>2}

  強調:描述法表示集合應注意集合的代表元素

  A={(x,y)|y=x2+3x+2}與B={y|y=x2+3x+2}不同。集合A中是數組元素(x,y),集合B中只有元素y。

  3、集合的三個(gè)特性

  (1)無(wú)序性

  指集合中的元素排列沒(méi)有順序,如集合A={1,2},集合B={2,1},則集合A=B。

  例題:集合A={1,2},B={a,b},若A=B,求a、b的值。

  解:,A=B

  注意:該題有兩組解。

  (2)互異性

  指集合中的元素不能重復,A={2,2}只能表示為{2}

  (3)確定性

  集合的確定性是指組成集合的元素的性質(zhì)必須明確,不允許有模棱兩可、含混不清的情況。

  高一數學(xué)必修一知識點(diǎn)總結14

  一、教學(xué)思想:

  教育學(xué)生掌握基礎知識與基本技能,培養學(xué)生的邏輯思維能力、運算能力、空間觀(guān)念和解決簡(jiǎn)單實(shí)際問(wèn)題的能力,使學(xué)生逐步學(xué)會(huì )正確、合理地進(jìn)行

  運算,逐步學(xué)會(huì )觀(guān)察分析、綜合、抽象、概括。會(huì )用歸納演繹、類(lèi)比進(jìn)行簡(jiǎn)單的推理。使學(xué)生懂得數學(xué)來(lái)源于實(shí)踐又反過(guò)來(lái)作用于實(shí)踐。提高學(xué)習數學(xué)的興趣,逐步培養學(xué)生具有良好的學(xué)習習慣,實(shí)事求是的態(tài)度。頑強的學(xué)習毅力和獨立思考、探索的新思想。培養學(xué)生應用數學(xué)知識解決問(wèn)題的能力。

  二、在教學(xué)過(guò)程中抓住以下幾個(gè)環(huán)節

  (1)認真備課。認真研究教材及考綱,明確教學(xué)目標,抓住重點(diǎn)、難點(diǎn),精心設計教學(xué)過(guò)程,重視每一章節內容與前后知識的聯(lián)系及其地位,重視課后反思,設計好每一節課的師生互動(dòng)的細節。

  (2)抓住課堂45分鐘。

  本學(xué)期的教學(xué)內容共五章、

  第一章分式

  第二章一元二次方程

  第三章圓

  第四章圖形的全等

  第五章樣本與總體嚴格按照教學(xué)計劃,備課統一進(jìn)度,統一練習,進(jìn)行教學(xué),精心設計每一節課的每一個(gè)環(huán)節,爭取每節課達到教學(xué)目標,突出重點(diǎn),分散難點(diǎn),增大課堂容量組織學(xué)生人人參與課堂活動(dòng),使每個(gè)學(xué)生積極主動(dòng)參與課堂活動(dòng),使每個(gè)學(xué)生動(dòng)手、動(dòng)口、動(dòng)腦,及時(shí)反饋信息提高課堂效益。

  (3)課后反饋。精選適當的練習題、測試卷,及時(shí)批改作業(yè),發(fā)現問(wèn)題及時(shí)給學(xué)生面對面的指出并指導學(xué)生搞懂弄通,不留一個(gè)疑難點(diǎn),讓學(xué)生學(xué)有所獲。

  三、不斷鉆研業(yè)務(wù),提高業(yè)務(wù)能力及水平

  積極參加業(yè)務(wù)學(xué)習,看書(shū)、看報,參加學(xué)校組織的培訓,使之更好的為基礎教育的`改革努力,掌握新的技能、技巧,不斷努力,取長(cháng)補短,揚長(cháng)避短,努力使教學(xué)更務(wù)實(shí),方法更靈活,手段更先進(jìn)。

