高中數學(xué)教學(xué)設計(集合15篇)
作為一無(wú)名無(wú)私奉獻的教育工作者,編寫(xiě)教學(xué)設計是必不可少的,教學(xué)設計是實(shí)現教學(xué)目標的計劃性和決策性活動(dòng)。教學(xué)設計應該怎么寫(xiě)才好呢?下面是小編精心整理的高中數學(xué)教學(xué)設計,歡迎大家借鑒與參考,希望對大家有所幫助。
高中數學(xué)教學(xué)設計1
教學(xué)設想
1、在實(shí)際情境中,給定一個(gè)方向,學(xué)生能辨認其余三個(gè)方向,并能用這些詞語(yǔ)描述物體所在方向。
2、通過(guò)親身經(jīng)歷、體驗,獲得真正的感受,在活動(dòng)中發(fā)展學(xué)生的定向觀(guān)念。
活動(dòng)準備
收集判斷東西南北的'資料
教學(xué)過(guò)程:
一、收集資料
1、課前收集有關(guān)判斷方向的資料。
2、展示、交流收集材料。
二、活動(dòng)一:在操場(chǎng)上
1、組織全班學(xué)生到操場(chǎng)上辨認方向。
2、誰(shuí)能辨認東、西、南、北?你是怎么辨認的?
3、拿出事先準備好的方向板,標上東、西、南、北。
4、看一看、說(shuō)一說(shuō):東、西、南、北各有什么?在記錄紙上把它們記下來(lái),并標明4個(gè)方向。
活動(dòng)二:在教室里
1、展示記錄紙。
2、互相看看有什么不同?
3、在教室里辨認東、西、南、北,說(shuō)一說(shuō)各有什么?
活動(dòng)三:你說(shuō)我做
。ńo定一個(gè)方向,朝其余三個(gè)方向走)
1、同桌2人合作,互換角色。
2、指名上臺表演。
活動(dòng)四:指揮交通
1、模擬表演:請一名同學(xué)當黑貓警長(cháng),12名同學(xué)扮演帶卡片的小動(dòng)物。
2、宣布活動(dòng)規則:得數大于10的朝北走,其余的朝南走。
3、評一評:誰(shuí)是遵守交通規則的小動(dòng)物。
4、滲透有關(guān)交通安全的教育。
談一談:這節課的感受或收獲。
高中數學(xué)教學(xué)設計2
教學(xué)目標:
、僬莆諏岛瘮档男再|(zhì)。
、趹脤岛瘮档男再|(zhì)可以解決:對數的大小比較,求復合函數的定義域、值域及單調性。
、圩⒅睾瘮邓枷、等價(jià)轉化、分類(lèi)討論等思想的滲透,提高解題能力。
教學(xué)重點(diǎn)與難點(diǎn):
對數函數的`性質(zhì)的應用。
教學(xué)過(guò)程設計:
、睆土曁釂(wèn):對數函數的概念及性質(zhì)。
、查_(kāi)始正課
1比較數的大小
例1比較下列各組數的大小。
、舕oga5.1 ,loga5.9 (a>0,a≠1)
、苐og0.50.6 ,logЛ0.5 ,lnЛ
師:請同學(xué)們觀(guān)察一下⑴中這兩個(gè)對數有何特征?
生:這兩個(gè)對數底相等。
師:那么對于兩個(gè)底相等的對數如何比大小?
生:可構造一個(gè)以a為底的對數函數,用對數函數的單調性比大小。
師:對,請敘述一下這道題的解題過(guò)程。
生:對數函數的單調性取決于底的大。寒0調遞減,所以loga5.1>loga5.9 ;當a>1時(shí),函數y=logax單調遞增,所以loga5.1
板書(shū):
解:Ⅰ)當0
∵5.1<5.9 loga5.1="">loga5.9
、)當a>1時(shí),函數y=logax在(0,+∞)上是增函數
∵5.1<5.9 ∴loga5.1
師:請同學(xué)們觀(guān)察一下⑵中這三個(gè)對數有何特征?
生:這三個(gè)對數底、真數都不相等。
師:那么對于這三個(gè)對數如何比大小?
生:找“中間量”,log0.50.6>0,lnЛ>0,logЛ0.5<0;lnл>1,
log0.50.6<1,所以logЛ0.5< log0.50.6< lnЛ。
板書(shū):略。
師:比較對數值的大小常用方法:
、贅嬙鞂岛瘮,直接利用對數函數的單調性比大;
、诮栌谩爸虚g量”間接比大;
、劾脤岛瘮祱D象的位置關(guān)系來(lái)比大小。
2函數的定義域,值域及單調性。
高中數學(xué)教學(xué)設計3
函數的奇偶性
函數的奇偶性是函數的重要性質(zhì),是對函數概念的深化.它把自變量取相反數時(shí)函數值間的關(guān)系定量地聯(lián)系在一起,反映在圖像上為:偶函數的圖像關(guān)于y軸對稱(chēng),奇函數的圖像關(guān)于坐標原點(diǎn)成中心對稱(chēng).這樣,就從數、形兩個(gè)角度對函數的奇偶性進(jìn)行了定量和定性的分析.教材首先通過(guò)對具體函數的圖像及函數值對應表歸納和抽象,概括出了函數奇偶性的準確定義.然后,為深化對概念的理解,舉出了奇函數、偶函數、既是奇函數又是偶函數的函數和非奇非偶函數的實(shí)例.最后,為加強前后聯(lián)系,從各個(gè)角度研究函數的性質(zhì),講清了奇偶性和單調性的聯(lián)系.這節課的重點(diǎn)是函數奇偶性的定義,難點(diǎn)是根據定義判斷函數的.奇偶性.
教學(xué)目標:
1.通過(guò)具體函數,讓學(xué)生經(jīng)歷奇函數、偶函數定義的討論,體驗數學(xué)概念的建立過(guò)程,培養其抽象的概括能力.
2.理解、掌握函數奇偶性的定義,奇函數和偶函數圖像的特征,并能初步應用定義判斷一些簡(jiǎn)單函數的奇偶性.
3.在經(jīng)歷概念形成的過(guò)程中,培養學(xué)生歸納、抽象概括能力,體驗數學(xué)既是抽象的又是具體的任務(wù)分析
這節內容學(xué)生在初中雖沒(méi)學(xué)過(guò),但已經(jīng)學(xué)習過(guò)具有奇偶性的具體的函數:正比例函數y=kx,反比例函數,(k≠0),二次函數y=ax,(a≠0),故可在此基礎上,引入奇、偶函數的概念,以便于學(xué)生理解.在引入概念時(shí)始終結合具體函數的圖像,以增加直觀(guān)性,這樣更符合學(xué)生的認知規律,同時(shí)為闡述奇、偶函數的幾何特征埋下了伏筆.對于概念可從代數特征與幾何特征兩個(gè)角度去分析,讓學(xué)生理解:奇函數、偶函數的定義域是關(guān)于原點(diǎn)對稱(chēng)的非空數集;對于在有定義的奇函數y=f(x),一定有f(0)=0;既是奇函數,又是偶函數的函數有f(x)=0,x∈R.在此基礎上,讓學(xué)生了解:奇函數、偶函數的矛盾概念———非奇非偶函數.關(guān)于單調性與奇偶性關(guān)系,引導學(xué)生拓展延伸,可以取得理想效果.
一、問(wèn)題情景
1.觀(guān)察如下兩圖,思考并討論以下問(wèn)題:
(1)這兩個(gè)函數圖像有什么共同特征?
(2)相應的兩個(gè)函數值對應表是如何體現這些特征的?可以看到兩個(gè)函數的圖像都關(guān)于y軸對稱(chēng).從函數值對應表可以看到,當自變量x取一對相反數時(shí),相應的兩個(gè)函數值相同.
對于函數f(x)=x,有f(-3)=9=f(3),f(-2)=4=f(2),f(-1)=1=f(1).事實(shí)上,對于R內任意的一個(gè)x,都有f(-x)=(-x)2=x2=f(x).此時(shí),稱(chēng)函數y=x2為偶函數.
2.觀(guān)察函數f(x)=x和f(x)=的圖像,并完成下面的兩個(gè)函數值對應表,然后說(shuō)出這兩個(gè)函數有什么共同特征.
22可以看到兩個(gè)函數的圖像都關(guān)于原點(diǎn)對稱(chēng).函數圖像的這個(gè)特征,反映在解析式上就是:當自變量x取一對相反數時(shí),相應的函數值f(x)也是一對相反數,即對任一x∈R都有f(-x)=-f(x).此時(shí),稱(chēng)函數y=f(x)為奇函數.
二、建立模型
由上面的分析討論引導學(xué)生建立奇函數、偶函數的定義
1.奇、偶函數的定義
如果對于函數f(x)的定義域內任意一個(gè)x,都有f(-x)=-f(x),那么函數f(x)就叫作奇函數.如果對于函數f(x)的定義域內任意一個(gè)x,都有f(-x)=f(x),那么函數f(x)就叫作偶函數.
2.提出問(wèn)題,組織學(xué)生討論
(1)如果定義在R上的函數f(x)滿(mǎn)足f(-2)=f(2),那么f(x)是偶函數嗎? (f(x)不一定是偶函數)
(2)奇、偶函數的圖像有什么特征?
(奇、偶函數的圖像分別關(guān)于原點(diǎn)、y軸對稱(chēng)) (3)奇、偶函數的定義域有什么特征? (奇、偶函數的定義域關(guān)于原點(diǎn)對稱(chēng))
三、解釋?xiě)肹例題]
1.判斷下列函數的奇偶性.
注:①規范解題格式;②對于(5)要注意定義域x∈(-1,1].
2.已知:定義在R上的函數f(x)是奇函數,當x>0時(shí),f(x)=x(1+x),求f(x)的表達式.
解:(1)任取x<0,則-x>0,∴f(-x)=-x(1-x),
而f(x)是奇函數,∴f(-x)=-f(x).∴f(x)=x(1-x).
(2)當x=0時(shí),f(-0)=-f(0),∴f(0)=-f(0),故f(0)=0.
3.已知:函數f(x)是偶函數,且在(-∞,0)上是減函數,判斷f(x)在(0,+∞)上是增函數,還是減函數,并證明你的結論.
解:先結合圖像特征:偶函數的圖像關(guān)于y軸對稱(chēng),猜想f(x)在(0,+∞)上是增函數,證明如下:
任取x1>x2>0,則-x1<-x2<0.
∵f(x)在(-∞,0)上是減函數,∴f(-x1)>f(-x2).又f(x)是偶函數,∴f(x1)>f(x2).
∴f(x)在(0,+∞)上是增函數.
思考:奇函數或偶函數在關(guān)于原點(diǎn)對稱(chēng)的兩個(gè)區間上的單調性有何關(guān)系?
[練習]
1.已知:函數f(x)是奇函數,在[a,b]上是增函數(b>a>0),問(wèn)f(x)在[-b,-a]上的單調性如何.
2. f(x)=-x3|x|的大致圖像可能是()
3.函數f(x)=ax2+bx+c,(a,b,c∈R),當a,b,c滿(mǎn)足什么條件時(shí),(1)函數f(x)是偶函數.(2)函數f(x)是奇函數. 4.設f(x),g(x)分別是R上的奇函數和偶函數,并且f(x)+g(x)=x(x+1),求f(x),g(x)的解析式.
四、拓展延伸
1.有既是奇函數,又是偶函數的函數嗎?若有,有多少個(gè)? 2.設f(x),g(x)分別是R上的奇函數,偶函數,試研究:(1)F(x)=f(x)·g(x)的奇偶性. (2)G(x)=|f(x)|+g(x)的奇偶性.
3.已知a∈R,f(x)=a-,試確定a的值,使f(x)是奇函數.
4.一個(gè)定義在R上的函數,是否都可以表示為一個(gè)奇函數與一個(gè)偶函數的和的形式?
高中數學(xué)教學(xué)設計4
一、教材分析
本小節選自《普通高中課程標準數學(xué)教科書(shū)-數學(xué)必修(一)》(人教版)第二章基本初等函數(1)2.2.2對數函數及其性質(zhì)(第一課時(shí)),主要內容是學(xué)習對數函數的定義、圖象、性質(zhì)及初步應用。對數函數是繼指數函數之后的又一個(gè)重要初等函數,無(wú)論從知識或思想方法的角度對數函數與指數函數都有許多類(lèi)似之處。與指數函數相比,對數函數所涉及的知識更豐富、方法更靈活,能力要求也更高。學(xué)習對數函數是對指數函數知識和方法的鞏固、深化和提高,也為解決函數綜合問(wèn)題及其在實(shí)際上的應用奠定良好的基礎。雖然這個(gè)內容十分熟悉,但新教材做了一定的改動(dòng),如何設計能夠符合新課標理念,是人們十分關(guān)注的,正因如此,本人選擇這課題立求某些方面有所突破。
二、學(xué)生學(xué)習情況分析
剛從初中升入高一的學(xué)生,仍保留著(zhù)初中生許多學(xué)習特點(diǎn),能力發(fā)展正處于形象思維向抽象思維轉折階段,但更注重形象思維。由于函數概念十分抽象,又以對數運算為基礎,同時(shí),初中函數教學(xué)要求降低,初中生運算能力有所下降,這雙重問(wèn)題增加了對數函數教學(xué)的難度。教師必須認識到這一點(diǎn),教學(xué)中要控制要求的拔高,關(guān)注學(xué)習過(guò)程。
三、設計理念
本節課以建構主義基本理論為指導,以新課標基本理念為依據進(jìn)行設計的,針對學(xué)生的學(xué)習背景,對數函數的教學(xué)首先要挖掘其知識背景貼近學(xué)生實(shí)際,其次,激發(fā)學(xué)生的學(xué)習熱情,把學(xué)習的主動(dòng)權交給學(xué)生,為他們提供自主探究、合作交流的機會(huì ),確實(shí)改變學(xué)生的學(xué)習方式。
四、教學(xué)目標
1.通過(guò)具體實(shí)例,直觀(guān)了解對數函數模型所刻畫(huà)的數量關(guān)系,初步理解對數函數的概念,體會(huì )對數函數是一類(lèi)重要的函數模型;
2.能借助計算器或計算機畫(huà)出具體對數函數的圖象,探索并了解對數函數的單調性與特殊點(diǎn);
3.通過(guò)比較、對照的方法,引導學(xué)生結合圖象類(lèi)比指數函數,探索研究對數函數的性質(zhì),培養學(xué)生運用函數的觀(guān)點(diǎn)解決實(shí)際問(wèn)題。
五、教學(xué)重點(diǎn)與難點(diǎn)
重點(diǎn)是掌握對數函數的圖象和性質(zhì),難點(diǎn)是底數對對數函數值變化的影響.
