- 相關(guān)推薦
一元二次不等式說(shuō)課稿
作為一位無(wú)私奉獻的人民教師,就不得不需要編寫(xiě)說(shuō)課稿,借助說(shuō)課稿可以有效提升自己的教學(xué)能力。那么大家知道正規的說(shuō)課稿是怎么寫(xiě)的嗎?下面是小編幫大家整理的一元二次不等式說(shuō)課稿,歡迎閱讀與收藏。
一元二次不等式說(shuō)課稿1
各位評委、各位老師:
大家好!
我叫梁曉弟,來(lái)自會(huì )寧縣丁溝中學(xué)。
今天我說(shuō)課的課題是《一元二次不等式的解法》(第一課時(shí))。下面我將圍繞本節課“教什么?”、“怎樣教?”以及“為什么這樣教?”三個(gè)問(wèn)題,從教材內容分析、教法學(xué)法分析、教學(xué)過(guò)程分析和課堂意外預案等幾個(gè)方面逐一加以分析和說(shuō)明。
一、教材內容分析:
1、本節課內容在整個(gè)教材中的地位和作用。
概括地講,本節課內容的地位體現在它的基礎性,作用體現在它的工具性。一元二次不等式的解法是初中一元一次不等式或一元一次不等式組的延續和深化,對已學(xué)習過(guò)的集合知識的鞏固和運用具有重要的作用,也與后面的函數、數列、三角函數、線(xiàn)形規劃、直線(xiàn)與圓錐曲線(xiàn)以及導數等內容密切相關(guān)。許多問(wèn)題的解決都會(huì )借助一元二次不等式的解法。因此,一元二次不等式的解法在整個(gè)高中數學(xué)教學(xué)中具有很強的基礎性,體現出很大的工具作用。
2、教學(xué)目標定位。
根據教學(xué)大綱要求、高考考試大綱說(shuō)明、新課程標準精神、高一學(xué)生已有的知識儲備狀況和學(xué)生心理認知特征,我確定了四個(gè)層面的教學(xué)目標。第一層面是面向全體學(xué)生的知識目標:熟練掌握一元二次不等式的兩種解法,正確理解一元二次方程、一元二次不等式和二次函數三者的'關(guān)系。第二層面是能力目標,培養學(xué)生運用數形結合與等價(jià)轉化等數學(xué)思想方法解決問(wèn)題的能力,提高運算和作圖能力。第三層面是德育目標,通過(guò)對解不等式過(guò)程中等與不等對立統一關(guān)系的認識,向學(xué)生逐步滲透辨證唯物主義思想。第四層面是情感目標,在教師的啟發(fā)引導下,學(xué)生自主探究,交流討論,培養學(xué)生的合作意識和創(chuàng )新精神。
3、教學(xué)重點(diǎn)、難點(diǎn)確定。
本節課是在復習了一次不等式的解法之后,利用二次函數的圖象研究一元二次不等式的解法。只要學(xué)生能夠理解一元二次方程、一元二次不等式和二次函數三者的關(guān)系,并利用其關(guān)系解不等式即可。因此,我確定本節課的教學(xué)重點(diǎn)為一元二次不等式的解法,關(guān)鍵是一元二次方程、一元二次不等式和二次函數三者的關(guān)系。
二、教法學(xué)法分析:
數學(xué)是發(fā)展學(xué)生思維、培養學(xué)生良好意志品質(zhì)和美好情感的重要學(xué)科,在教學(xué)中,我們不僅要使學(xué)生獲得知識、提高解題能力,還要讓學(xué)生在教師的啟發(fā)引導下學(xué)會(huì )學(xué)習、樂(lè )于學(xué)習,感受數學(xué)學(xué)科的人文思想,使學(xué)生在學(xué)習中培養堅強的意志品質(zhì)、形成良好的道德情感。為了更好地體現課堂教學(xué)中“教師為主導,學(xué)生為主體”的教學(xué)關(guān)系和“以人為本,以學(xué)定教”的教學(xué)理念,在本節課的教學(xué)過(guò)程中,我將緊緊圍繞教師組織——啟發(fā)引導,學(xué)生探究——交流發(fā)現,組織開(kāi)展教學(xué)活動(dòng)。我設計了①創(chuàng )設情景——引入新課,②交流探究——發(fā)現規律,③啟發(fā)引導——形成結論,④練習小結——深化鞏固,⑤思維拓展——提高能力,五個(gè)環(huán)環(huán)相扣、層層深入的教學(xué)環(huán)節,在教學(xué)中注意關(guān)注整個(gè)過(guò)程和全體學(xué)生,充分調動(dòng)學(xué)生積極參與教學(xué)過(guò)程的每個(gè)環(huán)節。
三、教學(xué)過(guò)程分析:
1、創(chuàng )設情景——引入新課。我們常說(shuō)“興趣是最好的老師”,長(cháng)期以來(lái),學(xué)生對學(xué)習數學(xué)缺乏興趣,甚至失去信心,一個(gè)重要的原因,是老師在教學(xué)中不重視學(xué)生對學(xué)習的情感體驗,教學(xué)應該充分考慮學(xué)生的情感和需要,想方設法讓學(xué)生在學(xué)習中樹(shù)立信心,感受學(xué)習的樂(lè )趣。根據教材內容的安排,我以學(xué)生熟悉的畫(huà)一次函數圖象、求一次方程和一次不等式的解為背景知識切入,設置一個(gè)題組(一):
問(wèn)題1、一次函數y=2x—7,利用圖像回答當x取什么值時(shí),y=0,y<0和y>0;
問(wèn)題2、如果直線(xiàn)y=ax+b與x軸的交點(diǎn)是(x,0),0那么當a>0和a<0時(shí),解不等式ax+b<0和ax+b>0的解集;一方面讓學(xué)生總結復習已有知識,為后面學(xué)習二次不等式的解法打下基礎,做好鋪墊,另一方面,使學(xué)生在自己熟悉的問(wèn)題中首先獲得解題成功的快樂(lè )體驗,由此自然而然的過(guò)渡到了本節課的新授內容:一元二次方程、一元二次不等式與二次函數的關(guān)系?
