完全平方公式教學(xué)反思15篇
作為一位到崗不久的教師,我們要有一流的課堂教學(xué)能力,寫(xiě)教學(xué)反思可以快速提升我們的教學(xué)能力,來(lái)參考自己需要的教學(xué)反思吧!下面是小編幫大家整理的完全平方公式教學(xué)反思,歡迎閱讀,希望大家能夠喜歡。
完全平方公式教學(xué)反思1
這課主要研究完全平方公式的特征及應用。教學(xué)關(guān)鍵是引導學(xué)生正確理解完全平方公式的推導過(guò)程,幾何背景,并能準確應用完全平方公式解決相關(guān)問(wèn)題。
這節課我做得較好的方面:
1、本課的知識要點(diǎn)是經(jīng)歷探索完全平方公式的過(guò)程,了解公式的幾何背景,會(huì )應公式進(jìn)行簡(jiǎn)單的計算,教學(xué)已基本達到了預期目標,能突出重點(diǎn),兼顧難點(diǎn)。
2、本節課上學(xué)生體會(huì )了數形結合及轉化的數學(xué)思想,并知道猜想的結論必須要加以驗證;授課思維流暢,知識發(fā)生發(fā)展過(guò)渡自然,學(xué)生容易得到一些結論但在老師的引導下又使問(wèn)題的探討得以不斷深入,學(xué)生思考積極、氣氛活躍,教學(xué)效果較好。
3、整節課都在緊張而愉快的氣氛中進(jìn)行。學(xué)生非;钴S。人人都能積極參與。教學(xué)中,我比較關(guān)注學(xué)生的情感態(tài)度,對那些積極動(dòng)腦,熱情參與的同學(xué),都給予了鼓勵和表?yè)P。促使學(xué)生的情感和興趣始終保持最佳狀態(tài),進(jìn)而提高課堂教學(xué)的有效性。
4、先從代數式的幾何意義出發(fā),激發(fā)學(xué)生的圖形觀(guān),利用拼圖的方法,使學(xué)生在動(dòng)手的過(guò)程中發(fā)現規律,并通過(guò)小組合作,探究歸納公式,然后強調數值的計算,使學(xué)生掌握公式的計算技巧。從而突出以學(xué)生為主體的探索性學(xué)習原則。
本節課有待完善的地方:
1、對需要幫助的學(xué)生進(jìn)行針對性的個(gè)別指導較少。
2、對于學(xué)生計算中存在的問(wèn)題應讓學(xué)生自己糾錯,教師不應全權代勞。如利用兩數和的公式計算環(huán)節,兩位學(xué)生分別講述自己的想法之后,教師應該讓全體學(xué)生根據其方法進(jìn)行計算,自主驗證,即使有些學(xué)生寫(xiě)不出來(lái),也會(huì )因為經(jīng)過(guò)思考而印象深刻,如果為了節省時(shí)間教師自已代勞,那樣就不能夠充分體現學(xué)生的主體作用,而且效果也較前者差些。
再教設計:
1、在教學(xué)中要講法則、公式的應用,也要講公式的推導,使學(xué)生在理解公式,法則道理的基礎上進(jìn)行記憶,要借助面積圖形對完全平方公式做直觀(guān)說(shuō)明。
2、講聯(lián)系、講對比、講特征。學(xué)生在運用公式時(shí)出現的(a+b)2=a2 +b2的錯誤,其原因是把完全平方公式和舊知識積的乘方弄混淆,要善于排除新舊知識間互相干擾的作用。
3、規范板書(shū)。每節課的板書(shū)盡量堅持做到三保留:重要知識點(diǎn)保留,典型例題保留,學(xué)生易錯點(diǎn)保留。
完全平方公式教學(xué)反思2
本節課屬于八年級數學(xué)上冊《整式乘除與因式分解》第二節中的內容,前一節已學(xué)習了平方差公式,這一課主要研究完全平方公式的特征及應用。教學(xué)關(guān)鍵是引導學(xué)生正確理解完全平方公式的推導過(guò)程,幾何背景,并能準確應用完全平方公式解決相關(guān)問(wèn)題。教學(xué)后我進(jìn)行反思如下:本課的知識要點(diǎn)是經(jīng)歷探索完全平方公式的過(guò)程,了解公式的幾何背景,會(huì )應公式進(jìn)行簡(jiǎn)單的計算,教學(xué)已基本達到了預期目標,能突出重點(diǎn),兼顧難點(diǎn)。本節課上學(xué)生體會(huì )了數形結合及轉化的數學(xué)思想,并知道猜想的結論必須要加以驗證;授課思維流暢,知識發(fā)生發(fā)展過(guò)渡自然,學(xué)生容易得到一些結論但在老師的引導下又使問(wèn)題的探討得以不斷深入,學(xué)生思考積極、氣氛活躍,教學(xué)效果較好。采用以小組自主探究的學(xué)習方式,同時(shí)各小組展開(kāi)激烈的比賽。