六、教學(xué)過(guò)程設計
教學(xué)流程:背景材料→引出課題→函數圖象→函數性質(zhì)→問(wèn)題解決→歸納小結
(一)熟悉背景、引入課題
1.讓學(xué)生看材料:
材料1(幻燈):馬王堆女尸千年不腐之謎:一九七二年,馬王堆考古發(fā)現震驚世界,專(zhuān)家發(fā)掘西漢辛追遺尸時(shí),形體完整,全身潤澤,皮膚仍有彈性,關(guān)節還可以活動(dòng),骨質(zhì)比現在六十歲的正常人還好,是世界上發(fā)現的首例歷史悠久的濕尸。大家知道,世界發(fā)現的不腐之尸都是在干燥的環(huán)境風(fēng)干而成,譬如沙漠環(huán)境,這類(lèi)干尸雖然肌膚未腐,是因為干燥不利細菌繁殖,但關(guān)節和一般人死后一樣,是僵硬的,而馬王堆辛追夫人卻是在濕潤的環(huán)境中保存二千多年,而且關(guān)節可以活動(dòng)。人們最關(guān)注有兩個(gè)問(wèn)題,第一:怎么鑒定尸體的年份?第二:是什么環(huán)境使尸體未腐?其中第一個(gè)問(wèn)題與數學(xué)有關(guān)。
圖4—1 (如圖4—1在長(cháng)沙馬王堆“沉睡”近2200年的古長(cháng)沙國丞相夫人辛追,日前奇跡般地“復活”了)那么,考古學(xué)家是怎么計算出古長(cháng)沙國丞相夫人辛追“沉睡”近2200年?上面已經(jīng)知道考古學(xué)家是通過(guò)提取尸體的殘留物碳14的殘留量p,利用t?logp 57302估算尸體出土的年代,不難發(fā)現:對每一個(gè)碳14的含量的取值,通過(guò)這個(gè)對應關(guān)系,生物死亡年數t都有唯一的值與之對應,從而t是p的函數;
如圖4—2材料2(幻燈):某種細胞分裂時(shí),由1個(gè)分裂成2個(gè),2個(gè)分裂成4個(gè)??,如果要求這種細胞經(jīng)過(guò)多少次分裂,大約可以得到細胞1萬(wàn)個(gè),10萬(wàn)個(gè)??,不難發(fā)現:分裂次數y就是要得到的細胞個(gè)數x的函數,即y?log2x;
圖4—2 1.引導學(xué)生觀(guān)察這些函數的特征:含有對數符號,底數是常數,真數是變量,從而得出對數函數的定義:函數y?logax(a?0,且a?1)叫做對數函數,其中x是自變量,函數的定義域是(0,+∞).
1對數函數的定義與指數函數類(lèi)似,都是形式定義,注意辨別.如:注意:○ x2對數函數對底數的限制:(a?0,都不是對數函數.○5y?2log2x,y?log5且a?1).
3.根據對數函數定義填空;
例1 (1)函數y=logax的定義域是___________ (其中a>0,a≠1) (2)函數y=loga(4-x)的定義域是___________ (其中a>0,a≠1)說(shuō)明:本例主要考察對數函數定義中底數和定義域的限制,加深對概念的理
解,所以把教材中的解答題改為填空題,節省時(shí)間,點(diǎn)到為止,以避免挖深、拓展、引入復合函數的概念。
[設計意圖:新課標強調“考慮到多數高中生的認知特點(diǎn),為了有助于他們對函數概念本質(zhì)的理解,不妨從學(xué)生自己的生活經(jīng)歷和實(shí)際問(wèn)題入手”。因此,新課引入不是按舊教材從反函數出發(fā),而是選擇從兩個(gè)材料引出對數函數的'概念,讓學(xué)生熟悉它的知識背景,初步感受對數函數是刻畫(huà)現實(shí)世界的又一重要數學(xué)模型。這樣處理,對數函數顯得不抽象,學(xué)生容易接受,降低了新課教學(xué)的起點(diǎn)] 2
(二)嘗試畫(huà)圖、形成感知1.確定探究問(wèn)題
教師:當我們知道對數函數的定義之后,緊接著(zhù)需要探討什么問(wèn)題?學(xué)生1:對數函數的圖象和性質(zhì)
教師:你能類(lèi)比前面研究指數函數的思路,提出研究對數函數圖象和性質(zhì)的方
法嗎?
學(xué)生2:先畫(huà)圖象,再根據圖象得出性質(zhì)
教師:畫(huà)對數函數的圖象是否象指數函數那樣也需要分類(lèi)?學(xué)生3:按a?1和0?a?1分類(lèi)討論
教師:觀(guān)察圖象主要看哪幾個(gè)特征?
學(xué)生4:從圖象的形狀、位置、升降、定點(diǎn)等角度去識圖
教師:在明確了探究方向后,下面,按以下步驟共同探究對數函數的圖象:步驟一:(1)用描點(diǎn)法在同一坐標系中畫(huà)出下列對數函數的圖象y?log2xy?log1x 2 (2)用描點(diǎn)法在同一坐標系中畫(huà)出下列對數函數的圖象y?log3xy?log1x 3步驟二:觀(guān)察對數函數y?log2x、y?log3x與y?log1x、y?log1x的圖象特23征,看看它們有那些異同點(diǎn)。
步驟三:利用計算器或計算機,選取底數a(a?0,且a?1)的若干個(gè)不同的值,
在同一平面直角坐標系中作出相應對數函數的圖象。觀(guān)察圖象,它們有哪些共同特征?
步驟四:規納出能體現對數函數的代表性圖象
步驟五:作指數函數與對數函數圖象的比較2.學(xué)生探究成果
(1)如圖4—3、4—4較為熟練地用描點(diǎn)法畫(huà)出下列對數函數y?log2x、 y?log1x、 y?log3x、y?log1x的圖象23圖4—3圖4—4 (2)如圖4—5學(xué)生選取底數a=1/4、1/5、1/6、1/10、4、5、6、10,并推薦幾位代表上臺演示‘幾何畫(huà)板’,得到相應對數函數的圖象。由于學(xué)生自己動(dòng)手,加上‘幾何畫(huà)板’的強大作圖功能,學(xué)生非常清楚地看到了底數a是如何影響函數y?logax(a?0,且a?1)圖象的變化。
圖4—5 (3)有了這種畫(huà)圖感知的過(guò)程以及學(xué)習指數函數的經(jīng)驗,學(xué)生很明確y = loga x (a>1)、y = loga x (0(中部)
高中數學(xué)教學(xué)設計5
一、教學(xué)內容分析:
本節教材選自人教a版數學(xué)必修②第二章第一節課,本節內容在立幾學(xué)習中起著(zhù)承上啟下的作用,具有重要的意義與地位。本節課是在前面已學(xué)空間點(diǎn)、線(xiàn)、面位置關(guān)系的基礎作為學(xué)習的出發(fā)點(diǎn),結合有關(guān)的實(shí)物模型,通過(guò)直觀(guān)感知、操作確認(合情推理,不要求證明)歸納出直線(xiàn)與平面平行的判定定理。本節課的學(xué)習對培養學(xué)生空間感與邏輯推理能力起到重要作用,特別是對線(xiàn)線(xiàn)平行、面面平行的判定的學(xué)習作用重大。
二、學(xué)生學(xué)習情況分析:
任教的學(xué)生在年段屬中上程度,學(xué)生學(xué)習興趣較高,但學(xué)習立幾所具備的語(yǔ)言表達及空間感與空間想象能力相對不足,學(xué)習方面有一定困難。
三、設計思想
本節課的設計遵循從具體到抽象的原則,適當運用多媒體輔助教學(xué)手段,借助實(shí)物模型,通過(guò)直觀(guān)感知,操作確認,合情推理,歸納出直線(xiàn)與平面平行的判定定理,將合情推理與演繹推理有機結合,讓學(xué)生在觀(guān)察分析、自主探索、合作交流的過(guò)程中,揭示直線(xiàn)與平面平行的判定、理解數學(xué)的概念,領(lǐng)會(huì )數學(xué)的思想方法,養成積極主動(dòng)、勇于探索、自主學(xué)習的學(xué)習方式,發(fā)展學(xué)生的空間觀(guān)念和空間想象力,提高學(xué)生的數學(xué)邏輯思維能力。
四、教學(xué)目標
通過(guò)直觀(guān)感知——觀(guān)察——操作確認的認識方法理解并掌握直線(xiàn)與平面平行的判定定理,掌握直線(xiàn)與平面平行的畫(huà)法并能準確使用數學(xué)符號語(yǔ)言、文字語(yǔ)言表述判定定理。培養學(xué)生觀(guān)察、探究、發(fā)現的能力和空間想象能力、邏輯思維能力。讓學(xué)生在觀(guān)察、探究、發(fā)現中學(xué)習,在自主合作、交流中學(xué)習,體驗學(xué)習的樂(lè )趣,增強自信心,樹(shù)立積極的學(xué)習態(tài)度,提高學(xué)習的自我效能感。
五、教學(xué)重點(diǎn)與難點(diǎn)
重點(diǎn)是判定定理的引入與理解,難點(diǎn)是判定定理的應用及立幾空間感、空間觀(guān)念的形成與邏輯思維能力的培養。
六、教學(xué)過(guò)程設計
(一)知識準備、新課引入
提問(wèn)1:根據公共點(diǎn)的情況,空間中直線(xiàn)a和平面?有哪幾種位置關(guān)系?并完成下表:(多媒體幻燈片演示) a??
提問(wèn)2:根據直線(xiàn)與平面平行的定義(沒(méi)有公共點(diǎn))來(lái)判定直線(xiàn)與平面平行你認為方便嗎?談?wù)勀愕目捶,并指出是否有別的判定途徑。
[設計意圖:通過(guò)提問(wèn),學(xué)生復習并歸納空間直線(xiàn)與平面位置關(guān)系引入本節課題,并為探尋直線(xiàn)與平面平行判定定理作好準備。]
(二)判定定理的探求過(guò)程
1、直觀(guān)感知
提問(wèn):根據同學(xué)們日常生活的觀(guān)察,你們能感知到并舉出直線(xiàn)與平面平行的具體事例嗎?
生1:例舉日光燈與天花板,樹(shù)立的電線(xiàn)桿與墻面。
生2:門(mén)轉動(dòng)到離開(kāi)門(mén)框的任何位置時(shí),門(mén)的邊緣線(xiàn)始終與門(mén)框所在的平面平行(由學(xué)生到教室門(mén)前作演示),然后教師用多媒體動(dòng)畫(huà)演示。
[學(xué)情預設:此處的預設與生成應當是很自然的,但老師要預見(jiàn)到可能出現的情況如電線(xiàn)桿與墻面可能共面的情形及門(mén)要離開(kāi)門(mén)框的位置等情形。]
2、動(dòng)手實(shí)踐
教師取出預先準備好的直角梯形泡沫板演示:當把互相平行的一邊放在講臺桌面上并轉動(dòng),觀(guān)察另一邊與桌面的位置給人以平行的感覺(jué),而當把直角腰放在桌面上并轉動(dòng),觀(guān)察另一邊與桌面給人的印象就不平行。又如老師直立講臺,則大家會(huì )感覺(jué)到老師(視為線(xiàn))與四周墻面平行,如老師向前或后傾斜則感覺(jué)老師(視為線(xiàn))與左、右墻面平行,如老師向左、右傾斜,則感覺(jué)老師(視為線(xiàn))與前、后墻面平行(老師也可用事先準備的木條放在講臺桌上作上述情形的演示)。
[設計意圖:設置這樣動(dòng)手實(shí)踐的情境,是為了讓學(xué)生更清楚地看到線(xiàn)面平行與否的關(guān)鍵因素是什么,使學(xué)生學(xué)在情境中,思在情理中,感悟在內心中,學(xué)自己身邊的數學(xué),領(lǐng)悟空間觀(guān)念與空間圖形性質(zhì)。]
3、探究思考
(1)上述演示的直線(xiàn)與平面位置關(guān)系為何有如此的不同?關(guān)鍵是什么因素起了作用呢?通過(guò)觀(guān)察感知發(fā)現直線(xiàn)與平面平行,關(guān)鍵是三個(gè)要素:①平面外一條線(xiàn)②我們把直線(xiàn)與平面相交或平行的位置關(guān)系統稱(chēng)為直線(xiàn)在平面外,用符號表示為平面內一條直線(xiàn)③這兩條直線(xiàn)平行
(2)如果平面外的直線(xiàn)a與平面?內的一條直線(xiàn)b平行,那么直線(xiàn)a與平面?平行嗎?
4、歸納確認:(多媒體幻燈片演示)
直線(xiàn)和平面平行的判定定理:平面外的一條直線(xiàn)與平面內的一條直線(xiàn)平行,則該直線(xiàn)和這個(gè)平面平行。
簡(jiǎn)單概括:(內外)線(xiàn)線(xiàn)平行?線(xiàn)面平行a符號表示:ba||? a||b??