問(wèn)題3、x是什么數時(shí),二次函數2y=x—x—6的值(1)等于0?(2)大于0?(3)小于0?;
對于本題,引導學(xué)生,利用上面解題組(一)的方法,畫(huà)出二次函數圖象來(lái)解答。二次函數是初中數學(xué)的重要內容,本題又給出了函數圖象上許多點(diǎn),相信學(xué)生畫(huà)出圖象應該不成問(wèn)題,只要教師適當點(diǎn)撥,學(xué)生不難得到正確答案。
2、探究交流——發(fā)現規律。從特殊到一般是我們發(fā)現問(wèn)題、尋求規律、揭示問(wèn)題本2質(zhì)最常用的方法之一。我把課本例題1、2編為題組(二):
解不等式2x—3x—2>0.2。 解2不等式—3x+6x>2。交由學(xué)生用上面的圖象法去解,學(xué)生由于熟知二次函數圖象,求解應該不會(huì )有太大的問(wèn)題。在這個(gè)過(guò)程中,教師要啟發(fā)引導學(xué)生注意對比兩題的異同,組織引導學(xué)生展開(kāi)交流討論,探討第(2)題能不能先把二次項系數化正以后再構造函數畫(huà)圖求解。然后達成共識,如果二次項系數為負數時(shí),先做等價(jià)轉化,把二次項系數化為正數再解,課本例3、例4作為題組(三),繼續讓學(xué)生用上面的圖象法解,由學(xué)生自己求解,這時(shí)我及時(shí)提示學(xué)生注意這兩題與題組(二)中兩題的不同(例1、例2對應方程都有兩個(gè)不等實(shí)根,例3對應方程有兩相等實(shí)根,例4對應方程無(wú)實(shí)根)。兩個(gè)題組的練習之后,可以尋求解二次不等式的一般規律。
3、啟發(fā)引導——形成結論。前面兩個(gè)練習題組的四個(gè)小題,基本涵蓋了一般一元二次不等式解的各種情況,進(jìn)一步啟發(fā)引導學(xué)生將特殊、具體題目的結論做一般化總結,2與學(xué)生一起就 △>0,△<0,△=0 的三種情況,總結二次不等式ax+bx+c>0或2ax+bx+c<0 (a>0)的解的情況應該水到渠成。至此,學(xué)生可以感受到,解二次不等式2只須①將二次項系數化為正數,②求解二次方程 ax+bx+c=0 的根。③根據①后的二次不等式的符號寫(xiě)出解集即可,必要時(shí)也可以結合圖象寫(xiě)解集。這樣我們就得到了二次不等式的另外一種解法(可稱(chēng)為“三步曲”法)。
4、訓練小結——鞏固深化。為了鞏固和加深二次不等式的兩種解法,接下來(lái)及時(shí)組織學(xué)生進(jìn)行課堂練習,完成課本19—20頁(yè)練習題1~3。本環(huán)節請不同層次的學(xué)生在黑板上書(shū)寫(xiě)解題過(guò)程,之后師生共同糾正問(wèn)題,規范解題過(guò)程的書(shū)寫(xiě)。
5、延伸拓寬——提高能力。課堂教學(xué)既要面向全體學(xué)生,又應關(guān)注學(xué)生的個(gè)體差異。體現分類(lèi)推進(jìn),分層教學(xué)的原則。為此,我又設計了一個(gè)提高題組(四),備選題目,以供程度較好學(xué)有余力的學(xué)生能夠更好的展示自己的解題能力,取得更進(jìn)一步的提高。
四、課堂意外預案:
新課程理念下的教學(xué)更多的關(guān)注學(xué)生自主探究、關(guān)注學(xué)生的個(gè)性發(fā)展,鼓勵學(xué)生勇于提出問(wèn)題,培養學(xué)生思維的批評性。在課堂上學(xué)生往往會(huì )提出讓老師感到“意外”的問(wèn)題,我在平時(shí)的教學(xué)中重視對“課堂意外預案”的探索和思考,備課時(shí)盡量設想課堂中可能會(huì )出現的各種情況,做到有備無(wú)患,以免在課堂中學(xué)生提出讓自己出乎意料的問(wèn)題,使自己陷入被動(dòng)尷尬境地。結合以往經(jīng)驗,在本節課,我提出兩個(gè)“意外預案”。
x201。學(xué)生在做課本練習1(x+2)(x-3)>0 時(shí),可能會(huì )問(wèn)到轉化為不等式組{或x30x20{ 求解對不對。學(xué)生提出的問(wèn)題,想法非常好,應給予肯定和鼓勵,這與下節簡(jiǎn)單x30分式不等式和高次不等式的解法有關(guān),是解不等式的另一種解法——等價(jià)轉化法,不在本節課之列。
2、根據以往的經(jīng)驗,在解(x-1)(x+2)>1一類(lèi)的不等式的時(shí)候,由于受方程(x+1)(x+2)=0 可轉化為x-1=0或x+2=0求解的影響,有可能會(huì )出現將不等式轉化為
x11不等式組{來(lái)求解的錯誤做法,教師要關(guān)注學(xué)生,及時(shí)發(fā)現問(wèn)題并給予糾正,指出上x(chóng)21面的轉化不是等價(jià)轉化。
以上是我對本節課的一些粗淺的認識和構想,如有不妥之處,懇請各位專(zhuān)家、各位同仁批評指正。謝謝大家!
一元二次不等式說(shuō)課稿2
作為一位不辭辛勞的人民教師,就有可能用到說(shuō)課稿,借助說(shuō)課稿可以有效提升自己的教學(xué)能力。我們該怎么去寫(xiě)說(shuō)課稿呢?以下是小編幫大家整理的高中數學(xué)《一元二次不等式解法》的說(shuō)課稿,希望對大家有所幫助。
一、教材分析
1.地位和作用。本課是五年制高等師范教材南京大學(xué)出版社《數學(xué)》教材第一冊第二章第二節的教學(xué)內容,從知識結構看:它是一元一次不等式的延續和拓展,又是以后研究函數的定義域、值域等問(wèn)題的重要工具,起到承前啟后的作用;
從思想層次上看:它涉及到數形結合、分類(lèi)轉化等數學(xué)思想方法,在整個(gè)教材中有很強的基礎性。
2.教材內容剖析。本節課的主要內容是通過(guò)二次函數的圖像探究一元二次不等式的解法。教材中首先復習引入了“三個(gè)一次”的關(guān)系,然后依舊帶新,揭示“三個(gè)二次”的關(guān)系,其次通過(guò)變式例題討論了△=0和△<0的兩種情況,最后推廣一般情況的討論,教材的內容編排由具體到抽象、由特殊到一般,符合人的認知規律。
3.重難點(diǎn)剖析。重點(diǎn):一元二次不等式的解法。難點(diǎn):一元二次方程、一元二次不等式、二次函數的關(guān)系。難點(diǎn)突破:(1)教師引導,學(xué)生自主探究,分組討論。(2)借助多媒體直觀(guān)展示,數形結合。(3)采用由簡(jiǎn)單到復雜,由特殊到一般的教學(xué)策略。
二、目的分析
知識目標:掌握一元二次不等式的解法,理解“三個(gè)二次”之間的關(guān)系。
能力目標:培養學(xué)生“從形到數”的轉化能力,由具體到抽象再到具體,從特殊到一般的歸納概括能力。
情感目標:在自主探究與討論交流過(guò)程中,培養學(xué)生的合作意識。
三、教法分析
教法:“問(wèn)題串”解決教學(xué)法。
以“一串問(wèn)題”為出發(fā)點(diǎn),指導學(xué)生“動(dòng)腦、動(dòng)手、動(dòng)眼、動(dòng)口”,參與知識的形成過(guò)程,注重學(xué)生的內在發(fā)展。
學(xué)法:合作學(xué)習:(1)以問(wèn)題為依托,分組探究,合作交流學(xué)習。(2)以現有認知結構為依托,指導學(xué)生用類(lèi)比方法建構新知,用化歸思想解決問(wèn)題。
四、過(guò)程分析
本節課的教學(xué),設計了四個(gè)教學(xué)環(huán)節:
1、創(chuàng )設情景、提出問(wèn)題。
問(wèn)題1.用一根長(cháng)為10m的繩子能?chē)梢粋(gè)面積大于6m2的矩形嗎?“數學(xué)來(lái)源于生活,應用于生活”,首先,以生活中的一個(gè)實(shí)際問(wèn)題為背景切入,通過(guò)建立簡(jiǎn)單的數學(xué)模型,抽象出一個(gè)一元二次不等式,引入課題。
設計意圖:激發(fā)學(xué)生學(xué)習興趣,體現數學(xué)的科學(xué)價(jià)值和使用價(jià)值。
2、自主探究,發(fā)現規律。
問(wèn)題2.解下列方程和不等式。①2x-4=0 ②2x-4>0 ③2x-4<0。
歸納、類(lèi)比法是我們發(fā)現問(wèn)題、尋求規律,揭示問(wèn)題本質(zhì)最常用的方法之一。尋求一元二次不等式的.解法,首先從一元一次不等式的解法著(zhù)手。展示問(wèn)題2。學(xué)生:用等式和不等式的基本性質(zhì)解題。教師:還有其他的解決方法嗎?展示問(wèn)題3。
問(wèn)題3.畫(huà)出一次函數y=2x-4的圖像,觀(guān)察圖像,縱坐標y=0、y>0、y<0所對應的橫坐標x取哪些數呢?
學(xué)生:發(fā)現可以借用圖像解題。此問(wèn)題揭示了“三個(gè)一次”的關(guān)系。
設計意圖:為后面學(xué)習二次不等式的解法提供鋪墊。
問(wèn)題4用圖像法能不能解決一元二次不等式的解呢?已知二次函數y=x2-2x-8.
。1)求出此函數與x軸的交點(diǎn)坐標。
。2)畫(huà)出這個(gè)二次函數的草圖。
。3)在拋物線(xiàn)上找到縱坐標y>0的點(diǎn)。
。4)縱坐標y>0(即:x2-2x-8>0)的點(diǎn)所對應的橫坐標x取哪些數呢?
。5)二次函數、二次方程、二次不等式的關(guān)系是什幺?