整節課都在緊張而愉快的氣氛中進(jìn)行。學(xué)生非;钴S。人人都能積極參與。先從代數式的幾何意義出發(fā),激發(fā)學(xué)生的圖形觀(guān),利用拼圖的方法,使學(xué)生在動(dòng)手的過(guò)程中發(fā)現規律,并通過(guò)小組合作,探究歸納公式,然后強調數值的計算,使學(xué)生掌握公式的計算技巧。從而突出以學(xué)生為主體的探索性學(xué)習原則。讓學(xué)生自編符合完全平方公式和平方差公式結構的計算題,從而有效地將兩類(lèi)公式區分開(kāi),深刻認識公式的結構特征,并大大激發(fā)了學(xué)生的學(xué)習積極性。
同時(shí)課后感覺(jué)應該引導學(xué)生用文字概括公式的內容,從而培養學(xué)生抽象的數學(xué)思維能力和語(yǔ)言表達能力。對需要幫助的學(xué)生進(jìn)行針對性的個(gè)別指導較少。對于學(xué)生計算中存在的問(wèn)題應讓學(xué)生自己糾錯,教師不應全權代勞。如利用兩數和的公式計算環(huán)節,兩位學(xué)生分別講述自己的想法之后,教師應該讓全體學(xué)生根據其方法進(jìn)行計算,自主驗證,即使有些學(xué)生寫(xiě)不出來(lái),也會(huì )因為經(jīng)過(guò)思考而印象深刻,如果為了節省時(shí)間教師自己代勞,那樣就不能夠充分體現學(xué)生的主體作用,而且效果也較前者差些。
在今后的教學(xué)中應注意從以下幾個(gè)方面改進(jìn):
1、在教學(xué)中要講法則、公式的應用,也要講公式的推導,使學(xué)生在理解公式,法則道理的基礎上進(jìn)行記憶,比如:我們要借助面積圖形對完全平方公式做直觀(guān)說(shuō)明。
2、必須強調學(xué)生時(shí)刻把握公式的特征及用途:
特征:左邊是兩個(gè)相同的二項式相乘,右邊是一個(gè)三項式,其中兩項是二項式中每一項的平方和,另一項是二項式中項的乘積的2倍或其相反式。
用途:用于解決兩個(gè)完全相同的二項式乘積運算、應在課堂上大力推行邊啟發(fā)、邊探索、邊歸納,突出以學(xué)生為主體的探索性學(xué)習原則、既講“法”,又講“理”:在教學(xué)中要講法則、公式的應用,也要講公式的推導,使學(xué)生在理解公式,法則道理的基礎上進(jìn)行記憶,比如:我們要借助面積圖形對完全平方公式做直觀(guān)說(shuō)明、
3、講聯(lián)系、講對比、講特征、學(xué)生在運用公式時(shí)出現的錯誤,其原因是把完全平方公式和舊知識及分配律弄混淆,要善于排除新舊知識間互相干擾的作用、規范板書(shū)。每節課的板書(shū)盡量堅持做到三保留:重要知識點(diǎn)保留,典型例題保留,學(xué)生易錯點(diǎn)保留。
完全平方公式教學(xué)反思3
公式法進(jìn)行因式分解,除了逆用平方差公式之外,還有兩個(gè)相對來(lái)說(shuō)較難的公式逆用即完全平方和(或差)公式:(a+b)2=a2+2ab+b2。
逆用完全平方公式進(jìn)行因式分解關(guān)鍵同樣是搞清完全平方公式的結構特點(diǎn):等號左邊是一個(gè)二項式的平方,等號右邊是一個(gè)二次三項式,其中有兩項是公式左邊二項式中每一項的平方,另一項是左邊二項式中那兩項乘積的2倍;虻忍栍疫呌涀鳎菏灼椒,尾平方,2倍之積中間放。
有了前邊學(xué)習完全平方公式為基礎,逆用完全平方公式進(jìn)行因式分解只需要“顛倒使用”即可:等號右邊作為“條件”,左邊作為“結果”,但對學(xué)生來(lái)說(shuō),還是相當困難的。
逆用完全平方公式進(jìn)行因式分解的步驟可分三步:
1、寫(xiě)成“首平方,尾平方,2倍之積中間放”的形式
2、按公式寫(xiě)出“兩項和的平方”的形式,即因式分解
3、兩項和中能合并同類(lèi)項的合并。
例題及練習的呈現次序盡量本著(zhù)先易后難、先單一后綜合的螺旋上升原則。
1、a、b代表單獨單項式,如:(1)m2-6m+9(2)4a2-4ab+b2
2、a、b代表多項式,如:(1)(a+2b)2-8a(a+2b)+16a2
。2)4(x+y)2+25-20(x+y)
在此要有“整體思想”的意識,注意:相同部分作為一個(gè)整體然后再套用公式。
3、先提取公因式,再用完全平方和(或差)公式如:
。1)ay2-2a2y+a3
。2)16xy2-9x2y-y2
4、先轉化一步,再用完全平方和(或差)公式,如:
。1)-m2+2mn-n2(2)3a2+6a+27
盡管課前進(jìn)行了充分的準備工作,但是學(xué)生作業(yè)中仍暴露出許多問(wèn)題,如部分學(xué)生直接感到無(wú)從下手。
完全平方公式教學(xué)反思4
這一節課主要研究完全平方公式的證明方法,關(guān)鍵是引導學(xué)生正確理解完全平方公式的推導過(guò)程,以及這兩個(gè)公式的幾何背景。
這節課我做的比較好的方面:
經(jīng)歷探索完全平方公式的過(guò)程,通過(guò)拼圖游戲,從形到數又從數到形,讓學(xué)生了解公式的幾何背景,學(xué)生體會(huì )了數形結合的數學(xué)思想,并知道猜想的結論必須加以驗證,本節授課思維流暢,知識發(fā)生發(fā)展過(guò)程過(guò)渡自然,學(xué)生容易得到一些結論但在老師的引導下又使問(wèn)題的探討得以不斷深入,學(xué)生思考積極,氣氛活躍,教學(xué)效果較好。
這節課采用小組自主探究,小組合作的學(xué)習方式,緊張而愉快,學(xué)生及相互交流的同時(shí)又相互合作,極大的調動(dòng)了學(xué)生學(xué)習的熱情同時(shí)我也比較關(guān)注那些積極動(dòng)腦,熱情參與的同學(xué),及時(shí)的給予表?yè)P和鼓勵,進(jìn)而促進(jìn)課堂教學(xué)的有效性。
從幾何意義出發(fā),激發(fā)學(xué)生的圖形觀(guān),利用拼圖游戲,使學(xué)生在動(dòng)手的過(guò)程中發(fā)現結論,并通過(guò)小組合作,探究歸納公式,從而突出以學(xué)生為主體的的探究性學(xué)習原則。
這節課做的不足的方面有對學(xué)生個(gè)別指導較少,應到各小組當中去積極參與學(xué)生的活動(dòng);學(xué)生拼圖時(shí)間略微有些偏長(cháng),對后面的教學(xué)稍有影響,顯的前松后緊。
完全平方公式教學(xué)反思5
本節課的教學(xué)已基本達到了教學(xué)目的。本課的知識要點(diǎn)是經(jīng)歷探索完全平方公式的過(guò)程,了解公式的幾何背景,會(huì )應公式進(jìn)行簡(jiǎn)單的計算。
理解公式的推導過(guò)程,了解公式的幾何背景,會(huì )應用公式進(jìn)行簡(jiǎn)單的計算。并滲透建模、化歸、對稱(chēng)、數形結合、邏輯推理等思想方法。經(jīng)歷探索完全平方公式的過(guò)程,培養學(xué)生的發(fā)現能力、求簡(jiǎn)意識、應用意識、解決問(wèn)題的能力和創(chuàng )新能力。培養學(xué)生敢于挑戰,勇于探索的精神和善于觀(guān)察,大膽創(chuàng )新的思想品質(zhì)。作用在于讓其體會(huì )公式的發(fā)現和推導過(guò)程,理解公式的本質(zhì),并會(huì )運用公式進(jìn)行簡(jiǎn)單的計算,理解公式中的字母含義,及公式的應用。
針對初一學(xué)生的形象思維大于抽象思維,注意力不能持久等年齡特點(diǎn),及本節課實(shí)際,采用自主探索、啟發(fā)引導、合作交流展開(kāi)教學(xué)。引導學(xué)生主動(dòng)地進(jìn)行觀(guān)察、猜測、驗證和交流,讓不同層次的學(xué)生都能主動(dòng)參與并都能得到充分的發(fā)展。邊啟發(fā),邊探索,邊歸納,突出以學(xué)生為主體的探索性學(xué)習的原則。
完全平方公式教學(xué)反思6
小班化教學(xué)的理論已經(jīng)學(xué)習交流了很長(cháng)一段時(shí)間,大家都在自己的工作實(shí)踐中進(jìn)行嘗試,也取得了一些效果。通過(guò)本次上公開(kāi)課,對小班化教學(xué)又有了一點(diǎn)新的認識,反思如下。
從思想上注重學(xué)生的主動(dòng)參與。本節課我講的內容是完全平方公式,在課堂上完成完全平方公式的推導應用,完全平方公式的面積表示。如果單純從教學(xué)內容上看,用傳統的授課方式,很容易讓學(xué)生記住公式會(huì )用公式。但是,如果注重學(xué)生的參與的話(huà),在公式推導尤其是面積的表達上,放給學(xué)生自己,花費的時(shí)間很長(cháng)。這樣做雖然看起來(lái)教學(xué)效率偏低,但實(shí)際上在整個(gè)過(guò)程中,學(xué)生是全身心的投入進(jìn)去了,自己是學(xué)習的主體,符合小班化教學(xué)的思想。本節課的主動(dòng)參與還體現在公式的運用上,讓學(xué)生出錯,讓學(xué)生嘗試,讓學(xué)生從錯誤中反思,從而學(xué)會(huì )正確的應用。這是本節課里,比較符合小班化理念的做法。
