成人免费看黄网站无遮挡,caowo999,se94se欧美综合色,a级精品九九九大片免费看,欧美首页,波多野结衣一二三级,日韩亚洲欧美综合

數學(xué)知識點(diǎn)總結

時(shí)間:2024-10-28 11:43:22 知識點(diǎn)總結 我要投稿

數學(xué)知識點(diǎn)總結15篇

  總結是指對某一階段的工作、學(xué)習或思想中的經(jīng)驗或情況加以總結和概括的書(shū)面材料,它可以有效鍛煉我們的語(yǔ)言組織能力,為此我們要做好回顧,寫(xiě)好總結?偨Y一般是怎么寫(xiě)的呢?下面是小編精心整理的數學(xué)知識點(diǎn)總結,歡迎閱讀與收藏。

數學(xué)知識點(diǎn)總結15篇

數學(xué)知識點(diǎn)總結1

  平方根與立方根知識點(diǎn)

  平方根:

  概括1:一般地,如果一個(gè)數的平方等于a,這個(gè)數就叫做a的平方根(或二次方根)。就是說(shuō),如果x=a,那么x就叫做a的平方根。如:23與-23都是529的平方根。

  因為(±23)=529,所以±23是529的平方根。問(wèn):(1)16,49,100,1100都是正數,它們有幾個(gè)平方根?平方根之間有什么關(guān)系?(2)0的平方根是什么?

  概括2:一個(gè)正數有兩個(gè)平方根,它們互為相反數;0有一個(gè)平方根,它是0本身;負數沒(méi)有平方根。

  概括3:求一個(gè)數a(a≥0)的平方根的運算,叫做開(kāi)平方。

  開(kāi)平方運算是已知指數和冪求底數。平方與開(kāi)平方互為逆運算。一個(gè)數可以是正數、負數或者是0,它的平方數只有一個(gè),正數或負數的平方都是正數,0的平方是0。但一個(gè)正數的平方根卻有兩個(gè),這兩個(gè)數互為相反數,0的平方根是0。負數沒(méi)有平方根。因為平方與開(kāi)平方互為逆運算,因此我們可以通過(guò)平方運算來(lái)求一個(gè)數的平方根,也可以通過(guò)平方運算來(lái)檢驗一個(gè)數是不是另一個(gè)數的平方根。

  一、算術(shù)平方根的概念

  正數a有兩個(gè)平方根(表示為?根,表示為a。0的平方根也叫做0的算術(shù)平方根,因此0的算術(shù)平方根是0,即0!笔撬阈g(shù)平方根的符號,a就表示a的算術(shù)平方根。a的意義有兩點(diǎn):a,我們把其中正的平方根,叫做a的算術(shù)平方

  (1)被開(kāi)方數a表示非負數,即a≥0;

  (2)a也表示非負數,即a≥0。也就是說(shuō),非負數的“算術(shù)”平方根是非負數。負數不存在算術(shù)平方根,即a<0時(shí),a無(wú)意義。

  如:=3,8是64的算術(shù)平方根,6無(wú)意義。9既表示對9進(jìn)行開(kāi)平方運算,也表示9的正的平方根。

  二、平方根與算術(shù)平方根的區別在于

 、俣x不同;

 、趥(gè)數不同:一個(gè)正數有兩個(gè)平方根,而一個(gè)正數的算術(shù)平方根只有一個(gè);③表示方法不同:正數a的平方根表示為?a,正數a的算術(shù)平方根表示為a;④取值范圍不同:正數的算術(shù)平方根一定是正數,正數的平方根是一正一負.⑤0的平方根與算術(shù)平方根都是0.

  三、例題講解:

  例1、求下列各數的算術(shù)平方根:

  (1)100;

  (2)49;

  (3)0.8164

  注意:由于正數的算術(shù)平方根是正數,零的算術(shù)平方根是零,可將它們概括成:非負數的算

  術(shù)平方根是非負數,即當a≥0時(shí),a≥0(當a<0時(shí),a無(wú)意義)

  用幾何圖形可以直觀(guān)地表示算術(shù)平方根的意義如有一個(gè)面積為a(a應是非負數)、邊長(cháng)為

  的.正方形就表示a的算術(shù)平方根。

  這里需要說(shuō)明的是,算術(shù)平方根的符號“”不僅是一個(gè)運算符號,如a≥0時(shí),a表示對非負數a進(jìn)行開(kāi)平方運算,另一方面也是一個(gè)性質(zhì)符號,即表示非負數a的正的平方根。

  3、立方根

  (1)立方根的定義:如果一個(gè)數x的立方等于a,這個(gè)數叫做a的立方根(也叫做三次方根),即如果x?a,那么x叫做a的立方根

  (2)一個(gè)數a的立方根,讀作:“三次根號a”,其中a叫被開(kāi)方數,3叫根指數,不能省略,若省略表示平方。

  (3)一個(gè)正數有一個(gè)正的立方根;0有一個(gè)立方根,是它本身;一個(gè)負數有一個(gè)負的立方根;任何數都有的立方根。

  (4)利用開(kāi)立方和立方互為逆運算關(guān)系,求一個(gè)數的立方根,就可以利用這種互逆關(guān)系,檢驗其正確性,求負數的立方根,可以先求出這個(gè)負數的絕對值的立方根,再取其相反數。

數學(xué)知識點(diǎn)總結2

  圓的方程

  1、圓的定義:平面內到一定點(diǎn)的距離等于定長(cháng)的點(diǎn)的集合叫圓,定點(diǎn)為圓心,定長(cháng)為圓的半徑。

  2、圓的方程

 。1)標準方程,圓心,半徑為r;

 。2)一般方程

  當時(shí),方程表示圓,此時(shí)圓心為,半徑為

  當時(shí),表示一個(gè)點(diǎn);當時(shí),方程不表示任何圖形。

 。3)求圓方程的方法:

  一般都采用待定系數法:先設后求。確定一個(gè)圓需要三個(gè)獨立條件,若利用圓的標準方程,

  需求出a,b,r;若利用一般方程,需要求出D,E,F;

  另外要注意多利用圓的幾何性質(zhì):如弦的中垂線(xiàn)必經(jīng)過(guò)原點(diǎn),以此來(lái)確定圓心的位置。

  高中數學(xué)必修二知識點(diǎn)總結:直線(xiàn)與圓的位置關(guān)系:

  直線(xiàn)與圓的位置關(guān)系有相離,相切,相交三種情況:

 。1)設直線(xiàn),圓,圓心到l的距離為,則有;;

 。2)過(guò)圓外一點(diǎn)的切線(xiàn):①k不存在,驗證是否成立②k存在,設點(diǎn)斜式方程,用圓心到該直線(xiàn)距離=半徑,求解k,得到方程【一定兩解】

 。3)過(guò)圓上一點(diǎn)的切線(xiàn)方程:圓(x—a)2+(y—b)2=r2,圓上一點(diǎn)為(x0,y0),則過(guò)此點(diǎn)的切線(xiàn)方程為(x0—a)(x—a)+(y0—b)(y—b)=r2

  4、圓與圓的位置關(guān)系:通過(guò)兩圓半徑的和(差),與圓心距(d)之間的大小比較來(lái)確定。

  設圓,

  兩圓的位置關(guān)系常通過(guò)兩圓半徑的和(差),與圓心距(d)之間的大小比較來(lái)確定。

  當時(shí)兩圓外離,此時(shí)有公切線(xiàn)四條;

  當時(shí)兩圓外切,連心線(xiàn)過(guò)切點(diǎn),有外公切線(xiàn)兩條,內公切線(xiàn)一條;

  當時(shí)兩圓相交,連心線(xiàn)垂直平分公共弦,有兩條外公切線(xiàn);

  當時(shí),兩圓內切,連心線(xiàn)經(jīng)過(guò)切點(diǎn),只有一條公切線(xiàn);

  當時(shí),兩圓內含;當時(shí),為同心圓。

  注意:已知圓上兩點(diǎn),圓心必在中垂線(xiàn)上;已知兩圓相切,兩圓心與切點(diǎn)共線(xiàn)

  4、空間點(diǎn)、直線(xiàn)、平面的位置關(guān)系

  公理1:如果一條直線(xiàn)的兩點(diǎn)在一個(gè)平面內,那么這條直線(xiàn)是所有的點(diǎn)都在這個(gè)平面內。

  應用:判斷直線(xiàn)是否在平面內

  用符號語(yǔ)言表示公理1:

  公理2:如果兩個(gè)不重合的平面有一個(gè)公共點(diǎn),那么它們有且只有一條過(guò)該點(diǎn)的公共直線(xiàn)

  符號:平面α和β相交,交線(xiàn)是a,記作α∩β=a。

  符號語(yǔ)言:

  公理2的作用:

 、偎桥卸▋蓚(gè)平面相交的方法。

 、谒f(shuō)明兩個(gè)平面的交線(xiàn)與兩個(gè)平面公共點(diǎn)之間的關(guān)系:交線(xiàn)必過(guò)公共點(diǎn)。

 、鬯梢耘袛帱c(diǎn)在直線(xiàn)上,即證若干個(gè)點(diǎn)共線(xiàn)的重要依據。

  公理3:經(jīng)過(guò)不在同一條直線(xiàn)上的三點(diǎn),有且只有一個(gè)平面。

  推論:一直線(xiàn)和直線(xiàn)外一點(diǎn)確定一平面;兩相交直線(xiàn)確定一平面;兩平行直線(xiàn)確定一平面。

  公理3及其推論作用:①它是空間內確定平面的依據②它是證明平面重合的依據

  公理4:平行于同一條直線(xiàn)的兩條直線(xiàn)互相平行

  空間直線(xiàn)與直線(xiàn)之間的位置關(guān)系

 、佼惷嬷本(xiàn)定義:不同在任何一個(gè)平面內的兩條直線(xiàn)

 、诋惷嬷本(xiàn)性質(zhì):既不平行,又不相交。

 、郛惷嬷本(xiàn)判定:過(guò)平面外一點(diǎn)與平面內一點(diǎn)的直線(xiàn)與平面內不過(guò)該店的直線(xiàn)是異面直線(xiàn)

 、墚惷嬷本(xiàn)所成角:作平行,令兩線(xiàn)相交,所得銳角或直角,即所成角。兩條異面直線(xiàn)所成角的范圍是(0°,90°],若兩條異面直線(xiàn)所成的角是直角,我們就說(shuō)這兩條異面直線(xiàn)互相垂直。

  求異面直線(xiàn)所成角步驟:

  A、利用定義構造角,可固定一條,平移另一條,或兩條同時(shí)平移到某個(gè)特殊的位置,頂點(diǎn)選在特殊的位置上。B、證明作出的角即為所求角C、利用三角形來(lái)求角

 。7)等角定理:如果一個(gè)角的兩邊和另一個(gè)角的兩邊分別平行,那么這兩角相等或互補。

 。8)空間直線(xiàn)與平面之間的位置關(guān)系

  直線(xiàn)在平面內——有無(wú)數個(gè)公共點(diǎn)。

  三種位置關(guān)系的符號表示:aαa∩α=Aa‖α

 。9)平面與平面之間的位置關(guān)系:平行——沒(méi)有公共點(diǎn);α‖β

  相交——有一條公共直線(xiàn)。α∩β=b

  5、空間中的平行問(wèn)題

 。1)直線(xiàn)與平面平行的判定及其性質(zhì)

  線(xiàn)面平行的判定定理:平面外一條直線(xiàn)與此平面內一條直線(xiàn)平行,則該直線(xiàn)與此平面平行。

  線(xiàn)線(xiàn)平行線(xiàn)面平行

  線(xiàn)面平行的性質(zhì)定理:如果一條直線(xiàn)和一個(gè)平面平行,經(jīng)過(guò)這條直線(xiàn)的平面和這個(gè)平面相交,

  那么這條直線(xiàn)和交線(xiàn)平行。線(xiàn)面平行線(xiàn)線(xiàn)平行

 。2)平面與平面平行的判定及其性質(zhì)

  兩個(gè)平面平行的判定定理

 。1)如果一個(gè)平面內的兩條相交直線(xiàn)都平行于另一個(gè)平面,那么這兩個(gè)平面平行

 。ň(xiàn)面平行→面面平行),

 。2)如果在兩個(gè)平面內,各有兩組相交直線(xiàn)對應平行,那么這兩個(gè)平面平行。

 。ň(xiàn)線(xiàn)平行→面面平行),

 。3)垂直于同一條直線(xiàn)的兩個(gè)平面平行,

  兩個(gè)平面平行的性質(zhì)定理

 。1)如果兩個(gè)平面平行,那么某一個(gè)平面內的直線(xiàn)與另一個(gè)平面平行。(面面平行→線(xiàn)面平行)

 。2)如果兩個(gè)平行平面都和第三個(gè)平面相交,那么它們的交線(xiàn)平行。(面面平行→線(xiàn)線(xiàn)平行)

  7、空間中的垂直問(wèn)題

 。1)線(xiàn)線(xiàn)、面面、線(xiàn)面垂直的定義

 、賰蓷l異面直線(xiàn)的垂直:如果兩條異面直線(xiàn)所成的角是直角,就說(shuō)這兩條異面直線(xiàn)互相垂直。

 、诰(xiàn)面垂直:如果一條直線(xiàn)和一個(gè)平面內的任何一條直線(xiàn)垂直,就說(shuō)這條直線(xiàn)和這個(gè)平面垂直。

 、燮矫婧推矫娲怪保喝绻麅蓚(gè)平面相交,所成的二面角(從一條直線(xiàn)出發(fā)的兩個(gè)半平面所組成的圖形)是直二面角(平面角是直角),就說(shuō)這兩個(gè)平面垂直。

 。2)垂直關(guān)系的判定和性質(zhì)定理

 、倬(xiàn)面垂直判定定理和性質(zhì)定理

  判定定理:如果一條直線(xiàn)和一個(gè)平面內的兩條相交直線(xiàn)都垂直,那么這條直線(xiàn)垂直這個(gè)平面。

  性質(zhì)定理:如果兩條直線(xiàn)同垂直于一個(gè)平面,那么這兩條直線(xiàn)平行。

 、诿婷娲怪钡呐卸ǘɡ砗托再|(zhì)定理

  判定定理:如果一個(gè)平面經(jīng)過(guò)另一個(gè)平面的一條垂線(xiàn),那么這兩個(gè)平面互相垂直。

  性質(zhì)定理:如果兩個(gè)平面互相垂直,那么在一個(gè)平面內垂直于他們的交線(xiàn)的直線(xiàn)垂直于另一個(gè)平面。

  9、空間角問(wèn)題

 。1)直線(xiàn)與直線(xiàn)所成的角

 、賰善叫兄本(xiàn)所成的角:規定為。

 、趦蓷l相交直線(xiàn)所成的角:兩條直線(xiàn)相交其中不大于直角的角,叫這兩條直線(xiàn)所成的角。

 、蹆蓷l異面直線(xiàn)所成的角:過(guò)空間任意一點(diǎn)O,分別作與兩條異面直線(xiàn)a,b平行的直線(xiàn),形成兩條相交直線(xiàn),這兩條相交直線(xiàn)所成的不大于直角的角叫做兩條異面直線(xiàn)所成的角。

 。2)直線(xiàn)和平面所成的角

 、倨矫娴钠叫芯(xiàn)與平面所成的角:規定為。②平面的垂線(xiàn)與平面所成的角:規定為。

 、燮矫娴男本(xiàn)與平面所成的角:平面的一條斜線(xiàn)和它在平面內的射影所成的銳角,叫做這條直線(xiàn)和這個(gè)平面所成的角。

  求斜線(xiàn)與平面所成角的.思路類(lèi)似于求異面直線(xiàn)所成角:“一作,二證,三計算”。

  在“作角”時(shí)依定義關(guān)鍵作射影,由射影定義知關(guān)鍵在于斜線(xiàn)上一點(diǎn)到面的垂線(xiàn),

  在解題時(shí),注意挖掘題設中兩個(gè)主要信息:(1)斜線(xiàn)上一點(diǎn)到面的垂線(xiàn);(2)過(guò)斜線(xiàn)上的一點(diǎn)或過(guò)斜線(xiàn)的平面與已知面垂直,由面面垂直性質(zhì)易得垂線(xiàn)。