教師:展示問(wèn)題4。此環(huán)節,要注意下面幾個(gè)問(wèn)題:
。1)啟發(fā)引導學(xué)生運用歸納、類(lèi)比的方法,組織學(xué)生分組討論,自主探究。(2)及時(shí)解決學(xué)生的疑點(diǎn),實(shí)現師生合作。(3)先讓學(xué)生自己思考,最后教師和學(xué)生一起歸納步驟。(求根—畫(huà)圖—找解),抓住問(wèn)題本質(zhì),畫(huà)圖可省去y軸。教師抓住時(shí)機,展示例題1,鞏固方法(△>0的情況),規范步驟,板書(shū)做題步驟,起到示范的作用。設計意圖:運用“解決問(wèn)題”的教學(xué)方法,使每位學(xué)生參與知識的形成過(guò)程,體現了教師主導學(xué)生主體的地位。
3、變式提問(wèn),啟發(fā)誘導。
方程:ax2+bx+c=0的解情況函數:y=ax2+bx+c的圖象
不等式的解集
ax2+bx+c>0ax2+bx+c<0
⊿>0
⊿=0
⊿<0
教師:展示例題2(1).-x2+x+6≥0(2).x2-4x+4<0(3).x2-x+3>0。學(xué)生:嘗試通過(guò)畫(huà)圖求解。此環(huán)節要注意:引導學(xué)生把不熟悉的問(wèn)題轉化為熟悉的問(wèn)題解決;對于△=0,△<0的情況,啟發(fā)學(xué)生用數形結合的思想方法關(guān)鍵在于畫(huà)好圖像,貴在“結合”。設計意圖:通過(guò)探索、嘗試的過(guò)程,培養了學(xué)生大膽猜想,勇于探索的精神。
4、自我嘗試,反饋小結。
教師:展示練習題,把學(xué)生分成兩個(gè)小組,要求當堂完成,看哪個(gè)組做的好做的快。教師對出現的問(wèn)題及時(shí)反饋。同時(shí),進(jìn)一步啟發(fā)引導學(xué)生將特殊、具體問(wèn)題的結論推廣到一般化。展示表格,學(xué)生:填寫(xiě)內容。
學(xué)生理解了“三個(gè)二次”的關(guān)系,得到一般結論應該是水到渠成。最后,教師做本節課的小結,布置作業(yè)。設計意圖:激發(fā)了學(xué)生的求知欲,培養了學(xué)生的主動(dòng)參與意識。
五、評價(jià)分析
1.重視學(xué)生學(xué)習的結果評價(jià),更重視過(guò)程評價(jià)。
2.本節課貫徹了新課程的理念,教學(xué)形式開(kāi)放,體現了“教師主導,學(xué)生主體”的教學(xué)關(guān)系。以上是我對本節課的粗淺認識,如有不妥之處,懇求各位專(zhuān)家、各位同仁批評指正。
一元二次不等式說(shuō)課稿3
一、教材分析
(一)教材的地位和作用
“一元二次不等式解法”既是初中一元一次不等式解法在知識上的延伸和發(fā)展,又是本章集合知識的運用與鞏固,也為下一章函數的定義域和值域教學(xué)作鋪墊,起著(zhù)鏈條的作用。同時(shí),這部分內容較好地反映了方程、不等式、函數知識的內在聯(lián)系和相互轉化,蘊含著(zhù)歸納、轉化、數形結合等豐富的數學(xué)思想方法,能較好地培養學(xué)生的觀(guān)察能力、概括能力、探究能力及創(chuàng )新意識。
(二)教學(xué)內容
本節內容分2課時(shí)學(xué)習。本課時(shí)通過(guò)二次函數的圖象探索一元二次不等式的解集。通過(guò)復習“三個(gè)一次”的關(guān)系,即一次函數與一元一次方程、一元一次不等式的關(guān)系;以舊帶新尋找“三個(gè)二次”的關(guān)系,即二次函數與一元二次方程、一元二次不等式的關(guān)系;采用“畫(huà)、看、說(shuō)、用”的思維模式,得出一元二次不等式的解集,品味數學(xué)中的和諧美,體驗成功的樂(lè )趣。
二、教學(xué)目標分析
根據教學(xué)大綱的要求、本節教材的特點(diǎn)和高一學(xué)生的認知規律,本節課的教學(xué)目標確定為:
知識目標——理解“三個(gè)二次”的關(guān)系;掌握看圖象找解集的方法,熟悉一元二次不等式的解法。
能力目標——通過(guò)看圖象找解集,培養學(xué)生“從形到數”的轉化能力,“從具體到抽象”、“從特殊到一般”的歸納概括能力。
情感目標——創(chuàng )設問(wèn)題情景,激發(fā)學(xué)生觀(guān)察、分析、探求的學(xué)習激情、強化學(xué)生參與意識及主體作用。
三、重難點(diǎn)分析
一元二次不等式是高中數學(xué)中最基本的不等式之一,是解決許多數學(xué)問(wèn)題的重要工具。本節課的重點(diǎn)確定為:一元二次不等式的解法。
要把握這個(gè)重點(diǎn)。關(guān)鍵在于理解并掌握利用二次函數的圖象確定一元二次不等式解集的方法——圖象法,其本質(zhì)就是要能利用數形結合的思想方法認識方程的解,不等式的解集與函數圖象上對應點(diǎn)的橫坐標的內在聯(lián)系。由于初中沒(méi)有專(zhuān)門(mén)研究過(guò)這類(lèi)問(wèn)題,高一學(xué)生比較陌生,要真正掌握有一定的難度。因此,本節課的難點(diǎn)確定為:“三個(gè)二次”的關(guān)系。要突破這個(gè)難點(diǎn),讓學(xué)生歸納“三個(gè)一次”的關(guān)系作鋪墊。
四、教法與學(xué)法分析
(一)學(xué)法指導
教學(xué)矛盾的主要方面是學(xué)生的'學(xué)。學(xué)是中心,會(huì )學(xué)是目的。因此在教學(xué)中要不斷指導學(xué)生學(xué)會(huì )學(xué)習。本節課主要是教給學(xué)生“動(dòng)手畫(huà)、動(dòng)眼看、動(dòng)腦想、動(dòng)口說(shuō)、善提煉、勤鉆研”的研討式學(xué)習方法,這樣做增加了學(xué)生自主參與,合作交流的機會(huì ),教給了學(xué)生獲取知識的途徑、思考問(wèn)題的方法,使學(xué)生真正成了教學(xué)的主體;只有這樣做,才能使學(xué)生“學(xué)”有新“思”,“思”有新“得”,“練”有新“獲”,學(xué)生也才會(huì )逐步感受到數學(xué)的美,會(huì )產(chǎn)生一種成功感,從而提高學(xué)生學(xué)習數學(xué)的興趣;也只有這樣做,課堂教學(xué)才富有時(shí)代特色,才能適應素質(zhì)教育下培養“創(chuàng )新型”人才的需要。
(二)教法分析
本節課設計的指導思想是:現代認知心理學(xué)——建構主義學(xué)習理論。
建構主義學(xué)習理論認為:應把學(xué)習看成是學(xué)生主動(dòng)的建構活動(dòng),學(xué)生應與一定的知識背景即情景相聯(lián)系,在實(shí)際情景下進(jìn)行學(xué)習,可以使學(xué)生利用已有知識與經(jīng)驗同化和索引出當前要學(xué)習的新知識,這樣獲取的知識,不但便于保持,而且易于遷移到陌生的問(wèn)題情景中。
本節課采用“誘思引探教學(xué)法”。把問(wèn)題作為出發(fā)點(diǎn),指導學(xué)生“畫(huà)、看、說(shuō)、用”。較好地探求一元二次不等式的解法。
五、課堂設計
本節課的教學(xué)設計充分體現以學(xué)生發(fā)展為本,培養學(xué)生的觀(guān)察、概括和探究能力,遵循學(xué)生的認知規律,體現理論聯(lián)系實(shí)際、循序漸進(jìn)和因材施教的教學(xué)原則,通過(guò)問(wèn)題情境的創(chuàng )設,激發(fā)興趣,使學(xué)生在問(wèn)題解決的探索過(guò)程中,由學(xué)會(huì )走向會(huì )學(xué),由被動(dòng)答題走向主動(dòng)探究。
(一)創(chuàng )設情景,引出“三個(gè)一次”的關(guān)系
本節課開(kāi)始,先讓學(xué)生解一元二次方程x2-x-6=0,如果我把“=”改成“>”則變成一元二次不等式x2-x-6>0讓學(xué)生解,學(xué)生肯定感到很突然。但是“思維往往是從驚奇和疑問(wèn)開(kāi)始”,這樣直奔主題,目的在于構造懸念,激活學(xué)生的思維興趣。
為此,我設計了以下幾個(gè)問(wèn)題:
1、請同學(xué)們解以下方程和不等式:
、2x-7=0;②2x-7>0;③2x-7<0
學(xué)生回答,我板書(shū)
一元二次不等式說(shuō)課稿4
各位評委、各位老師:
大家好!