溫馨提示:
作用:判定或證明線(xiàn)面平行。
關(guān)鍵:在平面內找(或作)出一條直線(xiàn)與面外的直線(xiàn)平行。
思想:空間問(wèn)題轉化為平面問(wèn)題
(三)定理運用,問(wèn)題探究(多媒體幻燈片演示)
1、想一想:
(1)判斷下列命題的真假?說(shuō)明理由:
、偃绻粭l直線(xiàn)不在平面內,則這條直線(xiàn)就與平面平行()
、谶^(guò)直線(xiàn)外一點(diǎn)可以作無(wú)數個(gè)平面與這條直線(xiàn)平行( )
、垡恢本(xiàn)上有二個(gè)點(diǎn)到平面的距離相等,則這條直線(xiàn)與平面平行( )
(2)若直線(xiàn)a與平面?內無(wú)數條直線(xiàn)平行,則a與?的位置關(guān)系是( ) a、a ||? b、a?? c、a ||?或a?? d、a?? [學(xué)情預設:設計這組問(wèn)題目的是強調定理中三個(gè)條件的重要性,同時(shí)預設(1)中的③學(xué)生可能認為正確的,這樣就無(wú)法達到老師的預設與生成的目的,這時(shí)教師要引導學(xué)生思考,讓學(xué)生想象的空間更廣闊些。此外教師可用預先準備好的羊毛針與泡沫板進(jìn)行演示,讓羊毛針穿過(guò)泡沫板以舉不平行的反例,如果有的學(xué)生空間想象力強,能按老師的要求生成正確的結果則就由個(gè)別學(xué)生進(jìn)行演示。]
2、作一作:
設a、b是二異面直線(xiàn),則過(guò)a、b外一點(diǎn)p且與a、b都平行的平面存在嗎?若存在請畫(huà)出平面,不存在說(shuō)明理由?
先由學(xué)生討論交流,教師提問(wèn),然后教師總結,并用準備好的羊毛針、鐵線(xiàn)、泡沫板等演示平面的形成過(guò)程,最后借多媒體展示作圖的動(dòng)畫(huà)過(guò)程。
[設計意圖:這是一道動(dòng)手操作的問(wèn)題,不僅是為了拓展加深對定理的認識,更重要的是培養學(xué)生空間感與思維的嚴謹性。]
3、證一證:
例1(見(jiàn)課本60頁(yè)例1):已知空間四邊形abcd中,e、f分別是ab、ad的中點(diǎn),求證:ef ||平面bcd。
變式一:空間四邊形abcd中,e、f、g、h分別是邊ab、bc、cd、da中點(diǎn),連結ef、fg、gh、he、ac、bd請分別找出圖中滿(mǎn)足線(xiàn)面平行位置關(guān)系的所有情況。(共6組線(xiàn)面平行)變式二:在變式一的圖中如作pq?ef,使p點(diǎn)在線(xiàn)段ae上、q點(diǎn)在線(xiàn)段fc上,連結ph、qg,并繼續探究圖中所具有的線(xiàn)面平行位置關(guān)系?(在變式一的基礎上增加了4組線(xiàn)面平行),并判斷四邊形efgh、pqgh分別是怎樣的四邊形,說(shuō)明理由。
[設計意圖:設計二個(gè)變式訓練,目的是通過(guò)問(wèn)題探究、討論,思辨,及時(shí)鞏固定理,運用定理,培養學(xué)生的識圖能力與邏輯推理能力。]例2:如圖,在正方體abcd—a1b1c1d1中,e、f分別是棱bc與c1d1中點(diǎn),求證:ef ||平面bdd1b1分析:根據判定定理必須在平
面bdd1b1內找(作)一條線(xiàn)與ef平行,聯(lián)想到中點(diǎn)問(wèn)題找中點(diǎn)解決的方法,可以取bd或b1d1中點(diǎn)而證之。
思路一:取bd中點(diǎn)g連d1g、eg,可證d1gef為平行四邊形。
思路二:取d1b1中點(diǎn)h連hb、hf,可證hfeb為平行四邊形。
[知識鏈接:根據空間問(wèn)題平面化的思想,因此把找空間平行直線(xiàn)問(wèn)題轉化為找平行四邊形或三角形中位線(xiàn)問(wèn)題,這樣就自然想到了找中點(diǎn)。平行問(wèn)題找中點(diǎn)解決是個(gè)好途徑好方法。這種思想方法是解決立幾論證平行問(wèn)題,培養邏輯思維能力的重要思想方法]
4、練一練:
練習1:見(jiàn)課本6頁(yè)練習1、2
練習2:將兩個(gè)全等的正方形abcd和abef拼在一起,設m、n分別為ac、bf中點(diǎn),求證:mn ||平面bce。
變式:若將練習2中m、n改為ac、bf分點(diǎn)且am = fn,試問(wèn)結論仍成立嗎?試證之。
[設計意圖:設計這組練習,目的是為了鞏固與深化定理的運用,特別是通過(guò)練習2及其變式的訓練,讓學(xué)生能在復雜的圖形中去識圖,去尋找分析問(wèn)題、解決問(wèn)題的途徑與方法,以達到逐步培養空間感與邏輯思維能力。]
(四)總結
先由學(xué)生口頭總結,然后教師歸納總結(由多媒體幻燈片展示):
1、線(xiàn)面平行的判定定理:平面外的一條直線(xiàn)與平面內的一條直線(xiàn)平行,則該直線(xiàn)與這個(gè)平面平行。
2、定理的符號表示:ba||? a||b??簡(jiǎn)述:(內外)線(xiàn)線(xiàn)平行則線(xiàn)面平行
3、定理運用的'關(guān)鍵是找(作)面內的線(xiàn)與面外的線(xiàn)平行,途徑有:取中點(diǎn)利用平行四邊形或三角形中位線(xiàn)性質(zhì)等。
七、教學(xué)反思
本節“直線(xiàn)與平面平行的判定”是學(xué)生學(xué)習空間位置關(guān)系的判定與性質(zhì)的第一節課,也是學(xué)生開(kāi)始學(xué)習立幾演澤推理論述的思維方式方法,因此本節課學(xué)習對發(fā)展學(xué)生的空間觀(guān)念和邏輯思維能力是非常重要的。
本節課的設計遵循“直觀(guān)感知——操作確認——思辯論證”的認識過(guò)程,注重引導學(xué)生通過(guò)觀(guān)察、操作交流、討論、有條理的思考和推理等活動(dòng),從多角度認識直線(xiàn)和平面平行的判定方法,讓學(xué)生通過(guò)自主探索、合作交流,進(jìn)一步認識和掌握空間圖形的性質(zhì),積累數學(xué)活動(dòng)的經(jīng)驗,發(fā)展合情推理、發(fā)展空間觀(guān)念與推理能力。
本節課的設計注重訓練學(xué)生準確表達數學(xué)符號語(yǔ)言、文字語(yǔ)言及圖形語(yǔ)言,加強各種語(yǔ)言的互譯。比如上課開(kāi)始時(shí)的復習引入,讓學(xué)生用三種語(yǔ)言的表達,動(dòng)手實(shí)踐、定理探求過(guò)程以及定理描述也注重三種語(yǔ)言的表達,對例題的講解與分析也注意指導學(xué)生三種語(yǔ)言的表達。
本節課對定理的探求與認識過(guò)程的設計始終貫徹直觀(guān)在先,感知在先,學(xué)自己身邊的數學(xué),感知生活中包涵的數學(xué)現象與數學(xué)原理,體驗數學(xué)即生活的道理,比如讓學(xué)生舉生活中能感知線(xiàn)面平行的例子,學(xué)生會(huì )舉出日光燈與天花板,電線(xiàn)桿與墻面,轉動(dòng)的門(mén)等等,同時(shí)老師的舉例也很貼進(jìn)生活,如老師直立時(shí)與四周墻面平行,而向前、向后傾斜則只與左右墻面平行,而向左、右傾斜則與前后黑板面平行。然后引導學(xué)生從中抽象概括出定理。
高中數學(xué)教學(xué)設計6
一、目標
1.知識與技能
(1)理解流程圖的順序結構和選擇結構。
(2)能用字語(yǔ)言表示算法,并能將算法用順序結構和選擇結構表示簡(jiǎn)單的流程圖
2.過(guò)程與方法
學(xué)生通過(guò)模仿、操作、探索、經(jīng)歷設計流程圖表達解決問(wèn)題的過(guò)程,理解流程圖的結構。
3情感、態(tài)度與價(jià)值觀(guān)
學(xué)生通過(guò)動(dòng)手作圖,.用自然語(yǔ)言表示算法,用圖表示算法。進(jìn)一步體會(huì )算法的基本思想——程序化思想,在歸納概括中培養學(xué)生的邏輯思維能力。
二、重點(diǎn)、難點(diǎn)
重點(diǎn):算法的順序結構與選擇結構。
難點(diǎn):用含有選擇結構的流程圖表示算法。
三、學(xué)法與教學(xué)用具
學(xué)法:學(xué)生通過(guò)動(dòng)手作圖,.用自然語(yǔ)言表示算法,用圖表示算法,體會(huì )到用流程圖表示算法,簡(jiǎn)潔、清晰、直觀(guān)、便于檢查,經(jīng)歷設計流程圖表達解決問(wèn)題的過(guò)程。進(jìn)而學(xué)習順序結構和選擇結構表示簡(jiǎn)單的流程圖。
教學(xué)用具:尺規作圖工具,多媒體。
四、教學(xué)思路
。ㄒ唬、問(wèn)題引入 揭示題
例1 尺規作圖,確定線(xiàn)段的一個(gè)5等分點(diǎn)。
要求:同桌一人作圖,一人寫(xiě)算法,并請學(xué)生說(shuō)出答案。
提問(wèn):用字語(yǔ)言寫(xiě)出算法有何感受?
引導學(xué)生體驗到:顯得冗長(cháng),不方便、不簡(jiǎn)潔。
教師說(shuō)明:為了使算法的表述簡(jiǎn)潔、清晰、直觀(guān)、便于檢查,我們今天學(xué)習用一些通用圖型符號構成一張圖即流程圖表示算法。
本節要學(xué)習的是順序結構與選擇結構。
右圖即是同流程圖表示的算法。
。ǘ、觀(guān)察類(lèi)比 理解題
1、 投影介紹流程圖的符號、名稱(chēng)及功能說(shuō)明。
符號 符號名稱(chēng) 功能說(shuō)明
終端框 算法開(kāi)始與結束
處理框 算法的各種處理操作
判斷框 算法的各種轉移
輸入輸出框 輸入輸出操作
指向線(xiàn) 指向另一操作
2、講授順序結構及選擇結構的概念及流程圖
(1)順序結構
依照步驟依次執行的一個(gè)算法
流程圖:
(2)選擇結構
對條進(jìn)行判斷決定后面的.步驟的結構
流程圖:
3.用自然語(yǔ)言表示算法與用流程圖表示算法的比較
。1)半徑為r的圓的面積公式 當r=10時(shí)寫(xiě)出計算圓的面積的算法,并畫(huà)出流程圖。
解:
算法(自然語(yǔ)言)
、侔10賦與r
、谟霉 求s
、圯敵鰏
流程圖
。2) 已知函數 對于每輸入一個(gè)X值都得到相應的函數值,寫(xiě)出算法并畫(huà)流程圖。
算法:(語(yǔ)言表示)
、 輸入X值
、谂袛郮的范圍,若 ,用函數Y=x+1求函數值;否則用Y=2-x求函數值
、圯敵鯵的值
流程圖
小結:含有數學(xué)中需要分類(lèi)討論的或與分段函數有關(guān)的問(wèn)題,均要用到選擇結構。
學(xué)生觀(guān)察、類(lèi)比、說(shuō)出流程圖與自然語(yǔ)言對比有何特點(diǎn)?(直觀(guān)、清楚、便于檢查和交流)
。ㄈ┠7虏僮 經(jīng)歷題
1.用流程圖表示確定線(xiàn)段A.B的一個(gè)16等分點(diǎn)
2.分析講解例2;
分析:
思考:有多少個(gè)選擇結構?相應的流程圖應如何表示?
流程圖:
。ㄋ模w納小結 鞏固題
1.順序結構和選擇結構的模式是怎樣的?
2.怎樣用流程圖表示算法。
。ㄎ澹┚毩暎99 2
。┳鳂I(yè)P99 1
高中數學(xué)教學(xué)設計7
教學(xué)目標:
1、知識目標:通過(guò)猜測、實(shí)驗等活動(dòng),使學(xué)生感受簡(jiǎn)單推理的過(guò)程,初步獲得簡(jiǎn)單推理的經(jīng)驗。
2、能力目標:培養學(xué)生初步的觀(guān)察、分析及推理能力。
3、情感目標:體會(huì )數學(xué)思想方法在生活中的用途,激發(fā)學(xué)生學(xué)好數學(xué)的信心重難點(diǎn)是:讓學(xué)生掌握猜的方法。讓學(xué)生對數學(xué)推理有初步的認識。
教學(xué)重難點(diǎn):
重點(diǎn):培養學(xué)生初步的分析推理能力和觀(guān)察能力。
難點(diǎn):培養學(xué)生初步的'有序地、全面地思考問(wèn)題能力。
教學(xué)過(guò)程:
一、激趣引入
1、出示圖片:師:同學(xué)們知道這是誰(shuí)嗎?
師:誰(shuí)來(lái)介紹一下柯南?
生:柯南是一名偵探。
師:“對呀,柯南是一個(gè)非常聰明的小偵探,是一個(gè)破案高手,他在破案當中經(jīng)常用到推理。今天陳老師把柯南邀請來(lái)到了2(2)班,和同學(xué)們一起來(lái)玩一玩推理的游戲——猜一猜。(板題)
師:柯南還帶來(lái)了禮物給我們班的小朋友呢,禮物就在我手上,你們猜一猜禮物在我的左手還是右手?猜到的同學(xué),禮物就送給他!
生1:禮物在教師的左手。
生2:禮物在教師的右手。
意見(jiàn)不同,原來(lái)缺少一條信息。
師提示:“我的禮物不在左手上,你能猜出禮物在我的哪一只手上嗎?誰(shuí)愿意說(shuō)說(shuō)你是怎么推斷出來(lái)的?”
生:因為老師說(shuō)禮物不在左手,那么禮物就在右手。(師相機板書(shū):不是……就是……)
師引導小結:只有兩種可能,禮物可能在左手,也可能在右手,不是左手,就是在右手。
二、串設情景,感受推理的過(guò)程
1、第一次猜書(shū)的游戲
師:同學(xué)們真聰明,就像是一個(gè)小小偵探一樣。下面小柯南想考一考大家了,請看題:歡歡和樂(lè )樂(lè )兩人手里分別拿著(zhù)語(yǔ)文書(shū)和數學(xué)書(shū),柯南想讓你們來(lái)猜一猜,他們是拿著(zhù)什么時(shí)候書(shū)?你能猜出來(lái)嗎?