  四、提高質(zhì)量的措施

  1、認真學(xué)習鉆研新課標,掌握教材。

  2、認真備課,爭取充分掌握學(xué)生動(dòng)態(tài)。

  3、認真上好每一堂課。

  4、落實(shí)每一堂課后輔助,查漏補缺。

  5、積極與其它老師溝通,加強教研教改,提高教學(xué)水平。

  6、經(jīng)常聽(tīng)取學(xué)生良好的合理化建議。

  7、以“兩頭”帶“中間”戰略思想不變。

  8、深化兩極生的訓導。

  周教學(xué)進(jìn)度安排

  周次主要內容教學(xué)目標

  1整式的除法會(huì )單項式或多項式除以單項式

  2分式的基本性質(zhì)、運算會(huì )約分、通分、乘除、加減運算

  3分式方程解法會(huì )解分式方程

  4一元二次方程及解法解一元二次方程

  5完成與探索的總結培養學(xué)生綜合能力

  6圓的相關(guān)知識了解圓的有關(guān)概念

  7與圓有關(guān)的位置關(guān)系掌握各種位置關(guān)系有應用

  8圓的相關(guān)問(wèn)題綜合知識

  9期中前復習查漏補缺

  10期中檢測自我檢查相當激勵

  11全等三角形的識別學(xué)會(huì )判斷

  12命題與證明學(xué)會(huì )初步說(shuō)理

  13尺規作圖會(huì )簡(jiǎn)單地尺規作圖

  14復習總結本章

  15樣本與總體能用隨機抽樣的方法抽樣

  16用樣本估計總體會(huì )用樣本估計總體明白原因

  17概率懂得概率含義與預測

  18本章小結熟練掌握本章內容

  19總復習本章內容及串聯(lián)

  20期終考試檢測師生的教與學(xué)

  高一數學(xué)必修一知識點(diǎn)總結15

  一、集合有關(guān)概念

  1. 集合的含義

  2. 集合的中元素的三個(gè)特性:

  (1) 元素的確定性,

  (2) 元素的互異性,

  (3) 元素的無(wú)序性,

  3.集合的表示:{ … } 如:{我校的籃球隊員},{太平洋,大西洋,印度洋,北冰洋}

  (1) 用拉丁字母表示集合:A={我校的籃球隊員},B={1,2,3,4,5}

  (2) 集合的表示方法:列舉法與描述法。

  ? 注意:常用數集及其記法:

  非負整數集(即自然數集) 記作:N

  正整數集 N*或 N+ 整數集Z 有理數集Q 實(shí)數集R

  1) 列舉法:{a,b,c……}

  2) 描述法:將集合中的元素的公共屬性描述出來(lái),寫(xiě)在大括號內表示集合的方法。{x?R| x-3>2} ,{x| x-3>2}

  3) 語(yǔ)言描述法:例:{不是直角三角形的三角形}

  4) Venn圖:

  4、集合的分類(lèi):

  (1) 有限集 含有有限個(gè)元素的集合

  (2) 無(wú)限集 含有無(wú)限個(gè)元素的集合

  (3) 空集 不含任何元素的集合 例:{x|x2=-5}

  二、集合間的基本關(guān)系

  1.“包含”關(guān)系—子集

  注意: 有兩種可能(1)A是B的一部分,;(2)A與B是同一集合。

  反之: 集合A不包含于集合B,或集合B不包含集合A,記作A B或B A

  2.“相等”關(guān)系:A=B (5≥5,且5≤5,則5=5)

  實(shí)例:設 A={x|x2-1=0} B={-1,1} “元素相同則兩集合相等”

  即:① 任何一個(gè)集合是它本身的子集。A?A

 、谡孀蛹:如果A?B,且A? B那就說(shuō)集合A是集合B的真子集,記作A B(或B A)

 、廴绻 A?B, B?C ,那么 A?C

 、 如果A?B 同時(shí) B?A 那么A=B

  3. 不含任何元素的集合叫做空集,記為Φ

  規定: 空集是任何集合的子集, 空集是任何非空集合的真子集。

  ? 有n個(gè)元素的集合,含有2n個(gè)子集,2n-1個(gè)真子集

  三、集合的運算

  運算類(lèi)型 交 集 并 集 補 集

  定 義 由所有屬于A(yíng)且屬于B的元素所組成的集合,叫做A,B的交集.記作A B(讀作‘A交B’),即A B={x|x A,且x B}.

  由所有屬于集合A或屬于集合B的元素所組成的集合,叫做A,B的并集.記作:A B(讀作‘A并B’),即A B ={x|x A,或x B}).