我叫XXX,來(lái)自。今天我說(shuō)課的課題是《一元二次不等式的解法》(第一課時(shí))。下面我將圍繞本節課“教什么?”、“怎樣教?”以及“為什么這樣教?”三個(gè)問(wèn)題,從教材內容分析、教法學(xué)法分析、教學(xué)過(guò)程分析和課堂意外預案等幾個(gè)方面逐一加以分析和說(shuō)明。
一、教材內容分析:
1、本節課內容在整個(gè)教材中的地位和作用。
概括地講,本節課內容的地位體現在它的基礎性,作用體現在它的工具性。一元二次不等式的解法是初中一元一次不等式或一元一次不等式組的延續和深化,對已學(xué)習過(guò)的集合知識的鞏固和運用具有重要的作用,也與后面的函數、數列、三角函數、線(xiàn)形規劃、直線(xiàn)與圓錐曲線(xiàn)以及導數等內容密切相關(guān)。許多問(wèn)題的解決都會(huì )借助一元二次不等式的解法。因此,一元二次不等式的解法在整個(gè)高中數學(xué)教學(xué)中具有很強的基礎性,體現出很大的工具作用。
2、教學(xué)目標定位。
根據教學(xué)大綱要求、高考考試大綱說(shuō)明、新課程標準精神、高一學(xué)生已有的知識儲備狀況和學(xué)生心理認知特征,我確定了四個(gè)層面的教學(xué)目標。第一層面是面向全體學(xué)生的知識目標:熟練掌握一元二次不等式的兩種解法,正確理解一元二次方程、一元二次不等式和二次函數三者的關(guān)系。第二層面是能力目標,培養學(xué)生運用數形結合與等價(jià)轉化等數學(xué)思想方法解決問(wèn)題的能力,提高運算和作圖能力。第三層面是德育目標,通過(guò)對解不等式過(guò)程中等與不等對立統一關(guān)系的認識,向學(xué)生逐步滲透辨證唯物主義思想。第四層面是情感目標,在教師的啟發(fā)引導下,學(xué)生自主探究,交流討論,培養學(xué)生的合作意識和創(chuàng )新精神。
3、教學(xué)重點(diǎn)、難點(diǎn)確定。
本節課是在復習了一次不等式的解法之后,利用二次函數的圖象研究一元二次不等式的解法。只要學(xué)生能夠理解一元二次方程、一元二次不等式和二次函數三者的關(guān)系,并利用其關(guān)系解不等式即可。因此,我確定本節課的教學(xué)重點(diǎn)為一元二次不等式的解法,關(guān)鍵是一元二次方程、一元二次不等式和二次函數三者的關(guān)系。
二、教法學(xué)法分析:
數學(xué)是發(fā)展學(xué)生思維、培養學(xué)生良好意志品質(zhì)和美好情感的重要學(xué)科,在教學(xué)中,我們不僅要使學(xué)生獲得知識、提高解題能力,還要讓學(xué)生在教師的啟發(fā)引導下學(xué)會(huì )學(xué)習、樂(lè )于學(xué)習,感受數學(xué)學(xué)科的人文思想,使學(xué)生在學(xué)習中培養堅強的意志品質(zhì)、形成良好的道德情感。為了更好地體現課堂教學(xué)中“教師為主導,學(xué)生為主體”的教學(xué)關(guān)系和“以人為本,以學(xué)定教”的教學(xué)理念,在本節課的教學(xué)過(guò)程中,我將緊緊圍繞教師組織——啟發(fā)引導,學(xué)生探究——交流發(fā)現,組織開(kāi)展教學(xué)活動(dòng)。我設計了①創(chuàng )設情景——引入新課,②交流探究——發(fā)現規律,③啟發(fā)引導——形成結論,④練習小結——深化鞏固,⑤思維拓展——提高能力,五個(gè)環(huán)環(huán)相扣、層層深入的教學(xué)環(huán)節,在教學(xué)中注意關(guān)注整個(gè)過(guò)程和全體學(xué)生,充分調動(dòng)學(xué)生積極參與教學(xué)過(guò)程的每個(gè)環(huán)節。
三、教學(xué)過(guò)程分析:
1.創(chuàng )設情景——引入新課。我們常說(shuō)“興趣是最好的老師”,長(cháng)期以來(lái),學(xué)生對學(xué)習數學(xué)缺乏興趣,甚至失去信心,一個(gè)重要的原因,是老師在教學(xué)中不重視學(xué)生對學(xué)習的情感體驗,教學(xué)應該充分考慮學(xué)生的情感和需要,想方設法讓學(xué)生在學(xué)習中樹(shù)立信心,感受學(xué)習的樂(lè )趣。根據教材內容的安排,我以學(xué)生熟悉的畫(huà)一次函數圖象、求一次方程和一次不等式的解為背景知識切入,設置一個(gè)練習題組,一方面讓學(xué)生總結復習已有知識,為后面學(xué)習二次不等式的解法打下基礎,做好鋪墊,另一方面,使學(xué)生在自己熟悉的問(wèn)題中首先獲得解題成功的快樂(lè )體驗,然后以20xx年江蘇省的一道高考試題為引子,引入本節課的新授內容。對于本題,引導學(xué)生,利用上面解練習題組1的方法,畫(huà)出二次函數圖象來(lái)解答。二次函數是初中數學(xué)的重要內容,本題又給出了函數圖象上許多點(diǎn),相信學(xué)生畫(huà)出圖象應該不成問(wèn)題,只要教師適當點(diǎn)撥,學(xué)生不難得到正確答案。以高考試題為背景引入新課,可以提高學(xué)生興趣,抓住學(xué)生眼球,吸引學(xué)生注意力,還可以讓學(xué)生實(shí)實(shí)在在感受到,高考題就在我們的課本中,就在我們平常的練習中。
2.探究交流——發(fā)現規律。從特殊到一般是我們發(fā)現問(wèn)題、尋求規律、揭示問(wèn)題本質(zhì)最常用的方法之一。我把課本例題1、2編為練習題組(一),交由學(xué)生用上面解高考題的方法——圖象法去解,學(xué)生由于熟知二次函數圖象,求解應該不會(huì )有太大的問(wèn)題。在這個(gè)過(guò)程中,教師要啟發(fā)引導學(xué)生注意對比兩題的異同,組織引導學(xué)生展開(kāi)交流討論,探討第(2)題能不能先把二次項系數化正以后再構造函數畫(huà)圖求解。然后達成共識,如果二次項系數為負數時(shí),先做等價(jià)轉化,把二次項系數化為正數再解,課本19頁(yè)例3、例4作為題組(二),繼續讓學(xué)生用上面的圖象法,由學(xué)生自己求解,這時(shí)我及時(shí)提示學(xué)生注意這兩題與題組(一)中兩題的不同(例1、例2對應方程都有兩個(gè)不等實(shí)根,例3對應方程有兩相等實(shí)根,例4對應方程無(wú)實(shí)根)。兩個(gè)題組的練習之后,可以尋求解二次不等式的一般規律。
3.啟發(fā)引導——形成結論。前面兩個(gè)題組的四個(gè)小題,基本涵蓋了一般一元二次不等式解的各種情況,進(jìn)一步啟發(fā)引導學(xué)生將特殊、具體題目的結論做一般化總結,與學(xué)生一起就△>0,△<0,△=0的三種情況,總結二次不等式ax2+bx+c>0或ax2+bx+c<0(a>0)的解的情況應該水到渠成。至此,學(xué)生可以感受到,解二次不等式只須①將二次項系數化為正數,②求解二次方程ax2+bx+c=0的根。③根據①后的二次不等式的符號寫(xiě)出解集即可,必要時(shí)也可以結合圖象寫(xiě)解集。這樣我們就得到了二次不等式的'另外一種解法(可稱(chēng)為“三步曲”法)。
4.訓練小結——鞏固深化。為了鞏固和加深二次不等式的兩種解法,接下來(lái)及時(shí)組織學(xué)生進(jìn)行課堂練習,完成課本21頁(yè)練習1—4題。本環(huán)節請不同層次的學(xué)生在黑板上書(shū)寫(xiě)解題過(guò)程,之后師生共同糾正問(wèn)題,規范解題過(guò)程的書(shū)寫(xiě)。