本節課里自認為不是很理想的一些做法。比如教態(tài)比較嚴肅,有時(shí)顯得比較急躁。還有,學(xué)生的學(xué)習效果不是特別理想,學(xué)習的效率有待于進(jìn)一步提高。
完全平方公式教學(xué)反思7
完全平方和(差)公式是某些特殊形式的多項式相乘,只有掌握完全平方和(差)公式的一些本質(zhì)地結構特點(diǎn),才能正確地讓公式更好地幫助我們進(jìn)行簡(jiǎn)單計算。
要學(xué)好這部分,首先要注意掌握:
1、公式本身:(a+b)2=a2+2ab+b2
文字敘述:兩數和(或差)的平方,等于它們的平方和,加(或減)它們的積2倍。
2、公式的結構特點(diǎn):等號左邊是一個(gè)二項式的平方,等號右邊是一個(gè)二次三項式,其中有兩項是公式左邊二項式中每一項的平方,另一項是左邊二項式中那兩項乘積的2倍;虻忍栍疫呌涀鳎菏灼椒,尾平方,2倍之積中間放。
3、公式中字母的廣泛意義:既可以代表任意的數(正數、負數),又可以代表任意代數式。注意代表代數式時(shí),要有“整體思想”的觀(guān)念。
其次要注意易錯點(diǎn):
1、易錯寫(xiě):(a+b)2=a2+b2
許多學(xué)生往往認為(a+b)2=a2+b2,甚至認為(a+b)3=a3+b3,(a+b)4=a4+b4,等等。為了說(shuō)明這個(gè)問(wèn)題,我首先利用分地的故事引入,第一個(gè)農夫分得a2+b2,第二個(gè)分得(a+b)2,然后讓同學(xué)們對比2個(gè)代數式,通過(guò)各種方法說(shuō)明這兩者是不同的,比如計算法,代數字法,幾何作圖法(聯(lián)系公式的幾何意義),因而加深理解完全平方公式,并借此進(jìn)行強化訓練。雖然還有極個(gè)別學(xué)生出現2項的情況,但絕大部分明白了2倍之積中間放的意義。
2、兩個(gè)公式中的符號易混:課堂上進(jìn)行了教學(xué)的改進(jìn),把2個(gè)公式(a+b)2與(a-b)2并作一個(gè)公式來(lái)處理。為了避免符號上出現混亂,把2個(gè)公式的符號特點(diǎn)進(jìn)行觀(guān)察,得出同號得正,異號得負的結論。由此應對兩項式的平方的符號問(wèn)題,也省去了一些變號的煩惱。
3、兩公式靈活運用
在一些實(shí)際問(wèn)題中,有些題目不能直接運用公式,需要一步轉化才可以。如計算:
。1)(y-x)(x-y)(2)(x+y)(-x-y)
完全平方公式教學(xué)反思8
本節課屬于人教版八年級數學(xué)上冊第十五章《整式乘除與因式分解》第二節中的內容,前一節已學(xué)習平方差公式,這一課主要研究完全平方公式的特征及應用。教學(xué)關(guān)鍵是引導學(xué)生正確理解完全平方公式的推導過(guò)程,幾何背景,并能準確應用完全平方公式解決相關(guān)問(wèn)題。教學(xué)后我進(jìn)行反思如下:本課的知識要點(diǎn)是經(jīng)歷探索完全平方公式的過(guò)程,了解公式的幾何背景,會(huì )應公式進(jìn)行簡(jiǎn)單的計算,教學(xué)已基本達到了預期目標,能突出重點(diǎn),兼顧難點(diǎn)。本節課上學(xué)生體會(huì )了數形結合及轉化的數學(xué)思想,并知道猜想的結論必須要加以驗證;授課思維流暢,知識發(fā)生發(fā)展過(guò)渡自然,學(xué)生容易得到一些結論但在老師的引導下又使問(wèn)題的探討得以不斷深入,學(xué)生思考積極、氣氛活躍,教學(xué)效果較好。采用以小組自主探究的學(xué)習方式,同時(shí)各小組展開(kāi)激烈的比賽。整節課都在緊張而愉快的氣氛中進(jìn)行。學(xué)生非;钴S。人人都能積極參與。先從代數式的幾何意義出發(fā),激發(fā)學(xué)生的圖形觀(guān),利用拼圖的方法,使學(xué)生在動(dòng)手的過(guò)程中發(fā)現規律,并通過(guò)小組合作,探究歸納公式,然后強調數值的計算,使學(xué)生掌握公式的計算技巧。從而突出以學(xué)生為主體的探索性學(xué)習原則。讓學(xué)生自編符合完全平方公式和平方差公式結構的計算題,從而有效地將兩類(lèi)公式區分開(kāi),深刻認識公式的結構特征,并大大激發(fā)了學(xué)生的學(xué)習積極性。