  設S是一個(gè)集合,A是S的一個(gè)子集,由S中所有不屬于A(yíng)的元素組成的集合,叫做S中子集A的補集(或余集)

  二、函數的有關(guān)概念

  1.函數的概念:設A、B是非空的數集,如果按照某個(gè)確定的對應關(guān)系f,使對于集合A中的任意一個(gè)數x,在集合B中都有唯一確定的數f(x)和它對應,那么就稱(chēng)f:A→B為從集合A到集合B的一個(gè)函數.記作: y=f(x),x∈A.其中,x叫做自變量,x的取值范圍A叫做函數的定義域;與x的值相對應的y值叫做函數值,函數值的集合{f(x)| x∈A }叫做函數的值域.

  注意:

  1.定義域:能使函數式有意義的實(shí)數x的'集合稱(chēng)為函數的定義域。

  求函數的定義域時(shí)列不等式組的主要依據是:

  (1)分式的分母不等于零;

  (2)偶次方根的被開(kāi)方數不小于零;

  (3)對數式的真數必須大于零;

  (4)指數、對數式的底必須大于零且不等于1.

  (5)如果函數是由一些基本函數通過(guò)四則運算結合而成的.那么,它的定義域是使各部分都有意義的x的值組成的集合.

  (6)指數為零底不可以等于零,

  (7)實(shí)際問(wèn)題中的函數的定義域還要保證實(shí)際問(wèn)題有意義.

  相同函數的判斷方法:①表達式相同(與表示自變量和函數值的字母無(wú)關(guān));②定義域一致 (兩點(diǎn)必須同時(shí)具備)

  2.值域 : 先考慮其定義域

  (1)觀(guān)察法

  (2)配方法

  (3)代換法

  3. 函數圖象知識歸納

  (1)定義:在平面直角坐標系中,以函數 y=f(x) , (x∈A)中的x為橫坐標,函數值y為縱坐標的點(diǎn)P(x,y)的集合C,叫做函數 y=f(x),(x ∈A)的圖象.C上每一點(diǎn)的坐標(x,y)均滿(mǎn)足函數關(guān)系y=f(x),反過(guò)來(lái),以滿(mǎn)足y=f(x)的每一組有序實(shí)數對x、y為坐標的點(diǎn)(x,y),均在C上 .

  (2) 畫(huà)法

  A、 描點(diǎn)法:

  B、 圖象變換法

  常用變換方法有三種

  1) 平移變換

  2) 伸縮變換

  3) 對稱(chēng)變換

  4.區間的概念

  (1)區間的分類(lèi):開(kāi)區間、閉區間、半開(kāi)半閉區間

  (2)無(wú)窮區間

  (3)區間的數軸表示.

  5.映射

  一般地,設A、B是兩個(gè)非空的集合,如果按某一個(gè)確定的對應法則f,使對于集合A中的任意一個(gè)元素x,在集合B中都有唯一確定的元素y與之對應,那么就稱(chēng)對應f:A B為從集合A到集合B的一個(gè)映射。記作f:A→B

  6.分段函數

  (1)在定義域的不同部分上有不同的解析表達式的函數。

  (2)各部分的自變量的取值情況.

  (3)分段函數的定義域是各段定義域的交集,值域是各段值域的并集.

  補充:復合函數

  如果y=f(u)(u∈M),u=g(x)(x∈A),則 y=f[g(x)]=F(x)(x∈A) 稱(chēng)為f、g的復合函數。

  二.函數的性質(zhì)

  1.函數的單調性(局部性質(zhì))

  (1)增函數

  設函數y=f(x)的定義域為I,如果對于定義域I內的某個(gè)區間D內的任意兩個(gè)自變量x1,x2,當x1

  如果對于區間D上的任意兩個(gè)自變量的值x1,x2,當x1f(x2),那么就說(shuō)f(x)在這個(gè)區間上是減函數.區間D稱(chēng)為y=f(x)的單調減區間.

  注意:函數的單調性是函數的局部性質(zhì);

  (2) 圖象的特點(diǎn)

  如果函數y=f(x)在某個(gè)區間是增函數或減函數,那么說(shuō)函數y=f(x)在這一區間上具有(嚴格的)單調性,在單調區間上增函數的圖象從左到右是上升的,減函數的圖象從左到右是下降的.