生1:我猜歡歡拿著(zhù)語(yǔ)文書(shū),樂(lè )樂(lè )拿著(zhù)數學(xué)書(shū)。
生2:我猜歡歡拿著(zhù)數學(xué)書(shū),樂(lè )樂(lè )拿著(zhù)語(yǔ)文書(shū)。
師:是的,有兩種情況我們不能確定,我們要怎樣才能猜出來(lái)呢?(多加一個(gè)條件),咱們看看樂(lè )樂(lè )說(shuō)些什么?
出示樂(lè )樂(lè )的話(huà):我拿的不是數學(xué)書(shū),請同學(xué)們來(lái)讀一讀這句話(huà)。
生讀:我拿的不是數學(xué)書(shū)。
師:現在你們能猜出他們分別拿著(zhù)什么書(shū)嗎?
生:歡歡、樂(lè )樂(lè )都有可能拿著(zhù)語(yǔ)文書(shū)和數學(xué)書(shū),但樂(lè )樂(lè )不是拿著(zhù)數學(xué)書(shū),那么他就是拿著(zhù)語(yǔ)文書(shū),拿歡歡只能是拿著(zhù)數學(xué)書(shū)。
師小結:同學(xué)們剛才說(shuō)的很好,當我們猜兩種物體時(shí),如果不是其中一種,就是另一種。(板書(shū):不是其中一種,就是另一種)
2、第二次猜書(shū)的游戲
師:柯南說(shuō):“兩個(gè)人兩種書(shū)你們懂得做了,那么3個(gè)人3種書(shū)你們會(huì )猜嗎?,小麗、小紅和小剛三個(gè)人分別拿著(zhù)語(yǔ)文書(shū)、數學(xué)書(shū)、社會(huì )書(shū),請你們來(lái)猜一猜小麗她拿著(zhù)什么書(shū)?
生1:小麗可能拿著(zhù)語(yǔ)文書(shū)。
生2:小麗可能拿著(zhù)數學(xué)書(shū)。
生3:3種書(shū)都可能。
師:有這么多種情況,能猜得準嗎?
生:不能。
師:那怎么辦呢?
生:要給一些條件。給提示!
出示:小紅說(shuō):我拿的是語(yǔ)文書(shū),小剛說(shuō):我拿的不是數學(xué)書(shū),同學(xué)們讀一讀他們說(shuō)的話(huà)。
師:現在再猜猜他們分別拿著(zhù)是什么書(shū)?先在4人小組里交流想法。再讓兩、三名學(xué)生回答。
師:我們應該怎樣猜?先猜誰(shuí)的?
生1:因為小紅說(shuō)拿的是語(yǔ)文書(shū),所以我們先確定小紅拿的是語(yǔ)文書(shū),那么剩下小麗和小剛他們都可能拿著(zhù)數學(xué)書(shū)或社會(huì )書(shū)。又因為小剛說(shuō)他不是拿著(zhù)數學(xué)書(shū),那小剛就是拿著(zhù)社會(huì )書(shū),那么最后小麗是拿著(zhù)數學(xué)書(shū)。
師:說(shuō)的真清楚,掌聲表?yè)P!誰(shuí)還來(lái)說(shuō)一說(shuō)你是怎樣猜的?
生2:先確定小紅拿的是語(yǔ)文書(shū),那么小麗和小剛他們可能拿著(zhù)數學(xué)書(shū)或社會(huì )書(shū),再來(lái)肯定小剛,小剛說(shuō)不是拿著(zhù)數學(xué)書(shū),就是拿著(zhù)社會(huì )書(shū),最后小麗拿著(zhù)數學(xué)書(shū)。
師:xx的思路真是清晰啊,說(shuō)得真好!掌聲表?yè)P!
師:對比分析:剛才第一次猜書(shū)與第二次猜書(shū)有什么區別?
師:猜兩種書(shū)時(shí),怎么猜?
生:不是……就是……
師:猜三種書(shū)時(shí),怎么猜?
生:知道小紅拿什么書(shū),可以放在一邊,再猜另外兩個(gè)。
師:對了,猜兩種物品時(shí),有兩種可能,不是其中一種,就是另外一種。猜三個(gè)物體時(shí),先確定已經(jīng)知道的,把先知道的條件放在一邊,再按照猜兩種物品的方法來(lái)猜。(師適時(shí)板書(shū):猜兩種物品:不是其中一種,就是另外一種。猜三種物品:先確定已經(jīng)知道的,再接猜兩種物品的方法。
高中數學(xué)教學(xué)設計8
我先來(lái)介紹一下參加我們這次講座的幾位嘉賓,我身邊這位是蘇州五中的羅強校長(cháng),這邊這位是蘇州中學(xué)的劉華老師,那邊那位是大家熟悉的首都師范大學(xué)數學(xué)系博士生導師王尚志教授。歡迎大家來(lái)到我們研討的現場(chǎng)!
老師們都知道,素質(zhì)教育要落實(shí)在課堂上,課堂是我們實(shí)行數學(xué)新課程的主戰場(chǎng),做好教學(xué)設計是我們整個(gè)高中數學(xué)新課程推進(jìn)的一個(gè)關(guān)鍵點(diǎn)。那么,怎樣才能做好數學(xué)的教學(xué)設計呢?我們問(wèn)過(guò)一些老師,大家感覺(jué)有些疑惑,比如說(shuō)有的老師們認為:教學(xué)設計是不是就是備備課,寫(xiě)好一個(gè)教案、做一個(gè)課件,是不是這樣?我們想聽(tīng)聽(tīng)來(lái)自江蘇的老師怎么看這個(gè)問(wèn)題?
羅強:我來(lái)談?wù)勛约簩虒W(xué)設計理論的學(xué)習和實(shí)踐過(guò)程中的一些體會(huì )。以前我們在教學(xué)實(shí)踐中往往把教學(xué)設計變成一種簡(jiǎn)單的教案設計,但實(shí)際上這只是一種經(jīng)驗型的教學(xué)設計,沒(méi)有上升為科學(xué)型的教學(xué)設計。其實(shí),國際上對教學(xué)設計的研究已經(jīng)進(jìn)行多年,提出了許多思想、理論、案例,教學(xué)設計已經(jīng)成為一個(gè)獨立的研究領(lǐng)域。
教學(xué)設計理論的發(fā)展基本上經(jīng)歷了兩個(gè)階段:第一個(gè)階段是突出以“教的傳遞策略”為中心來(lái)進(jìn)行教學(xué)設計的傳統教學(xué)設計理論,它更接近工程學(xué),遵循設計的規則和程序,強調目標遞進(jìn)和按部就班的系統操作過(guò)程,其特點(diǎn)是注重目標細化,注重分層要求,注重教學(xué)內容各要素的協(xié)調。就好像我們要造一幢房子,先要把這幢房子的圖紙設計出來(lái),然后再設計一個(gè)施工的藍圖,教學(xué)就是按照這樣的設計來(lái)進(jìn)行實(shí)施的一個(gè)過(guò)程。
第二個(gè)階段是突出以“學(xué)的組織方式”為中心來(lái)進(jìn)行教學(xué)設計的現代教學(xué)設計理論,它的基礎是信息加工理論與建構主義的學(xué)習理論,現代教學(xué)設計理論強調依據學(xué)習任務(wù)類(lèi)型(如認知、情感與心理動(dòng)作等)來(lái)選擇教學(xué)策略,強調以問(wèn)題為中心,營(yíng)造一個(gè)能激活學(xué)生原有知識經(jīng)驗,有利于新知識建構的學(xué)習環(huán)境。其特點(diǎn)是問(wèn)題與環(huán)境,強調創(chuàng )設情境,提出問(wèn)題,營(yíng)造問(wèn)題解決的環(huán)境,突出學(xué)生的自主學(xué)習和自主探究。
按照新的教學(xué)設計的理論,我們應該以學(xué)為中心來(lái)進(jìn)行教學(xué)設計,簡(jiǎn)單的說(shuō)就是——為學(xué)習而設計教學(xué)!打個(gè)比喻,就是說(shuō)我們教師好比是導游,帶著(zhù)學(xué)生去一個(gè)新的景點(diǎn)旅游,那么在這個(gè)過(guò)程中間,教學(xué)設計就是設計這么一個(gè)導游圖,讓學(xué)生在參觀(guān)各個(gè)景點(diǎn)的過(guò)程中,經(jīng)歷學(xué)習這些知識的一種過(guò)程。
按照為學(xué)習而設計教學(xué)的理念,我覺(jué)得在教學(xué)設計時(shí)要考慮三條線(xiàn)索,這樣實(shí)際上也就構成了教學(xué)設計的一種三維結構。第一條線(xiàn)索就是一種數學(xué)知識線(xiàn)索。因為教師進(jìn)行的是學(xué)科教學(xué);第二個(gè)線(xiàn)索是學(xué)生的認知線(xiàn)索。因為學(xué)習的主體是學(xué)生;第三個(gè)線(xiàn)索就是教師的教學(xué)組織線(xiàn)索,因為教學(xué)過(guò)程是通過(guò)教師的組織來(lái)實(shí)現的。比如第一條線(xiàn)索——數學(xué)知識,我覺(jué)得數學(xué)知識實(shí)際有三個(gè)形態(tài):一是自然形態(tài),它既存在于客觀(guān)世界中間,實(shí)際上也存在于學(xué)生的頭腦中間;二是學(xué)術(shù)形態(tài),它是作為數學(xué)學(xué)科的一種知識體系而存在。那么,我們的教學(xué)就是要在數學(xué)的自然形態(tài)和學(xué)術(shù)形態(tài)的中間架一座橋梁,這座橋梁就是數學(xué)的教育形態(tài)。因此,我覺(jué)得教學(xué)設計的本質(zhì)就是設計好數學(xué)的教育形態(tài),教學(xué)設計的過(guò)程實(shí)際上就是構建數學(xué)教育形態(tài)的一個(gè)過(guò)程。
通過(guò)對教學(xué)設計理論的學(xué)習,并在實(shí)踐中反思和總結,我的體會(huì )很深。有一位美國學(xué)者蘭達曾經(jīng)說(shuō)過(guò):教學(xué)設計是使天才能夠做到的事一般人也能去做。我想對教學(xué)設計理論的學(xué)習是一個(gè)大家都要努力的目標。
張思明:剛才羅強老師從理論上分析了什么是教學(xué)設計?教學(xué)設計應該關(guān)注哪些問(wèn)題?下面我們請劉華老師幫我們分析一下:在你們實(shí)驗區和老師接觸的實(shí)踐中,你感覺(jué)到老師們在教學(xué)設計中存在著(zhù)哪些主要問(wèn)題?