同時(shí)課后感覺(jué)應該引導學(xué)生用文字概括公式的內容,從而培養學(xué)生抽象的數學(xué)思維能力和語(yǔ)言表達能力。對需要幫助的學(xué)生進(jìn)行針對性的個(gè)別指導較少。對于學(xué)生計算中存在的問(wèn)題應讓學(xué)生自己糾錯,教師不應全權代勞。如利用兩數和的公式計算(a+b)2環(huán)節,兩位學(xué)生分別講述自己的想法之后,教師應該讓全體學(xué)生根據其方法進(jìn)行計算,自主驗證,即使有些學(xué)生寫(xiě)不出來(lái),也會(huì )因為經(jīng)過(guò)思考而印象深刻,如果為了節省時(shí)間教師自己代勞,那樣就不能夠充分體現學(xué)生的主體作用,而且效果也較前者差些。
在今后的教學(xué)中應注意從以下幾個(gè)方面改進(jìn):1、在教學(xué)中要講法則、公式的應用,也要講公式的推導,使學(xué)生在理解公式,法則道理的基礎上進(jìn)行記憶,比如:我們要借助面積圖形對完全平方公式做直觀(guān)說(shuō)明。2.必須強調學(xué)生時(shí)刻把握公式的特征及用途。3.講聯(lián)系、講對比、講特征,要善于排除新舊知識間互相干擾的作用,規范板書(shū)。每節課的板書(shū)盡量堅持做到三保留:重要知識點(diǎn)保留,典型例題保留,學(xué)生易錯點(diǎn)保留。
完全平方公式教學(xué)反思9
學(xué)習了乘法公式中的完全平方,一個(gè)是兩數和的平方,另一個(gè)是兩數差的平方,兩者僅一個(gè)“符號”不同。相乘的結果是兩數的平方和,加上(或減去)兩數的積的2倍,兩者也僅差一個(gè)“符號”不同,運用完全平方公式計算時(shí),要注意:
。1)切勿把此公式與平方差公式混淆,而隨意寫(xiě)。
。2)切勿把“乘積項”2ab中的2丟掉。
。3)計算時(shí),要先觀(guān)察題目是否符合公式的條件。若不符合,應先變形為符合公式的條件的形式,再利用公式進(jìn)行計算;若不能變?yōu)榉蠗l件的形式,則應運用乘法法則進(jìn)行計算。
今后在教學(xué)中,要注意以下幾點(diǎn):
1、讓學(xué)生自編幾道符合平方差公式結構的計算題,目的是辨認題目的結構特征。
2、引入完全平方公式,讓學(xué)生用文字概括公式的內容,培養抽象的數字思維能力。
完全平方公式教學(xué)反思10
做得較好的方面:
1、本課的知識要點(diǎn)是經(jīng)歷探索完全平方公式的過(guò)程,了解公式的幾何背景,會(huì )應公式進(jìn)行簡(jiǎn)單的計算,教學(xué)已基本達到了預期目標,能突出重點(diǎn),兼顧難點(diǎn)。
2、本節課上學(xué)生體會(huì )了數形結合及轉化的數學(xué)思想,并知道猜想的結論必須要加以驗證;授課思維流暢,知識發(fā)生發(fā)展過(guò)渡自然,學(xué)生容易得到一些結論但在老師的引導下又使問(wèn)題的探討得以不斷深入,學(xué)生思考積極、氣氛活躍,教學(xué)效果較好。
做得不足的方面:
1、應該引導學(xué)生用文字概括公式的內容,從而培養學(xué)生抽象的數學(xué)思維能力和語(yǔ)言表達能力。
2、對需要幫助的學(xué)生進(jìn)行針對性的個(gè)別指導較少。
3、對于學(xué)生計算中存在的問(wèn)題應讓學(xué)生自己糾錯,教師不應全權代勞。如利用兩數和的公式計算(a+b)2環(huán)節,兩位學(xué)生分別講述自己的想法之后,教師應該讓全體學(xué)生根據其方法進(jìn)行計算,自主驗證,即使有些學(xué)生寫(xiě)不出來(lái),也會(huì )因為經(jīng)過(guò)思考而印象深刻,如果為了節省時(shí)間教師自己代勞,那樣就不能夠充分體現學(xué)生的主體作用,而且效果也較前者差些。
完全平方公式教學(xué)反思11