  (3).函數單調區間與單調性的判定方法

  (A) 定義法:

  ○1 任取x1,x2∈D,且x1

  ○2 作差f(x1)-f(x2);

  ○3 變形(通常是因式分解和配方);

  ○4 定號(即判斷差f(x1)-f(x2)的正負);

  ○5 下結論(指出函數f(x)在給定的區間D上的單調性).

  (B)圖象法(從圖象上看升降)

  (C)復合函數的單調性

  復合函數f[g(x)]的單調性與構成它的函數u=g(x),y=f(u)的單調性密切相關(guān),其規律:“同增異減”

  注意:函數的單調區間只能是其定義域的子區間 ,不能把單調性相同的區間和在一起寫(xiě)成其并集.

  8.函數的奇偶性(整體性質(zhì))

  (1)偶函數

  一般地,對于函數f(x)的定義域內的任意一個(gè)x,都有f(-x)=f(x),那么f(x)就叫做偶函數.

  (2).奇函數

  一般地,對于函數f(x)的定義域內的任意一個(gè)x,都有f(-x)=—f(x),那么f(x)就叫做奇函數.

  (3)具有奇偶性的函數的圖象的特征

  偶函數的圖象關(guān)于y軸對稱(chēng);奇函數的圖象關(guān)于原點(diǎn)對稱(chēng).

  利用定義判斷函數奇偶性的步驟:

  ○1首先確定函數的定義域,并判斷其是否關(guān)于原點(diǎn)對稱(chēng);

  ○2確定f(-x)與f(x)的關(guān)系;

  ○3作出相應結論:若f(-x) = f(x) 或 f(-x)-f(x) = 0,則f(x)是偶函數;若f(-x) =-f(x) 或 f(-x)+f(x) = 0,則f(x)是奇函數.

  (2)由 f(-x)±f(x)=0或f(x)/f(-x)=±1來(lái)判定;

  (3)利用定理,或借助函數的圖象判定 .

  9、函數的解析表達式

  (1).函數的解析式是函數的一種表示方法,要求兩個(gè)變量之間的函數關(guān)系時(shí),一是要求出它們之間的對應法則,二是要求出函數的定義域.

  (2)求函數的解析式的主要方法有:

  1) 湊配法

  2) 待定系數法

  3) 換元法

  4) 消參法

  10.函數最大(小)值(定義見(jiàn)課本p36頁(yè))

  ○1 利用二次函數的性質(zhì)(配方法)求函數的最大(小)值

  ○2 利用圖象求函數的最大(小)值

  ○3 利用函數單調性的判斷函數的最大(小)值:

  如果函數y=f(x)在區間[a,b]上單調遞增,在區間[b,c]上單調遞減則函數y=f(x)在x=b處有最大值f(b);

  如果函數y=f(x)在區間[a,b]上單調遞減,在區間[b,c]上單調遞增則函數y=f(x)在x=b處有最小值f(b);

  高一數學(xué)必修一知識點(diǎn)總結16

  知識點(diǎn)總結

  本節知識包括函數的單調性、函數的奇偶性、函數的周期性、函數的最值、函數的對稱(chēng)性和函數的圖象等知識點(diǎn)。函數的單調性、函數的奇偶性、函數的周期性、函數的最值、函數的對稱(chēng)性是學(xué)習函數的圖象的基礎,函數的圖象是它們的綜合。所以理解了前面的幾個(gè)知識點(diǎn),函數的圖象就迎刃而解了。

  一、函數的單調性

  1、函數單調性的定義

  2、函數單調性的判斷和證明:(1)定義法 (2)復合函數分析法 (3)導數證明法 (4)圖象法

  二、函數的奇偶性和周期性

  1、函數的奇偶性和周期性的定義

  2、函數的奇偶性的判定和證明方法

  3、函數的周期性的判定方法

  三、函數的圖象

  1、函數圖象的.作法 (1)描點(diǎn)法 (2)圖象變換法

  2、圖象變換包括圖象:平移變換、伸縮變換、對稱(chēng)變換、翻折變換。

  常見(jiàn)考法

  本節是段考和高考必不可少的考查內容,是段考和高考考查的重點(diǎn)和難點(diǎn)。選擇題、填空題和解答題都有,并且題目難度較大。在解答題中,它可以和高中數學(xué)的每一章聯(lián)合考查,多屬于拔高題。多考查函數的單調性、最值和圖象等。