 。3)二面角和二面角的平面角

 、俣娼堑亩x:從一條直線(xiàn)出發(fā)的兩個(gè)半平面所組成的圖形叫做二面角,這條直線(xiàn)叫做二面角的棱,這兩個(gè)半平面叫做二面角的面。

 、诙娼堑钠矫娼牵阂远娼堑睦馍先我庖稽c(diǎn)為頂點(diǎn),在兩個(gè)面內分別作垂直于棱的兩條射線(xiàn),這兩條射線(xiàn)所成的角叫二面角的平面角。

 、壑倍娼牵浩矫娼鞘侵苯堑亩娼墙兄倍娼。

  兩相交平面如果所組成的二面角是直二面角,那么這兩個(gè)平面垂直;反過(guò)來(lái),如果兩個(gè)平面垂直,那么所成的二面角為直二面角

 、芮蠖娼堑姆椒

  定義法:在棱上選擇有關(guān)點(diǎn),過(guò)這個(gè)點(diǎn)分別在兩個(gè)面內作垂直于棱的射線(xiàn)得到平面角

  垂面法:已知二面角內一點(diǎn)到兩個(gè)面的垂線(xiàn)時(shí),過(guò)兩垂線(xiàn)作平面與兩個(gè)面的交線(xiàn)所成的角為二面角的平面角

  數學(xué)的學(xué)習方法

  1、養成良好的學(xué)習數學(xué)習慣。建立良好的學(xué)習數學(xué)習慣,會(huì )使自己學(xué)習感到有序而輕松。高中數學(xué)的良好習慣應是:多質(zhì)疑、勤思考、好動(dòng)手、重歸納、注意應用。學(xué)生在學(xué)習數學(xué)的過(guò)程中,要把教師所傳授的知識翻譯成為自己的特殊語(yǔ)言,并永久記憶在自己的腦海中。良好的學(xué)習數學(xué)習慣包括課前自學(xué)、專(zhuān)心上課、及時(shí)復習、獨立作業(yè)、解決疑難、系統小結和課外學(xué)習幾個(gè)方面。

  2、及時(shí)了解、掌握常用的數學(xué)思想和方法,學(xué)好高中數學(xué),需要我們從數學(xué)思想與方法高度來(lái)掌握它。中學(xué)數學(xué)學(xué)習要重點(diǎn)掌握的的數學(xué)思想有以上幾個(gè):集合與對應思想,分類(lèi)討論思想,數形結合思想,運動(dòng)思想,轉化思想,變換思想。

  3、逐步形成“以我為主”的學(xué)習模式數學(xué)不是靠老師教會(huì )的,而是在老師的引導下,靠自己主動(dòng)的思維活動(dòng)去獲取的。學(xué)習數學(xué)就要積極主動(dòng)地參與學(xué)習過(guò)程,養成實(shí)事求是的科學(xué)態(tài)度,獨立思考、勇于探索的創(chuàng )新精神。

  4、記數學(xué)筆記,特別是對概念理解的不同側面和數學(xué)規律,教師在課堂中拓展的課外知識。記錄下來(lái)本章你覺(jué)得最有價(jià)值的思想方法或例題,以及你還存在的未解決的問(wèn)題,以便今后將其補上。

  高中數學(xué)知識點(diǎn)有哪些

  1、混淆命題的否定與否命題

  命題的“否定”與命題的“否命題”是兩個(gè)不同的概念,命題p的否定是否定命題所作的判斷,而“否命題”是對“若p,則q”形式的命題而言,既要否定條件也要否定結論。

  2、忽視集合元素的三性致誤

  集合中的元素具有確定性、無(wú)序性、互異性,集合元素的三性中互異性對解題的影響最大,特別是帶有字母參數的集合,實(shí)際上就隱含著(zhù)對字母參數的一些要求。

  3、判斷函數奇偶性忽略定義域致誤

  判斷函數的奇偶性,首先要考慮函數的定義域,一個(gè)函數具備奇偶性的必要條件是這個(gè)函數的定義域關(guān)于原點(diǎn)對稱(chēng),如果不具備這個(gè)條件,函數一定是非奇非偶函數。

  4、函數零點(diǎn)定理使用不當致誤

  如果函數y=f(x)在區間[a,b]上的圖像是一條連續的曲線(xiàn),并且有f(a)f(b)<0,那么,函數y=f(x)在區間(a,b)內有零點(diǎn),但f(a)f(b)>0時(shí),不能否定函數y=f(x)在(a,b)內有零點(diǎn)。函數的零點(diǎn)有“變號零點(diǎn)”和“不變號零點(diǎn)”,對于“不變號零點(diǎn)”函數的零點(diǎn)定理是“無(wú)能為力”的,在解決函數的零點(diǎn)問(wèn)題時(shí)要注意這個(gè)問(wèn)題。

  5、函數的單調區間理解不準致誤

  在研究函數問(wèn)題時(shí)要時(shí)時(shí)刻刻想到“函數的圖像”,學(xué)會(huì )從函數圖像上去分析問(wèn)題、尋找解決問(wèn)題的方法。對于函數的幾個(gè)不同的單調遞增(減)區間,切忌使用并集,只要指明這幾個(gè)區間是該函數的單調遞增(減)區間即可。

  6、三角函數的單調性判斷致誤

  對于函數y=Asin(ωx+φ)的單調性,當ω>0時(shí),由于內層函數u=ωx+φ是單調遞增的,所以該函數的單調性和y=sin x的單調性相同,故可完全按照函數y=sin x的單調區間解決;但當ω<0時(shí),內層函數u=ωx+φ是單調遞減的,此時(shí)該函數的單調性和函數y=sinx的單調性相反,就不能再按照函數y=sinx的單調性解決,一般是根據三角函數的奇偶性將內層函數的系數變?yōu)檎龜岛笤偌右越鉀Q。對于帶有絕對值的三角函數應該根據圖像,從直觀(guān)上進(jìn)行判斷。

  7、向量夾角范圍不清致誤

  解題時(shí)要全面考慮問(wèn)題。數學(xué)試題中往往隱含著(zhù)一些容易被考生所忽視的因素,能不能在解題時(shí)把這些因素考慮到,是解題成功的關(guān)鍵,如當a·b<0時(shí),a與b的夾角不一定為鈍角,要注意θ=π的情況。

  8、忽視零向量致誤

  零向量是向量中最特殊的向量,規定零向量的長(cháng)度為0,其方向是任意的,零向量與任意向量都共線(xiàn)。它在向量中的位置正如實(shí)數中0的位置一樣,但有了它容易引起一些混淆,稍微考慮不到就會(huì )出錯,考生應給予足夠的重視。

  9、對數列的定義、性質(zhì)理解錯誤

  等差數列的前n項和在公差不為零時(shí)是關(guān)于n的常數項為零的二次函數;一般地,有結論“若數列{an}的前n項和Sn=an2+bn+c(a,b,c∈R),則數列{an}為等差數列的充要條件是c=0”;在等差數列中,Sm,S2m—Sm,S3m—S2m(m∈Nx)是等差數列。

  10、an與Sn關(guān)系不清致誤

  在數列問(wèn)題中,數列的通項an與其前n項和Sn之間存在下列關(guān)系:an=S1,n=1,Sn—Sn—1,n≥2。這個(gè)關(guān)系對任意數列都是成立的,但要注意的是這個(gè)關(guān)系式是分段的,在n=1和n≥2時(shí)這個(gè)關(guān)系式具有完全不同的表現形式,這也是解題中經(jīng)常出錯的一個(gè)地方,在使用這個(gè)關(guān)系式時(shí)要牢牢記住其“分段”的特點(diǎn)。

  11、錯位相減求和項處理不當致誤

  錯位相減求和法的適用條件:數列是由一個(gè)等差數列和一個(gè)等比數列對應項的乘積所組成的,求其前n項和;痉椒ㄊ窃O這個(gè)和式為Sn,在這個(gè)和式兩端同時(shí)乘以等比數列的公比得到另一個(gè)和式,這兩個(gè)和式錯一位相減,就把問(wèn)題轉化為以求一個(gè)等比數列的前n項和或前n—1項和為主的求和問(wèn)題。這里最容易出現問(wèn)題的就是錯位相減后對剩余項的處理。

  12、不等式性質(zhì)應用不當致誤

  在使用不等式的基本性質(zhì)進(jìn)行推理論證時(shí)一定要準確,特別是不等式兩端同時(shí)乘以或同時(shí)除以一個(gè)數式、兩個(gè)不等式相乘、一個(gè)不等式兩端同時(shí)n次方時(shí),一定要注意使其能夠這樣做的條件,如果忽視了不等式性質(zhì)成立的前提條件就會(huì )出現錯誤。

  13、數列中的最值錯誤

  數列問(wèn)題中其通項公式、前n項和公式都是關(guān)于正整數n的函數,要善于從函數的觀(guān)點(diǎn)認識和理解數列問(wèn)題。數列的通項an與前n項和Sn的關(guān)系是高考的命題重點(diǎn),解題時(shí)要注意把n=1和n≥2分開(kāi)討論,再看能不能統一。在關(guān)于正整數n的二次函數中其取最值的點(diǎn)要根據正整數距離二次函數的對稱(chēng)軸的遠近而定。

  14、不等式恒成立問(wèn)題致誤

  解決不等式恒成立問(wèn)題的常規求法是:借助相應函數的單調性求解,其中的主要方法有數形結合法、變量分離法、主元法。通過(guò)最值產(chǎn)生結論。應注意恒成立與存在性問(wèn)題的區別,如對任意x∈[a,b]都有f(x)≤g(x)成立,即f(x)—g(x)≤0的恒成立問(wèn)題,但對存在x∈[a,b],使f(x)≤g(x)成立,則為存在性問(wèn)題,即f(x)min≤g(x)max,應特別注意兩函數中的最大值與最小值的關(guān)系。

  15、忽視三視圖中的實(shí)、虛線(xiàn)致誤

  三視圖是根據正投影原理進(jìn)行繪制,嚴格按照“長(cháng)對正,高平齊,寬相等”的規則去畫(huà),若相鄰兩物體的表面相交,表面的交線(xiàn)是它們的原分界線(xiàn),且分界線(xiàn)和可視輪廓線(xiàn)都用實(shí)線(xiàn)畫(huà)出,不可見(jiàn)的輪廓線(xiàn)用虛線(xiàn)畫(huà)出,這一點(diǎn)很容易疏忽。

  16、面積體積計算轉化不靈活致誤

  面積、體積的計算既需要學(xué)生有扎實(shí)的基礎知識,又要用到一些重要的思想方法,是高考考查的重要題型。因此要熟練掌握以下幾種常用的思想方法。(1)還臺為錐的思想:這是處理臺體時(shí)常用的思想方法。(2)割補法:求不規則圖形面積或幾何體體積時(shí)常用。(3)等積變換法:充分利用三棱錐的任意一個(gè)面都可作為底面的特點(diǎn),靈活求解三棱錐的體積。(4)截面法:尤其是關(guān)于旋轉體及與旋轉體有關(guān)的組合問(wèn)題,常畫(huà)出軸截面進(jìn)行分析求解。

  17、忽視基本不等式應用條件致誤

  利用基本不等式a+b≥2ab以及變式ab≤a+b22等求函數的最值時(shí),務(wù)必注意a,b為正數(或a,b非負),ab或a+b其中之一應是定值,特別要注意等號成立的條件。對形如y=ax+bx(a,b>0)的函數,在應用基本不等式求函數最值時(shí),一定要注意ax,bx的符號,必要時(shí)要進(jìn)行分類(lèi)討論,另外要注意自變量x的取值范圍,在此范圍內等號能否取到。

數學(xué)知識點(diǎn)總結3

  高考數學(xué)知識點(diǎn):軌跡方程的求解

  符合一定條件的動(dòng)點(diǎn)所形成的圖形,或者說(shuō),符合一定條件的點(diǎn)的全體所組成的集合,叫做滿(mǎn)足該條件的點(diǎn)的軌跡.

  軌跡,包含兩個(gè)方面的問(wèn)題:凡在軌跡上的點(diǎn)都符合給定的條件,這叫做軌跡的純粹性(也叫做必要性);凡不在軌跡上的點(diǎn)都不符合給定的條件,也就是符合給定條件的點(diǎn)必在軌跡上,這叫做軌跡的完備性(也叫做充分性).

  【軌跡方程】就是與幾何軌跡對應的代數描述。

  一、求動(dòng)點(diǎn)的軌跡方程的基本步驟

 、苯⑦m當的坐標系,設出動(dòng)點(diǎn)M的坐標;

 、矊(xiě)出點(diǎn)M的集合;

 、沉谐龇匠=0;

 、椿(jiǎn)方程為最簡(jiǎn)形式;

 、禉z驗。

  二、求動(dòng)點(diǎn)的軌跡方程的常用方法:求軌跡方程的方法有多種,常用的有直譯法、定義法、相關(guān)點(diǎn)法、參數法和交軌法等。

 、敝弊g法:直接將條件翻譯成等式,整理化簡(jiǎn)后即得動(dòng)點(diǎn)的軌跡方程,這種求軌跡方程的方法通常叫做直譯法。

 、捕x法:如果能夠確定動(dòng)點(diǎn)的軌跡滿(mǎn)足某種已知曲線(xiàn)的定義,則可利用曲線(xiàn)的定義寫(xiě)出方程,這種求軌跡方程的方法叫做定義法。

 、诚嚓P(guān)點(diǎn)法:用動(dòng)點(diǎn)Q的坐標x,y表示相關(guān)點(diǎn)P的坐標x0、y0,然后代入點(diǎn)P的坐標(x0,y0)所滿(mǎn)足的曲線(xiàn)方程,整理化簡(jiǎn)便得到動(dòng)點(diǎn)Q軌跡方程,這種求軌跡方程的方法叫做相關(guān)點(diǎn)法。

 、磪捣ǎ寒攧(dòng)點(diǎn)坐標x、y之間的直接關(guān)系難以找到時(shí),往往先尋找x、y與某一變數t的關(guān)系,得再消去參變數t,得到方程,即為動(dòng)點(diǎn)的軌跡方程,這種求軌跡方程的方法叫做參數法。

 、到卉壏ǎ簩蓜(dòng)曲線(xiàn)方程中的'參數消去,得到不含參數的方程,即為兩動(dòng)曲線(xiàn)交點(diǎn)的軌跡方程,這種求軌跡方程的方法叫做交軌法。

  .直譯法:求動(dòng)點(diǎn)軌跡方程的一般步驟

 、俳ㄏ怠⑦m當的坐標系;

 、谠O點(diǎn)——設軌跡上的任一點(diǎn)P(x,y);

 、哿惺健谐鰟(dòng)點(diǎn)p所滿(mǎn)足的關(guān)系式;

 、艽鷵Q——依條件的特點(diǎn),選用距離公式、斜率公式等將其轉化為關(guān)于X,Y的方程式,并化簡(jiǎn);

 、葑C明——證明所求方程即為符合條件的動(dòng)點(diǎn)軌跡方程。

  高考數學(xué)知識點(diǎn):排列組合公式

  排列組合公式/排列組合計算公式

  排列P------和順序有關(guān)

  組合C-------不牽涉到順序的問(wèn)題

  排列分順序,組合不分

  例如把5本不同的書(shū)分給3個(gè)人,有幾種分法."排列"

  把5本書(shū)分給3個(gè)人,有幾種分法"組合"

  1.排列及計算公式

  從n個(gè)不同元素中,任取m(m≤n)個(gè)元素按照一定的順序排成一列,叫做從n個(gè)不同元素中取出m個(gè)元素的一個(gè)排列;從n個(gè)不同元素中取出m(m≤n)個(gè)元素的所有排列的個(gè)數,叫做從n個(gè)不同元素中取出m個(gè)元素的排列數,用符號p(n,m)表示.

  p(n,m)=n(n-1)(n-2)……(n-m+1)=n!/(n-m)!(規定0!=1).