在進(jìn)入三中這個(gè)大家庭里,我感受到了這個(gè)大家庭的愛(ài),有來(lái)自領(lǐng)導,師傅,辦公室同事的指導,深感欣慰。由于第一次教授初中數學(xué),對于備學(xué)生和備教材缺乏全面理解,本節課的教學(xué)沒(méi)有很好的完成教學(xué)目的標,本課的知識要點(diǎn)是經(jīng)歷探索完全平方公式的過(guò)程,了解公式的幾何背景,會(huì )應用公式進(jìn)行簡(jiǎn)單的計算。理解公式的推導過(guò)程,了解公式的幾何背景,會(huì )應用公式進(jìn)行簡(jiǎn)單的計算。探索完全平方公式的過(guò)程,培養學(xué)生的發(fā)現能力、求簡(jiǎn)意識、應用意識、解決問(wèn)題的能力和創(chuàng )新能力。培養學(xué)生敢于挑戰,勇于探索的精神和善于觀(guān)察,大膽創(chuàng )新的思想品質(zhì)。
通過(guò)本課,讓學(xué)生體會(huì )公式的發(fā)現和推導過(guò)程,理解公式的本質(zhì),并會(huì )運用公式進(jìn)行簡(jiǎn)單的計算,理解公式中的字母含義,及公式的應用。
通過(guò)本節課的教學(xué)得到如下收獲:
。1)這節課倡導了以學(xué)生為主,教師為輔的'思想,留足了一定的時(shí)間讓學(xué)生去發(fā)現探索、以及做練習。
。2)采用了多媒體輔助教學(xué),以較清晰的手段呈現了學(xué)生整個(gè)學(xué)習過(guò)程,讓課堂更加直觀(guān)明了,同時(shí)客容量也增大了。
。3)讓學(xué)生體會(huì )了數形結合及轉化的數學(xué)思想,并知道猜想的結論必須要加以驗證。
本節課采用了以小組自主探究的學(xué)習方式,整節課都在緊張而愉快的氣氛中進(jìn)行,學(xué)生活躍,能積極參與。教學(xué)中,比較關(guān)注學(xué)生的情感態(tài)度,對那些積極動(dòng)腦,熱情參與的同學(xué),都給予了鼓勵和表?yè)P,促使學(xué)生的情感和興趣始終保持最佳狀態(tài),進(jìn)而提高課堂教學(xué)的有效性。
完全平方公式教學(xué)反思12
十二周周四上完新教師見(jiàn)面課《乘法公式——完全平方公式》,這次見(jiàn)面課從準備到實(shí)施的過(guò)程中,在教學(xué)方面學(xué)到了很多很多。首先非常感謝科組的各位老師,試講后科組的老師們對我的設計指出不當的地方,提出了很多建議,而這些是我從來(lái)沒(méi)有接觸過(guò)和考慮過(guò)的教學(xué)有效性。
上完課后心情很沉重,總感覺(jué)各個(gè)環(huán)節都不對勁。本節課的教學(xué)目標是會(huì )推導完全平方公式,并能運用公式進(jìn)行簡(jiǎn)單的運算。課后學(xué)生學(xué)習目標未完全達成,對運用公式進(jìn)行簡(jiǎn)單運算存在一定的困難。通過(guò)認真反思,認識到自己在教學(xué)上存在以下問(wèn)題:
1.引入不當。學(xué)生剛接觸完全平方公式,計算時(shí)容易漏掉公式等號右邊三項式的中間項,已經(jīng)很難一下子接受新知,而本節教學(xué)中又將完全平方和與完全平方差公式放到一起引入,增加了學(xué)生學(xué)習負擔,從而使得學(xué)生在練習時(shí)對公式各項符號正負難以確定。
2.本節課缺少自主探索合作交流。特別是在引入的時(shí)候,公式等號右邊三項式應該放多點(diǎn)時(shí)間給學(xué)生觀(guān)察,讓學(xué)生用文字來(lái)概括公式的內容,描述完全平方公式的結構特征。而本節教學(xué)基本上采用灌輸式教學(xué)模式,從引入到新知基本都是教師帶著(zhù)學(xué)生走,學(xué)生缺少探索機會(huì )。
3.高估學(xué)生的接受能力,沒(méi)有正確分析學(xué)情。這是自己開(kāi)學(xué)至今一直沒(méi)有做好的環(huán)節!學(xué)生已經(jīng)會(huì )的知識花大篇幅講,而對學(xué)生來(lái)說(shuō)較陌生的知識,又一言帶過(guò)或講解速度過(guò)快。
4.板書(shū)不夠規范。例題與引入的板書(shū)接在一起,看起來(lái)雜亂無(wú)章。
5.缺乏教學(xué)機智。課堂上,坐在后面的三個(gè)平時(shí)很調皮的學(xué)生舉手示意我過(guò)去,跟我說(shuō)老師我一點(diǎn)都不會(huì ),一點(diǎn)都聽(tīng)不明白。而自己只是很匆忙地讓他們對照公式結構,課后再來(lái)問(wèn)我講知識點(diǎn)。這樣的處理方式只會(huì )讓這些調皮的學(xué)生覺(jué)得不受老師關(guān)注,從而更加不愛(ài)學(xué)習。到現在還是沒(méi)想好這種情況的處理方式!