  誤區提醒

  1、求函數的單調區間,必須先求函數的定義域,即遵循“函數問(wèn)題定義域優(yōu)先的原則”。

  2、單調區間必須用區間來(lái)表示,不能用集合或不等式,單調區間一般寫(xiě)成開(kāi)區間,不必考慮端點(diǎn)問(wèn)題。

  3、在多個(gè)單調區間之間不能用“或”和“ ”連接,只能用逗號隔開(kāi)。

  4、判斷函數的奇偶性,首先必須考慮函數的定義域,如果函數的定義域不關(guān)于原點(diǎn)對稱(chēng),則函數一定是非奇非偶函數。

  5、作函數的圖象,一般是首先化簡(jiǎn)解析式,然后確定用描點(diǎn)法或圖象變換法作函數的圖象。

  高一數學(xué)必修一知識點(diǎn)總結17

  二次函數

  I.定義與定義表達式

  一般地,自變量x和因變量y之間存在如下關(guān)系:y=ax^2+bx+c

  (a,b,c為常數,a≠0,且a決定函數的開(kāi)口方向,a>0時(shí),開(kāi)口方向向上,a<0時(shí),開(kāi)口方向向下,IaI還可以決定開(kāi)口大小,IaI越大開(kāi)口就越小,IaI越小開(kāi)口就越大.)

  則稱(chēng)y為x的二次函數。

  二次函數表達式的右邊通常為二次三項式。

  II.二次函數的三種表達式

  一般式:y=ax^2+bx+c(a,b,c為常數,a≠0)

  頂點(diǎn)式:y=a(x-h)^2+k[拋物線(xiàn)的頂點(diǎn)P(h,k)]

  交點(diǎn)式:y=a(x-x?)(x-x?)[僅限于與x軸有交點(diǎn)A(x?,0)和B(x?,0)的拋物線(xiàn)]

  注:在3種形式的互相轉化中,有如下關(guān)系:

  h=-b/2ak=(4ac-b^2)/4ax?,x?=(-b±√b^2-4ac)/2a

  III.二次函數的圖像

  在平面直角坐標系中作出二次函數y=x^2的圖像,可以看出,二次函數的圖像是一條拋物線(xiàn)。

  IV.拋物線(xiàn)的性質(zhì)

  1.拋物線(xiàn)是軸對稱(chēng)圖形。對稱(chēng)軸為直線(xiàn)x=-b/2a。對稱(chēng)軸與拋物線(xiàn)的`交點(diǎn)為拋物線(xiàn)的頂點(diǎn)P。

  特別地,當b=0時(shí),拋物線(xiàn)的對稱(chēng)軸是y軸(即直線(xiàn)x=0)

  2.拋物線(xiàn)有一個(gè)頂點(diǎn)P,坐標為

  P(-b/2a,(4ac-b^2)/4a)

  當-b/2a=0時(shí),P在y軸上;當Δ=b^2-4ac=0時(shí),P在x軸上。

  3.二次項系數a決定拋物線(xiàn)的開(kāi)口方向和大小。

  當a>0時(shí),拋物線(xiàn)向上開(kāi)口;當a<0時(shí),拋物線(xiàn)向下開(kāi)口。

  |a|越大,則拋物線(xiàn)的開(kāi)口越小。

  高一數學(xué)必修一知識點(diǎn)總結18

  高一數學(xué)必修一知識點(diǎn)

  指數函數

  (一)指數與指數冪的運算

  1.根式的概念:一般地,如果,那么叫做的次方根(nthroot),其中>1,且∈_.

  當是奇數時(shí),正數的次方根是一個(gè)正數,負數的次方根是一個(gè)負數.此時(shí),的次方根用符號表示.式子叫做根式(radical),這里叫做根指數(radicalexponent),叫做被開(kāi)方數(radicand).

  當是偶數時(shí),正數的次方根有兩個(gè),這兩個(gè)數互為相反數.此時(shí),正數的正的次方根用符號表示,負的次方根用符號-表示.正的次方根與負的次方根可以合并成±(>0).由此可得:負數沒(méi)有偶次方根;0的任何次方根都是0,記作。

  注意:當是奇數時(shí),當是偶數時(shí),

  2.分數指數冪

  正數的分數指數冪的意義,規定:

  0的正分數指數冪等于0,0的負分數指數冪沒(méi)有意義

  指出:規定了分數指數冪的意義后,指數的概念就從整數指數推廣到了有理數指數,那么整數指數冪的運算性質(zhì)也同樣可以推廣到有理數指數冪.