劉華:我想解剖一個(gè)由職初教師,就是剛剛工作的青年教師所提供的一個(gè)教學(xué)案例。
我先簡(jiǎn)單介紹一下他的教學(xué)設計。這是高一函數單調性的一節起始課,在教學(xué)設計中,這個(gè)職初教師首先明確了這節課的三維目標,然后他提出了兩個(gè)生活中的情境,一個(gè)情境是生活中的氣溫圖;第二個(gè)情境是股票的價(jià)格走勢圖,然后引入新課。接著(zhù)把函數單調性的概念介紹給學(xué)生,緊接著(zhù)進(jìn)入了例題講解階段,最后是有兩個(gè)思考題。
我覺(jué)得這個(gè)教學(xué)設計大致存在這樣四點(diǎn)比較普遍的問(wèn)題:
第一個(gè)問(wèn)題就是這位教師在確定課程目標的時(shí)候,比較機械地套用了新課程的理念,按照“知識技能,方法與過(guò)程,情感、態(tài)度、價(jià)值觀(guān)”這樣的三維目標來(lái)敘述他的本節課目標。在這些目標中,知識與技能的目標還是比較實(shí)在的,但“過(guò)程與方法”的目標以及“情感、態(tài)度、價(jià)值觀(guān)”的目標就比較空洞,流于形式。其實(shí),這位老師對教學(xué)目標并沒(méi)有做深入的分析,這樣的教學(xué)目標只是一個(gè)標簽而已,這是第一個(gè)問(wèn)題。
第二個(gè)問(wèn)題是問(wèn)題情境的設計。好的情境應當是兼顧生活化與數學(xué)化,股票的價(jià)格走勢圖這個(gè)情境離學(xué)生的生活太遠,其中還包含了許多股票方面的專(zhuān)門(mén)知識,對函數單調性這個(gè)數學(xué)概念的反映也不夠準確,作為本課的情境,不太恰當。
第三個(gè)問(wèn)題就是在情境到數學(xué)概念的產(chǎn)生過(guò)程中,應當讓學(xué)生充分體驗或參與數學(xué)化的探索過(guò)程,從而建構起函數單調性這一概念。我們看到在這位教師的設計當中,他忽略了學(xué)生活動(dòng),尤其是學(xué)生思維活動(dòng)這樣一個(gè)環(huán)節,而是直接把概念拋給了學(xué)生。我們認為學(xué)生在數學(xué)學(xué)習中,“過(guò)程”相對來(lái)說(shuō)比僅僅接受概念這個(gè)“結果”更為重要。
最后一個(gè)問(wèn)題就是我們發(fā)現有很多老師認為數學(xué)教學(xué)設計主要就是習題的設計,這位教師本節課的例題、習題量非常多,而且對這些習題的要求他存在著(zhù)一步到位的傾向,尤其是他最后拋出來(lái)的含字母的函數單調性的探索這個(gè)問(wèn)題,我們覺(jué)得在新授課當中這個(gè)習題的要求太高了。我覺(jué)得老師們在教學(xué)設計中主要存在這樣幾點(diǎn)問(wèn)題。
張思明:劉華老師談了一個(gè)單調性的案例,對一個(gè)新教師的案例做了一個(gè)分析,分析出了我們老師在教學(xué)設計中常常出現的一些問(wèn)題。那么面對這樣一些問(wèn)題,我們應該怎么辦?我們就以這個(gè)案例為出發(fā)點(diǎn),請羅強老師對函數單調性這個(gè)課題做了一個(gè)分析和再創(chuàng )造的工作,在這個(gè)工作中我們可以看到如何通過(guò)教師自己的再學(xué)習、再認識,設計出一個(gè)更好、更適用于學(xué)生的教學(xué)設計。我們來(lái)看一下羅強老師的說(shuō)課錄像。
羅強老師的說(shuō)課:各位老師大家好,我向大家匯報一下我對函數單調性的教學(xué)設計。
首先談一下我對教學(xué)設計的認識。我覺(jué)得教學(xué)設計的根本目的是創(chuàng )設一個(gè)有效的教學(xué)系統,這樣的教學(xué)系統不是隨意出現的而是教師精心創(chuàng )設的,沒(méi)有有效的教學(xué)設計就不可能保證教學(xué)的效果和質(zhì)量。教學(xué)設計最根本的著(zhù)力點(diǎn)是“為學(xué)習設計教學(xué)”,而不是“為教學(xué)設計學(xué)習”。
教學(xué)設計的首要任務(wù)就是明確教學(xué)目標,實(shí)際上教學(xué)目標是教學(xué)設計的靈魂和統帥,將指引后續教學(xué)設計的方向,決定后續教學(xué)設計的具體工作。在制定教學(xué)目標的時(shí)候,我覺(jué)得要把握以下幾點(diǎn):
第一,把握教學(xué)要求,不求一步到位。函數單調性是高中階段刻劃函數變化的一個(gè)最基本的性質(zhì)。在高中數學(xué)課程中,對于函數單調性的研究分成兩個(gè)階段:第一個(gè)階段是用運算的性質(zhì)研究單調性,知道它的變化趨勢;第二階段用導數的性質(zhì)研究單調性,知道它的變化快慢。那么高一我們是處在第一個(gè)階段。第二,明確知識目標,落實(shí)隱性目標。知識目標往往就是教學(xué)的顯性目標,確定知識目標的關(guān)鍵在于分清主次輕重,把握好教學(xué)要求。根據課程標準的要求,本節課的知識目標定位在以下三個(gè)方面:一是理解函數單調性的概念;二是掌握判斷函數單調性的方法;三是會(huì )用定義證明一些簡(jiǎn)單函數在某個(gè)區間上的單調性。另外這節課的隱性目標我覺(jué)得也很重要,因為函數單調性的定義是對函數圖象特征的一種數學(xué)描述,它經(jīng)歷了由圖象直觀(guān)特征到自然語(yǔ)言描述再到數學(xué)符號的描述的進(jìn)化過(guò)程,反映了數學(xué)的理性思維和理性精神。對高一學(xué)生來(lái)講它是一個(gè)很有價(jià)值的數學(xué)教育載體和契機。因此這節課的隱性目標應該包括讓學(xué)生體驗數學(xué)知識的發(fā)生發(fā)展過(guò)程,學(xué)會(huì )數學(xué)概念符號化的建構過(guò)程。根據剛才的分析,我把教學(xué)流程分成了三個(gè)階段:第一個(gè)階段是進(jìn)行函數單調性概念的數學(xué)化過(guò)程;第二個(gè)階段是從不同的角度幫助學(xué)生深入理解函數單調性的概念;第三個(gè)階段是讓學(xué)生學(xué)會(huì )判斷,并用函數單調性的定義證明函數的單調性。
第一階段的教學(xué)流程分成三個(gè)教學(xué)環(huán)節。第一,問(wèn)題情境;第二,溫故知新;第三,建構概念。具體如下:
先是創(chuàng )設問(wèn)題情境。由老師和學(xué)生一起舉出生活中描繪上升或者下降的變化規律的成語(yǔ)。老師可以啟發(fā)一下,先說(shuō)一個(gè)“蒸蒸日上”,然后和學(xué)生一起舉出比如“每況愈下”,“波瀾起伏”這樣三種描繪不同變化的成語(yǔ)。然后請學(xué)生根據上述成語(yǔ),給出一個(gè)函數,并在平面直角坐標系中繪制相應的函數圖象。這樣設計的意圖是讓學(xué)生結合生活體驗用樸素的生活語(yǔ)言描繪變化規律,體會(huì )如何將文字語(yǔ)言轉化為圖形語(yǔ)言。
接下來(lái)是溫故知新。在剛才學(xué)生繪制出的三個(gè)函數圖象的基礎上,我請學(xué)生觀(guān)察它們變化的趨勢。在剛才學(xué)生繪制的三個(gè)函數圖象的基礎上,再請學(xué)生用初中的.語(yǔ)言來(lái)敘述什么叫圖象呈逐漸上升的趨勢,也就是“函數值隨著(zhù)的增大而增大”。這樣設計的意圖是讓學(xué)生對照繪制的函數圖象,用自然語(yǔ)言描述函數的變化規律,重溫初中函數單調性的描述定義。
張思明:剛才我們看到了時(shí)駿老師的說(shuō)課,下面我們來(lái)聽(tīng)一聽(tīng)嘉賓對這個(gè)說(shuō)課的分析。
羅強:我還是要強調教學(xué)設計一定要注意為學(xué)習而設計教學(xué)。還是拿我剛才的這個(gè)比喻,就是教師帶學(xué)生去旅游。既然是帶學(xué)生去旅游,首先就要考慮我要帶學(xué)生到什么地方去?然后需要考慮我怎么才能夠帶學(xué)生到達這個(gè)地方?然后我要確定學(xué)生是不是真的到達了這個(gè)地方?還要注意的是,作為教學(xué)的一種延伸,我覺(jué)得還應該讓學(xué)生有興趣、有能力繼續他自己的旅程。我覺(jué)得這是我們教學(xué)設計要做的主要工作。
張思明:通過(guò)以上幾個(gè)案例,我想老師們對于如何做教學(xué)設計有了一個(gè)初步的認識。怎樣做好教學(xué)設計呢?我們也想聽(tīng)一聽(tīng)在教育指導部門(mén)的老師的一些想法,我們特別采訪(fǎng)了江蘇省教研室的董林偉主任,我們來(lái)聽(tīng)一聽(tīng)董主任關(guān)于教學(xué)設計的思考和認識。
董主任:關(guān)于設計這兩個(gè)詞大家應該都非常的熟悉。當人們要從事一項有目的的活動(dòng)的時(shí)候,事先都要有一些設想,要進(jìn)行一些規劃,要進(jìn)行一些設計。作為我們教學(xué)工作者來(lái)說(shuō),在開(kāi)始我們的教學(xué)活動(dòng)之前,我們的老師都必須做一項非常重要的工作,那就是教學(xué)設計。今天我要談的就是關(guān)于教學(xué)設計的話(huà)題。我想就三個(gè)方面來(lái)談?wù)勎业囊恍┗鞠敕。第一,我想先談(wù)勈裁唇薪虒W(xué)設計?第二,談?wù)勎覀冊诮虒W(xué)設計過(guò)程中應該來(lái)設計一些什么?第三,在設計的過(guò)程當中我們要注意哪幾點(diǎn)?下面我想簡(jiǎn)要的把這三個(gè)方面跟大家做一個(gè)交流。
一、關(guān)于什么叫教學(xué)設計?
所謂的教學(xué)設計就是用系統的方法對各種課程資源進(jìn)行有機的整合,對教學(xué)過(guò)程中相互聯(lián)系的各個(gè)部分作出整體安排的一種構想。它是一種構想,是一種整體的安排,是我們教師為將來(lái)進(jìn)行的教學(xué)勾畫(huà)的一些圖景,它反映了我們的教師對自己未來(lái)教學(xué)的一種認識和期望。如果通俗一點(diǎn)來(lái)說(shuō),那么所謂的教學(xué)設計可以這樣來(lái)理解,就是:你要把學(xué)生帶到哪里去?你怎樣把學(xué)生帶到那里去?你這樣做能把學(xué)生帶到那里去嗎?
二、在教學(xué)設計過(guò)程當中我們應該關(guān)注些什么,就是說(shuō)設計一些什么?
首先,我們必須明確我們的教學(xué)目標,教學(xué)目標是我們教學(xué)根本的指向與核心的任務(wù),是教學(xué)設計的關(guān)鍵。教學(xué)的目標是教學(xué)中師生所預期達到的一種教學(xué)效果和標準,因此,明確教學(xué)目標就是要明確你要把學(xué)生帶到哪里去。在確定教學(xué)目標的時(shí)候,我們要關(guān)注以下的幾點(diǎn):第一,整體性。就是要注意這部分內容在整個(gè)高中階段數學(xué)教學(xué)中的聯(lián)系,以達到教學(xué)的一種連貫性,要正確處理好我們的近期的目標跟遠期目標的相互關(guān)系。第二,在我們明確目標的時(shí)候,要關(guān)注它的全面性。新課程對數學(xué)教學(xué)的目標提出了新的一種要求,三維目標在關(guān)注知識結果的同時(shí),更注重對過(guò)程目標的關(guān)注和對學(xué)習者——學(xué)生的關(guān)注,更關(guān)注學(xué)生獲取數學(xué)知識的過(guò)程以及在學(xué)習中的經(jīng)歷、感受和體驗。因此,教師在設計數學(xué)教學(xué)目標時(shí),應特別注意關(guān)注新課程所提出的過(guò)程性目標。第三,我們要關(guān)注目標的現實(shí)性。確定教學(xué)目標時(shí),應當注意它與所授課任務(wù)的實(shí)質(zhì)性聯(lián)系,以避免目標空洞、無(wú)法落實(shí)。我們在設計教學(xué)目標時(shí),常見(jiàn)的一種狀況是目標過(guò)分的大,過(guò)分的空洞,那么在落實(shí)過(guò)程中,就難以達到預設的目標。其次,我們在教學(xué)設計中要非常關(guān)注學(xué)生,要了解學(xué)生。我想,以下幾個(gè)方面,至少老師在教學(xué)設計過(guò)程中應該心中有數。
第一,在數學(xué)方面學(xué)生以前做過(guò)什么?他在數學(xué)活動(dòng)或者是在數學(xué)實(shí)驗方面,曾經(jīng)做過(guò)什么?這里我們實(shí)際上要關(guān)注的是學(xué)生的活動(dòng)經(jīng)驗。
第二,不同的學(xué)生在思維方式上會(huì )有什么不同。實(shí)際上就是要在教學(xué)中關(guān)注我所授課的學(xué)生的特點(diǎn),關(guān)注我班學(xué)生的構成,班級當中不同群體的學(xué)生在思維方面有些什么樣的不同。
第三,要初步確定課堂的組織形式,就是說(shuō)我這一堂課是整個(gè)班級一起學(xué)習,還是將學(xué)生分成若干個(gè)組來(lái)活動(dòng),甚至于是一種個(gè)體性的活動(dòng),包括開(kāi)展一些個(gè)體性的實(shí)驗活動(dòng),包括自主學(xué)習的一種活動(dòng)方式。組織形式上還要關(guān)注這堂課需要利用什么模型?是否需要做適當的課件?或者準備一些相關(guān)的硬件設施。這也是我們在確定課堂組織形式是所必須要關(guān)注的。
第四,要勾勒教學(xué)的一種順序。這個(gè)順序當中主要包括這樣幾點(diǎn):
第一點(diǎn),應當怎樣提出主題,通俗一點(diǎn)講就是問(wèn)題情境的創(chuàng )設。關(guān)于問(wèn)題情境的創(chuàng )設,我們在相關(guān)的專(zhuān)題中也都提到它的重要性和一些要求。我們在勾勒教學(xué)順序的時(shí)候,首先要關(guān)注的是怎樣提出主題,這個(gè)主題應該是跟學(xué)生接近的,又要能夠引起他的興趣,又要圍繞著(zhù)我們的教學(xué)主題的,而且能夠使得學(xué)生迅速的進(jìn)入學(xué)習活動(dòng)中。
第二點(diǎn),就是要關(guān)注是否需要復習以前的相關(guān)知識。一堂課的教學(xué)它往往不是獨立的,而是有前后聯(lián)系的,因此需要考慮我在這堂課教學(xué)中是否需要復習相關(guān)的知識?