5.延伸拓寬——提高能力。課堂教學(xué)既要面向全體學(xué)生,又應關(guān)注學(xué)生的個(gè)體差異。體現分類(lèi)推進(jìn),分層教學(xué)的原則。為此,我又設計了一個(gè)提高練習題組,共有三道備選題目,以供程度較好學(xué)有余力的學(xué)生能夠更好的展示自己的解題能力,取得更進(jìn)一步的提高。
四、課堂意外預案:
新課程理念下的教學(xué)更多的關(guān)注學(xué)生自主探究、關(guān)注學(xué)生的個(gè)性發(fā)展,鼓勵學(xué)生勇于提出問(wèn)題,培養學(xué)生思維的批評性。在課堂上學(xué)生往往會(huì )提出讓老師感到“意外”的問(wèn)題,我在平時(shí)的教學(xué)中重視對“課堂意外預案”的探索和思考,備課時(shí)盡量設想課堂中可能會(huì )出現的各種情況,做到有備無(wú)患,以免在課堂中學(xué)生提出讓自己出乎意料的問(wèn)題,使自己陷入被動(dòng)尷尬境地。結合以往經(jīng)驗,在本節課,我提出兩個(gè)“意外預案”。
1、學(xué)生在做課本練習1(x+2)(x-3)>0時(shí),可能會(huì )問(wèn)到轉化為不等式組{或{求解對不對。學(xué)生提出的問(wèn)題,想法非常好,應給予肯定和鼓勵,這與下節簡(jiǎn)單分式不等式和高次不等式的解法有關(guān),是解不等式的另一種解法——等價(jià)轉化法,不在本節課之列。
2、根據以往的經(jīng)驗,在解(x-1)(x+2)>1一類(lèi)的不等式的時(shí)候,由于受方程(x+1)(x+2)=0可轉化為x-1=0或x+2=0求解的影響,有可能會(huì )出現將不等式轉化為不等式組{來(lái)求解的錯誤做法,教師要關(guān)注學(xué)生,及時(shí)發(fā)現問(wèn)題并給予糾正,指出上面的轉化不是等價(jià)轉化。
以上是我對本節課的一些粗淺的認識和構想,如有不妥之處,懇請各位專(zhuān)家、各位同仁批評指正。謝謝大家!
一元二次不等式說(shuō)課稿5
一、 教材簡(jiǎn)析
1、地位和價(jià)值
一元二次不等式解法是高中數學(xué)新教材第一冊(上)第一章第5節的內容。在此之前,學(xué)生在初中已學(xué)習了一元一次不等式,一元一次不等式組,一元二次方程,二次函數,絕對值不等式(高中),這為過(guò)渡到本節的學(xué)習起著(zhù)鋪墊作用。一元二次不等式解法是解不等式的基礎和核心,它在高中代數中起著(zhù)廣泛應用的工具作用,蘊藏著(zhù)“數與形結合”的重要思想方法,它已成為代數、三角、解析幾何交匯綜合的重要部分,是高考綜合題的熱點(diǎn)。
2、教材結構簡(jiǎn)介
教材首先以一個(gè)一次函數圖象的應用解一元一次不等式,引出圖象法,然后給出一個(gè)二次函數,通過(guò)具體畫(huà)圖象,提出問(wèn)題。再一般地給出了二次函數圖象解二次不等式的結論。課本精選了四個(gè)解不等式的例題,并配有相應的練習和習題。它的后一小節為解可轉化為一元二次不等式的分式不等式。
二、 教育教學(xué)觀(guān)
1、 學(xué)生為主體,重學(xué)生參與學(xué)習活動(dòng)。
2、 重過(guò)程。按照認知規律及學(xué)生認知特點(diǎn),由淺入深,由表及里,設計一系列教學(xué)活動(dòng)過(guò)程。體現由“實(shí)踐……觀(guān)察……歸納 ……猜想…… 結論…… 驗證應用”的循環(huán)往復的認知過(guò)程。
3、 重能力與態(tài)度的培養,在活動(dòng)中培養學(xué)生自主、交流合作、探究、發(fā)現的能力。重科學(xué)嚴謹的個(gè)性品質(zhì)。重參與學(xué)習的興趣和體驗。
4、 重指導點(diǎn)撥。在學(xué)生自主探究、實(shí)踐的基礎上,相機啟發(fā),恰當點(diǎn)撥,促進(jìn)學(xué)生知識由感性向理性提升,由具體到概括抽象,形成師生間的有效互動(dòng)。
三、 教學(xué)目標
基于上述認識,及不等式的基本知識,同時(shí)學(xué)生在初中已學(xué)過(guò)二次函數,考慮到學(xué)生已有的認知結構心理特征,制訂如下教學(xué)目標:
1、 知識目標:一元二次方程,一元二次不等式及二次函數間的聯(lián)系,及利用二次函數的圖象求解一元二次不等式。
2、 能力目標:數形結合的思想(應用二次函數圖象解不等式)
3、 情感態(tài)度目標:通過(guò)問(wèn)題解決,培養學(xué)生自主參與學(xué)習,以及嚴謹求實(shí)的態(tài)度。
四、 教與學(xué)重點(diǎn)、難點(diǎn)
1、重點(diǎn):用圖象解一元二次不等式。
2、難點(diǎn):圍繞二次函數圖象、性質(zhì)這一主線(xiàn),解決三個(gè)“二次”的聯(lián)系和應用。
五、 教法與學(xué)法
1、學(xué)情分析及學(xué)法:函數與圖象應用是初中生數學(xué)的薄弱之處,同時(shí)剛進(jìn)入高中的學(xué)生,對高中學(xué)習還很不適應,需要加強主動(dòng)學(xué)習的.指導;诖,在學(xué)生初中知識經(jīng)驗的基礎上,以舊探新;以一系列問(wèn)題,促進(jìn)主體的學(xué)習活動(dòng)(如畫(huà)圖象、讀圖等),建構知識;以問(wèn)題情景激勵學(xué)生參與,在恰當時(shí)機進(jìn)行點(diǎn)撥啟發(fā),練、導結合,講練結合;通過(guò)學(xué)生自己做數學(xué),教師啟發(fā)指導,以及學(xué)生領(lǐng)悟,實(shí)現學(xué)生對知識的再創(chuàng )造和主動(dòng)建構;具體通過(guò)教材中的問(wèn)題及設計的問(wèn)題情景,給予學(xué)生活動(dòng)的空間,通過(guò)這些問(wèn)題(“腳手架”)的解決,使學(xué)生逐步攀升,達到知識與能力的目標。
2、教法:數學(xué)教學(xué)是數學(xué)教與學(xué)活動(dòng)過(guò)程的教學(xué),學(xué)生是在探究與發(fā)現中建構知識,發(fā)展能力的,因而確定以“問(wèn)題解決”為教法。實(shí)現學(xué)生在教師指導下的發(fā)現探索。同時(shí)所學(xué)內容適宜用“計算機高中數學(xué)問(wèn)題處理系統”輔助教學(xué)。
六、教學(xué)手段及工具:
多媒體教學(xué)手段,高中數學(xué)問(wèn)題處理系統。
七、教學(xué)設計及教學(xué)過(guò)程
1、復習設問(wèn),引入新課
高中數學(xué)新教材第一冊(上)《一元二次不等式解法》(第一課時(shí))說(shuō)課稿.rar
一元二次不等式說(shuō)課稿6
一、 教材簡(jiǎn)析
1、地位和價(jià)值
<<一元二次不等式解法>>是高中數學(xué)新教材第一冊(上)第一章第5節的內容。在此之前,學(xué)生在初中已學(xué)習了一元一次不等式,一元一次不等式組,一元二次方程,二次函數,絕對值不等式(高中),這為過(guò)渡到本節的學(xué)習起著(zhù)鋪墊作用。一元二次不等式解法是解不等式的基礎和核心,它在高中代數中起著(zhù)廣泛應用的工具作用,蘊藏著(zhù)“數與形結合”的重要思想方法,它已成為代數、三角、解析幾何交匯綜合的重要部分,是高考綜合題的熱點(diǎn)。
2、教材結構簡(jiǎn)介