  3.實(shí)數指數冪的運算性質(zhì)

  (二)指數函數及其性質(zhì)

  1、指數函數的概念:一般地,函數叫做指數函數(exponential),其中x是自變量,函數的定義域為R.

  注意:指數函數的底數的取值范圍,底數不能是負數、零和1.

  2、指數函數的圖象和性質(zhì)

  高一上冊數學(xué)必修一知識點(diǎn)梳理

  空間幾何體表面積體積公式:

  1、圓柱體:表面積:2πRr+2πRh體積:πR2h(R為圓柱體上下底圓半徑,h為圓柱體高)

  2、圓錐體:表面積:πR2+πR[(h2+R2)的]體積:πR2h/3(r為圓錐體低圓半徑,h為其高,

  3、a-邊長(cháng),S=6a2,V=a3

  4、長(cháng)方體a-長(cháng),b-寬,c-高S=2(ab+ac+bc)V=abc

  5、棱柱S-h-高V=Sh

  6、棱錐S-h-高V=Sh/3

  7、S1和S2-上、下h-高V=h[S1+S2+(S1S2)^1/2]/3

  8、S1-上底面積,S2-下底面積,S0-中h-高,V=h(S1+S2+4S0)/6

  9、圓柱r-底半徑,h-高,C—底面周長(cháng)S底—底面積,S側—,S表—表面積C=2πrS底=πr2,S側=Ch,S表=Ch+2S底,V=S底h=πr2h

  10、空心圓柱R-外圓半徑,r-內圓半徑h-高V=πh(R^2-r^2)

  11、r-底半徑h-高V=πr^2h/3

  12、r-上底半徑,R-下底半徑,h-高V=πh(R2+Rr+r2)/313、球r-半徑d-直徑V=4/3πr^3=πd^3/6

  14、球缺h-球缺高,r-球半徑,a-球缺底半徑V=πh(3a2+h2)/6=πh2(3r-h)/3

  15、球臺r1和r2-球臺上、下底半徑h-高V=πh[3(r12+r22)+h2]/6

  16、圓環(huán)體R-環(huán)體半徑D-環(huán)體直徑r-環(huán)體截面半徑d-環(huán)體截面直徑V=2π2Rr2=π2Dd2/4

  17、桶狀體D-桶腹直徑d-桶底直徑h-桶高V=πh(2D2+d2)/12,(母線(xiàn)是圓弧形,圓心是桶的中心)V=πh(2D2+Dd+3d2/4)/15(母線(xiàn)是拋物線(xiàn)形)

  人教版高一數學(xué)必修一知識點(diǎn)梳理

  1、柱、錐、臺、球的結構特征

  (1)棱柱:

  定義:有兩個(gè)面互相平行,其余各面都是四邊形,且每相鄰兩個(gè)四邊形的公共邊都互相平行,由這些面所圍成的幾何體。

  分類(lèi):以底面多邊形的邊數作為分類(lèi)的標準分為三棱柱、四棱柱、五棱柱等。

  表示:用各頂點(diǎn)字母,如五棱柱或用對角線(xiàn)的端點(diǎn)字母,如五棱柱。

  幾何特征:兩底面是對應邊平行的全等多邊形;側面、對角面都是平行四邊形;側棱平行且相等;平行于底面的截面是與底面全等的多邊形。

  (2)棱錐

  定義:有一個(gè)面是多邊形,其余各面都是有一個(gè)公共頂點(diǎn)的三角形,由這些面所圍成的幾何體。

  分類(lèi):以底面多邊形的邊數作為分類(lèi)的標準分為三棱錐、四棱錐、五棱錐等

  表示:用各頂點(diǎn)字母,如五棱錐

  幾何特征:側面、對角面都是三角形;平行于底面的截面與底面相似,其相似比等于頂點(diǎn)到截面距離與高的比的平方。

  (3)棱臺:

  定義:用一個(gè)平行于棱錐底面的'平面去截棱錐,截面和底面之間的部分。

  分類(lèi):以底面多邊形的邊數作為分類(lèi)的標準分為三棱態(tài)、四棱臺、五棱臺等

  表示:用各頂點(diǎn)字母,如五棱臺

  幾何特征:①上下底面是相似的平行多邊形②側面是梯形③側棱交于原棱錐的頂點(diǎn)

  (4)圓柱:

  定義:以矩形的一邊所在的直線(xiàn)為軸旋轉,其余三邊旋轉所成的曲面所圍成的幾何體。

  幾何特征:①底面是全等的圓;②母線(xiàn)與軸平行;③軸與底面圓的半徑垂直;④側面展開(kāi)圖是一個(gè)矩形。

  (5)圓錐:

  定義:以直角三角形的一條直角邊為旋轉軸,旋轉一周所成的曲面所圍成的幾何體。

  幾何特征:①底面是一個(gè)圓;②母線(xiàn)交于圓錐的頂點(diǎn);③側面展開(kāi)圖是一個(gè)扇形。

  (6)圓臺:

  定義:用一個(gè)平行于圓錐底面的平面去截圓錐,截面和底面之間的部分

  幾何特征:①上下底面是兩個(gè)圓;②側面母線(xiàn)交于原圓錐的頂點(diǎn);③側面展開(kāi)圖是一個(gè)弓形。

  (7)球體:

  定義:以半圓的直徑所在直線(xiàn)為旋轉軸,半圓面旋轉一周形成的幾何體

  幾何特征:①球的截面是圓;②球面上任意一點(diǎn)到球心的距離等于半徑。

  2、空間幾何體的三視圖

  定義三視圖:正視圖(光線(xiàn)從幾何體的前面向后面正投影);側視圖(從左向右)、俯視圖(從上向下)

  注:正視圖反映了物體上下、左右的位置關(guān)系,即反映了物體的高度和長(cháng)度;

  俯視圖反映了物體左右、前后的位置關(guān)系,即反映了物體的長(cháng)度和寬度;

  側視圖反映了物體上下、前后的位置關(guān)系,即反映了物體的高度和寬度。

  3、空間幾何體的直觀(guān)圖——斜二測畫(huà)法

  斜二測畫(huà)法特點(diǎn):

 、僭瓉(lái)與x軸平行的線(xiàn)段仍然與x平行且長(cháng)度不變;

 、谠瓉(lái)與y軸平行的線(xiàn)段仍然與y平行,長(cháng)度為原來(lái)的一半。

  高一數學(xué)必修一知識點(diǎn)總結19

  【公式一】

  設α為任意角,終邊相同的角的同一三角函數的值相等:

  sin(2kπ+α)=sinα(k∈Z)

  cos(2kπ+α)=cosα(k∈Z)

  tan(2kπ+α)=tanα(k∈Z)

  cot(2kπ+α)=cotα(k∈Z)

  【公式二】

  設α為任意角,π+α的三角函數值與α的三角函數值之間的關(guān)系:

  sin(π+α)=-sinα

  cos(π+α)=-cosα

  tan(π+α)=tanα

  cot(π+α)=cotα

  【公式三】

  任意角α與-α的三角函數值之間的關(guān)系:

  sin(-α)=-sinα

  cos(-α)=cosα

  tan(-α)=-tanα

  cot(-α)=-cotα

  【公式四】

  利用公式二和公式三可以得到π-α與α的三角函數值之間的關(guān)系:

  sin(π-α)=sinα

  cos(π-α)=-cosα

  tan(π-α)=-tanα

  cot(π-α)=-cotα

  【公式五】

  利用公式一和公式三可以得到2π-α與α的三角函數值之間的關(guān)系:

  sin(2π-α)=-sinα

  cos(2π-α)=cosα

  tan(2π-α)=-tanα

  cot(2π-α)=-cotα

  【公式六】

  π/2±α及3π/2±α與α的三角函數值之間的關(guān)系:

  sin(π/2+α)=cosα

  cos(π/2+α)=-sinα

  tan(π/2+α)=-cotα

  cot(π/2+α)=-tanα

  sin(π/2-α)=cosα

  cos(π/2-α)=sinα

  tan(π/2-α)=cotα

  cot(π/2-α)=tanα

  sin(3π/2+α)=-cosα

  cos(3π/2+α)=sinα

  tan(3π/2+α)=-cotα

  cot(3π/2+α)=-tanα

  sin(3π/2-α)=-cosα

  cos(3π/2-α)=-sinα

  tan(3π/2-α)=cotα

  cot(3π/2-α)=tanα

  (以上k∈Z)