第三點(diǎn),當學(xué)生對材料產(chǎn)生爭論的時(shí)候,你準備提出怎樣的探索性問(wèn)題。當我們提出問(wèn)題以后學(xué)生可能會(huì )產(chǎn)生什么樣的一種思考,可能會(huì )產(chǎn)生一種什么樣的爭論?我們要了解這些爭論的思維的背景,需要進(jìn)行正確的引導,那么你就必須要設計好一些問(wèn)題串,來(lái)引導學(xué)生圍繞主題展開(kāi)探索。
第四點(diǎn),我們在設計教學(xué)程序的過(guò)程中要關(guān)注一下我們使用的材料,我們的課本提出了什么樣的觀(guān)點(diǎn),使用什么樣課外的材料來(lái)幫助我們的教學(xué)。
第五點(diǎn),要根據學(xué)生對主題的掌握程度,準備幾個(gè)可以供選擇的,課堂當中要自主完成的練習,或者是課后要完成家庭作業(yè)。這些是勾勒我們整個(gè)教學(xué)流程的一些關(guān)鍵程序。
三、教學(xué)設計中我們應該注意的方面。
教學(xué)設計永遠只是教學(xué)過(guò)程的一種預期,實(shí)際的教學(xué)活動(dòng)則永遠是一個(gè)謎。我們老師都有經(jīng)驗,同樣的一個(gè)課題,同一個(gè)老師的備課,他在不同班的授課過(guò)程中都會(huì )產(chǎn)生不同的教學(xué)流程、教學(xué)效果。因為我們所面對的學(xué)生是不同的,是在變化的,我們的教學(xué)生成是變化的,只有當這堂課教學(xué)完成了,我們才能知道這堂課最后的結果。所以前面的教學(xué)設計只是一種預期,我們的教學(xué)設計就是要關(guān)注這樣的一種變化。
因此,教學(xué)設計首先要注意它的整體性,就是說(shuō)我們的教學(xué)設計不是一種片斷,是一種整體的設計,它不是寫(xiě)在我們紙上的一種文本,而是我們教師對自己和學(xué)生所持的一種整體性的目標。其次,要注意它的可變性,沒(méi)有一件事情是絲毫不差地按照計劃進(jìn)行的。學(xué)生的思維可能還停留在你認為根本不重要的問(wèn)題上,他們還會(huì )以你幾乎不能想象的方式來(lái)理解某些概念。當活動(dòng)過(guò)程受到影響時(shí),你必須放棄你原來(lái)的教學(xué)計劃,運用你對學(xué)生已有的知識的了解和更宏觀(guān)的數學(xué)教學(xué)目標,去指導你的教學(xué)行動(dòng),也就是說(shuō)要產(chǎn)生一些生成的問(wèn)題。第三,要注意它創(chuàng )造性。我們的教師很大程度上會(huì )依賴(lài)于教材或教學(xué)參考書(shū),以確保他們的數學(xué)教學(xué)內容符合一個(gè)內部連貫的發(fā)展框架。這種依賴(lài)有一定的好處,它能夠使得我們的教學(xué)設計能夠圍繞著(zhù)我們課程的設計來(lái)進(jìn)行,但是同時(shí)也存在一些問(wèn)題,就是說(shuō)畢竟教材是我們課程的一種呈現,跟教學(xué)的呈現還是有著(zhù)本質(zhì)差別的。我們的教學(xué)設計應該是一種流動(dòng)的過(guò)程,應該適合我們的學(xué)生,就像設計師設計的服裝要符合你所設計的群體的特點(diǎn)和要求,如果考慮到個(gè)體,就要符合他的氣質(zhì),符合他的整體形象。我們的教學(xué)設計也是這樣,我想每個(gè)人都應該有個(gè)人設計的一種思考和魅力。
剛才談到這幾點(diǎn)僅供我們老師做一種參考。
張思明:各位老師,我們這一講把教學(xué)設計中存在的問(wèn)題通過(guò)幾個(gè)案例給大家做了一個(gè)初步的展示。我想教學(xué)設計中的問(wèn)題是一個(gè)教學(xué)實(shí)踐過(guò)程中產(chǎn)生的問(wèn)題,我們每一個(gè)老師都有自己的設計理念,都有自己設計成功或者不如意甚至失敗的地方。我們希望研討是一個(gè)互動(dòng)的過(guò)程,我們真誠的期待著(zhù)老師們把您們在教學(xué)設計中遇到的問(wèn)題和成功的經(jīng)驗寄給我們,我們一起來(lái)研討。那么這一講就到這里,謝謝老師們的參與!
高中數學(xué)教學(xué)設計9
一、探究式教學(xué)模式概述
1、探究式教學(xué)模式的含義。探究式教學(xué)就是學(xué)生在教師引導下,像科學(xué)家發(fā)現真理那樣以類(lèi)似科學(xué)探究的方式來(lái)展開(kāi)學(xué)習活動(dòng),通過(guò)自己大腦的獨立思考和探究,去弄清事物發(fā)展變化的起因和內在聯(lián)系,從中探索出知識規律的教學(xué)模式。它的基本特征是教師不把跟教學(xué)內容有關(guān)的內容和認知策略直接告訴學(xué)生,而是創(chuàng )造一種適宜的認知和合作環(huán)境,讓學(xué)生通過(guò)探究形成認知策略,從而對教學(xué)目標進(jìn)行一種全方位的學(xué)習,實(shí)現學(xué)生從被動(dòng)學(xué)習到主動(dòng)學(xué)習,培養學(xué)生的科學(xué)探究能力、創(chuàng )新意識和科學(xué)精神?梢(jiàn),探究式教學(xué)主張把學(xué)習知識的過(guò)程和探究知識的過(guò)程統一起來(lái),充分發(fā)揮學(xué)生學(xué)習的自主性和參與性。
2、堂探究式教學(xué)的實(shí)質(zhì)。課堂探究式教學(xué)的實(shí)質(zhì)是使學(xué)生通過(guò)類(lèi)似科學(xué)家科學(xué)探究的過(guò)程來(lái)理解科學(xué)探究概念和科學(xué)規律的本質(zhì),并培養學(xué)生的科學(xué)探究能力。具體地說(shuō),它包括兩個(gè)相互聯(lián)系的方面:一是有一個(gè)以“學(xué)”為中心的探究性學(xué)習環(huán)境。在這個(gè)環(huán)境中有豐富的教學(xué)資源,而且這些資源是圍繞某個(gè)知識主題來(lái)展開(kāi)的。這個(gè)學(xué)習環(huán)境具有民主和諧的課堂氣氛,它使學(xué)生很少感到有壓力,能自主尋找所需要的信息,提出自己的設想,并以自己的方式檢驗其設想。二是教師可以給學(xué)生提供必要的幫助和指導,使學(xué)生在研究中能明確方向。這說(shuō)明探究式教學(xué)的本質(zhì)特征是不直接把與教學(xué)目標有關(guān)的概念和認知策略告訴學(xué)生,取而代之的是教師創(chuàng )造出一種智力交流和社會(huì )交往的環(huán)境,讓學(xué)生通過(guò)探究自己發(fā)現規律。
3、探究式教學(xué)模式的特征。
。1)問(wèn)題性。問(wèn)題性是探究式教學(xué)模式的關(guān)鍵。能否提出對學(xué)生具有挑戰性和吸引力的問(wèn)題,使學(xué)生產(chǎn)生問(wèn)題意識,是探究教學(xué)成功與否的關(guān)鍵所在。恰當的問(wèn)題會(huì )激起學(xué)生強烈的學(xué)習愿望,并引發(fā)學(xué)生的求異思維和創(chuàng )造思維,F代教育心理學(xué)研究提出:“學(xué)生的學(xué)習過(guò)程和科學(xué)家的探索過(guò)程在本質(zhì)上是一樣的,都是一個(gè)發(fā)現問(wèn)題、分析問(wèn)題、解決問(wèn)題的過(guò)程!彼耘囵B學(xué)生的問(wèn)題意識是探究式教學(xué)的重要使命。
。2)過(guò)程性。過(guò)程性是探究式教學(xué)模式的重點(diǎn)。愛(ài)因斯坦說(shuō):“結論總以完成的形式出現,讀者體會(huì )不到探索和發(fā)現的喜悅,感覺(jué)不到思想形成的生動(dòng)過(guò)程,也就很難達到清楚、全面理解的境界!碧骄渴浇虒W(xué)模式正是考慮到這些人的認知特點(diǎn)來(lái)組織教學(xué)的,它強調學(xué)生探索知識的經(jīng)歷和獲得新知識的親身感悟。
。3)開(kāi)放性。開(kāi)放性是探究式教學(xué)模式的難點(diǎn)。探究式教學(xué)模式總是綜合合作學(xué)習、發(fā)現學(xué)習、自主學(xué)習等學(xué)習方式的長(cháng)處,培養學(xué)生良好的學(xué)習態(tài)度和學(xué)習方法,提倡和發(fā)展多樣化的學(xué)習方式。探究式教學(xué)模式要面對大量開(kāi)放性的問(wèn)題,教學(xué)資源和探究的結論面對生活、生產(chǎn)和科研是開(kāi)放的,這一切都為教師的教與學(xué)生的學(xué)帶來(lái)了機遇與挑戰。
二、教學(xué)設計案例
1、教學(xué)內容:數字排列中3、9的探究式教學(xué)。
2、教學(xué)目標。
。1)知識與技能:掌握數字排列的知識,能靈活運用所學(xué)知識。
。2)過(guò)程與方法:在探究過(guò)程中掌握分析問(wèn)題的方法和邏輯推理的方法。
。3)情感態(tài)度與價(jià)值觀(guān):培養學(xué)生觀(guān)察、分析、推理、歸納等綜合能力,讓學(xué)生體會(huì )到認識客觀(guān)規律的一般過(guò)程。
3、教學(xué)方法:談話(huà)探究法,討論探究法。
4、教學(xué)過(guò)程。
。1)創(chuàng )設情境。教師:在高中數學(xué)第十章的教學(xué)中,有關(guān)數字排列的問(wèn)題占有重要位置。我們曾經(jīng)做過(guò)的有關(guān)數字排列的題目,如“由若干個(gè)數字排列成偶數”、“能被5整除的數”等問(wèn)題,只要使排列成的數的個(gè)位數字為偶數,則這個(gè)數就是偶數,當排列成的數的個(gè)位數字為0或5時(shí),則這個(gè)數就能被5整除。那么能被3整除的數,能被9整除的數有何特點(diǎn)?
。2)提出問(wèn)題。
問(wèn)題1:在用1、2、3、4、5、6六個(gè)數字組成沒(méi)有重復數字的四位數中,是9的倍數的共有()
A、36個(gè)B、18個(gè)C、12個(gè)D、24個(gè)
問(wèn)題2:在用0、1、2、3、4、5這六個(gè)數字組成沒(méi)有重復數字的自然數中,有多少個(gè)能被6整除的五位數?
。3)探究思考。點(diǎn)評:乍一看問(wèn)題1,對于由若干個(gè)數字排列成9的倍數的問(wèn)題,如:81、72、63、54、45、36、27、18、9這些能夠被9整除的數的個(gè)位數字依次是1、2、3、4、5、6、7、8、9。因此,要考察能被9整除的數,不能只考慮個(gè)位數字了。于是,需另辟蹊徑,探究能被9整除的數的特點(diǎn),尋求解決問(wèn)題的途徑。
教師:同學(xué)們觀(guān)察81、72、63、54、45、36、27、18、9這些數,甚至再寫(xiě)出幾個(gè)能被9整除的數,如981、1872等,看看它們有何特點(diǎn)?
學(xué)生:它們都滿(mǎn)足“各位數字之和能被9整除”。
教師:此結論的正確性如何?
學(xué)生:老師,我們證明此結論的正確性,好嗎?
教師:好。
學(xué)生:證明:不妨以n是一個(gè)四位數為例證之。
設n=1000a+100b+10c+d(a,b,c,d∈N)依條件,有a+b+c+d=9m(m∈N)
則n=1000a+100b+10c+d
=(999a+a)+(99b+b)+(9c+c)+d
=(999a+99b+9c)+(a+b+c+d)
=9(111a+11b+c)+9m
=9(111a+11b+c+m)
∵ a,b,c,m∈N
∴ 111a+11b+c+m∈N
所以n能被9整除
同理可證定理的后半部分。
教師:看來(lái)上述結論正確。所以得到如下定理。
定理:如果一個(gè)自然數n各個(gè)數位上的數字之和能被9整除,那么這個(gè)數n就能夠被9整除;如果一個(gè)自然數n各個(gè)數位上的數字之和能被3整除,那么這個(gè)數n就能夠被3整除。
教師:利用該定理可解決“能被3、9整除”的數字排列問(wèn)題,請同學(xué)們先解答問(wèn)題1。
學(xué)生:嘗試1+4+5+6=16,1+3+4+5=13,2+3+4+5=14,2+4+5+6=17,1+2+3+4=10,1+2+5+6=14。
教師:?jiǎn)l(fā)學(xué)生觀(guān)察這些數字有何特點(diǎn)?提問(wèn)學(xué)生。
學(xué)生:可以看出只要從1、2、3、4、5、6這六個(gè)數中,選取的四個(gè)數字中含1(或2),或者同時(shí)含1、2,選取的`四個(gè)數字之和都不是9的倍數。
教師:請學(xué)生們繼續嘗試選取其他數字試一試。
學(xué)生:3+4+5+6=18是9的倍數。
教師:因此用1、2、3、4、5、6六個(gè)數字組成沒(méi)有重復數字的四位數中,是9的倍數的數,就是由3、4、5、6進(jìn)行全排列所得,共有=24(個(gè))。
故應選D。
。4)學(xué)以致用。
問(wèn)題2:在用0、1、2、3、4、5這六個(gè)數字組成沒(méi)有重復數字的自然數中,有多少個(gè)能被6整除的五位數?
教師:從上面的定理知:如果一個(gè)自然數n各個(gè)數位上的數字之和能被3整除,那么這個(gè)數n就能夠被3整除。同學(xué)們對問(wèn)題2有何想法?