  2.組合及計算公式

  從n個(gè)不同元素中,任取m(m≤n)個(gè)元素并成一組,叫做從n個(gè)不同元素中取出m個(gè)元素的一個(gè)組合;從n個(gè)不同元素中取出m(m≤n)個(gè)元素的所有組合的個(gè)數,叫做從n個(gè)不同元素中取出m個(gè)元素的組合數.用符號

  c(n,m)表示.

  c(n,m)=p(n,m)/m!=n!/((n-m)!.m!);c(n,m)=c(n,n-m);

  3.其他排列與組合公式

  從n個(gè)元素中取出r個(gè)元素的循環(huán)排列數=p(n,r)/r=n!/r(n-r)!.

  n個(gè)元素被分成k類(lèi),每類(lèi)的個(gè)數分別是n1,n2,...nk這n個(gè)元素的全排列數為

  n!/(n1!.n2!.....nk!).

  k類(lèi)元素,每類(lèi)的個(gè)數無(wú)限,從中取出m個(gè)元素的組合數為c(m+k-1,m).

  排列(Pnm(n為下標,m為上標))

  Pnm=n×(n-1)....(n-m+1);Pnm=n!/(n-m)!(注:!是階乘符號);Pnn(兩個(gè)n分別為上標和下標)=n!;0!=1;Pn1(n為下標1為上標)=n

  組合(Cnm(n為下標,m為上標))

  Cnm=Pnm/Pmm;Cnm=n!/m!(n-m)!;Cnn(兩個(gè)n分別為上標和下標)=1;Cn1(n為下標1為上標)=n;Cnm=Cnn-m

  20xx-07-0813:30

  公式P是指排列,從N個(gè)元素取R個(gè)進(jìn)行排列。公式C是指組合,從N個(gè)元素取R個(gè),不進(jìn)行排列。N-元素的總個(gè)數R參與選擇的元素個(gè)數!-階乘,如9!=9.8.7.6.5.4.3.2.1

  從N倒數r個(gè),表達式應該為n.(n-1).(n-2)..(n-r+1);

  因為從n到(n-r+1)個(gè)數為n-(n-r+1)=r

  舉例:

  Q1:有從1到9共計9個(gè)號碼球,請問(wèn),可以組成多少個(gè)三位數?

  A1:123和213是兩個(gè)不同的排列數。即對排列順序有要求的,既屬于“排列P”計算范疇。

  上問(wèn)題中,任何一個(gè)號碼只能用一次,顯然不會(huì )出現988,997之類(lèi)的組合,我們可以這么看,百位數有9種可能,十位數則應該有9-1種可能,個(gè)位數則應該只有9-1-1種可能,最終共有9.8.7個(gè)三位數。計算公式=P(3,9)=9.8.7,(從9倒數3個(gè)的乘積)

  Q2:有從1到9共計9個(gè)號碼球,請問(wèn),如果三個(gè)一組,代表“三國聯(lián)盟”,可以組合成多少個(gè)“三國聯(lián)盟”?

  A2:213組合和312組合,代表同一個(gè)組合,只要有三個(gè)號碼球在一起即可。即不要求順序的,屬于“組合C”計算范疇。

  上問(wèn)題中,將所有的包括排列數的個(gè)數去除掉屬于重復的個(gè)數即為最終組合數C(3,9)=9.8.7/3.2.1

  排列、組合的概念和公式典型例題分析

  例1設有3名學(xué)生和4個(gè)課外小組.(1)每名學(xué)生都只參加一個(gè)課外小組;(2)每名學(xué)生都只參加一個(gè)課外小組,而且每個(gè)小組至多有一名學(xué)生參加.各有多少種不同方法?

  解(1)由于每名學(xué)生都可以參加4個(gè)課外小組中的任何一個(gè),而不限制每個(gè)課外小組的人數,因此共有種不同方法.

  (2)由于每名學(xué)生都只參加一個(gè)課外小組,而且每個(gè)小組至多有一名學(xué)生參加,因此共有種不同方法.

  點(diǎn)評由于要讓3名學(xué)生逐個(gè)選擇課外小組,故兩問(wèn)都用乘法原理進(jìn)行計算.

  例2排成一行,其中不排第一,不排第二,不排第三,不排第四的不同排法共有多少種?

  解依題意,符合要求的排法可分為第一個(gè)排、、中的某一個(gè),共3類(lèi),每一類(lèi)中不同排法可采用畫(huà)“樹(shù)圖”的方式逐一排出:

  ∴符合題意的不同排法共有9種.

  點(diǎn)評按照分“類(lèi)”的思路,本題應用了加法原理.為把握不同排法的規律,“樹(shù)圖”是一種具有直觀(guān)形象的有效做法,也是解決計數問(wèn)題的一種數學(xué)模型.

  例3判斷下列問(wèn)題是排列問(wèn)題還是組合問(wèn)題?并計算出結果.

  (1)高三年級學(xué)生會(huì )有11人:①每?jì)扇嘶ネㄒ环庑,共通了多少封?②每?jì)扇嘶ノ樟艘淮问,共握了多少次?

  (2)高二年級數學(xué)課外小組共10人:①從中選一名正組長(cháng)和一名副組長(cháng),共有多少種不同的選法?②從中選2名參加省數學(xué)競賽,有多少種不同的選法?

  (3)有2,3,5,7,11,13,17,19八個(gè)質(zhì)數:①從中任取兩個(gè)數求它們的商可以有多少種不同的商?②從中任取兩個(gè)求它的積,可以得到多少個(gè)不同的積?

  (4)有8盆花:①從中選出2盆分別給甲乙兩人每人一盆,有多少種不同的選法?②從中選出2盆放在教室有多少種不同的選法?

  分析(1)①由于每人互通一封信,甲給乙的信與乙給甲的信是不同的兩封信,所以與順序有關(guān)是排列;②由于每?jì)扇嘶ノ找淮问,甲與乙握手,乙與甲握手是同一次握手,與順序無(wú)關(guān),所以是組合問(wèn)題.其他類(lèi)似分析.

  (1)①是排列問(wèn)題,共用了封信;②是組合問(wèn)題,共需握手(次).

  (2)①是排列問(wèn)題,共有(種)不同的選法;②是組合問(wèn)題,共有種不同的選法.

  (3)①是排列問(wèn)題,共有種不同的商;②是組合問(wèn)題,共有種不同的積.

  (4)①是排列問(wèn)題,共有種不同的選法;②是組合問(wèn)題,共有種不同的選法.

  例4證明.

  證明左式

  右式.

  ∴等式成立.

  點(diǎn)評這是一個(gè)排列數等式的證明問(wèn)題,選用階乘之商的形式,并利用階乘的性質(zhì),可使變形過(guò)程得以簡(jiǎn)化.

  例5化簡(jiǎn).

  解法一原式

  解法二原式

  點(diǎn)評解法一選用了組合數公式的階乘形式,并利用階乘的性質(zhì);解法二選用了組合數的兩個(gè)性質(zhì),都使變形過(guò)程得以簡(jiǎn)化.

  例6解方程:(1);(2).

  解(1)原方程

  解得.

  (2)原方程可變?yōu)?/p>

  ∵,,

  ∴原方程可化為.

  即,解得

  高三數學(xué)三角函數公式

  銳角三角函數公式

  sin α=∠α的對邊 / 斜邊

  cos α=∠α的鄰邊 / 斜邊

  tan α=∠α的對邊 / ∠α的鄰邊

  cot α=∠α的鄰邊 / ∠α的對邊

  倍角公式

  Sin2A=2SinA?CosA

  Cos2A=CosA^2-SinA^2=1-2SinA^2=2CosA^2-1

  tan2A=(2tanA)/(1-tanA^2)

  (注:SinA^2 是sinA的平方 sin2(A) )

  三倍角公式

  sin3α=4sinα·sin(π/3+α)sin(π/3-α)

  cos3α=4cosα·cos(π/3+α)cos(π/3-α)

  tan3a = tan a · tan(π/3+a)· tan(π/3-a)

  三倍角公式推導

  sin3a

  =sin(2a+a)

  =sin2acosa+cos2asina

  輔助角公式

  Asinα+Bcosα=(A^2+B^2)^(1/2)sin(α+t),其中

  sint=B/(A^2+B^2)^(1/2)

  cost=A/(A^2+B^2)^(1/2)

  tant=B/A

  Asinα+Bcosα=(A^2+B^2)^(1/2)cos(α-t),tant=A/B

  降冪公式

  sin^2(α)=(1-cos(2α))/2=versin(2α)/2

  cos^2(α)=(1+cos(2α))/2=covers(2α)/2

  tan^2(α)=(1-cos(2α))/(1+cos(2α))

  推導公式

  tanα+cotα=2/sin2α

  tanα-cotα=-2cot2α

  1+cos2α=2cos^2α

  1-cos2α=2sin^2α

  1+sinα=(sinα/2+cosα/2)^2

  =2sina(1-sin2a)+(1-2sin2a)sina

  =3sina-4sin3a

  cos3a

  =cos(2a+a)

  =cos2acosa-sin2asina

  =(2cos2a-1)cosa-2(1-sin2a)cosa

  =4cos3a-3cosa

  sin3a=3sina-4sin3a

  =4sina(3/4-sin2a)

  =4sina[(√3/2)2-sin2a]

  =4sina(sin260°-sin2a)

  =4sina(sin60°+sina)(sin60°-sina)

  =4sina.2sin[(60+a)/2]cos[(60°-a)/2].2sin[(60°-a)/2]cos[(60°-a)/2]

  =4sinasin(60°+a)sin(60°-a)

  cos3a=4cos3a-3cosa

  =4cosa(cos2a-3/4)

  =4cosa[cos2a-(√3/2)2]

  =4cosa(cos2a-cos230°)

  =4cosa(cosa+cos30°)(cosa-cos30°)

  =4cosa.2cos[(a+30°)/2]cos[(a-30°)/2].{-2sin[(a+30°)/2]sin[(a-30°)/2]}

  =-4cosasin(a+30°)sin(a-30°)

  =-4cosasin[90°-(60°-a)]sin[-90°+(60°+a)]

  =-4cosacos(60°-a)[-cos(60°+a)]

  =4cosacos(60°-a)cos(60°+a)

  上述兩式相比可得

  tan3a=tanatan(60°-a)tan(60°+a)

  半角公式

  tan(A/2)=(1-cosA)/sinA=sinA/(1+cosA);

  cot(A/2)=sinA/(1-cosA)=(1+cosA)/sinA.

  sin^2(a/2)=(1-cos(a))/2

  cos^2(a/2)=(1+cos(a))/2

  tan(a/2)=(1-cos(a))/sin(a)=sin(a)/(1+cos(a))

  三角和

  sin(α+β+γ)=sinα·cosβ·cosγ+cosα·sinβ·cosγ+cosα·cosβ·sinγ-sinα·sinβ·sinγ

  cos(α+β+γ)=cosα·cosβ·cosγ-cosα·sinβ·sinγ-sinα·cosβ·sinγ-sinα·sinβ·cosγ

  tan(α+β+γ)=(tanα+tanβ+tanγ-tanα·tanβ·tanγ)/(1-tanα·tanβ-tanβ·tanγ-tanγ·tanα)

  兩角和差

  cos(α+β)=cosα·cosβ-sinα·sinβ

  cos(α-β)=cosα·cosβ+sinα·sinβ

  sin(α±β)=sinα·cosβ±cosα·sinβ

  tan(α+β)=(tanα+tanβ)/(1-tanα·tanβ)

  tan(α-β)=(tanα-tanβ)/(1+tanα·tanβ)

  和差化積

  sinθ+sinφ = 2 sin[(θ+φ)/2] cos[(θ-φ)/2]

  sinθ-sinφ = 2 cos[(θ+φ)/2] sin[(θ-φ)/2]

  cosθ+cosφ = 2 cos[(θ+φ)/2] cos[(θ-φ)/2]

  cosθ-cosφ = -2 sin[(θ+φ)/2] sin[(θ-φ)/2]

  tanA+tanB=sin(A+B)/cosAcosB=tan(A+B)(1-tanAtanB)

  tanA-tanB=sin(A-B)/cosAcosB=tan(A-B)(1+tanAtanB)

數學(xué)知識點(diǎn)總結4

  1、圖形的相似

  相似多邊形的對應邊的比值相等,對應角相等;

  兩個(gè)多邊形的對應角相等,對應邊的比值也相等,那么這兩個(gè)多邊形相似;

  相似比:相似多邊形對應邊的比值。

  2、相似三角形

  判定:

  平行于三角形一邊的直線(xiàn)和其它兩邊相交,所構成的三角形和原三角形相似;

  如果兩個(gè)三角形的三組對應邊的比相等,那么這兩個(gè)三角形相似;

  如果兩個(gè)三角形的兩組對應邊的比相等,并且相應的夾角相等,那么兩個(gè)三角形相似;

  如果一個(gè)三角形的`兩個(gè)角與另一個(gè)三角形的兩個(gè)角對應相等,那么兩個(gè)三角形相似。

  3相似三角形的周長(cháng)和面積

  相似三角形(多邊形)的周長(cháng)的比等于相似比;

  相似三角形(多邊形)的面積的比等于相似比的平方。

  4位似

  位似圖形:兩個(gè)多邊形相似,而且對應頂點(diǎn)的連線(xiàn)相交于一點(diǎn),對應邊互相平行,這樣的兩個(gè)圖形叫位似圖形,相交的點(diǎn)叫位似中心。

數學(xué)知識點(diǎn)總結5

  1 過(guò)兩點(diǎn)有且只有一條直線(xiàn)

  2 兩點(diǎn)之間線(xiàn)段最短

  3 同角或等角的補角相等

  4 同角或等角的余角相等

  5 過(guò)一點(diǎn)有且只有一條直線(xiàn)和已知直線(xiàn)垂直

  6 直線(xiàn)外一點(diǎn)與直線(xiàn)上各點(diǎn)連接的所有線(xiàn)段中,垂線(xiàn)段最短

  7 平行公理 經(jīng)過(guò)直線(xiàn)外一點(diǎn),有且只有一條直線(xiàn)與這條直線(xiàn)平行

  8 如果兩條直線(xiàn)都和第三條直線(xiàn)平行,這兩條直線(xiàn)也互相平行

  9 同位角相等,兩直線(xiàn)平行

  10 內錯角相等,兩直線(xiàn)平行

  11 同旁?xún)冉腔パa,兩直線(xiàn)平行

  12兩直線(xiàn)平行,同位角相等

  13 兩直線(xiàn)平行,內錯角相等

  14 兩直線(xiàn)平行,同旁?xún)冉腔パa

  15 定理 三角形兩邊的和大于第三邊

  16 推論 三角形兩邊的差小于第三邊

  17 三角形內角和定理 三角形三個(gè)內角的和等于180

  18 推論1 直角三角形的兩個(gè)銳角互余

  19 推論2 三角形的一個(gè)外角等于和它不相鄰的兩個(gè)內角的和

  20 推論3 三角形的一個(gè)外角大于任何一個(gè)和它不相鄰的內角

  21 全等三角形的對應邊、對應角相等

  22邊角邊公理(SAS) 有兩邊和它們的夾角對應相等的兩個(gè)三角形全等

  23 角邊角公理( ASA)有兩角和它們的夾邊對應相等的兩個(gè)三角形全等

  24 推論(AAS) 有兩角和其中一角的對邊對應相等的兩個(gè)三角形全等

  25 邊邊邊公理(SSS) 有三邊對應相等的兩個(gè)三角形全等

  26 斜邊、直角邊公理(HL) 有斜邊和一條直角邊對應相等的兩個(gè)直角三角形全等

  27 定理1 在角的平分線(xiàn)上的點(diǎn)到這個(gè)角的兩邊的距離相等

  28 定理2 到一個(gè)角的兩邊的距離相同的點(diǎn),在這個(gè)角的平分線(xiàn)上

  29 角的平分線(xiàn)是到角的兩邊距離相等的所有點(diǎn)的集合

  30 等腰三角形的性質(zhì)定理 等腰三角形的兩個(gè)底角相等 (即等邊對等角)

  31 推論1 等腰三角形頂角的平分線(xiàn)平分底邊并且垂直于底邊

  32 等腰三角形的頂角平分線(xiàn)、底邊上的'中線(xiàn)和底邊上的高互相重合

  33 推論3 等邊三角形的各角都相等,并且每一個(gè)角都等于60

  34 等腰三角形的判定定理 如果一個(gè)三角形有兩個(gè)角相等,那么這兩個(gè)角所對的邊也相等(等角對等邊)

  35 推論1 三個(gè)角都相等的三角形是等邊三角形

  36 推論 2 有一個(gè)角等于60的等腰三角形是等邊三角形

  37 在直角三角形中,如果一個(gè)銳角等于30那么它所對的直角邊等于斜邊的一半

  38 直角三角形斜邊上的中線(xiàn)等于斜邊上的一半

  39 定理 線(xiàn)段垂直平分線(xiàn)上的點(diǎn)和這條線(xiàn)段兩個(gè)端點(diǎn)的距離相等 ?