  【高一數學(xué)函數復習資料】

  一、定義與定義式:

  自變量x和因變量y有如下關(guān)系:

  y=kx+b

  則此時(shí)稱(chēng)y是x的一次函數。

  特別地,當b=0時(shí),y是x的正比例函數。

  即:y=kx(k為常數,k≠0)

  二、一次函數的性質(zhì):

  的變化值與對應的x的變化值成正比例,比值為k

  即:y=kx+b(k為任意不為零的實(shí)數b取任何實(shí)數)

  當x=0時(shí),b為函數在y軸上的截距。

  三、一次函數的圖像及性質(zhì):

  作法與圖形:通過(guò)如下3個(gè)步驟

  (1)列表;

  (2)描點(diǎn);

  (3)連線(xiàn),可以作出一次函數的圖像——一條直線(xiàn)。因此,作一次函數的圖像只需知道2點(diǎn),并連成直線(xiàn)即可。(通常找函數圖像與x軸和y軸的交點(diǎn))

  性質(zhì):(1)在一次函數上的任意一點(diǎn)P(x,y),都滿(mǎn)足等式:y=kx+b。(2)一次函數與y軸交點(diǎn)的坐標總是(0,b),與x軸總是交于(-b/k,0)正比例函數的圖像總是過(guò)原點(diǎn)。

  ,b與函數圖像所在象限:

  當k>0時(shí),直線(xiàn)必通過(guò)一、三象限,y隨x的增大而增大;

  當k

  當b>0時(shí),直線(xiàn)必通過(guò)一、二象限;

  當b=0時(shí),直線(xiàn)通過(guò)原點(diǎn)

  當b

  特別地,當b=O時(shí),直線(xiàn)通過(guò)原點(diǎn)O(0,0)表示的是正比例函數的圖像。

  這時(shí),當k>0時(shí),直線(xiàn)只通過(guò)一、三象限;當k

  四、確定一次函數的表達式:

  已知點(diǎn)A(x1,y1);B(x2,y2),請確定過(guò)點(diǎn)A、B的一次函數的表達式。

  (1)設一次函數的表達式(也叫解析式)為y=kx+b。

  (2)因為在一次函數上的任意一點(diǎn)P(x,y),都滿(mǎn)足等式y=kx+b。所以可以列出2個(gè)方程:y1=kx1+b……①和y2=kx2+b……②

  (3)解這個(gè)二元一次方程,得到k,b的'值。

  (4)最后得到一次函數的表達式。

  五、一次函數在生活中的應用:

  當時(shí)間t一定,距離s是速度v的一次函數。s=vt。

  當水池抽水速度f(wàn)一定,水池中水量g是抽水時(shí)間t的一次函數。設水池中原有水量S。g=S-ft。

  六、常用公式:(不全,希望有人補充)

  求函數圖像的k值:(y1-y2)/(x1-x2)

  求與x軸平行線(xiàn)段的中點(diǎn):|x1-x2|/2

  求與y軸平行線(xiàn)段的中點(diǎn):|y1-y2|/2

  求任意線(xiàn)段的長(cháng):√(x1-x2)^2+(y1-y2)^2(注:根號下(x1-x2)與(y1-y2)的平方和)

【高一數學(xué)必修一知識點(diǎn)總結】相關(guān)文章:

高一數學(xué)必修知識點(diǎn)總結12-15

高一數學(xué)必修一知識點(diǎn)總結01-03

高一數學(xué)必修一知識點(diǎn)總結12-07

高一數學(xué)必修一知識點(diǎn)總結03-08

高一數學(xué)必修1知識點(diǎn)總結09-08

高一數學(xué)必修二知識點(diǎn)總結11-08

高一數學(xué)必修一知識點(diǎn)總結歸納02-15

高一必修一數學(xué)集合知識點(diǎn)總結12-03

高一數學(xué)必修一知識點(diǎn)總結歸納01-14

高一數學(xué)必修一知識點(diǎn)總結15篇11-16