學(xué)生討論:
學(xué)生1:被6整除的五位數必須既能被2整除,又能被3整除,故能被6整除的五位數,即為各位數字之和能被3整除的五位偶數。
學(xué)生2:由于1+2+3+4+5=15,能被3整除,所以選取的5個(gè)數字可分兩類(lèi):一類(lèi)是5個(gè)數字中無(wú)0,另一類(lèi)是5個(gè)數字中有0(但不含3)。
學(xué)生3:第一類(lèi):5個(gè)數字中無(wú)0的五位偶數有。
第二類(lèi):5個(gè)數字中含有0不含3的五位偶數有兩類(lèi),第一,0在個(gè)位有個(gè);第二,個(gè)位是2或4有,所以共有+ 。
學(xué)生4:由分類(lèi)計數原理得:能被6整除的無(wú)重復數字的五位數共有+ + =108(個(gè))。
。5)概括強化。
重點(diǎn):了解數字排列問(wèn)題的特點(diǎn),理解掌握數字排列中3、9問(wèn)題的規律。
難點(diǎn):數字排列知識的靈活應用。
關(guān)鍵:證明的思路以及定理的得出。
新學(xué)知識與已知知識之間的區別和聯(lián)系:已知知識“由若干個(gè)數字排列成偶數”、“能被5整除的數”等問(wèn)題,只要使排列成的數的個(gè)位數字為偶數,則這個(gè)數就是偶數,當排列成的數的個(gè)位數字為0或5時(shí),則這個(gè)數就能被5整除”。新學(xué)知識“如果一個(gè)自然數n各個(gè)數位上的數字之和能被9整除,那么這個(gè)數n就能夠被9整除;如果一個(gè)自然數n各個(gè)數位上的數字之和能被3整除,那么這個(gè)數n就能夠被3整除。都是數字排列知識,要學(xué)會(huì )靈活應用。
。6)作業(yè)。請同學(xué)們自擬練習題,以求達到熟練解決此類(lèi)問(wèn)題的目的。
總之,探究式教學(xué)模式是針對傳統教學(xué)的種種弊端提出來(lái)的,新課程改革強調改變課程過(guò)于注重知識的傳授和過(guò)于強調接受式學(xué)習的狀況,倡導學(xué)生主動(dòng)參與樂(lè )于探究、勤于動(dòng)手,讓學(xué)生經(jīng)歷科學(xué)探究過(guò)程,學(xué)習科學(xué)研究方法,并強調獲得知識、技能的過(guò)程成為學(xué)會(huì )學(xué)習和形成價(jià)值觀(guān)的過(guò)程,以培養學(xué)生的探究精神、創(chuàng )新意識和實(shí)踐能力。
高中數學(xué)教學(xué)設計10
一、單元教學(xué)內容
。ǎ保┧惴ǖ幕靖拍
。ǎ玻┧惴ǖ幕窘Y構:順序、條件、循環(huán)結構
。ǎ常┧惴ǖ幕菊Z(yǔ)句:輸入、輸出、賦值、條件、循環(huán)語(yǔ)句
二、單元教學(xué)內容分析
算法是數學(xué)及其應用的重要組成部分,是計算科學(xué)的重要基礎。隨著(zhù)現代信息技術(shù)飛速發(fā)展,算法在科學(xué)技術(shù)、社會(huì )發(fā)展中發(fā)揮著(zhù)越來(lái)越大的作用,并日益融入社會(huì )生活的許多方面,算法思想已經(jīng)成為現代人應具備的一種數學(xué)素養。需要特別指出的是,中國古代數學(xué)中蘊涵了豐富的算法思想。在本模塊中,學(xué)生將在中學(xué)教育階段初步感受算法思想的基礎上,結合對具體數學(xué)實(shí)例的分析,體驗程序框圖在解決問(wèn)題中的作用;通過(guò)模仿、操作、探索,學(xué)習設計程序框圖表達解決問(wèn)題的過(guò)程;體會(huì )算法的基本思想以及算法的重要性和有效性,發(fā)展有條理的思考與表達的能力,提高邏輯思維能力
三、單元教學(xué)課時(shí)安排:
。、算法的基本概念 3課時(shí)
。、程序框圖與算法的基本結構 5課時(shí)
。、算法的基本語(yǔ)句 2課時(shí)
四、單元教學(xué)目標分析
。、通過(guò)對解決具體問(wèn)題過(guò)程與步驟的分析體會(huì )算法的思想,了解算法的含義
。、通過(guò)模仿、操作、探索,經(jīng)歷通過(guò)設計程序框圖表達解決問(wèn)題的過(guò)程。在具體問(wèn)題的解決過(guò)程中理解程序框圖的三種基本邏輯結構:順序、條件、循環(huán)結構。
。、經(jīng)歷將具體問(wèn)題的程序框圖轉化為程序語(yǔ)句的過(guò)程,理解幾種基本算法語(yǔ)句:輸入、輸出、斌值、條件、循環(huán)語(yǔ)句,進(jìn)一步體會(huì )算法的基本思想。
。、通過(guò)閱讀中國古代數學(xué)中的'算法案例,體會(huì )中國古代數學(xué)對世界數學(xué)發(fā)展的貢獻。
五、單元教學(xué)重點(diǎn)與難點(diǎn)分析
。、重點(diǎn)
。ǎ保├斫馑惴ǖ暮x (2)掌握算法的基本結構 (3)會(huì )用算法語(yǔ)句解決簡(jiǎn)單的實(shí)際問(wèn)題
。、難點(diǎn)
。ǎ保┏绦蚩驁D (2)變量與賦值 (3)循環(huán)結構 (4)算法設計
六、單元總體教學(xué)方法
本章教學(xué)采用啟發(fā)式教學(xué),輔以觀(guān)察法、發(fā)現法、練習法、講解法。采用這些方法的原因是學(xué)生的邏輯能力不是很強,只能通過(guò)對實(shí)例的認真領(lǐng)會(huì )及一定的練習才能掌握本節知識。
七、單元展開(kāi)方式與特點(diǎn)
。、展開(kāi)方式
自然語(yǔ)言→程序框圖→算法語(yǔ)句
。、特點(diǎn)
。ǎ保┞菪仙 分層遞進(jìn) (2)整合滲透 前呼后應 (3)三線(xiàn)合
一 橫向貫通 (4)彈性處理 多樣選擇
八、單元教學(xué)過(guò)程分析
1. 算法基本概念教學(xué)過(guò)程分析
對生活中的實(shí)際問(wèn)題通過(guò)對解決具體問(wèn)題過(guò)程與步驟的分析(喝茶,如二元一次方程組求解問(wèn)題),體會(huì )算法的思想,了解算法的含義,能用自然語(yǔ)言描述算法。
2.算法的流程圖教學(xué)過(guò)程分析
對生活中的實(shí)際問(wèn)題通過(guò)模仿、操作、探索,經(jīng)歷通過(guò)設計流程圖表達解決問(wèn)題的過(guò)程,了解算法和程序語(yǔ)言的區別;在具體問(wèn)題的解決過(guò)程中,理解流程圖的三種基本邏輯結構:順序、條件分支、循環(huán),會(huì )用流程圖表示算法。
3. 基本算法語(yǔ)句教學(xué)過(guò)程分析
經(jīng)歷將具體生活中問(wèn)題的流程圖轉化為程序語(yǔ)言的過(guò)程,理解表示的幾種基本算法語(yǔ)句:賦值語(yǔ)句、輸入語(yǔ)句、輸出語(yǔ)句、條件語(yǔ)句、循環(huán)語(yǔ)句,進(jìn)一步體會(huì )算法的基本思想。能用自然語(yǔ)言、流程圖和基本算法語(yǔ)句表達算法,
4. 通過(guò)閱讀中國古代數學(xué)中的算法案例,體會(huì )中國古代數學(xué)對世界數學(xué)發(fā)展的貢獻。
九、單元評價(jià)設想
1.重視對學(xué)生數學(xué)學(xué)習過(guò)程的評價(jià)
關(guān)注學(xué)生在數學(xué)語(yǔ)言的學(xué)習過(guò)程中,是否對用集合語(yǔ)言描述數學(xué)和現實(shí)生活中的問(wèn)題充滿(mǎn)興趣;在學(xué)習過(guò)程中,能否體會(huì )集合語(yǔ)言準確、簡(jiǎn)潔的特征;是否能積極、主動(dòng)地發(fā)展自己運用數學(xué)語(yǔ)言進(jìn)行交流的能力。
2.正確評價(jià)學(xué)生的數學(xué)基礎知識和基本技能
關(guān)注學(xué)生在本章(節)及今后學(xué)習中,讓學(xué)生集中學(xué)習算法的初步知識,主要包括算法的基本結構、基本語(yǔ)句、基本思想等。算法思想將貫穿高中數學(xué)課程的相關(guān)部分,在其他相關(guān)部分還將進(jìn)一步學(xué)習算法
高中數學(xué)教學(xué)設計11
學(xué)習目標
明確排列與組合的聯(lián)系與區別,能判斷一個(gè)問(wèn)題是排列問(wèn)題還是組合問(wèn)題;能運用所學(xué)的排列組合知識,正確地解決的實(shí)際問(wèn)題.
學(xué)習過(guò)程
一、學(xué)前準備
復習:
1.(課本P28A13)填空:
(1)有三張參觀(guān)卷,要在5人中確定3人去參觀(guān),不同方法的種數是 ;
(2)要從5件不同的禮物中選出3件分送3為同學(xué),不同方法的種數是 ;
(3)5名工人要在3天中各自選擇1天休息,不同方法的種數是 ;
(4)集合A有個(gè) 元素,集合B有 個(gè)元素,從兩個(gè)集合中各取1個(gè)元素,不同方法的種數是 ;
二、新課導學(xué)
◆探究新知(復習教材P14~P25,找出疑惑之處)
問(wèn)題1:判斷下列問(wèn)題哪個(gè)是排列問(wèn)題,哪個(gè)是組合問(wèn)題:
(1)從4個(gè)風(fēng)景點(diǎn)中選出2個(gè)安排游覽,有多少種不同的方法?
(2)從4個(gè)風(fēng)景點(diǎn)中選出2個(gè),并確定這2個(gè)風(fēng)景點(diǎn)的游覽順序,有多少種不同的方法?
◆應用示例
例1.從10個(gè)不同的文藝節目中選6個(gè)編成一個(gè)節目單,如果某女演員的獨唱節目一定不能排在第二個(gè)節目的位置上,則共有多少種不同的排法?
例2.7位同學(xué)站成一排,分別求出符合下列要求的不同排法的種數.
(1) 甲站在中間;
(2)甲、乙必須相鄰;
(3)甲在乙的左邊(但不一定相鄰);
(4)甲、乙必須相鄰,且丙不能站在排頭和排尾;
(5)甲、乙、丙相鄰;
(6)甲、乙不相鄰;
(7)甲、乙、丙兩兩不相鄰。
◆反饋練習
1. (課本P40A4)某學(xué)生邀請10位同學(xué)中的6位參加一項活動(dòng),其中兩位同學(xué)要么都請,要么都不請,共有多少種邀請方法?
2.5男5女排成一排,按下列要求各有多少種排法:(1)男女相間;(2)女生按指定順序排列
3.馬路上有12盞燈,為了節約用電,可以熄滅其中3盞燈,但兩端的燈不能熄滅,也不能熄滅相鄰的兩盞燈,那么熄燈方法共有______種.
當堂檢測
1.某班新年聯(lián)歡會(huì )原定的5個(gè)節目已排成節目單,開(kāi)演前又增加了兩個(gè)新節目.如果將這兩個(gè)節目插入原節目單中,那么不同插法的種數為( )
A.42 B.30 C.20 D.12
2.(課本P40A7)書(shū)架上有4本不同的.數學(xué)書(shū),5本不同的物理書(shū),3本不同的化學(xué)書(shū),全部排在同一層,如果不使同類(lèi)的書(shū)分開(kāi),一共有多少種排法?
課后作業(yè)
1.(課本P41B2)用數字0,1,2,3,4,5組成沒(méi)有重復數字的數,問(wèn):(1)能夠組成多少個(gè)六位奇數?(2)能夠組成多少個(gè)大于201345的正整數?
2.(課本P41B4)某種產(chǎn)品的加工需要經(jīng)過(guò)5道工序,問(wèn):(1)如果其中某一工序不能放在最后,有多少種排列加工順序的方法?(2)如果其中兩道工序既不能放在最前,也不能放在最后,有多少種排列加工順序的方法?
高中數學(xué)教學(xué)設計12
教學(xué)目標:
1、引導學(xué)生經(jīng)理認識10的過(guò)程,初步建立10的數感。
2、學(xué)會(huì )10的數數、認數、讀數、寫(xiě)數,比較大小和組成,對10的數概念獲得全面的認識和掌握。
3、結合數的概念的學(xué)習,感受熱愛(ài)自然、保護環(huán)境和愛(ài)科學(xué)的教育。
4、引導學(xué)生感受數10與顯示生活的密切聯(lián)系。
教具、學(xué)具準備:
教師準備食物投影、10的卡片、點(diǎn)子圖、小棒;學(xué)生準備學(xué)具盒
教學(xué)過(guò)程:
一、復習引入:復習已學(xué)過(guò)的數,比9大一的數是10。
1、談話(huà)引入;師:我們已經(jīng)學(xué)習了0~9的數,我們不僅能夠正確的數這些數,還能讀寫(xiě),知道他們的大小和組成。那么比9大的數大家認識嗎?今天我們就一起來(lái)認識“10”
2、板書(shū)課題:10的認識。
二、認識10
。1)出示主題圖,指導學(xué)生看圖數一數,抽象出數字10。
師:圖書(shū)同學(xué)們在干什么?大家數一數一共去了幾個(gè)同學(xué)?老師呢?一共去了多少人?(10人)是嗎?大家一起來(lái)數一數。
介紹你數的方法。(可以一個(gè)一個(gè)數,也可以幾個(gè)幾個(gè)數,發(fā)現只要有次序,不遺漏重復數的結果都是10)
。2)數一數:
從學(xué)具盒中數出數量是10的任意一種學(xué)具。
教師示范數出10根小棒,并用皮筋捆好,問(wèn):這一捆里有幾個(gè)1根?也就是幾根?使學(xué)生明確10個(gè)一是1個(gè)十。
找找自己身上哪一部分的個(gè)數可以用10來(lái)表示。
。3)10以?xún)葦档捻樞?/p>
教師出示點(diǎn)子圖?磿(shū)上的計數器的圖,讓學(xué)生感受9顆后面再加一顆就是10顆。
看書(shū)上的直尺圖,你能說(shuō)出10以?xún)鹊臄档?順序嗎?
引導學(xué)生小結:明確9加上1是10,10去掉1是9,10排在9的后面。
按數的順序,讓學(xué)生把直尺上的數字填完整,再抽象出數軸,明確10以?xún)鹊臄敌。填空:?shū)上P67頁(yè),第1、2兩題。反饋第1題是按什么順序寫(xiě)的,第2題呢。
。4)比較10以?xún)葦档拇笮?/p>
比較9和10
除了9以外,還有哪些數比10?10比哪些數大?你是怎么想的?
。5)區別10和第10
自己畫(huà)一畫(huà)表示10的物體:畫(huà)o,畫(huà)好后請同桌同學(xué)數一數校對。師拿出學(xué)生剛才畫(huà)的圓OOOOOOOOOO,給左起第10個(gè)O畫(huà)上黑色和右起第10個(gè)O畫(huà)上紅色。
。6)10的書(shū)寫(xiě):教師范寫(xiě)一學(xué)生練習,說(shuō)說(shuō)寫(xiě)10與以前寫(xiě)的數有什么特別?