  40 逆定理 和一條線(xiàn)段兩個(gè)端點(diǎn)距離相等的點(diǎn),在這條線(xiàn)段的垂直平分線(xiàn)上

  41 線(xiàn)段的垂直平分線(xiàn)可看作和線(xiàn)段兩端點(diǎn)距離相等的所有點(diǎn)的集合

  42 定理1 關(guān)于某條直線(xiàn)對稱(chēng)的兩個(gè)圖形是全等形

  43 定理 2 如果兩個(gè)圖形關(guān)于某直線(xiàn)對稱(chēng),那么對稱(chēng)軸是對應點(diǎn)連線(xiàn)的垂直平分線(xiàn)

  44定理3 兩個(gè)圖形關(guān)于某直線(xiàn)對稱(chēng),如果它們的對應線(xiàn)段或延長(cháng)線(xiàn)相交,那么交點(diǎn)在對稱(chēng)軸上

數學(xué)知識點(diǎn)總結6

  一、勾股定理

  1、勾股定理

  直角三角形兩直角邊a,b的平方和等于斜邊c的平方,即a2+b2=c2。

  2、勾股定理的逆定理

  如果三角形的三邊長(cháng)a,b,c有這種關(guān)系,那么這個(gè)三角形是直角三角形。

  3、勾股數

  滿(mǎn)足的三個(gè)正整數,稱(chēng)為勾股數。

  常見(jiàn)的勾股數組有:(3,4,5);(5,12,13);(8,15,17);(7,24,25);(20,21,29);(9,40,41);……(這些勾股數組的倍數仍是勾股數)。

  二、證明

  1、對事情作出判斷的句子,就叫做命題。即:命題是判斷一件事情的句子。

  2、三角形內角和定理:三角形三個(gè)內角的和等于180度。

  (1)證明三角形內角和定理的思路是將原三角形中的三個(gè)角湊到一起組成一個(gè)平角。一般需要作輔助。

  (2)三角形的外角與它相鄰的內角是互為補角。

  3、三角形的外角與它不相鄰的內角關(guān)系

  (1)三角形的一個(gè)外角等于和它不相鄰的兩個(gè)內角的和。

  (2)三角形的一個(gè)外角大于任何一個(gè)和它不相鄰的內角。

  4、證明一個(gè)命題是真命題的基本步驟

  (1)根據題意,畫(huà)出圖形。

  (2)根據條件、結論,結合圖形,寫(xiě)出已知、求證。

  (3)經(jīng)過(guò)分析,找出由已知推出求證的途徑,寫(xiě)出證明過(guò)程。在證明時(shí)需注意:①在一般情況下,分析的過(guò)程不要求寫(xiě)出來(lái)。②證明中的每一步推理都要有根據。如果兩條直線(xiàn)都和第三條直線(xiàn)平行,那么這兩條直線(xiàn)也相互平行。

  八年級上冊數學(xué)知識點(diǎn)

  (一)運用公式法

  我們知道整式乘法與因式分解互為逆變形。如果把乘法公式反過(guò)來(lái)就是把多項式分解因式。于是有:

  a2-b2=(a+b)(a-b)

  a2+2ab+b2=(a+b)2

  a2-2ab+b2=(a-b)2

  如果把乘法公式反過(guò)來(lái),就可以用來(lái)把某些多項式分解因式。這種分解因式的方法叫做運用公式法。

  (二)平方差公式

  平方差公式

  (1)式子:a2-b2=(a+b)(a-b)

  (2)語(yǔ)言:兩個(gè)數的平方差,等于這兩個(gè)數的和與這兩個(gè)數的差的積。這個(gè)公式就是平方差公式。

  (三)因式分解

  1.因式分解時(shí),各項如果有公因式應先提公因式,再進(jìn)一步分解。

  2.因式分解,必須進(jìn)行到每一個(gè)多項式因式不能再分解為止。

  (四)完全平方公式

  (1)把乘法公式(a+b)2=a2+2ab+b2和(a-b)2=a2-2ab+b2反過(guò)來(lái),就可以得到:

  a2+2ab+b2=(a+b)2

  a2-2ab+b2=(a-b)2

  這就是說(shuō),兩個(gè)數的平方和,加上(或者減去)這兩個(gè)數的積的2倍,等于這兩個(gè)數的和(或者差)的平方。

  把a2+2ab+b2和a2-2ab+b2這樣的式子叫完全平方式。

  上面兩個(gè)公式叫完全平方公式。

  (2)完全平方式的形式和特點(diǎn)

 、夙棓担喝

 、谟袃身検莾蓚(gè)數的的平方和,這兩項的符號相同。

 、塾幸豁検沁@兩個(gè)數的積的兩倍。

  (3)當多項式中有公因式時(shí),應該先提出公因式,再用公式分解。

  (4)完全平方公式中的.a、b可表示單項式,也可以表示多項式。這里只要將多項式看成一個(gè)整體就可以了。

  (5)分解因式,必須分解到每一個(gè)多項式因式都不能再分解為止。

  (五)分組分解法

  我們看多項式am+an+bm+bn,這四項中沒(méi)有公因式,所以不能用提取公因式法,再看它又不能用公式法分解因式.

  如果我們把它分成兩組(am+an)和(bm+bn),這兩組能分別用提取公因式的方法分別分解因式.

  原式=(am+an)+(bm+bn)

  =a(m+n)+b(m+n)

  做到這一步不叫把多項式分解因式,因為它不符合因式分解的意義.但不難看出這兩項還有公因式(m+n),因此還能繼續分解,所以

  原式=(am+an)+(bm+bn)

  =a(m+n)+b(m+n)

  =(m+n)×(a+b).

  初二下冊數學(xué)知識點(diǎn)歸納北師大版

  一、多邊形

  1、多邊形:由一些線(xiàn)段首尾順次連結組成的圖形,叫做多邊形。

  2、多邊形的邊:組成多邊形的各條線(xiàn)段叫做多邊形的邊。

  3、多邊形的頂點(diǎn):多邊形每相鄰兩邊的公共端點(diǎn)叫做多邊形的頂點(diǎn)。

  4、多邊形的對角線(xiàn):連結多邊形不相鄰的兩個(gè)頂點(diǎn)的線(xiàn)段叫做多邊形的對角線(xiàn)。

  5、多邊形的周長(cháng):多邊形各邊的長(cháng)度和叫做多邊形的周長(cháng)。

  6、凸多邊形:把多邊形的任何一條邊向兩方延長(cháng),如果多邊形的其他各邊都在延長(cháng)線(xiàn)所得直線(xiàn)的問(wèn)旁,這樣的多邊形叫凸多邊形。

  說(shuō)明:一個(gè)多邊形至少要有三條邊,有三條邊的叫做三角形;有四條邊的叫做四邊形;有幾條邊的叫做幾邊形。今后所說(shuō)的多邊形,如果不特別聲明,都是指凸多邊形。

  7、多邊形的角:多邊形相鄰兩邊所組成的角叫做多邊形的內角,簡(jiǎn)稱(chēng)多邊形的角。

  8、多邊形的外角:多邊形的角的一邊與另一邊的反向延長(cháng)線(xiàn)所組成的角叫做多邊形的外角。

  注意:多邊形的外角也就是與它有公共頂點(diǎn)的內角的鄰補角。

  9、多邊形內角和定理:n邊形內角和等于(n-2)180°。

  10、多邊形內角和定理的推論:n邊形的外角和等于360°。

  說(shuō)明:多邊形的外角和是一個(gè)常數(與邊數無(wú)關(guān)),利用它解決有關(guān)計算題比利用多邊形內角和公式及對角線(xiàn)求法公式簡(jiǎn)單。無(wú)論用哪個(gè)公式解決有關(guān)計算,都要與解方程聯(lián)系起來(lái),掌握計算方法。

數學(xué)知識點(diǎn)總結7

  知識點(diǎn)一橢圓的定義

  平面內到兩個(gè)定點(diǎn)的距離之和等于常數(大于)的點(diǎn)的集合叫做橢圓。兩個(gè)定點(diǎn)叫做橢圓的焦點(diǎn),兩焦點(diǎn)間的距離叫做橢圓的焦距。

  根據橢圓的定義可知:橢圓上的點(diǎn)M滿(mǎn)足集合,,且都為常數。

  當即時(shí),集合P為橢圓。

  當即時(shí),集合P為線(xiàn)段。

  當即時(shí),集合P為空集。

  知識點(diǎn)二橢圓的標準方程

  (1),焦點(diǎn)在軸上時(shí),焦點(diǎn)為,焦點(diǎn)。

  (2),焦點(diǎn)在軸上時(shí),焦點(diǎn)為,焦點(diǎn)。

  知識點(diǎn)三橢圓方程的一般式

  這種形式的方程在課本中雖然沒(méi)有明確給出,但在應用中有時(shí)比較方便,在此提供出來(lái),作為參考:

  (其中為同號且不為零的常數,),它包含焦點(diǎn)在軸或軸上兩種情形。方程可變形為。

  當時(shí),橢圓的焦點(diǎn)在軸上;當時(shí),橢圓的焦點(diǎn)在軸上。

  一般式,通常也設為,應特別注意均大于0,標準方程為。

  知識點(diǎn)四橢圓標準方程的求法

  1.定義法

  橢圓標準方程可由定義直接求得,這是求橢圓方程中很重要的方法之一,當問(wèn)題是以實(shí)際問(wèn)題給出時(shí),一定要注意使實(shí)際問(wèn)題有意義,因此要恰當地表示橢圓的范圍。

  例1、在△ABC中,A、B、C所對三邊分別為,且B(-1,0)C(1,0),求滿(mǎn)足,且成等差數列時(shí),頂點(diǎn)A的曲線(xiàn)方程。

  變式練習1.在△ABC中,點(diǎn)B(-6,0)、C(0,8),且成等差數列。

  (1)求證:頂點(diǎn)A在一個(gè)橢圓上運動(dòng)。

  (2)指出這個(gè)橢圓的焦點(diǎn)坐標以及焦距。

  2.待定系數法

  首先確定標準方程的類(lèi)型,并將其用有關(guān)參數表示出來(lái),然后結合問(wèn)題的條件,建立參數滿(mǎn)足的等式,求得的值,再代入所設方程,即一定性,二定量,最后寫(xiě)方程。

  例2、已知橢圓的中心在原點(diǎn),且經(jīng)過(guò)點(diǎn)P(3,0),=3b,求橢圓的標準方程。

  例3、已知橢圓的中心在原點(diǎn),以坐標軸為對稱(chēng)軸,且經(jīng)過(guò)兩點(diǎn),求橢圓方程。

  變式練習2.求適合下列條件的橢圓的方程;

  (1)兩個(gè)焦點(diǎn)分別是(-3,0),(3,0)且經(jīng)過(guò)點(diǎn)(5,0).

  (2)兩焦點(diǎn)在坐標軸上,兩焦點(diǎn)的中點(diǎn)為坐標原點(diǎn),焦距為8,橢圓上一點(diǎn)到兩焦點(diǎn)的距離之和為12.

  3.已知橢圓經(jīng)過(guò)點(diǎn)和點(diǎn),求橢圓的標準方程。

  4.求中心在原點(diǎn),焦點(diǎn)在坐標軸上,且經(jīng)過(guò)兩點(diǎn)的橢圓標準方程。

  知識點(diǎn)五共焦點(diǎn)的橢圓方程的求解

  一般地,與橢圓共焦點(diǎn)的橢圓可設其方程為。

  例4、過(guò)點(diǎn)(-3,2)且與有相同焦點(diǎn)的橢圓的方程為()

  A.B.C.D.

  變式練習5.求經(jīng)過(guò)點(diǎn)(2,-3)且橢圓有共同焦點(diǎn)的橢圓方程。

  知識點(diǎn)六與橢圓有關(guān)的軌跡問(wèn)題的求解方法

  與橢圓有關(guān)的軌跡方程的求解是一種很重要的題型,教材中的例題就是利用代入求球軌。跡,其基本思路是設出軌跡上一點(diǎn)和已知曲線(xiàn)上一點(diǎn),建立其關(guān)系,再代入。

  例5、已知圓,從這個(gè)圓上任意一點(diǎn)向軸作垂線(xiàn)段,點(diǎn)在上,并且,求點(diǎn)的軌跡。

  知識點(diǎn)七與弦的中點(diǎn)有關(guān)問(wèn)題的求解方法

  直線(xiàn)與橢圓相交于兩點(diǎn)、,稱(chēng)線(xiàn)段為橢圓的相交弦。與這個(gè)弦中點(diǎn)有點(diǎn)的軌跡問(wèn)題是一類(lèi)綜合性很強的題目,因此解此類(lèi)問(wèn)題必須選擇一個(gè)合理的方法,如“設而不求”法,其主要特點(diǎn)是巧代線(xiàn)段的斜率。其方程具體是:設直線(xiàn)與橢圓相交于兩點(diǎn),坐標分別為、,線(xiàn)段的中點(diǎn)為,則有

 、偈-②式,得,即

  ∴

  通常將此方程用于求弦中點(diǎn)的軌跡方程。

  例6.已知:橢圓,求:

  (1)以P(2,-1)為中點(diǎn)的弦所在直線(xiàn)的方程;

  (2)斜率為2的相交弦中點(diǎn)的軌跡方程;

  (3)過(guò)Q(8,2)的直線(xiàn)被橢圓截得的弦中點(diǎn)的軌跡方程。

  第二部分:鞏固練習

  1.設為橢圓的焦點(diǎn),P為橢圓上一點(diǎn),則的周長(cháng)是()

  A.16B.8C.D.無(wú)法確定

  2.橢圓的兩個(gè)焦點(diǎn)之間的距離為()

  A.12B.4C.3D.2

  3.橢圓的一個(gè)焦點(diǎn)是(0,2),那么等于()

  A.-1B.1C.D.-

  4.已知橢圓的焦點(diǎn)是,P是橢圓上的一個(gè)動(dòng)點(diǎn),如果延長(cháng)到,使得,那么動(dòng)點(diǎn)的軌跡是()

  A.圓B.橢圓C.雙曲線(xiàn)的一支D.拋物線(xiàn)

  5.已知橢圓的焦點(diǎn)在軸上,則的取值范圍是__________.

  6.橢圓的焦點(diǎn)坐標是___________.

  7.橢圓的焦距為2,則正數的值____________.

  數學(xué)學(xué)習方法

  1、建立數學(xué)糾錯本。做作業(yè)或復習時(shí)做錯了題,一旦搞明白,決不放過(guò),建立一本錯誤登記本,以降低重復性錯誤,不怕第一次不會(huì ),不怕第一次出錯,就怕下一次還犯同樣的錯誤把平時(shí)容易出現錯誤的知識或推理記載下來(lái),以防再犯。爭取做到:找錯、析錯、改錯、

  防錯。達到:平時(shí)作業(yè)、課外做題及考試中,對出錯的.數學(xué)題建立錯題集很有必要。

  2、記憶數學(xué)規律和數學(xué)小結論。

  3、經(jīng)常進(jìn)行一題多解,一題多變,從多側面、多角度思考問(wèn)題,挖掘問(wèn)題的實(shí)質(zhì)。

  4、經(jīng)常在做題后進(jìn)行一定的“反思”,思考一下本題所用的基礎知識,數學(xué)思想方法是什么,為什么要這樣想,本題的分析方法與解法,在解其它問(wèn)題時(shí),是否也用到過(guò)。無(wú)論是作業(yè)還是測驗,都應把準確性放在第一位,通法放在第一位。

  5、理解和弄懂所學(xué)的數學(xué)知識,知其然并知其所以然。學(xué)習不僅要理解和記住概念、定理、公式、法則等,而且還要想一想它們是如何得來(lái)的,與前面的知識是怎樣聯(lián)系著(zhù)的,表達中省略了什么,關(guān)鍵在哪里,對知識是否有新的認識,有否想到其他的解法等等。這樣細加分析、考慮后,就會(huì )對內容增添某些注解,補充一些新的解法或產(chǎn)生新的認識等。

  6、把學(xué)過(guò)內容貫串起來(lái),加以融會(huì )貫通,提煉出它的精神實(shí)質(zhì),抓住重點(diǎn)、線(xiàn)索和基本思想方法,組織整理成精煉的內容。這時(shí)由于知識出現高度概括,就更能促進(jìn)知識的遷移,也更有利于進(jìn)一步學(xué)習。

  怎么樣才能打好數學(xué)基礎

  第一,重視數學(xué)公式。有很多同學(xué)數學(xué)學(xué)不好就是因為對概念和公式不夠重視,具體的表現為對數學(xué)概念的理解只是停留在表明,不去挖掘引申的含義,對數學(xué)概念的特殊情況不明白。還有對數學(xué)概念和公式有的學(xué)生只是死記硬背,學(xué)生缺乏對概念的理解。

  還有一部分同學(xué)不重視對數學(xué)公式的記憶。其實(shí)記憶是理解的基礎。我們設想如果你不能將數學(xué)公式爛熟于心,那么又怎么能夠在數學(xué)題目中熟練的應用呢?