6.課堂不夠穩。巡查學(xué)生做練習時(shí),發(fā)現兩三個(gè)學(xué)生出現同樣的錯誤就匆匆忙忙講同類(lèi)型例題。但對于本班學(xué)生,練習中斷后講題,事實(shí)上他們都還沒(méi)進(jìn)入狀態(tài),導致出現講完類(lèi)型題后學(xué)生還是不知道該題型的做法。
7.學(xué)卷沒(méi)能根據學(xué)生的學(xué)情設計,難度偏大,容量偏多,練習也未能體現坡度性。
對于自己的不足,在以后的教學(xué)中要努力改正。具體做到:
完全平方公式教學(xué)反思13
1. 本節課學(xué)生的探究活動(dòng)比較多,教師既要全局把握,又要順其自然,千萬(wàn)不可拔苗助長(cháng),為了后面多做幾道練習而人為的主觀(guān)裁斷時(shí)間安排,其實(shí)公式的探究活動(dòng)本身既是對學(xué)生能力的培養,又是對公式的識記過(guò)程,而且還可以提高他們的應用公式的本領(lǐng).因此,不但不可以省,而且還要充分挖掘,以使不同程度的學(xué)生都有事情做且樂(lè )此不疲,更加充分的參與其中.對于這一點(diǎn),教師一定要轉變觀(guān)念.
2. 在完全平方公式的探求過(guò)程中,學(xué)生表現出觀(guān)察角度的差異:有些學(xué)生只是側重觀(guān)察某個(gè)單獨的式子,把它孤立地看,而不知道將幾個(gè)式子聯(lián)系地看;有些學(xué)生則既觀(guān)察入微,又統攬全局,表現出了較強的觀(guān)察力.教師要善于抓住這個(gè)契機,適當對學(xué)生進(jìn)行學(xué)法指導,培養他們“既見(jiàn)樹(shù)木,又見(jiàn)森林”的優(yōu)良觀(guān)察品質(zhì).
3. 對于公式使用的條件既要把握好“度”,又要把握好“方向”.對于公式中的字母取值范圍,不必過(guò)分強調(實(shí)際上,這個(gè)范圍限定的太小了);而對于公式的特點(diǎn),則應當左右兼顧,特別是公式的左邊,它是正確應用公式的前提,卻往往不被重視,結果造成幾個(gè)類(lèi)似公式的混淆,給正確解題設置了障礙.
4. 教無(wú)定法,教師應根據本班的實(shí)際情況靈活安排教學(xué)步驟,切實(shí)把關(guān)注學(xué)生的發(fā)展放在首位來(lái)考慮,并依此制定合理而科學(xué)的教學(xué)計劃.如,對于較好的班級,則可以?xún)?yōu)先發(fā)展,采取居高臨下的教學(xué)思路,先整體把握再對比擊破,或是將其納入整體結構系統,采取類(lèi)比的學(xué)習方式;而對于基礎較薄弱的班級,則應以提高學(xué)習興趣、教會(huì )學(xué)習、培養成功體驗為主,千萬(wàn)不可拔苗助長(cháng),以防物極必反.
完全平方公式教學(xué)反思14
這一課主要研究完全平方公式的特征及應用。教學(xué)關(guān)鍵是引導學(xué)生正確理解完全平方公式的推導過(guò)程,幾何背景,并能準確應用完全平方公式解決相關(guān)問(wèn)題。
這節課我做得較好的方面:
1、本課的知識要點(diǎn)是經(jīng)歷探索完全平方公式的過(guò)程,了解公式的幾何背景,會(huì )應公式進(jìn)行簡(jiǎn)單的計算,教學(xué)已基本達到了預期目標,能突出重點(diǎn),兼顧難點(diǎn)。
2、本節課上學(xué)生體會(huì )了數形結合及轉化的數學(xué)思想,并知道猜想的結論必須要加以驗證;授課思維流暢,知識發(fā)生發(fā)展過(guò)渡自然,學(xué)生容易得到一些結論但在老師的引導下又使問(wèn)題的探討得以不斷深入,學(xué)生思考積極、氣氛活躍,教學(xué)效果較好。
3、采用以小組自主探究的學(xué)習方式,同時(shí)各小組展開(kāi)激烈的比賽。整節課都在緊張而愉快的氣氛中進(jìn)行。學(xué)生非;钴S。人人都能積極參與。教學(xué)中,我比較關(guān)注學(xué)生的情感態(tài)度,對那些積極動(dòng)腦,熱情參與的同學(xué),都給予了鼓勵和表?yè)P。促使學(xué)生的情感和興趣始終保持最佳狀態(tài),進(jìn)而提高課堂教學(xué)的有效性。
4、先從代數式的幾何意義出發(fā),激發(fā)學(xué)生的圖形觀(guān),利用拼圖的方法,()使學(xué)生在動(dòng)手的過(guò)程中發(fā)現規律,并通過(guò)小組合作,探究歸納公式,然后強調數值的計算,使學(xué)生掌握公式的計算技巧。從而突出以學(xué)生為主體的探索性學(xué)習原則。