三、10的組成
1、10的組成
。1)同桌合作,學(xué)習10的組成,一個(gè)分,另一個(gè)記錄。歸納10的組成。
。2)10的組成有幾種?用什么方法能很快地記住它們?可用手指強化記憶
2、練習鞏固:
。1)擊掌組成10
。2)說(shuō)數組成10
。3)連線(xiàn):P65做一做
。4)10的組成和分解的運用如套圈活動(dòng):練習九第3題
四、小結:這節課你學(xué)會(huì )了什么?又增長(cháng)了什么本領(lǐng)?
五、課后小記:
學(xué)生第一次寫(xiě)兩個(gè)數字組成的數,學(xué)寫(xiě)中協(xié)調性比較差,寫(xiě)1合0時(shí)都是要求略斜,組合后寫(xiě)成了尖尖的。如,問(wèn)題在于前面寫(xiě)0時(shí)要求不夠嚴格。
高中數學(xué)教學(xué)設計13
教學(xué)目標:
1.掌握基本事件的概念;
2.正確理解古典概型的兩大特點(diǎn):有限性、等可能性;
3.掌握古典概型的概率計算公式,并能計算有關(guān)隨機事件的概率.
教學(xué)重點(diǎn):
掌握古典概型這一模型.
教學(xué)難點(diǎn):
如何判斷一個(gè)實(shí)驗是否為古典概型,如何將實(shí)際問(wèn)題轉化為古典概型問(wèn)題.
教學(xué)方法:
問(wèn)題教學(xué)、合作學(xué)習、講解法、多媒體輔助教學(xué).
教學(xué)過(guò)程:
一、問(wèn)題情境
1.有紅心1,2,3和黑桃4,5這5張撲克牌,將其牌點(diǎn)向下置于桌上,現從中任意抽取一張,則抽到的牌為紅心的概率有多大?
二、學(xué)生活動(dòng)
1.進(jìn)行大量重復試驗,用“抽到紅心”這一事件的頻率估計概率,發(fā)現工作量較大且不夠準確;
2.(1)共有“抽到紅心1” “抽到紅心2” “抽到紅心3” “抽到黑桃4” “抽到黑桃5”5種情況,由于是任意抽取的,可以認為出現這5種情況的可能性都相等;
。2)6個(gè);即“1點(diǎn)”、“2點(diǎn)”、“3點(diǎn)”、“4點(diǎn)”、“5點(diǎn)”和“6點(diǎn)”,
這6種情況的可能性都相等;
三、建構數學(xué)
1.介紹基本事件的概念,等可能基本事件的概念;
2.讓學(xué)生自己總結歸納古典概型的兩個(gè)特點(diǎn)(有限性)、(等可能性);
3.得出隨機事件發(fā)生的概率公式:
四、數學(xué)運用
1.例題.
例1
有紅心1,2,3和黑桃4,5這5張撲克牌,將其牌點(diǎn)向下置于桌上,現從中任意抽取2張共有多少個(gè)基本事件?(用枚舉法,列舉時(shí)要有序,要注意“不重不漏”)
探究(1):一只口袋內裝有大小相同的5只球,其中3只白球,2只黑球,從中一次摸出2只球,共有多少個(gè)基本事件?該實(shí)驗為古典概型嗎?(為什么對球進(jìn)行編號?)
探究(2):拋擲一枚硬幣2次有(正,反)、(正,正)、(反,反)3個(gè)基本事件,對嗎?
學(xué)生活動(dòng):探究(1)如果不對球進(jìn)行編號,一次摸出2只球可能有兩白、一黑一白、兩黑三種情況,“摸到兩黑”與“摸到兩白”的可能性相同;而事實(shí)上“摸到兩白”的機會(huì )要比“摸到兩黑”的機會(huì )大.記白球為1,2,3號,黑球為4,5號,通過(guò)枚舉法發(fā)現有10個(gè)基本事件,而且每個(gè)基本事件發(fā)生的可能性相同.
探究(2):拋擲一枚硬幣2次,有(正,正)、(正,反)、(反,正)、(反,反)四個(gè)基本事件.
。ㄔO計意圖:加深對古典概型的特點(diǎn)之一等可能基本事件概念的理解.)
例2
一只口袋內裝有大小相同的'5只球,其中3只白球,2只黑球,從中
一次摸出2只球,則摸到的兩只球都是白球的概率是多少?
問(wèn)題:在運用古典概型計算事件的概率時(shí)應當注意什么?
、倥袛喔怕誓P褪欠駷楣诺涓判
、谡页鲭S機事件A中包含的基本事件的個(gè)數和試驗中基本事件的總數.
教師示范并總結用古典概型計算隨機事件的概率的步驟
例3
同時(shí)拋兩顆骰子,觀(guān)察向上的點(diǎn)數,問(wèn):
。1)共有多少個(gè)不同的可能結果?
。2)點(diǎn)數之和是6的可能結果有多少種?
。3)點(diǎn)數之和是6的概率是多少?
問(wèn)題:如何準確的寫(xiě)出“同時(shí)拋兩顆骰子”所有基本事件的個(gè)數?
學(xué)生活動(dòng):用課本第102頁(yè)圖3-2-2,可直觀(guān)的列出事件A中包含的基本事件的個(gè)數和試驗中基本事件的總數.
問(wèn)題:點(diǎn)數之和是3的倍數的可能結果有多少種?
(介紹圖表法)
例4
甲、乙兩人作出拳游戲(錘子、剪刀、布),求:
。1)平局的概率;(2)甲贏(yíng)的概率;(3)乙贏(yíng)的概率.
設計意圖:進(jìn)一步提高學(xué)生對將實(shí)際問(wèn)題轉化為古典概型問(wèn)題的能力.
2.練習.
。1)一枚硬幣連擲3次,只有一次出現正面的概率為_(kāi)________.
。2)在20瓶飲料中,有3瓶已過(guò)了保質(zhì)期,從中任取1瓶,取到已過(guò)保質(zhì)期的飲料的概率為_(kāi)________..
。3)第103頁(yè)練習1,2.
。4)從1,2,3,…,9這9個(gè)數字中任取2個(gè)數字,
、2個(gè)數字都是奇數的概率為_(kāi)________;
、2個(gè)數字之和為偶數的概率為_(kāi)________.
五、要點(diǎn)歸納與方法小結
本節課學(xué)習了以下內容:
1.基本事件,古典概型的概念和特點(diǎn);
2.古典概型概率計算公式以及注意事項;
3.求基本事件總數常用的方法:列舉法、圖表法.
高中數學(xué)教學(xué)設計14
教學(xué)目標
1.明確等差數列的定義.
2.掌握等差數列的通項公式,會(huì )解決知道中的三個(gè),求另外一個(gè)的問(wèn)題
3.培養學(xué)生觀(guān)察、歸納能力.
教學(xué)重點(diǎn)
1. 等差數列的概念;
2. 等差數列的通項公式
教學(xué)難點(diǎn)
等差數列“等差”特點(diǎn)的理解、把握和應用
教具準備
投影片1張
教學(xué)過(guò)程
(I)復習回顧
師:上兩節課我們共同學(xué)習了數列的'定義及給出數列的兩種方法通項公式和遞推公式。這兩個(gè)公式從不同的角度反映數列的特點(diǎn),下面看一些例子。(放投影片)
(Ⅱ)講授新課
師:看這些數列有什么共同的特點(diǎn)?
1,2,3,4,5,6; ①
10,8,6,4,2,…; ②
生:積極思考,找上述數列共同特點(diǎn)。
對于數列①(1≤n≤6);(2≤n≤6)
對于數列②-2n(n≥1)(n≥2)
對于數列③(n≥1)(n≥2)
共同特點(diǎn):從第2項起,第一項與它的前一項的差都等于同一個(gè)常數。
師:也就是說(shuō),這些數列均具有相鄰兩項之差“相等”的特點(diǎn)。具有這種特點(diǎn)的數列,我們把它叫做等差數。
一、定義:
等差數列:一般地,如果一個(gè)數列從第2項起,每一項與空的前一項的差等于同一個(gè)常數,那么這個(gè)數列就叫做等差數列,這個(gè)常數叫做等差數列的公差,通常用字母d表示。
如:上述3個(gè)數列都是等差數列,它們的公差依次是1,-2, 。
二、等差數列的通項公式
師:等差數列定義是由一數列相鄰兩項之間關(guān)系而得。若一等差數列的首項是,公差是d,則據其定義可得:
若將這n-1個(gè)等式相加,則可得:
即:即:即:……
由此可得:師:看來(lái),若已知一數列為等差數列,則只要知其首項和公差d,便可求得其通項。
如數列①(1≤n≤6)
數列②:(n≥1)
數列③:(n≥1)
由上述關(guān)系還可得:即:則:=如:三、例題講解
例1:(1)求等差數列8,5,2…的第20項
(2)-401是不是等差數列-5,-9,-13…的項?如果是,是第幾項?
解:(1)由n=20,得(2)由得數列通項公式為:由題意可知,本題是要回答是否存在正整數n,使得-401=-5-4(n-1)成立解之得n=100,即-401是這個(gè)數列的第100項。
(Ⅲ)課堂練習
生:(口答)課本P118練習3
(書(shū)面練習)課本P117練習1
師:組織學(xué)生自評練習(同桌討論)
(Ⅳ)課時(shí)小結
師:本節主要內容為:①等差數列定義。
即(n≥2)
、诘炔顢盗型椆 (n≥1)
推導出公式:(V)課后作業(yè)
一、課本P118習題3.2 1,2
二、1.預習內容:課本P116例2P117例4
2.預習提綱:
、偃绾螒玫炔顢盗械亩x及通項公式解決一些相關(guān)問(wèn)題?
、诘炔顢盗杏心男┬再|(zhì)?
高中數學(xué)教學(xué)設計15
一、課題:
人教版全日制普通高級中學(xué)教科書(shū)數學(xué)第一冊(上)《2.7對數》
二、指導思想與理論依據:
《數學(xué)課程標準》指出:高中數學(xué)課程應講清一些基本內容的實(shí)際背景和應用價(jià)值,開(kāi)展“數學(xué)建!钡膶W(xué)習活動(dòng),把數學(xué)的應用自然地融合在平常的教學(xué)中。任何一個(gè)數學(xué)概念的引入,總有它的現實(shí)或數學(xué)理論發(fā)展的需要。都應強調它的現實(shí)背景、數學(xué)理論發(fā)展背景或數學(xué)發(fā)展歷史上的背景,這樣才能使教學(xué)內容顯得自然和親切,讓學(xué)生感到知識的發(fā)展水到渠成而不是強加于人,從而有利于學(xué)生認識數學(xué)內容的實(shí)際背景和應用的價(jià)值。在教學(xué)設計時(shí),既要關(guān)注學(xué)生在數學(xué)情感態(tài)度和科學(xué)價(jià)值觀(guān)方面的'發(fā)展,也要幫助學(xué)生理解和掌握數學(xué)基礎知識和基本技能,發(fā)展能力。在課程實(shí)施中,應結合教學(xué)內容介紹一些對數學(xué)發(fā)展起重大作用的歷史事件和人物,用以反映數學(xué)在人類(lèi)社會(huì )進(jìn)步、人類(lèi)文化建設中的作用,同時(shí)反映社會(huì )發(fā)展對數學(xué)發(fā)展的促進(jìn)作用。
三、教材分析:
本節內容主要學(xué)習對數的概念及其對數式與指數式的互化。它屬于函數領(lǐng)域的知識。而對數的概念是對數函數部分教學(xué)中的核心概念之一,而函數的思想方法貫穿在高中數學(xué)教學(xué)的始終。通過(guò)對數的學(xué)習,可以解決數學(xué)中知道底數和冪值求指數的問(wèn)題,以及對數函數的相關(guān)問(wèn)題。
四、學(xué)情分析:
在ab=N(a>0,a≠1)中,知道底數和指數可以求冪值,那么知道底數和冪值如何求求指數,從學(xué)生認知的角度自然就產(chǎn)生了這樣的需要。因此,在前面學(xué)習指數的基礎上學(xué)習對數的概念是水到渠成的事。
五、教學(xué)目標:
(一)教學(xué)知識點(diǎn):
1.對數的概念。
2.對數式與指數式的互化。
(二)能力目標:
1.理解對數的概念。
2.能夠進(jìn)行對數式與指數式的互化。
(三)德育滲透目標:
1.認識事物之間的相互聯(lián)系與相互轉化,
2.用聯(lián)系的觀(guān)點(diǎn)看問(wèn)題。
六、教學(xué)重點(diǎn)與難點(diǎn):
重點(diǎn)是對數定義,難點(diǎn)是對數概念的理解。
七、教學(xué)方法:
講練結合法八、教學(xué)流程:
問(wèn)題情景(復習引入)——實(shí)例分析、形成概念(導入新課)——深刻認識概念(對數式與指數式的互化)——變式分析、深化認識(對數的性質(zhì)、對數恒等式,介紹自然對數及常用對數)——練習小結、形成反思(例題,小結)
八、教學(xué)反思:
對本節內容在進(jìn)行教學(xué)設計之前,本人反復閱讀了課程標準和教材,教材內容的處理收到了一定的預期效果,尤其是練習的處理,充分發(fā)揮了學(xué)生的主體作用,也提高了學(xué)生主體的合作意識,達到了設計中所預想的目標。然而還有一些缺憾:對本節內容,難度不高,本人認為,教師的干預(講解)還是太多。在以后的教學(xué)中,對于一些較簡(jiǎn)單的內容,應放手讓學(xué)生多一些探究與合作。隨著(zhù)教育改革的深化,教學(xué)理念、教學(xué)模式、教學(xué)內容等教學(xué)因素,都在不斷更新,作為數學(xué)教師要更新教學(xué)觀(guān)念,從學(xué)生的全面發(fā)展來(lái)設計課堂教學(xué),關(guān)注學(xué)生個(gè)性和潛能的發(fā)展,使教學(xué)過(guò)程更加切合《課程標準》的要求。
對于本教學(xué)設計,時(shí)間倉促,不足之處在所難免,期待與各位同仁交流。
【高中數學(xué)教學(xué)設計】相關(guān)文章:
高中數學(xué)教學(xué)設計06-09
高中數學(xué)教學(xué)設計03-25
高中數學(xué)教學(xué)設計01-17
高中數學(xué)概念教學(xué)設計07-14