  第二,就是總結那些相似的數學(xué)題目。當我們養成了總結歸納的習慣,那么的學(xué)生就會(huì )知道自己在解決數學(xué)題目的時(shí)候哪些是自己比較擅長(cháng)的,哪些是自己還不足的。

  同時(shí)善于總結也會(huì )明白自己掌握哪些數學(xué)的解題方法,只有這樣你才能夠真正掌握了數學(xué)的解題技巧。其實(shí),做到總結和歸納是學(xué)會(huì )數學(xué)的關(guān)鍵,如果學(xué)生不會(huì )做到這一點(diǎn)那么久而久之,不會(huì )的數學(xué)題目還是不會(huì )。

數學(xué)知識點(diǎn)總結8

  一、集合有關(guān)概念

  1、集合的含義:某些指定的對象集在一起就成為一個(gè)集合,其中每一個(gè)對象叫元素。

  2、集合的中元素的三個(gè)特性:1.元素的確定性;2.元素的互異性;3.元素的無(wú)序性.

  3、集合的表示:(1){?}如{我校的籃球隊員},{太平洋,大西洋,印度洋,北冰洋}(2).用拉丁字母表示集合:A={我校的籃球隊員},B={1,2,3,4,5}4

 。系谋硎痉椒ǎ毫信e法與描述法。

  常用數集及其記法:非負整數集(即自然數集)記作:N正整數集N*或N+整數集Z有理數集Q實(shí)數集R

  5.關(guān)于“屬于”的概念

  集合的元素通常用小寫(xiě)的拉丁字母表示,如:a是集合A的元素,就說(shuō)a屬于集合A記作a∈A,相反,a不屬于集合A記作a?A

  列舉法:把集合中的元素一一列舉出來(lái),然后用一個(gè)大括號括上。

  描述法:將集合中的元素的公共屬性描述出來(lái),寫(xiě)在大括號內表示集合的方法。用確定的條件表

  示某些對象是否屬于這個(gè)集合的方法。6、集合的分類(lèi):

  (1).有限集含有有限個(gè)元素的集合(2).無(wú)限集含有無(wú)限個(gè)元素的集合

  (3).空集不含任何元素的集合例:{x|x2=-5}=Φ

  二、集合間的基本關(guān)系

  1.“包含”關(guān)系—子集注意:A?B有兩種可能(1)A是B的一部分,;(2)A與B是同一集合。反之:集?B或B??A合A不包含于集合B,或集合B不包含集合A,記作A?

  2.“相等”關(guān)系:對于兩個(gè)集合A與B,如果集合A的任何一個(gè)元素都是集合B的元素,同時(shí),集合B的任何一個(gè)元素都是集合A的元素,我們就說(shuō)集合A等于集合B,即:A=B

 、偃魏我粋(gè)集合是它本身的子集。即A?A

 、谌绻鸄?B,且A?B那就說(shuō)集合A是集合B的真子集,記作A B(或BA)

 、廴绻鸄?B,B?C,那么A?C④如果A?B同時(shí)B?A那么A=B

  3.不含任何元素的集合叫做空集,記為Φ

  規定:空集是任何集合的子集,空集是任何非空集合的真子集。三、集合的運算

  1.交集的定義:一般地,由所有屬于A(yíng)且屬于B的元素所組成的集合,叫做A,B的交集.

  記作A∩B(讀作"A交B"),即A∩B={x|x∈A,且x∈B}.

  2、并集的定義:一般地,由所有屬于集合A或屬于集合B的元素所組成的集合,叫做A,B的并集。記作:A∪B(讀作"A并B"),即A∪B={x|x∈A,或x∈B}.

  3、交集與并集的性質(zhì):A∩A=A,A∩φ=φ,A∩B=B∩A,A∪A=A,

  A∪φ=A,A∪B=B∪A.

  4、全集與補集(1)補集:設S是一個(gè)集合,A是S的一個(gè)子集(即A?S),由S中所有不屬于A(yíng)的元素組成的集合,叫做S中子集A的補集(或余集)記作:CSA即CSA={x?x?S且x?A}

 。2)全集:如果集合S含有我們所要研究的各個(gè)集合的全部元素,看作一個(gè)全集。通常用U來(lái)表示。

 。3)性質(zhì):⑴CU(CUA)=A⑵(CUA)∩A=Φ⑶(CUA)∪A=U二、函數的有關(guān)概念

  合A中的任意一個(gè)數x,在集合B中都有唯一確定的數f(x)和它對應,那么就稱(chēng)f:A→B為從集合A到集合B的一個(gè)函數.記作:y=f(x),x∈A.其中,x叫做自變量,x的取值范圍A叫做函數的定義域;與x的值相對應的y值叫做函數值,函數值的集合{f(x)|x∈A}叫做函數的值域.

  能使函數式有意義的實(shí)數x的集合稱(chēng)為函數的定義域,求函數的定義域時(shí)列不等式組的主要依據是:(1)分式的分母不等于零;(2)偶次方根的被開(kāi)方數不小于零;(3)對數式的真數必須大于零;(4)指數、對數式的底必須大于零且不等于1.(5)如果函數是由一些基本函數通過(guò)四則運算結合而成的.那么,它的定義域是使各部分都有意義的x的值組成的集合.(6)指數為零底不可以等于零(7)實(shí)際問(wèn)題中的函數的定義域還要保證實(shí)際問(wèn)題有意義.

  2.構成函數的三要素:定義域、對應關(guān)系和值域

  再注意:(1)由于值域是由定義域和對應關(guān)系決定的,所以,如果兩個(gè)函數的定義域和對應關(guān)系完全一致,即稱(chēng)這兩個(gè)函數相等(或為同一函數)(2)兩個(gè)函數相等當且僅當它們的定義域和對應關(guān)系完全一致,而與表示自變量和函數值的字母無(wú)關(guān)。相同函數的判斷方法:①表達式相同;②定義域一致(兩點(diǎn)必須同時(shí)具備)

  3.區間的概念(1)區間的分類(lèi):開(kāi)區間、閉區間、半開(kāi)半閉區間;(2)無(wú)窮區間;(3)區間的數軸表示.4.映射一般地,設A、B是兩個(gè)非空的集合,如果按某一個(gè)確定的對應法則f,使對于集合A中的任意一個(gè)元素x,在集合B中都有唯一確定的元素y與之對應,那么就稱(chēng)對應f:A?B為從集合A到集合B的一個(gè)映射。記作“f:A?B”

  給定一個(gè)集合A到B的映射,如果a∈A,b∈B.且元素a和元素b對應,那么,我們把元素b叫做元素a的象,元素a叫做元素b的原象

  說(shuō)明:函數是一種特殊的映射,映射是一種特殊的對應,①集合A、B及對應法則f是確定的;②對應法則有“方向性”,即強調從集合A到集合B的對應,它與從B到A的'對應關(guān)系一般是不同的;③對于映射f:A→B來(lái)說(shuō),則應滿(mǎn)足:(Ⅰ)集合A中的每一個(gè)元素,在集合B中都有象,并且象是唯一的;(Ⅱ)集合A中不同的元素,在集合B中對應的象可以是同一個(gè);(Ⅲ)不要求集合B中的每一個(gè)元素在集合A中都有原象。

  5.常用的函數表示法:解析法:圖象法:列表法:

  6.分段函數在定義域的不同部分上有不同的解析表達式的函數。(1)分段函數是一個(gè)函數,不要把它誤認為是幾個(gè)函數;

 。2)分段函數的定義域是各段定義域的并集,值域是各段值域的并集.7.函數單調性(1).設函數y=f(x)的定義域為I,如果對于定義域I內的某個(gè)區間D內的任意兩個(gè)自變量x1,x2,當x1

  如果對于區間D上的任意兩個(gè)自變量的值x1,x2,當x1

  注意:函數的單調性是在定義域內的某個(gè)區間上的性質(zhì),是函數的局部性質(zhì);

 。2)圖象的特點(diǎn)如果函數y=f(x)在某個(gè)區間是增函數或減函數,那么說(shuō)函數y=f(x)在這一區間上具有(嚴格的)單調性,在單調區間上增函數的圖象從左到右是上升的,減函數的圖象從左到右是下降的.(3).函數單調區間與單調性的判定方法

  (A)定義法:○1任取x1,x2∈D,且x1

  8.函數的奇偶性

 。1)一般地,對于函數f(x)的定義域內的任意一個(gè)x,都有f(-x)=f(x),那么f(x)就叫做偶函數.

 。2).一般地,對于函數f(x)的定義域內的任意一個(gè)x,都有f(-x)=—f(x),那么f(x)就叫做奇函數.

  注意:○1函數是奇函數或是偶函數稱(chēng)為函數的奇偶性,函數的奇偶性是函數的整體性質(zhì);函數可能沒(méi)有奇偶性,也可能既是奇函數又是偶函數。

  2由函數的奇偶性定義可知,函數具有奇偶性的一個(gè)必要條件是,對于定義域內的任意一個(gè)x,○

  則-x也一定是定義域內的一個(gè)自變量(即定義域關(guān)于原點(diǎn)對稱(chēng)).(3)具有奇偶性的函數的圖象的特征

  偶函數的圖象關(guān)于y軸對稱(chēng);奇函數的圖象關(guān)于原點(diǎn)對稱(chēng).

  總結:利用定義判斷函數奇偶性的格式步驟:○1首先確定函數的定義域,并判斷其定義域是否關(guān)于原點(diǎn)對稱(chēng);○2確定f(-x)與f(x)的關(guān)系;○3作出相應結論:若f(-x)=f(x)或f(-x)-f(x)=0,則f(x)是偶函數;若f(-x)=-f(x)或f(-x)+f(x)=0,則f(x)是奇函數.9、函數的解析表達式

 。1).函數的解析式是函數的一種表示方法,要求兩個(gè)變量之間的函數關(guān)系時(shí),一是要求出它們之間的對應法則,二是要求出函數的定義域.

 。2).求函數的解析式的主要方法有:待定系數法、換元法、消參法等,如果已知函數解析式的構造時(shí),可用待定系數法;已知復合函數f[g(x)]的表達式時(shí),可用換元法,這時(shí)要注意元的取值范圍;當已知表達式較簡(jiǎn)單時(shí),也可用湊配法;若已知抽象函數表達式,則常用解方程組消參的方法求出f(x)。

  補充不等式的解法與二次函數(方程)的性質(zhì)

數學(xué)知識點(diǎn)總結9

  空間兩條直線(xiàn)只有三種位置關(guān)系:平行、相交、異面

  1、按是否共面可分為兩類(lèi):

  (1)共面:平行、相交

  (2)異面:

  異面直線(xiàn)的定義:不同在任何一個(gè)平面內的兩條直線(xiàn)或既不平行也不相交。

  異面直線(xiàn)判定定理:用平面內一點(diǎn)與平面外一點(diǎn)的直線(xiàn),與平面內不經(jīng)過(guò)該點(diǎn)的直線(xiàn)是異面直線(xiàn)。

  兩異面直線(xiàn)所成的角:范圍為(0°,90°)esp.空間向量法

  兩異面直線(xiàn)間距離:公垂線(xiàn)段(有且只有一條)esp.空間向量法

  2、若從有無(wú)公共點(diǎn)的'角度看可分為兩類(lèi):

  (1)有且僅有一個(gè)公共點(diǎn)——相交直線(xiàn);

  (2)沒(méi)有公共點(diǎn)——平行或異面

  直線(xiàn)和平面的位置關(guān)系:

  直線(xiàn)和平面只有三種位置關(guān)系:在平面內、與平面相交、與平面平行

 、僦本(xiàn)在平面內——有無(wú)數個(gè)公共點(diǎn)

 、谥本(xiàn)和平面相交——有且只有一個(gè)公共點(diǎn)

  直線(xiàn)與平面所成的角:平面的一條斜線(xiàn)和它在這個(gè)平面內的射影所成的銳角。

數學(xué)知識點(diǎn)總結10

  高考數學(xué)必考知識點(diǎn)歸納必修一:

  1、集合與函數的概念(這部分知識抽象,較難理解)2、基本的初等函數(指數函數、對數函數)3、函數的性質(zhì)及應用(比較抽象,較難理解)

  高考數學(xué)必考知識點(diǎn)歸納必修二:

  1、立體幾何(1)、證明:垂直(多考查面面垂直)、平行(2)、求解:主要是夾角問(wèn)題,包括線(xiàn)面角和面面角。

  這部分知識是高一學(xué)生的難點(diǎn),比如:一個(gè)角實(shí)際上是一個(gè)銳角,但是在圖中顯示的'鈍角等等一些問(wèn)題,需要學(xué)生的立體意識較強。這部分知識高考占22---27分

  2、直線(xiàn)方程:高考時(shí)不單獨命題,易和圓錐曲線(xiàn)結合命題

  3、圓方程

  高考數學(xué)必考知識點(diǎn)歸納必修三:

  1、算法初步:高考必考內容,5分(選擇或填空)2、統計:3、概率:高考必考內容,09年理科占到15分,文科數學(xué)占到5分。

  高考數學(xué)必考知識點(diǎn)歸納必修四:

  1、三角函數:(圖像、性質(zhì)、高中重難點(diǎn),)必考大題:15---20分,并且經(jīng)常和其他函數混合起來(lái)考查。

  2、平面向量:高考不單獨命題,易和三角函數、圓錐曲線(xiàn)結合命題。09年理科占到5分,文科占到13分。

  高考數學(xué)必考知識點(diǎn)歸納必修五:

  1、解三角形:(正、余弦定理、三角恒等變換)高考中理科占到22分左右,文科數學(xué)占到13分左右2、數列:高考必考,17---22分3、不等式:(線(xiàn)性規劃,聽(tīng)課時(shí)易理解,但做題較復雜,應掌握技巧。高考必考5分)不等式不單獨命題,一般和函數結合求最值、解集。

  高考數學(xué)必考知識點(diǎn)歸納文科選修:

  選修1--1:重點(diǎn):高考占30分

  1、邏輯用語(yǔ):一般不考,若考也是和集合放一塊考2、圓錐曲線(xiàn):3、導數、導數的應用(高考必考)

  選修1--2:

  1、統計:2、推理證明:一般不考,若考會(huì )是填空題3、復數:(新課標比老課本難的多,高考必考內容)。

  高考數學(xué)必考知識點(diǎn)歸納理科選修:

  選修2--1:1、邏輯用語(yǔ)2、圓錐曲線(xiàn)3、空間向量:(利用空間向量可以把立體幾何做題簡(jiǎn)便化)選修2--2:1、導數與微積分2、推理證明:一般不考3、復數

  選修2--3:1、計數原理:(排列組合、二項式定理)掌握這部分知識點(diǎn)需要大量做題找規律,無(wú)技巧。高考必考,10分2、隨機變量及其分布:不單獨命題3、統計:

  高考的知識板塊

  集合與簡(jiǎn)單邏輯:5分或不考

  函數:高考60分:①、指數函數②對數函數③二次函數④三次函數⑤三角函數⑥抽象函數(無(wú)函數表達式,不易理解,難點(diǎn))

  平面向量與解三角形

  立體幾何:22分左右

  不等式:(線(xiàn)性規則)5分必考

  數列:17分(一道大題+一道選擇或填空)易和函數結合命題

  平面解析幾何:(30分左右)