教材首先以一個(gè)一次函數圖象的應用解一元一次不等式,引出圖象法,然后給出一個(gè)二次函數,通過(guò)具體畫(huà)圖象,提出問(wèn)題。再一般地給出了二次函數圖象解二次不等式的結論。課本精選了四個(gè)解不等式的例題,并配有相應的練習和習題。它的后一小節為解可轉化為一元二次不等式的分式不等式。
二、 教育教學(xué)觀(guān)
1、 學(xué)生為主體,重學(xué)生參與學(xué)習活動(dòng)。
2、 重過(guò)程。按照認知規律及學(xué)生認知特點(diǎn),由淺入深,由表及里,設計一系列教學(xué)活動(dòng)過(guò)程。體現由“實(shí)踐……觀(guān)察……歸納 ……猜想…… 結論…… 驗證應用”的循環(huán)往復的認知過(guò)程。
3、 重能力與態(tài)度的培養,在活動(dòng)中培養學(xué)生自主、交流合作、探究、發(fā)現的能力。重科學(xué)嚴謹的個(gè)性品質(zhì)。重參與學(xué)習的興趣和體驗。
4、 重指導點(diǎn)撥。在學(xué)生自主探究、實(shí)踐的基礎上,相機啟發(fā),恰當點(diǎn)撥,促進(jìn)學(xué)生知識由感性向理性提升,由具體到概括抽象,形成師生間的有效互動(dòng)。
三、 教學(xué)目標
基于上述認識,及不等式的基本知識,同時(shí)學(xué)生在初中已學(xué)過(guò)二次函數,考慮到學(xué)生已有的認知結構心理特征,制訂如下教學(xué)目標:
1、 知識目標:一元二次方程,一元二次不等式及二次函數間的聯(lián)系,及利用二次函數的圖象求解一元二次不等式。
2、 能力目標:數形結合的思想(應用二次函數圖象解不等式)
3、 情感態(tài)度目標:通過(guò)問(wèn)題解決,培養學(xué)生自主參與學(xué)習,以及嚴謹求實(shí)的態(tài)度。
四、 教與學(xué)重點(diǎn)、難點(diǎn)
1、重點(diǎn):用圖象解一元二次不等式。
2、難點(diǎn):圍繞二次函數圖象、性質(zhì)這一主線(xiàn),解決三個(gè)“二次”的聯(lián)系和應用。
五、 教法與學(xué)法
1、學(xué)情分析及學(xué)法:函數與圖象應用是初中生數學(xué)的薄弱之處,同時(shí)剛進(jìn)入高中的學(xué)生,對高中學(xué)習還很不適應,需要加強主動(dòng)學(xué)習的指導;诖,在學(xué)生初中知識經(jīng)驗的基礎上,以舊探新;以一系列問(wèn)題,促進(jìn)主體的'學(xué)習活動(dòng)(如畫(huà)圖象、讀圖等),建構知識;以問(wèn)題情景激勵學(xué)生參與,在恰當時(shí)機進(jìn)行點(diǎn)撥啟發(fā),練、導結合,講練結合;通過(guò)學(xué)生自己做數學(xué),教師啟發(fā)指導,以及學(xué)生領(lǐng)悟,實(shí)現學(xué)生對知識的再創(chuàng )造和主動(dòng)建構;具體通過(guò)教材中的問(wèn)題及設計的問(wèn)題情景,給予學(xué)生活動(dòng)的空間,通過(guò)這些問(wèn)題(“腳手架”)的解決,使學(xué)生逐步攀升,達到知識與能力的目標。
2、教法:數學(xué)教學(xué)是數學(xué)教與學(xué)活動(dòng)過(guò)程的教學(xué),學(xué)生是在探究與發(fā)現中建構知識,發(fā)展能力的,因而確定以“問(wèn)題解決”為教法。實(shí)現學(xué)生在教師指導下的發(fā)現探索。同時(shí)所學(xué)內容適宜用“計算機高中數學(xué)問(wèn)題處理系統”輔助教學(xué)。
六、教學(xué)手段及工具:
多媒體教學(xué)手段,高中數學(xué)問(wèn)題處理系統。
一元二次不等式說(shuō)課稿7
一、教材內容分析:
1.本節課內容在整個(gè)教材中的地位和作用。
概括地講,本節課內容的地位體現在它的基礎性,作用體現在它的工具性。一元二次不等式的解法是初中一元一次不等式或一元一次不等式組的延續和深化,對已學(xué)習過(guò)的集合知識的鞏固和運用具有重要的作用,也與后面的函數、數列、三角函數、線(xiàn)形規劃、直線(xiàn)與圓錐曲線(xiàn)以及導數等內容密切相關(guān)。許多問(wèn)題的解決都會(huì )借助一元二次不等式的解法。因此,一元二次不等式的解法在整個(gè)高中數學(xué)教學(xué)中具有很強的基礎性,體現出很大的工具作用。
2.教學(xué)目標定位。
根據教學(xué)大綱要求、高考考試大綱說(shuō)明、新課程標準精神、高一學(xué)生已有的知識儲備狀況和學(xué)生心理認知特征,我確定了四個(gè)層面的教學(xué)目標。第一層面是面向全體學(xué)生的知識目標:熟練掌握一元二次不等式的兩種解法,正確理解一元二次方程、一元二次不等式和二次函數三者的關(guān)系。第二層面是能力目標,培養學(xué)生運用數形結合與等價(jià)轉化等數學(xué)思想方法解決問(wèn)題的能力,提高運算和作圖能力。第三層面是德育目標,通過(guò)對解不等式過(guò)程中等與不等對立統一關(guān)系的認識,向學(xué)生逐步滲透辨證唯物主義思想。第四層面是情感目標,在教師的啟發(fā)引導下,學(xué)生自主探究,交流討論,培養學(xué)生的合作意識和創(chuàng )新精神。
3.教學(xué)重點(diǎn)、難點(diǎn)確定。
本節課是在復習了一次不等式的解法之后,利用二次函數的圖象研究一元二次不等式的解法。只要學(xué)生能夠理解一元二次方程、一元二次不等式和二次函數三者的關(guān)系,并利用其關(guān)系解不等式即可。因此,我確定本節課的教學(xué)重點(diǎn)為一元二次不等式的解法,關(guān)鍵是一元二次方程、一元二次不等式和二次函數三者的關(guān)系。
二、教法學(xué)法分析:
數學(xué)是發(fā)展學(xué)生思維、培養學(xué)生良好意志品質(zhì)和美好情感的重要學(xué)科,在教學(xué)中,我們不僅要使學(xué)生獲得知識、提高解題能力,還要讓學(xué)生在教師的啟發(fā)引導下學(xué)會(huì )學(xué)習、樂(lè )于學(xué)習,感受數學(xué)學(xué)科的人文思想,使學(xué)生在學(xué)習中培養堅強的意志品質(zhì)、形成良好的道德情感。為了更好地體現課堂教學(xué)中“教師為主導,學(xué)生為主體”的教學(xué)關(guān)系和“以人為本,以學(xué)定教”的教學(xué)理念,在本節課的教學(xué)過(guò)程中,我將緊緊圍繞教師組織——啟發(fā)引導,學(xué)生探究——交流發(fā)現,組織開(kāi)展教學(xué)活動(dòng)。我設計了①創(chuàng )設情景——引入新課,②交流探究——發(fā)現規律,③啟發(fā)引導——形成結論,④練習小結——深化鞏固,⑤思維拓展——提高能力,五個(gè)環(huán)環(huán)相扣、層層深入的`教學(xué)環(huán)節,在教學(xué)中注意關(guān)注整個(gè)過(guò)程和全體學(xué)生,充分調動(dòng)學(xué)生積極參與教學(xué)過(guò)程的每個(gè)環(huán)節。
三、教學(xué)過(guò)程分析:
1.創(chuàng )設情景——引入新課。我們常說(shuō)“興趣是最好的老師”,長(cháng)期以來(lái),學(xué)生對學(xué)習數學(xué)缺乏興趣,甚至失去信心,一個(gè)重要的原因,是老師在教學(xué)中不重視學(xué)生對學(xué)習的情感體驗,教學(xué)應該充分考慮學(xué)生的情感和需要,想方設法讓學(xué)生在學(xué)習中樹(shù)立信心,感受學(xué)習的樂(lè )趣。根據教材內容的安排,我以學(xué)生熟悉的畫(huà)一次函數圖象、求一次方程和一次不等式的解為背景知識切入,設置一個(gè)練習題組,一方面讓學(xué)生總結復習已有知識,為后面學(xué)習二次不等式的解法打下基礎,做好鋪墊,另一方面,使學(xué)生在自己熟悉的問(wèn)題中首先獲得解題成功的快樂(lè )體驗,然后以2004年江蘇省的一道高考試題為引子,引入本節課的新授內容。對于本題,引導學(xué)生,利用上面解練習題組1的方法,畫(huà)出二次函數圖象來(lái)解答。二次函數是初中數學(xué)的重要內容,本題又給出了函數圖象上許多點(diǎn),相信學(xué)生畫(huà)出圖象應該不成問(wèn)題,只要教師適當點(diǎn)撥,學(xué)生不難得到正確答案。以高考試題為背景引入新課,可以提高學(xué)生興趣,抓住學(xué)生眼球,吸引學(xué)生注意力,還可以讓學(xué)生實(shí)實(shí)在在感受到,高考題就在我們的課本中,就在我們平常的練習中。
2.探究交流——發(fā)現規律。從特殊到一般是我們發(fā)現問(wèn)題、尋求規律、揭示問(wèn)題本質(zhì)最常用的方法之一。我把課本例題1、2編為練習題組(一),交由學(xué)生用上面解高考題的方法——圖象法去解,學(xué)生由于熟知二次函數圖象,求解應該不會(huì )有太大的問(wèn)題。在這個(gè)過(guò)程中,教師要啟發(fā)引導學(xué)生注意對比兩題的異同,組織引導學(xué)生展開(kāi)交流討論,探討第(2)題能不能先把二次項系數化正以后再構造函數畫(huà)圖求解。然后達成共識,如果二次項系數為負數時(shí),先做等價(jià)轉化,把二次項系數化為正數再解,課本19頁(yè)例3、例4作為題組(二),繼續讓學(xué)生用上面的圖象法,由學(xué)生自己求解,這時(shí)我及時(shí)提示學(xué)生注意這兩題與題組(一)中兩題的不同(例1、例2對應方程都有兩個(gè)不等實(shí)根,例3對應方程有兩相等實(shí)根,例4對應方程無(wú)實(shí)根)。兩個(gè)題組的練習之后,可以尋求解二次不等式的一般規律。
3.啟發(fā)引導——形成結論。前面兩個(gè)題組的四個(gè)小題,基本涵蓋了一般一元二次不等式解的各種情況,進(jìn)一步啟發(fā)引導學(xué)生將特殊、具體題目的結論做一般化總結,與學(xué)生一起就 △>0,△<0,△=0 的三種情況,總結二次不等式ax2+bx+c>0或ax2+bx+c<0 (a>0)的解的情況應該水到渠成。至此,學(xué)生可以感受到,解二次不等式只須①將二次項系數化為正數,②求解二次方程 ax2+bx+c=0 的根。③根據①后的二次不等式的符號寫(xiě)出解集即可,必要時(shí)也可以結合圖象寫(xiě)解集。這樣我們就得到了二次不等式的另外一種解法(可稱(chēng)為“三步曲”法)。
4.訓練小結——鞏固深化。為了鞏固和加深二次不等式的兩種解法,接下來(lái)及時(shí)組織學(xué)生進(jìn)行課堂練習,完成課本21頁(yè)練習1-4題。本環(huán)節請不同層次的學(xué)生在黑板上書(shū)寫(xiě)解題過(guò)程,之后師生共同糾正問(wèn)題,規范解題過(guò)程的書(shū)寫(xiě)。
5.延伸拓寬——提高能力。課堂教學(xué)既要面向全體學(xué)生,又應關(guān)注學(xué)生的個(gè)體差異。體現分類(lèi)推進(jìn),分層教學(xué)的原則。為此,我又設計了一個(gè)提高練習題組,共有三道備選題目,以供程度較好學(xué)有余力的學(xué)生能夠更好的展示自己的解題能力,取得更進(jìn)一步的提高。
四、課堂意外預案:
新課程理念下的教學(xué)更多的關(guān)注學(xué)生自主探究、關(guān)注學(xué)生的個(gè)性發(fā)展,鼓勵學(xué)生勇于提出問(wèn)題,培養學(xué)生思維的批評性。在課堂上學(xué)生往往會(huì )提出讓老師感到“意外”的問(wèn)題,我在平時(shí)的教學(xué)中重視對“課堂意外預案”的探索和思考,備課時(shí)盡量設想課堂中可能會(huì )出現的各種情況,做到有備無(wú)患,以免在課堂中學(xué)生提出讓自己出乎意料的問(wèn)題,使自己陷入被動(dòng)尷尬境地。結合以往經(jīng)驗,在本節課,我提出兩個(gè)“意外預案”。
1.學(xué)生在做課本練習1(x+2)(x-3)>0 時(shí),可能會(huì )問(wèn)到轉化為不等式組{或{ 求解對不對。學(xué)生提出的問(wèn)題,想法非常好,應給予肯定和鼓勵,這與下節簡(jiǎn)單分式不等式和高次不等式的解法有關(guān),是解不等式的另一種解法——等價(jià)轉化法,不在本節課之列。
2.根據以往的經(jīng)驗,在解(x-1)(x+2)>1一類(lèi)的不等式的時(shí)候,由于受方程(x+1)(x+2)=0 可轉化為x-1=0或x+2=0求解的影響,有可能會(huì )出現將不等式轉化為不等式組{來(lái)求解的錯誤做法,教師要關(guān)注學(xué)生,及時(shí)發(fā)現問(wèn)題并給予糾正,指出上面的轉化不是等價(jià)轉化。
一元二次不等式說(shuō)課稿8
一.教材內容分析:
1.本節課內容在整個(gè)教材中的地位和作用。
概括地講,本節課內容的地位體現在它的基礎性,作用體現在它的工具性。一元二次不等式的解法是初中一元一次不等式或一元一次不等式組的延續和深化,對已學(xué)習過(guò)的集合知識的鞏固和運用具有重要的作用,也與后面的函數、數列、三角函數、線(xiàn)形規劃、直線(xiàn)與圓錐曲線(xiàn)以及導數等內容密切相關(guān)。許多問(wèn)題的解決都會(huì )借助一元二次不等式的解法。因此,一元二次不等式的解法在整個(gè)高中數學(xué)教學(xué)中具有很強的基礎性,體現出很大的工具作用。
2.教學(xué)目標定位。
根據教學(xué)大綱要求、高考考試大綱說(shuō)明、新課程標準精神、高一學(xué)生已有的知識儲備狀況和學(xué)生心理認知特征,我確定了四個(gè)層面的教學(xué)目標。第一層面是面向全體學(xué)生的知識目標:熟練掌握一元二次不等式的兩種解法,正確理解一元二次方程、一元二次不等式和二次函數三者的關(guān)系。第二層面是能力目標,培養學(xué)生運用數形結合與等價(jià)轉化等數學(xué)思想方法解決問(wèn)題的能力,提高運算和作圖能力。第三層面是德育目標,通過(guò)對解不等式過(guò)程中等與不等對立統一關(guān)系的認識,向學(xué)生逐步滲透辨證唯物主義思想。第四層面是情感目標,在教師的啟發(fā)引導下,學(xué)生自主探究,交流討論,培養學(xué)生的合作意識和創(chuàng )新精神。
3.教學(xué)重點(diǎn)、難點(diǎn)確定。
本節課是在復習了一次不等式的解法之后,利用二次函數的圖象研究一元二次不等式的解法。只要學(xué)生能夠理解一元二次方程、一元二次不等式和二次函數三者的關(guān)系,并利用其關(guān)系解不等式即可。因此,我確定本節課的教學(xué)重點(diǎn)為一元二次不等式的解法,關(guān)鍵是一元二次方程、一元二次不等式和二次函數三者的關(guān)系。
二.教法學(xué)法分析:
數學(xué)是發(fā)展學(xué)生思維、培養學(xué)生良好意志品質(zhì)和美好情感的重要學(xué)科,在教學(xué)中,我們不僅要使學(xué)生獲得知識、提高解題能力,還要讓學(xué)生在教師的啟發(fā)引導下學(xué)會(huì )學(xué)習、樂(lè )于學(xué)習,感受數學(xué)學(xué)科的人文思想,使學(xué)生在學(xué)習中培養堅強的意志品質(zhì)、形成良好的道德情感。為了更好地體現課堂教學(xué)中“教師為主導,學(xué)生為主體”的教學(xué)關(guān)系和“以人為本,以學(xué)定教”的教學(xué)理念,在本節課的教學(xué)過(guò)程中,我將緊緊圍繞教師組織——啟發(fā)引導,學(xué)生探究——交流發(fā)現,組織開(kāi)展教學(xué)活動(dòng)。我設計了①創(chuàng )設情景——引入新課,②交流探究——發(fā)現規律,③啟發(fā)引導——形成結論,④練習小結——深化鞏固,⑤思維拓展——提高能力,五個(gè)環(huán)環(huán)相扣、層層深入的教學(xué)環(huán)節,在教學(xué)中注意關(guān)注整個(gè)過(guò)程和全體學(xué)生,充分調動(dòng)學(xué)生積極參與教學(xué)過(guò)程的每個(gè)環(huán)節。
三.教學(xué)過(guò)程分析:
1.創(chuàng )設情景——引入新課。我們常說(shuō)“興趣是最好的老師”,長(cháng)期以來(lái),學(xué)生對學(xué)習數學(xué)缺乏興趣,甚至失去信心,一個(gè)重要的`原因,是老師在教學(xué)中不重視學(xué)生對學(xué)習的情感體驗,教學(xué)應該充分考慮學(xué)生的情感和需要,想方設法讓學(xué)生在學(xué)習中樹(shù)立信心,感受學(xué)習的樂(lè )趣。根據教材內容的安排,我以學(xué)生熟悉的畫(huà)一次函數圖象、求一次方程和一次不等式的解為背景知識切入,設置一個(gè)練習題組,一方面讓學(xué)生總結復習已有知識,為后面學(xué)習二次不等式的解法打下基礎,做好鋪墊,另一方面,使學(xué)生在自己熟悉的問(wèn)題中首先獲得解題成功的快樂(lè )體驗,然后以2004年江蘇省的一道高考試題為引子,引入本節課的新授內容。對于本題,引導學(xué)生,利用上面解練習題組1的方法,畫(huà)出二次函數圖象來(lái)解答。二次函數是初中數學(xué)的重要內容,本題又給出了函數圖象上許多點(diǎn),相信學(xué)生畫(huà)出圖象應該不成問(wèn)題,只要教師適當點(diǎn)撥,學(xué)生不難得到正確答案。以高考試題為背景引入新課,可以提高學(xué)生興趣,抓住學(xué)生眼球,吸引學(xué)生注意力,還可以讓學(xué)生實(shí)實(shí)在在感受到,高考題就在我們的課本中,就在我們平常的練習中。
2.探究交流——發(fā)現規律。從特殊到一般是我們發(fā)現問(wèn)題、尋求規律、揭示問(wèn)題本質(zhì)最常用的方法之一。我把課本例題1、2編為練習題組(一),交由學(xué)生用上面解高考題的方法——圖象法去解,學(xué)生由于熟知二次函數圖象,求解應該不會(huì )有太大的問(wèn)題。在這個(gè)過(guò)程中,教師要啟發(fā)引導學(xué)生注意對比兩題的異同,組織引導學(xué)生展開(kāi)交流討論,探討第(2)題能不能先把二次項系數化正以后再構造函數畫(huà)圖求解。然后達成共識,如果二次項系數為負數時(shí),先做等價(jià)轉化,把二次項系數化為正數再解,課本19頁(yè)例3、例4作為題組(二),繼續讓學(xué)生用上面的圖象法,由學(xué)生自己求解,這時(shí)我及時(shí)提示學(xué)生注意這兩題與題組(一)中兩題的不同(例1、例2對應方程都有兩個(gè)不等實(shí)根,例3對應方程有兩相等實(shí)根,例4對應方程無(wú)實(shí)根)。兩個(gè)題組的練習之后,可以尋求解二次不等式的一般規律。
3.啟發(fā)引導——形成結論。前面兩個(gè)題組的四個(gè)小題,基本涵蓋了一般一元二次不等式解的各種情況,進(jìn)一步啟發(fā)引導學(xué)生將特殊、具體題目的結論做一般化總結,與學(xué)生一起就 △>0,△<0,△=0 的三種情況,總結二次不等式ax2+bx+c>0或ax2+bx+c<0 (a>0)的解的情況應該水到渠成。至此,學(xué)生可以感受到,解二次不等式只須①將二次項系數化為正數,②求解二次方程 ax2+bx+c=0 的根。③根據①后的二次不等式的符號寫(xiě)出解集即可,必要時(shí)也可以結合圖象寫(xiě)解集。這樣我們就得到了二次不等式的另外一種解法(可稱(chēng)為“三步曲”法)。
4.訓練小結——鞏固深化。為了鞏固和加深二次不等式的兩種解法,接下來(lái)及時(shí)組織學(xué)生進(jìn)行課堂練習,完成課本21頁(yè)練習1-4題。本環(huán)節請不同層次的學(xué)生在黑板上書(shū)寫(xiě)解題過(guò)程,之后師生共同糾正問(wèn)題,規范解題過(guò)程的書(shū)寫(xiě)。
5.延伸拓寬——提高能力。課堂教學(xué)既要面向全體學(xué)生,又應關(guān)注學(xué)生的個(gè)體差異。體現分類(lèi)推進(jìn),分層教學(xué)的原則。為此,我又設計了一個(gè)提高練習題組,共有三道備選題目,以供程度較好學(xué)有余力的學(xué)生能夠更好的展示自己的解題能力,取得更進(jìn)一步的提高。
四.課堂意外預案:
新課程理念下的教學(xué)更多的關(guān)注學(xué)生自主探究、關(guān)注學(xué)生的個(gè)性發(fā)展,鼓勵學(xué)生勇于提出問(wèn)題,培養學(xué)生思維的批評性。在課堂上學(xué)生往往會(huì )提出讓老師感到“意外”的問(wèn)題,我在平時(shí)的教學(xué)中重視對“課堂意外預案”的探索和思考,備課時(shí)盡量設想課堂中可能會(huì )出現的各種情況,做到有備無(wú)患,以免在課堂中學(xué)生提出讓自己出乎意料的問(wèn)題,使自己陷入被動(dòng)尷尬境地。結合以往經(jīng)驗,在本節課,我提出兩個(gè)“意外預案”。
1.學(xué)生在做課本練習1(x+2)(x-3)>0 時(shí),可能會(huì )問(wèn)到轉化為不等式組{或{ 求解對不對。學(xué)生提出的問(wèn)題,想法非常好,應給予肯定和鼓勵,這與下節簡(jiǎn)單分式不等式和高次不等式的解法有關(guān),是解不等式的另一種解法——等價(jià)轉化法,不在本節課之列。
2.根據以往的經(jīng)驗,在解(x-1)(x+2)>1一類(lèi)的不等式的時(shí)候,由于受方程(x+1)(x+2)=0 可轉化為x-1=0或x+2=0求解的影響,有可能會(huì )出現將不等式轉化為不等式組{來(lái)求解的錯誤做法,教師要關(guān)注學(xué)生,及時(shí)發(fā)現問(wèn)題并給予糾正,指出上面的轉化不是等價(jià)轉化。
【一元二次不等式說(shuō)課稿】相關(guān)文章:
一元二次不等式教案11-18
一元二次不等式教案5篇11-19
《含參數一元二次不等式解法》聽(tīng)課體會(huì )07-14
數學(xué)《一元一次不等式》說(shuō)課稿12-01
《一元一次不等式組》說(shuō)課稿07-06
數學(xué)《一元二次不等式》教學(xué)設計(通用7篇)09-27