5、讓學(xué)生自編符合完全平方公式和平方差公式結構的計算題,從而有效地將兩類(lèi)公式區分開(kāi),深刻認識公式的結構特征,并大大激發(fā)了學(xué)生的學(xué)習積極性。
這節課我做得做得不足的方面:
1、應該引導學(xué)生用文字概括公式的內容,從而培養學(xué)生抽象的數學(xué)思維能力和語(yǔ)言表達能力。
2、對需要幫助的學(xué)生進(jìn)行針對性的個(gè)別指導較少。
3、對于學(xué)生計算中存在的問(wèn)題應讓學(xué)生自己糾錯,教師不應全權代勞。如利用兩數和的公式計算(a+b)2環(huán)節,兩位學(xué)生分別講述自己的想法之后,教師應該讓全體學(xué)生根據其方法進(jìn)行計算,自主驗證,即使有些學(xué)生寫(xiě)不出來(lái),也會(huì )因為經(jīng)過(guò)思考而印象深刻,如果為了節省時(shí)間教師自己代勞,那樣就不能夠充分體現學(xué)生的主體作用,而且效果也較前者差些。
再教設計:
1、在教學(xué)中要講法則、公式的應用,也要講公式的推導,使學(xué)生在理解公式,法則道理的基礎上進(jìn)行記憶,比如:我們要借助面積圖形對完全平方公式做直觀(guān)說(shuō)明。
2、講聯(lián)系、講對比、講特征。學(xué)生在運用公式時(shí)出現的(a+b)2=a2+b2的錯誤,其原因是把完全平方公式和舊知識(ab)2=a2b2及分配律弄混淆,要善于排除新舊知識間互相干擾的作用。
3、規范板書(shū)。每節課的板書(shū)盡量堅持做到三保留:重要知識點(diǎn)保留,典型例題保留,學(xué)生易錯點(diǎn)保留。
完全平方公式教學(xué)反思15
完全平方和(差)公式是某些特殊形式的多項式相乘,只有掌握完全平方和(差)公式的一些本質(zhì)地結構特點(diǎn),才能正確地讓公式更好地幫助我們進(jìn)行簡(jiǎn)單計算。
要學(xué)好這部分,首先要注意掌握:
一、公式本身:(a+b)2=a2+2ab+b2
文字敘述:兩數和(或差)的平方,等于它們的平方和,加(或減)它們的積2倍。
二、公式的結構特點(diǎn):等號左邊是一個(gè)二項式的平方,等號右邊是一個(gè)二次三項式,其中有兩項是公式左邊二項式中每一項的平方,另一項是左邊二項式中那兩項乘積的2倍;虻忍栍疫呌涀鳎菏灼椒,尾平方,2倍之積中間放。
三、公式中字母的廣泛意義:既可以代表任意的數(正數、負數),又可以代表任意代數式。注意代表代數式時(shí),要有“整體思想”的觀(guān)念。
其次要注意易錯點(diǎn):
一、易錯寫(xiě):(a+b)2=a2+b2
許多學(xué)生往往認為(a+b)2=a2+b2,甚至認為(a+b)3=a3+b3,(a+b)4=a4+b4,等等。為了說(shuō)明這個(gè)問(wèn)題,我首先利用分地的故事引入,第一個(gè)農夫分得a2+b2,第二個(gè)分得(a+b)2,然后讓同學(xué)們對比2個(gè)代數式,通過(guò)各種方法說(shuō)明這兩者是不同的,比如計算法,代數字法,幾何作圖法(聯(lián)系公式的幾何意義),因而加深理解完全平方公式,并借此進(jìn)行強化訓練。雖然還有極個(gè)別學(xué)生出現2項的情況,但絕大部分明白了2倍之積中間放的意義。
二、兩個(gè)公式中的符號易混:課堂上進(jìn)行了教學(xué)的改進(jìn),把2個(gè)公式(a+b)2與(a—b)2并作一個(gè)公式來(lái)處理。為了避免符號上出現混亂,把2個(gè)公式的符號特點(diǎn)進(jìn)行觀(guān)察,得出同號得正,異號得負的結論。由此應對兩項式的平方的符號問(wèn)題,也省去了一些變號的煩惱。
三、兩公式靈活運用
在一些實(shí)際問(wèn)題中,有些題目不能直接運用公式,需要一步轉化才可以。如計算:
。1)(y—x)(x—y)(2)(x+y)(—x—y)
【完全平方公式教學(xué)反思】相關(guān)文章:
完全平方公式教學(xué)反思07-04
完全平方公式教學(xué)反思10-22
完全平方公式教學(xué)反思10-22
《完全平方公式》教學(xué)反思12-13
《完全平方公式》教學(xué)反思09-02
完全平方公式教學(xué)反思09-03
《完全平方公式》教學(xué)反思范文07-04