  計算原理:10分左右

  概率統計:12分----17分

  復數:5分

數學(xué)知識點(diǎn)總結11

  1、函數零點(diǎn)的概念:

  對于函數,把使成立的實(shí)數叫做函數的零點(diǎn)。

  2、函數零點(diǎn)的意義:

  函數的零點(diǎn)就是方程實(shí)數根,亦即函數的圖象與軸交點(diǎn)的橫坐標。即:方程有實(shí)數根函數的圖象與軸有交點(diǎn)函數有零點(diǎn)。

  3、函數零點(diǎn)的求法:

  求函數的零點(diǎn):

 。1)(代數法)求方程的實(shí)數根;

 。2)(幾何法)對于不能用求根公式的方程,可以將它與函數的'圖象聯(lián)系起來(lái),并利用函數的性質(zhì)找出零點(diǎn)。

  4、二次函數的零點(diǎn):

  二次函數。

  1)△>0,方程有兩不等實(shí)根,二次函數的圖象與軸有兩個(gè)交點(diǎn),二次函數有兩個(gè)零點(diǎn)。

  2)△=0,方程有兩相等實(shí)根(二重根),二次函數的圖象與軸有一個(gè)交點(diǎn),二次函數有一個(gè)二重零點(diǎn)或二階零點(diǎn)。

  3)△<0,方程無(wú)實(shí)根,二次函數的圖象與軸無(wú)交點(diǎn),二次函數無(wú)零點(diǎn)。

數學(xué)知識點(diǎn)總結12

  集合具有某種特定性質(zhì)的事物的總體。這里的事物可以是人,物品,也可以是數學(xué)元素。

  例如:

  1、分散的人或事物聚集到一起;使聚集:緊急~。

  2、數學(xué)名詞。一組具有某種共同性質(zhì)的數學(xué)元素:有理數的~。

  3、口號等等。集合在數學(xué)概念中有好多概念,如集合論:集合是現代數學(xué)的基本概念,專(zhuān)門(mén)研究集合的理論叫做集合論?低校–antor,G、F、P、,1845年1918年,德國數學(xué)家先驅?zhuān)羌险摰,目前集合論的基本思想已?jīng)滲透到現代數學(xué)的所有領(lǐng)域。

  集合,在數學(xué)上是一個(gè)基礎概念。

  什么叫基礎概念?基礎概念是不能用其他概念加以定義的概念。集合的概念,可通過(guò)直觀(guān)、公理的方法來(lái)下定義。

  集合是把人們的直觀(guān)的或思維中的'某些確定的能夠區分的對象匯合在一起,使之成為一個(gè)整體(或稱(chēng)為單體),這一整體就是集合。組成一集合的那些對象稱(chēng)為這一集合的元素(或簡(jiǎn)稱(chēng)為元)。

  集合與集合之間的關(guān)系

  某些指定的對象集在一起就成為一個(gè)集合集合符號,含有有限個(gè)元素叫有限集,含有無(wú)限個(gè)元素叫無(wú)限集,空集是不含任何元素的集,記做?占侨魏渭系淖蛹,是任何非空集的真子集。任何集合是它本身的子集。子集,真子集都具有傳遞性。

 。ㄕf(shuō)明一下:如果集合A的所有元素同時(shí)都是集合B的元素,則A稱(chēng)作是B的子集,寫(xiě)作AB。若A是B的子集,且A不等于B,則A稱(chēng)作是B的真子集,一般寫(xiě)作AB。中學(xué)教材課本里將符號下加了一個(gè)符號,不要混淆,考試時(shí)還是要以課本為準。所有男人的集合是所有人的集合的真子集。)

數學(xué)知識點(diǎn)總結13

  1、正數和負數的有關(guān)概念

  (1)正數:比0大的數叫做正數;

  負數:比0小的數叫做負數;

  0既不是正數,也不是負數。

  (2)正數和負數表示相反意義的量。

  2、有理數的概念及分類(lèi)

  3、有關(guān)數軸

  (1)數軸的三要素:原點(diǎn)、正方向、單位長(cháng)度。數軸是一條直線(xiàn)。

  (2)所有有理數都可以用數軸上的點(diǎn)來(lái)表示,但數軸上的點(diǎn)不一定都是有理數。

  (3)數軸上,右邊的數總比左邊的數大;表示正數的點(diǎn)在原點(diǎn)的右側,表示負數的點(diǎn)在原點(diǎn)的左側。

  (2)相反數:符號不同、絕對值相等的兩個(gè)數互為相反數。

  若a、b互為相反數,則a+b=0;

  相反數是本身的是0,正數的相反數是負數,負數的相反數是正數。

  (3)絕對值最小的數是0;絕對值是本身的數是非負數。

  4、任何數的.絕對值是非負數。

  最小的正整數是1,最大的負整數是-1。

  5、利用絕對值比較大小

  兩個(gè)正數比較:絕對值大的那個(gè)數大;

  兩個(gè)負數比較:先算出它們的絕對值,絕對值大的反而小。

  6、有理數加法

  (1)符號相同的兩數相加:和的符號與兩個(gè)加數的符號一致,和的絕對值等于兩個(gè)加數絕對值之和.

  (2)符號相反的兩數相加:當兩個(gè)加數絕對值不等時(shí),和的符號與絕對值較大的加數的符號相同,和的絕對值等于加數中較大的絕對值減去較小的絕對值;當兩個(gè)加數絕對值相等時(shí),兩個(gè)加數互為相反數,和為零.

  (3)一個(gè)數同零相加,仍得這個(gè)數.

  加法的交換律:a+b=b+a

  加法的結合律:(a+b)+c=a+(b+c)

  7、有理數減法:減去一個(gè)數,等于加上這個(gè)數的相反數。

  8、在把有理數加減混合運算統一為最簡(jiǎn)的形式,負數前面的加號可以省略不寫(xiě).

  例如:14+12+(-25)+(-17)可以寫(xiě)成省略括號的形式:14+12 -25-17,可以讀作“正14加12減25減17”,也可以讀作“正14、正12、負25、負17的和.”

  9、有理數的乘法

  兩個(gè)數相乘,同號得正,異號得負,再把絕對值相乘;任何數與0相乘都得0。

  第一步:確定積的符號 第二步:絕對值相乘

  10、乘積的符號的確定

  幾個(gè)有理數相乘,因數都不為 0 時(shí),積的符號由負因數的個(gè)數確定:當負因數有奇數個(gè)時(shí),積為負;

  當負因數有偶數個(gè)時(shí),積為正。幾個(gè)有理數相乘,有一個(gè)因數為零,積就為零。

  11、倒數:乘積為1的兩個(gè)數互為倒數,0沒(méi)有倒數。

  正數的倒數是正數,負數的倒數是負數。(互為倒數的兩個(gè)數符號一定相同)

  倒數是本身的只有1和-1。

數學(xué)知識點(diǎn)總結14

  一、導數的應用

  1、用導數研究函數的最值

  確定函數在其確定的定義域內可導(通常為開(kāi)區間),求出導函數在定義域內的零點(diǎn),研究在零點(diǎn)左、右的函數的單調性,若左增,右減,則在該零點(diǎn)處,函數去極大值;若左邊減少,右邊增加,則該零點(diǎn)處函數取極小值。

  學(xué)習了如何用導數研究函數的最值之后,可以做一個(gè)有關(guān)導數和函數的綜合題來(lái)檢驗下學(xué)習成果。

  2、生活中常見(jiàn)的函數優(yōu)化問(wèn)題

  1)費用、成本最省問(wèn)題

  2)利潤、收益最大問(wèn)題

  3)面積、體積最(大)問(wèn)題

  二、推理與證明

  1、歸納推理:歸納推理是高二數學(xué)的一個(gè)重點(diǎn)內容,其難點(diǎn)就是有部分結論得到一般結論,的方法是充分考慮部分結論提供的信息,從中發(fā)現一般規律;類(lèi)比推理的難點(diǎn)是發(fā)現兩類(lèi)對象的相似特征,由其中一類(lèi)對象的特征得出另一類(lèi)對象的特征,的方法是利用已經(jīng)掌握的數學(xué)知識,分析兩類(lèi)對象之間的關(guān)系,通過(guò)兩類(lèi)對象已知的相似特征得出所需要的相似特征。

  2、類(lèi)比推理:由兩類(lèi)對象具有某些類(lèi)似特征和其中一類(lèi)對象的某些已知特征,推出另一類(lèi)對象也具有這些特征的推理稱(chēng)為類(lèi)比推理,簡(jiǎn)而言之,類(lèi)比推理是由特殊到特殊的推理。

  三、不等式

  對于含有參數的一元二次不等式解的'討論

  1)二次項系數:如果二次項系數含有字母,要分二次項系數是正數、零和負數三種情況進(jìn)行討論。

  2)不等式對應方程的根:如果一元二次不等式對應的方程的根能夠通過(guò)因式分解的方法求出來(lái),則根據這兩個(gè)根的大小進(jìn)行分類(lèi)討論,這時(shí),兩個(gè)根的大小關(guān)系就是分類(lèi)標準,如果一元二次不等式對應的方程根不能通過(guò)因式分解的方法求出來(lái),則根據方程的判別式進(jìn)行分類(lèi)討論。

  通過(guò)不等式練習題能夠幫助你更加熟練的運用不等式的知識點(diǎn),例如用放縮法證明不等式這種技巧以及利用均值不等式求最值的九種技巧這樣的解題思路需要再做題的過(guò)程中總結出來(lái)。

  四、坐標平面上的直線(xiàn)

  1、內容要目:直線(xiàn)的點(diǎn)方向式方程、直線(xiàn)的點(diǎn)法向式方程、點(diǎn)斜式方程、直線(xiàn)方程的一般式、直線(xiàn)的傾斜角和斜率等。點(diǎn)到直線(xiàn)的距離,兩直線(xiàn)的夾角以及兩平行線(xiàn)之間的距離。

  2、基本要求:掌握求直線(xiàn)的方法,熟練轉化確定直線(xiàn)方向的不同條件(例如:直線(xiàn)方向向量、法向量、斜率、傾斜角等)。熟練判斷點(diǎn)與直線(xiàn)、直線(xiàn)與直線(xiàn)的不同位置,能正確求點(diǎn)到直線(xiàn)的距離、兩直線(xiàn)的交點(diǎn)坐標及兩直線(xiàn)的夾角大小。

  3、重難點(diǎn):初步建立代數方法解決幾何問(wèn)題的觀(guān)念,正確將幾何條件與代數表示進(jìn)行轉化,定量地研究點(diǎn)與直線(xiàn)、直線(xiàn)與直線(xiàn)的位置關(guān)系。根據兩個(gè)獨立條件求出直線(xiàn)方程。熟練運用待定系數法。

  五、圓錐曲線(xiàn)

  1、內容要目:直角坐標系中,曲線(xiàn)C是方程F(x,y)=0的曲線(xiàn)及方程F(x,y)=0是曲線(xiàn)C的方程,圓的標準方程及圓的一般方程。橢圓、雙曲線(xiàn)、拋物線(xiàn)的標準方程及它們的性質(zhì)。

  2、基本要求:理解曲線(xiàn)的方程與方程的曲線(xiàn)的意義,利用代數方法判斷定點(diǎn)是否在曲線(xiàn)

  上及求曲線(xiàn)的交點(diǎn)。掌握圓、橢圓、雙曲線(xiàn)、拋物線(xiàn)的定義和求這些曲線(xiàn)方程的基本方法。求曲線(xiàn)的交點(diǎn)之間的距離及交點(diǎn)的中點(diǎn)坐標。利用直線(xiàn)和圓、圓和圓的位置關(guān)系的幾何判定,確定它們的位置關(guān)系并利用解析法解決相應的幾何問(wèn)題。

  3、重難點(diǎn):建立數形結合的概念,理解曲線(xiàn)與方程的對應關(guān)系,掌握代數研究幾何的方法,掌握把已知條件轉化為等價(jià)的代數表示,通過(guò)代數方法解決幾何問(wèn)題。

數學(xué)知識點(diǎn)總結15

  一、基本知識

  一、數與代數

  A、數與式:

  1、有理數:①整數→正整數,0,負整數;

 、诜謹怠謹,負分數

  數軸:①畫(huà)一條水平直線(xiàn),在直線(xiàn)上取一點(diǎn)表示0(原點(diǎn)),選取某一長(cháng)度作為單位長(cháng)度,規定直線(xiàn)上向右的方向為正方向,就得到數軸。

 、谌魏我粋(gè)有理數都可以用數軸上的一個(gè)點(diǎn)來(lái)表示。

 、廴绻麅蓚(gè)數只有符號不同,那么我們稱(chēng)其中一個(gè)數為另外一個(gè)數的相反數,也稱(chēng)這兩個(gè)數互為相反數。在數軸上,表示互為相反數的兩個(gè)點(diǎn),位于原點(diǎn)的兩側,并且與原點(diǎn)距離相等。

 、軘递S上兩個(gè)點(diǎn)表示的數,右邊的總比左邊的大。正數大于0,負數小于0,正數大于負數。

  絕對值:①在數軸上,一個(gè)數所對應的點(diǎn)與原點(diǎn)的距離叫做該數的絕對值。

 、谡龜档慕^對值是他的本身、負數的絕對值是他的相反數、0的絕對值是0。兩個(gè)負數比較大小,絕對值大的反而小。

  有理數的運算:帶上符號進(jìn)行正常運算。

  加法:

 、偻栂嗉,取相同的符號,把絕對值相加。

 、诋愄栂嗉,絕對值相等時(shí)和為0;絕對值不等時(shí),取絕對值較大的數的符號,并用較大的絕對值減去較小的絕對值。

 、垡粋(gè)數與0相加不變。

  減法:減去一個(gè)數,等于加上這個(gè)數的相反數。

  乘法:①兩數相乘,同號得正,異號得負,絕對值相乘。

 、谌魏螖蹬c0相乘得0。

 、鄢朔e為1的兩個(gè)有理數互為倒數。

  除法:①除以一個(gè)數等于乘以一個(gè)數的倒數。

 、0不能作除數。

  乘方:求N個(gè)相同因數A的積的運算叫做乘方,乘方的結果叫冪,A叫底數,N叫次數或指數。

  混合順序:先算乘法,再算乘除,最后算加減,有括號要先算括號里的。

  2、實(shí)數

  無(wú)理數

  無(wú)理數:無(wú)限不循環(huán)小數叫無(wú)理數,例如:π=3.1415926…

  平方根:①如果一個(gè)正數X的平方等于A(yíng),那么這個(gè)正數X就叫做A的算術(shù)平方根。

 、谌绻粋(gè)數X的平方等于A(yíng),那么這個(gè)數X就叫做A的平方根。

 、垡粋(gè)正數有2個(gè)平方根;0的平方根為0;負數沒(méi)有平方根。

 、芮笠粋(gè)數A的平方根運算,叫做開(kāi)平方,其中A叫做被開(kāi)方數。

  立方根:①如果一個(gè)數X的立方等于A(yíng),那么這個(gè)數X就叫做A的立方根。

 、谡龜档牧⒎礁钦龜、0的立方根是0、負數的立方根是負數。

 、矍笠粋(gè)數A的立方根的運算叫開(kāi)立方,其中A叫做被開(kāi)方數。

  實(shí)數:①實(shí)數分有理數和無(wú)理數。

 、谠趯(shí)數范圍內,相反數,倒數,絕對值的意義和有理數范圍內的相反數,倒數,絕對值的意義完全一樣;

 、勖恳粋(gè)實(shí)數都可以在數軸上的一個(gè)點(diǎn)來(lái)表示。

  3、代數式

  代數式:?jiǎn)为氁粋(gè)數或者一個(gè)字母也是代數式。

  合并同類(lèi)項:①所含字母相同,并且相同字母的指數也相同的項,叫做同類(lèi)項;②把同類(lèi)項合并成一項就叫做合并同類(lèi)項。

 、墼诤喜⑼(lèi)項時(shí),我們把同類(lèi)項的系數相加,字母和字母的指數不變。

  4、整式與分式

  整式:①數與字母的乘積的代數式叫單項式,幾個(gè)單項式的和叫多項式,單項式和多項式統稱(chēng)整式。

 、谝粋(gè)單項式中,所有字母的指數和叫做這個(gè)單項式的次數。

 、垡粋(gè)多項式中,次數最高的項的次數叫做這個(gè)多項式的次數。

  整式運算:加減運算時(shí),如果遇到括號先去括號,再合并同類(lèi)項。

  冪的運算:

  A^M+A^N=A^(M+N)

 。ˋ^M)^N=A^(MN

 。

 。ˋ/B)^N=A^N/B^N

  除法一樣。

  整式的乘法:

 、賳雾検脚c單項式相乘,把他們的系數,相同字母的冪分別相乘,其余字母連同他的指數不變,作為積的因式。

 、趩雾検脚c多項式相乘,就是根據分配律用單項式去乘多項式的每一項,再把所得的積相加。

 、鄱囗検脚c多項式相乘,先用一個(gè)多項式的每一項乘另外一個(gè)多項式的每一項,再把所得的積相加。

  公式兩條:平方差公式:A^2-B^2=(A+B)(A-B);

  完全平方公式:(A+B)^2=A^2+2AB+B^2;(A-B)^2=A^2-2AB+B^2。

  整式的除法:①單項式相除,把系數,同底數冪分別相除后,作為商的因式;對于只在被除式里含有的字母,則連同他的指數一起作為商的一個(gè)因式。

 、诙囗検匠詥雾検,先把這個(gè)多項式的每一項分別除以單項式,再把所得的商相加。

  分解因式:把一個(gè)多項式化成幾個(gè)整式的積的形式,這種變化叫做把這個(gè)多項式分解因式。

  方法:提公因式法、運用公式法、分組分解法、十字相乘法。

  分式:①整式A除以整式B,如果除式B中含有分母,那么這個(gè)就是分式,對于任何一個(gè)分式,分母不為0。

 、诜质降姆肿优c分母同乘以或除以同一個(gè)不等于0的整式,分式的值不變。

  分式的運算:

  乘法:把分子相乘的積作為積的分子,把分母相乘的積作為積的分母。

  除法:除以一個(gè)分式等于乘以這個(gè)分式的倒數。

  加減法:①同分母分式相加減,分母不變,把分子相加減。

 、诋惙帜傅姆质较韧ǚ,化為同分母的分式,再加減。

  分式方程:①分母中含有未知數的方程叫分式方程。

 、谑狗匠痰姆帜笧0的解稱(chēng)為原方程的增根。

  B、方程與不等式

  1、方程與方程組

  一元一次方程:①在一個(gè)方程中,只含有一個(gè)未知數,并且未知數的指數是1,這樣的方程叫一元一次方程。

 、诘仁絻蛇呁瑫r(shí)加上或減去或乘以或除以(不為0)一個(gè)代數式,所得結果仍是等式。

  解一元一次方程的步驟:去分母,移項,合并同類(lèi)項,未知數系數化為1。

  二元一次方程:含有兩個(gè)未知數,并且所含未知數的項的次數都是1的'方程叫做二元一次方程。

  二元一次方程組:兩個(gè)二元一次方程組成的方程組叫做二元一次方程組。

  適合一個(gè)二元一次方程的一組未知數的值,叫做這個(gè)二元一次方程的一個(gè)解。

  二元一次方程組中各個(gè)方程的公共解,叫做這個(gè)二元一次方程組的解。

  解二元一次方程組的方法:代入消元法;加減消元法。

  一元二次方程:只有一個(gè)未知數,并且未知數的項的最高系數為2的方程:ax^2+bx+c=0;

  1)一元二次方程的二次函數的關(guān)系

  大家已經(jīng)學(xué)過(guò)二次函數(即拋物線(xiàn))了,對他也有很深的了解,好像解法,在圖象中表示等等,其實(shí)一元二次方程也可以用二次函數來(lái)表示,其實(shí)一元二次方程也是二次函數的一個(gè)特殊情況,就是當Y=0的時(shí)候就構成了一元二次方程了。那如果在平面直角坐標系中表示出來(lái),一元二次方程就是二次函數中,圖像與X軸的交點(diǎn)。也就是該方程的解了

  2)一元二次方程的解法

  大家知道,二次函數有頂點(diǎn)式(-b/2a

  ,4ac-b^2/4a),這大家要記住,很重要,因為在上面已經(jīng)說(shuō)過(guò)了,一元二次方程也是二次函數的一部分,所以他也有自己的一個(gè)解法,利用他可以求出所有的一元一次方程的解

  (1)配方法

  利用配方,使方程變?yōu)橥耆椒焦,在用直接開(kāi)平方法去求出解

  (2)分解因式法

  提取公因式,套用公式法,和十字相乘法。在解一元二次方程的時(shí)候也一樣,利用這點(diǎn),把方程化為幾個(gè)乘積的形式去解

  (3)公式法

  這方法也可以是在解一元二次方程的萬(wàn)能方法了,方程的根X1={-b+√[b^2-4ac)]}/2a,X2={-b-√[b^2-4ac)]}/2a

  3)解一元二次方程的步驟:

 。1)配方法的步驟:

  先把常數項移到方程的右邊,再把二次項的系數化為1,再同時(shí)加上1次項的系數的一半的平方,最后配成完全平方公式

  (2)分解因式法的步驟:

  把方程右邊化為0,然后看看是否能用提取公因式,公式法(這里指的是分解因式中的公式法)或十字相乘,如果可以,就可以化為乘積的形式

  (3)公式法

  就把一元二次方程的各系數分別代入,這里二次項的系數為a,一次項的系數為b,常數項的系數為c

  4)韋達定理

  利用韋達定理去了解,韋達定理就是在一元二次方程中,二根之和=-b/a,二根之積=c/a

  也可以表示為x1+x2=-b/a,x1x2=c/a。利用韋達定理,可以求出一元二次方程中的各系數,在題目中很常用

  5)一元二次方程根的情況

  利用根的判別式去了解,根的判別式可在書(shū)面上可以寫(xiě)為“△”,讀作“diao

  ta”,而△=b2-4ac,這里可以分為3種情況:

  I當△>0時(shí),一元二次方程有2個(gè)不相等的實(shí)數根;

  II當△=0時(shí),一元二次方程有2個(gè)相同的實(shí)數根;

  III當△B,則A+C>B+C;

  在不等式中,如果減去同一個(gè)數(或加上一個(gè)負數),不等式符號不改向;

  例如:如果A>B,則A-C>B-C;

  在不等式中,如果乘以同一個(gè)正數,不等式符號不改向;

  例如:如果A>B,則A*C>B*C(C>0);

  在不等式中,如果乘以同一個(gè)負數,不等號改向;

  例如:如果A>B,則A*C

  如果不等式乘以0,那么不等號改為等號;

  所以在題目中,要求出乘以的數,那么就要看看題中是否出現一元一次不等式,如果出現了,那么不等式乘的數就不等于0,否則不等式不成立;

  3、函數

  變量:因變量Y,自變量X。

  在用圖像表示變量之間的關(guān)系時(shí),通常用水平方向的數軸上的點(diǎn)自變量,用豎直方向的數軸上的點(diǎn)表示因變量。

  一次函數:①若兩個(gè)變量X,Y間的關(guān)系式可以表示成Y=KX+B(B為常數,K不等于0)的形式,則稱(chēng)Y是X的一次函數。

 、诋擝=0時(shí),稱(chēng)Y是X的正比例函數。

  一次函數的圖像:

 、侔岩粋(gè)函數的自變量X與對應的因變量Y的值分別作為點(diǎn)的橫坐標與縱坐標,在直角坐標系內描出它的對應點(diǎn),所有這些點(diǎn)組成的圖形叫做該函數的圖像。

 、谡壤瘮礩=KX的圖像是經(jīng)過(guò)原點(diǎn)的一條直線(xiàn)。

 、墼谝淮魏瘮抵,當K〈0,B〈O時(shí),則經(jīng)234象限;

  當K〈0,B〉0時(shí),則經(jīng)124象限;

  當K〉0,B〈0時(shí),則經(jīng)134象限;

  當K〉0,B〉0時(shí),則經(jīng)123象限。

 、墚擪〉0時(shí),Y的值隨X值的增大而增大,當X〈0時(shí),Y的值隨X值的增大而減少。

  二空間與圖形

  A、圖形的認識

  1、點(diǎn),線(xiàn),面

  點(diǎn),線(xiàn),面:①圖形是由點(diǎn),線(xiàn),面構成的。

 、诿媾c面相交得線(xiàn),線(xiàn)與線(xiàn)相交得點(diǎn)。

 、埸c(diǎn)動(dòng)成線(xiàn),線(xiàn)動(dòng)成面,面動(dòng)成體。

  展開(kāi)與折疊:①在棱柱中,任何相鄰的兩個(gè)面的交線(xiàn)叫做棱,側棱是相鄰兩個(gè)側面的交線(xiàn),棱柱的所有側棱長(cháng)相等,棱柱的上下底面的形狀相同,側面的形狀都是長(cháng)方體。

 、贜棱柱就是底面圖形有N條邊的棱柱,上下底面就是N邊形。

  截一個(gè)幾何體:用一個(gè)平面去截一個(gè)圖形,截出的面叫做截面。

  視圖:主視圖,左視圖,俯視圖。

  多邊形:他們是由一些不在同一條直線(xiàn)上的線(xiàn)段依次首尾相連組成的封閉圖形。

  弧、扇形:①由一條弧和經(jīng)過(guò)這條弧的端點(diǎn)的兩條半徑所組成的圖形叫扇形。

 、趫A可以分割成若干個(gè)扇形。

  2、角

  線(xiàn):①線(xiàn)段有兩個(gè)端點(diǎn)。

 、趯⒕(xiàn)段向一個(gè)方向無(wú)限延長(cháng)就形成了射線(xiàn)。射線(xiàn)只有一個(gè)端點(diǎn)。

 、蹖⒕(xiàn)段的兩端無(wú)限延長(cháng)就形成了直線(xiàn)。直線(xiàn)沒(méi)有端點(diǎn)。

 、芙(jīng)過(guò)兩點(diǎn)有且只有一條直線(xiàn)。

  比較長(cháng)短:①兩點(diǎn)之間的所有連線(xiàn)中,線(xiàn)段最短。兩點(diǎn)之間直線(xiàn)最短。

 、趦牲c(diǎn)之間線(xiàn)段的長(cháng)度,叫做這兩點(diǎn)之間的距離。

  角的度量與表示:①角由兩條具有公共端點(diǎn)的射線(xiàn)組成,兩條射線(xiàn)的公共端點(diǎn)是這個(gè)角的頂點(diǎn)。

 、谝欢鹊1/60是一分,一分的1/60是一秒。即:60分為1度,60秒為1分。

  角的比較:①角也可以看成是由一條射線(xiàn)繞著(zhù)他的端點(diǎn)旋轉而成的。

 、谝粭l射線(xiàn)繞著(zhù)他的端點(diǎn)旋轉,當終邊和始邊成一條直線(xiàn)時(shí),所成的角叫做平角,180。始邊繼續旋轉,當他又和始邊重合時(shí),所成的角叫做周角,360。

 、蹚囊粋(gè)角的頂點(diǎn)引出的一條射線(xiàn),把這個(gè)角分成兩個(gè)相等的角,這條射線(xiàn)叫做這個(gè)角的平分線(xiàn)。

  平行:①同一平面內,不相交的兩條直線(xiàn)叫做平行線(xiàn)。

 、诮(jīng)過(guò)直線(xiàn)外一點(diǎn),有且只有一條直線(xiàn)與這條直線(xiàn)平行。

 、廴绻麅蓷l直線(xiàn)都與第3條直線(xiàn)平行,那么這兩條直線(xiàn)互相平行。

  垂直:①如果兩條直線(xiàn)相交成直角,那么這兩條直線(xiàn)互相垂直。

 、诨ハ啻怪钡膬蓷l直線(xiàn)的交點(diǎn)叫做垂足。

 、燮矫鎯,過(guò)一點(diǎn)有且只有一條直線(xiàn)與已知直線(xiàn)垂直。

  垂直平分線(xiàn):垂直和平分一條線(xiàn)段的直線(xiàn)叫垂直平分線(xiàn)。

  垂直平分線(xiàn)垂直平分的一定是線(xiàn)段,不能是射線(xiàn)或直線(xiàn),這根據射線(xiàn)和直線(xiàn)可以無(wú)限延長(cháng)有關(guān),再看后面的,垂直平分線(xiàn)是一條直線(xiàn),所以在畫(huà)垂直平分線(xiàn)的時(shí)候,確定了2點(diǎn)后(關(guān)于畫(huà)法,后面會(huì )講)一定要把線(xiàn)段穿出2點(diǎn)。

  垂直平分線(xiàn)定理:

  性質(zhì)定理:在垂直平分線(xiàn)上的點(diǎn)到該線(xiàn)段兩端點(diǎn)的距離相等;

  判定定理:到線(xiàn)段2端點(diǎn)距離相等的點(diǎn)在這線(xiàn)段的垂直平分線(xiàn)上;

  角平分線(xiàn):把一個(gè)角平分的射線(xiàn)叫該角的角平分線(xiàn)。

  定義中有幾個(gè)要點(diǎn)要注意一下的:角的角平分線(xiàn)是一條射線(xiàn),不是線(xiàn)段也不是直線(xiàn),很多時(shí),在題目中會(huì )出現直線(xiàn),這是角平分線(xiàn)的對稱(chēng)軸才會(huì )用直線(xiàn)的,這也涉及到軌跡的問(wèn)題,一個(gè)角的角平分線(xiàn)就是到角兩邊距離相等的點(diǎn)的集合。

  性質(zhì)定理:角平分線(xiàn)上的點(diǎn)到該角兩邊的距離相等;

  判定定理:到角的兩邊距離相等的點(diǎn)在該角的角平分線(xiàn)上;

  正方形:一組鄰邊相等的矩形是正方形

  性質(zhì):正方形具有平行四邊形、菱形、矩形的一切性質(zhì)

  判定:1、對角線(xiàn)相等的菱形2、鄰邊相等的矩形

  二、基本定理

  1、過(guò)兩點(diǎn)有且只有一條直線(xiàn)

  2、兩點(diǎn)之間線(xiàn)段最短

  3、同角或等角的補角相等

  ——補角=180-角度。

  4、同角或等角的余角相等——余角=90-角度。

  5、過(guò)一點(diǎn)有且只有一條直線(xiàn)和已知直線(xiàn)垂直

  6、直線(xiàn)外一點(diǎn)與直線(xiàn)上各點(diǎn)連接的所有線(xiàn)段中,垂線(xiàn)段最短

  7、平行公理:經(jīng)過(guò)直線(xiàn)外一點(diǎn),有且只有一條直線(xiàn)與這條直線(xiàn)平行

  8、如果兩條直線(xiàn)都和第三條直線(xiàn)平行,這兩條直線(xiàn)也互相平行

  9、同位角相等,兩直線(xiàn)平行

  10、內錯角相等,兩直線(xiàn)平行

  11、同旁?xún)冉腔パa,兩直線(xiàn)平行

  12、兩直線(xiàn)平行,同位角相等

  13、兩直線(xiàn)平行,內錯角相等

  14、兩直線(xiàn)平行,同旁?xún)冉腔パa

  15、定理

  三角形兩邊的和大于第三邊

  16、推論

  三角形兩邊的差小于第三邊

  17、三角形內角和定理:

  三角形三個(gè)內角的和等于180°

  18、推論1

  直角三角形的兩個(gè)銳角互余

  19、推論2

  三角形的一個(gè)外角等于和它不相鄰的兩個(gè)內角的和

  20、推論3

  三角形的一個(gè)外角大于任何一個(gè)和它不相鄰的內角

  21、全等三角形的對應邊、對應角相等

  22、邊角邊公理(SAS):有兩邊和它們的夾角對應相等的兩個(gè)三角形全等

  23、角邊角公理(

  ASA):有兩角和它們的夾邊對應相等的

  兩個(gè)三角形全等

  24、推論(AAS):有兩角和其中一角的對邊對應相等的兩個(gè)三角形全等

  25、邊邊邊公理(SSS):有三邊對應相等的兩個(gè)三角形全等

  26、斜邊、直角邊公理(HL):有斜邊和一條直角邊對應相等的兩個(gè)直角三角形全等

  27、定理1

  在角的平分線(xiàn)上的點(diǎn)到這個(gè)角的兩邊的距離相等

  28、定理2

  到一個(gè)角的兩邊的距離相同的點(diǎn),在這個(gè)角的平分線(xiàn)上

  29、角的平分線(xiàn)是到角的兩邊距離相等的所有點(diǎn)的集合

  30、推論1

  等腰三角形頂角的平分線(xiàn)平分底邊并且垂直于底邊

  31、推論2等腰三角形的頂角平分線(xiàn)、底邊上的中線(xiàn)和底邊上的高互相重合,即三線(xiàn)合一;

  32、推論3

  等邊三角形的各角都相等,并且每一個(gè)角都等于60°

  33、等腰三角形的判定定理

  如果一個(gè)三角形有兩個(gè)角相等,那么這兩個(gè)角所對的邊也相等(等角對等邊)

  34、等腰三角形的性質(zhì)定理

  等腰三角形的兩個(gè)底角相等

  (即等邊對等角)

  35、推論1

  三個(gè)角都相等的三角形是等邊三角形

  36、推論

  有一個(gè)角等于60°的等腰三角形是等邊三角形

  37、在直角三角形中,如果一個(gè)銳角等于30°那么它所對的直角邊等于斜邊的一半

  38、直角三角形斜邊上的中線(xiàn)等于斜邊上的一半

  39、定理

  線(xiàn)段垂直平分線(xiàn)上的點(diǎn)和這條線(xiàn)段兩個(gè)端點(diǎn)的距離相等

  40、逆定理

  和一條線(xiàn)段兩個(gè)端點(diǎn)距離相等的點(diǎn),在這條線(xiàn)段的垂直平分線(xiàn)上

  41、線(xiàn)段的垂直平分線(xiàn)可看作和線(xiàn)段兩端點(diǎn)距離相等的所有點(diǎn)的集合

  42、定理1

  關(guān)于某條直線(xiàn)對稱(chēng)的兩個(gè)圖形是全等形

  43、定理

  如果兩個(gè)圖形關(guān)于某直線(xiàn)對稱(chēng),那么對稱(chēng)軸是對應點(diǎn)連線(xiàn)的垂直平分線(xiàn)

  44、定理3

  兩個(gè)圖形關(guān)于某直線(xiàn)對稱(chēng),如果它們的對應線(xiàn)段或延長(cháng)線(xiàn)相交,那么交點(diǎn)在對稱(chēng)軸上

  45、逆定理

  如果兩個(gè)圖形的對應點(diǎn)連線(xiàn)被同一條直線(xiàn)垂直平分,那么這兩個(gè)圖形關(guān)于這條直線(xiàn)對稱(chēng)

  46、勾股定理

  直角三角形兩直角邊a、b的平方和、等于斜邊c的平方,即a2+b2=c2

  47、勾股定理的逆定理

  如果三角形的三邊長(cháng)a、b、c有關(guān)系a2+b2=c2,那么這個(gè)三角形是直角三角形

  48、定理

  四邊形的內角和等于360°

  49、四邊形的外角和等于360°

  50、多邊形內角和定理

  n邊形的內角的和等于(n-2)×180°

  51、推論

  任意多邊的外角和等于360°

  52、平行四邊形性質(zhì)定理1

  平行四邊形的對角相等

  53、平行四邊形性質(zhì)定理2

  平行四邊形的對邊相等

  54、推論

  夾在兩條平行線(xiàn)間的平行線(xiàn)段相等

  55、平行四邊形性質(zhì)定理3

  平行四邊形的對角線(xiàn)互相平分

  56、平行四邊形判定定理1

  兩組對角分別相等的四邊形是平行四邊形

  57、平行四邊形判定定理2

  兩組對邊分別相等的四邊

  形是平行四邊形

  58、平行四邊形判定定理3

  對角線(xiàn)互相平分的四邊形是平行四邊形

  59、平行四邊形判定定理4

  一組對邊平行相等的四邊形是平行四邊形

  60、矩形性質(zhì)定理1

  矩形的四個(gè)角都是直角

  61、矩形性質(zhì)定理2

  矩形的對角線(xiàn)相等

  62、矩形判定定理1

  有三個(gè)角是直角的四邊形是矩形

  63、矩形判定定理2

  對角線(xiàn)相等的平行四邊形是矩形

  64、菱形性質(zhì)定理1

  菱形的四條邊都相等

  65、菱形性質(zhì)定理2

  菱形的對角線(xiàn)互相垂直,并且每一條對角線(xiàn)平分一組對角

  66、菱形面積=對角線(xiàn)乘積的一半,即S=(a×b)÷2

  67、菱形判定定理1

  四邊都相等的四邊形是菱形

  68、菱形判定定理2

  對角線(xiàn)互相垂直的平行四邊形是菱形

  69、正方形性質(zhì)定理1

  正方形的四個(gè)角都是直角,四條邊都相等

  70、正方形性質(zhì)定理2正方形的兩條對角線(xiàn)相等,并且互相垂直平分,每條對角線(xiàn)平分一組對角

  71、定理1

  關(guān)于中心對稱(chēng)的兩個(gè)圖形是全等的

  72、定理2

  關(guān)于中心對稱(chēng)的兩個(gè)圖形,對稱(chēng)點(diǎn)連線(xiàn)都經(jīng)過(guò)對稱(chēng)中心,并且被對稱(chēng)中心平分

  73、逆定理

  如果兩個(gè)圖形的對應點(diǎn)連線(xiàn)都經(jīng)過(guò)某一點(diǎn),并且被這一點(diǎn)平分,那么這兩個(gè)圖形關(guān)于這一點(diǎn)對稱(chēng)

  74、等腰梯形性質(zhì)定理

  等腰梯形在同一底上的兩個(gè)角相等

  75、等腰梯形的兩條對角線(xiàn)相等

  76、等腰梯形判定定理

  在同一底上的兩個(gè)角相等的梯

  形是等腰梯形

  77、對角線(xiàn)相等的梯形是等腰梯形

  78、平行線(xiàn)等分線(xiàn)段定理

  如果一組平行線(xiàn)在一條直線(xiàn)上截得的線(xiàn)段相等,那么在其他直線(xiàn)上截得的線(xiàn)段也相等

  79、推論1

  經(jīng)過(guò)梯形一腰的中點(diǎn)與底平行的直線(xiàn),必平分另一腰

  80、推論2

  經(jīng)過(guò)三角形一邊的中點(diǎn)與另一邊平行的直線(xiàn),必平分第三邊

  81、三角形中位線(xiàn)定理

  三角形的中位線(xiàn)平行于第三邊,并且等于它的一半

  82、梯形中位線(xiàn)定理

  梯形的中位線(xiàn)平行于兩底,并且等于兩底和的一半

  L=(a+b)÷2

  S=L×h

  83、(1)比例的基本性質(zhì):如果a:b=c:d,那么ad=bc

  如果

  ad=bc,那么a:b=c:d

  84、(2)合比性質(zhì):如果a/b=c/d,那么(a±b)/b=(c±d)/d

  85、(3)等比性質(zhì):如果a/b=c/d=…=m/n(b+d+…+n≠0),那么(a+c+…+m)/(b+d+…+n)=a/b

  86、平行線(xiàn)分線(xiàn)段成比例定理

  三條平行線(xiàn)截兩條直線(xiàn),所得的對應線(xiàn)段成比例

  87、推論

  平行于三角形一邊的直線(xiàn)截其他兩邊(或兩邊的延長(cháng)線(xiàn)),所得的對應線(xiàn)段成比例

  88、定理

  如果一條直線(xiàn)截三角形的兩邊(或兩邊的延長(cháng)線(xiàn))所得的對應線(xiàn)段成比例,那么這條直線(xiàn)平行于三角形的第三邊

  89、平行于三角形的一邊,并且和其他兩邊相交的直線(xiàn),

  所截得的三角形的三邊與原三角形三邊對應成比例

  90、定理

  平行于三角形一邊的直線(xiàn)和其他兩邊(或兩邊的延長(cháng)線(xiàn))相交,所構成的三角形與原三角形相似

  91、相似三角形判定定理1

  兩角對應相等,兩三角形相似(ASA)

  92、直角三角形被斜邊上的高分成的兩個(gè)直角三角形和原三角形相似

  93、判定定理2

  兩邊對應成比例且?jiàn)A角相等,兩三角形相似(SAS)

  94、判定定理3

  三邊對應成比例,兩三角形相似(SSS)

  95、定理

  如果一個(gè)直角三角形的斜邊和一條直角邊與另一個(gè)直角三角形的斜邊和一條直角邊對應成比例,那么這兩個(gè)直角三角形相似(HL)

  96、性質(zhì)定理1

  相似三角形對應高的比,對應中線(xiàn)的比與對應角平分線(xiàn)的比都等于相似比

  97、性質(zhì)定理2

  相似三角形周長(cháng)的比等于相似比

  98、性質(zhì)定理3

  相似三角形面積的比等于相似比的平方

  99、任意銳角的正弦值等于它的余角的余弦值,任意銳角的余弦值等于它的余角的正弦值sin(a)=cos(90-a),cos(a)=sin(90-a)

  (a<90)

  100、任意銳角的正切值等于它的余角的余切值,任意銳角的余切值等于它的余角的正切值tan(a)=cot(90-a),cot(a)=tan(90-a)

  101、圓是定點(diǎn)的距離等于定長(cháng)的點(diǎn)的集合

  102、圓的內部可以看作是圓心的距離小于半徑的點(diǎn)的集合

  103、圓的外部可以看作是圓心的距離大于半徑的點(diǎn)的集合

  104、同圓或等圓的半徑相等

  105、到定點(diǎn)的距離等于定長(cháng)的點(diǎn)的軌跡,是以定點(diǎn)為圓心,定長(cháng)為半徑的圓

  106、和已知線(xiàn)段兩個(gè)端點(diǎn)的距離相等的點(diǎn)的軌跡,是著(zhù)條線(xiàn)段的垂直平分線(xiàn)

  107、到已知角的兩邊距離相等的點(diǎn)的軌跡,是這個(gè)角的平分線(xiàn)

  108、到兩條平行線(xiàn)距離相等的點(diǎn)的軌跡,是和這兩條平行線(xiàn)平行且距離相等的一條直線(xiàn)

  109、定理

  不在同一直線(xiàn)上的三點(diǎn)確定一個(gè)圓。

  110、垂徑定理

  垂直于弦的直徑平分這條弦并且平分弦所對的兩條弧

  111、推論1

 、倨椒窒遥ú皇侵睆剑┑闹睆酱怪庇谙,并且平分弦所對的兩條弧

 、谙业拇怪逼椒志(xiàn)經(jīng)過(guò)圓心,并且平分弦所對的兩條。ㄖ睆剑

 、燮椒窒宜鶎Φ囊粭l弧的直徑,垂直平分弦,并且平分弦所對的另一條弧

  112、推論2

  圓的兩條平行弦所夾的弧相等

  113、圓是以圓心為對稱(chēng)中心的中心對稱(chēng)圖形

  114、定理

  在同圓或等圓中,相等的圓心角所對的弧相等,所對的弦相等,所對的弦的弦心距相等

  115、推論

  在同圓或等圓中,如果兩個(gè)圓心角、兩條弧、兩條弦或兩弦的弦心距中有一組量相等那么它們所對應的其余各組量都相等

  116、定理

  一條弧所對的圓周角等于它所對的圓心角的一半

  117、推論1

  同弧或等弧所對的圓周角相等;同圓或等圓中,相等的圓周角所對的弧也相等

  118、推論2

  半圓(或直徑)所對的圓周角是直角;90°的圓周角所對的弦是直徑

  119、推論3

  如果三角形一邊上的中線(xiàn)等于這邊的一半,那么這個(gè)三角形是直角三角形

  120、定理

  圓的內接四邊形的對角互補,并且任何一個(gè)外角都等于它的內對角

  121、①直線(xiàn)L和⊙O相交

  0<=d<r

 、谥本(xiàn)L和⊙O相切

  d=r

 、壑本(xiàn)L和⊙O相離

  d>r

  122、切線(xiàn)的判定定理

  經(jīng)過(guò)半徑的外端并且垂直于這條半徑的直線(xiàn)是圓的切線(xiàn)

  123、切線(xiàn)的性質(zhì)定理

  圓的切線(xiàn)垂直于經(jīng)過(guò)切點(diǎn)的半徑

  124、推論1

  經(jīng)過(guò)圓心且垂直于切線(xiàn)的直線(xiàn)必經(jīng)過(guò)切點(diǎn)

  125、推論2

  經(jīng)過(guò)切點(diǎn)且垂直于切線(xiàn)的直線(xiàn)必經(jīng)過(guò)圓心

  126、切線(xiàn)長(cháng)定理

  從圓外一點(diǎn)引圓的兩條切線(xiàn)相交與一點(diǎn),它們的切線(xiàn)長(cháng)相等

  ,圓心和這一點(diǎn)的連線(xiàn)平分兩條切線(xiàn)的夾角

  127、圓的外切四邊形的兩組對邊的和相等

  128、弦切角定理

  弦切角等于它所夾的弧對的圓周角?

  129、推論

  如果兩個(gè)弦切角所夾的弧相等,那么這兩個(gè)弦切角也相等

  130、相交弦定理

  圓內的兩條相交弦,被交點(diǎn)分成的兩條線(xiàn)段長(cháng)的積相等

  131、推論

  如果弦與直徑垂直相交,那么弦的一半是它分直徑所成的兩條線(xiàn)段的比例中項

  132、切割線(xiàn)定理

  從圓外一點(diǎn)引圓的切線(xiàn)和割線(xiàn),切線(xiàn)長(cháng)是這點(diǎn)到割線(xiàn)與圓交點(diǎn)的兩條線(xiàn)段長(cháng)的比例中項?

  133、推論

  從圓外一點(diǎn)引圓的兩條割線(xiàn),這一點(diǎn)到每條

  割線(xiàn)與圓的交點(diǎn)的兩條線(xiàn)段長(cháng)的積相等

  134、如果兩個(gè)圓相切,那么切點(diǎn)一定在連心線(xiàn)上

  135、①兩圓外離

  d>R+r

 、趦蓤A外切

  d=R+r

 、蹆蓤A相交

  R-r<d<R+r(R>r)

 、軆蓤A內切

  d=R-r(R>r)

 、輧蓤A內含

  d<R-r(R>r)

  136、定理

  相交兩圓的連心線(xiàn)垂直平分兩圓的公共弦

  137、定理

  把圓平均分成n(n≥3):

 、乓来芜B結各分點(diǎn)所得的多邊形是這個(gè)圓的內接正n邊形

 、平(jīng)過(guò)各分點(diǎn)作圓的切線(xiàn),以相鄰切線(xiàn)的交點(diǎn)為頂點(diǎn)的多邊形是這個(gè)圓的外切正n邊形

  138、定理

  任何正多邊形都有一個(gè)外接圓和一個(gè)內切圓,這兩個(gè)圓是同心圓

  139、正n邊形的每個(gè)內角都等于(n-2)×180°/n

  140、定理

  正n邊形的半徑和邊心距把正n邊形分成2n個(gè)全等的直角三角形

  141、正n邊形的面積Sn=pn*rn/2

  p表示正n邊形的周長(cháng)

  142、正三角形面積√3a^2/4

  a表示邊長(cháng)

  143、如果在一個(gè)頂點(diǎn)周?chē)衚個(gè)正n邊形的角,由于這些角的和應為360°,因此k×(n-2)180°/n=360°化為(n-2)(k-2)=4

  144、弧長(cháng)計算公式:L=n兀R/180——》L=nR

  145、扇形面積公式:S扇形=n兀R^2/360=LR/2

  146、內公切線(xiàn)長(cháng)=d-(R-r)

  外公切線(xiàn)長(cháng)=d-(R+r)

【數學(xué)知識點(diǎn)總結】相關(guān)文章:

數學(xué)的知識點(diǎn)總結10-12

中考數學(xué)的知識點(diǎn)總結05-22

初中數學(xué)的知識點(diǎn)總結09-19

關(guān)于數學(xué)的知識點(diǎn)總結06-28

數學(xué)重要知識點(diǎn)總結08-23

數學(xué)知識點(diǎn)總結09-09

初中數學(xué)的知識點(diǎn)總結06-21

初中數學(xué)的知識點(diǎn)總結03-11

初中數學(xué)知識點(diǎn)總結06-24

數學(xué)初中知識點(diǎn)總結01-15