- 相關(guān)推薦
初二數學(xué)全套知識點(diǎn)總結
在現實(shí)學(xué)習生活中,不管我們學(xué)什么,都需要掌握一些知識點(diǎn),知識點(diǎn)也可以通俗的理解為重要的內容。哪些才是我們真正需要的知識點(diǎn)呢?以下是小編幫大家整理的初二數學(xué)全套知識點(diǎn)總結,僅供參考,大家一起來(lái)看看吧。
初二數學(xué)全套知識點(diǎn)總結1
一.定義
1.一般地,如果一個(gè)正數x的平方等于a,即x2=a,那么這個(gè)正數x叫做a的算術(shù)平方根.a叫做被開(kāi)方數。
2.一般地,如果一個(gè)數的平方等于a,那么這個(gè)數叫做a的平方根或二次方根,求一個(gè)數a的平方根的運算,叫做開(kāi)平方。
3.一般地,如果一個(gè)數的.立方等于a,那么這個(gè)數叫做a的立方根或三次方根,求一個(gè)數的立方根的運算,叫做開(kāi)立方。
4.任何一個(gè)有理數都可以寫(xiě)成有限小數或無(wú)限循環(huán)小數的形式.任何有限小數或無(wú)限循環(huán)小數也都是有理數。
5.無(wú)限不循環(huán)小數又叫無(wú)理數。
6.有理數和無(wú)理數統稱(chēng)實(shí)數。
7.數軸上的點(diǎn)與實(shí)數一一對應.平面直角坐標系中與有序實(shí)數對之間也是一一對應的。
二.重點(diǎn)
1.平方與開(kāi)平方互為逆運算。
2.正數的平方根有兩個(gè),它們互為相反數,其中正的平方根就是這個(gè)數的算術(shù)平方根。
3.當被開(kāi)方數的小數點(diǎn)向右每移動(dòng)兩位,它的算術(shù)平方根的小數點(diǎn)就向右移動(dòng)一位。
4.當被平方數小數點(diǎn)每向右移動(dòng)三位,它的立方根小數點(diǎn)向右移動(dòng)一位。
5.數a的相反數是-a[a為任意實(shí)數],一個(gè)正實(shí)數的絕對值是它本身,一個(gè)負實(shí)數的絕對值是它的相反數;0的絕對值是0。
三.注意
1.被開(kāi)方數一定是非負數。
2.0,1的算術(shù)平方根是它本身;0的平方根是0,負數沒(méi)有平方根;正數的立方根是正數,負數的立方根是負數,0的立方根是0。
3.帶根號的無(wú)理數的整數倍或幾分之幾仍是無(wú)理數;帶根號的數若開(kāi)之后是有理數則是有理數;任何一個(gè)有理數都能寫(xiě)成分數的形式。
初二數學(xué)全套知識點(diǎn)總結2
一、算術(shù)平方根的概念
正數a有兩個(gè)平方根(表示為?根,表示為a。0的平方根也叫做0的算術(shù)平方根,因此0的算術(shù)平方根是0,即0!笔撬阈g(shù)平方根的符號,a就表示a的`算術(shù)平方根。a的意義有兩點(diǎn):a,我們把其中正的平方根,叫做a的算術(shù)平方
(1)被開(kāi)方數a表示非負數,即a≥0;
(2)a也表示非負數,即a≥0。也就是說(shuō),非負數的“算術(shù)”平方根是非負數。負數不存在算術(shù)平方根,即a<0時(shí),a無(wú)意義。
如:=3,8是64的算術(shù)平方根,6無(wú)意義。9既表示對9進(jìn)行開(kāi)平方運算,也表示9的正的平方根。
二、平方根與算術(shù)平方根的區別在于
、俣x不同;
、趥(gè)數不同:一個(gè)正數有兩個(gè)平方根,而一個(gè)正數的算術(shù)平方根只有一個(gè);
、郾硎痉椒ú煌赫龜礱的平方根表示為?a,正數a的算術(shù)平方根表示為a;
、苋≈捣秶煌赫龜档乃阈g(shù)平方根一定是正數,正數的平方根是一正一負。
、0的平方根與算術(shù)平方根都是0。
初二數學(xué)全套知識點(diǎn)總結3
第一章 一次函數
1 函數的定義,函數的定義域、值域、表達式,函數的圖像
2 一次函數和正比例函數,包括他們的表達式、增減性、圖像
3 從函數的觀(guān)點(diǎn)看方程、方程組和不等式
第二章 數據的描述
1 了解幾種常見(jiàn)的統計圖表:條形圖、扇形圖、折線(xiàn)圖、復合條形圖、直方圖,了解各種圖表的特點(diǎn)
條形圖特點(diǎn):
。1)能夠顯示出每組中的具體數據;
。2)易于比較數據間的差別
扇形圖的特點(diǎn):
。1)用扇形的面積來(lái)表示部分在總體中所占的百分比;
。2)易于顯示每組數據相對與總數的大小
折線(xiàn)圖的特點(diǎn);
易于顯示數據的變化趨勢
直方圖的特點(diǎn):
。1)能夠顯示各組頻數分布的情況;
。2)易于顯示各組之間頻數的差別
2 會(huì )用各種統計圖表示出一些實(shí)際的問(wèn)題
第三章 全等三角形
1 全等三角形的性質(zhì):
全等三角形的對應邊、對應角相等
2 全等三角形的判定
邊邊邊、邊角邊、角邊角、角角邊、直角三角形的HL定理
3 角平分線(xiàn)的性質(zhì)
角平分線(xiàn)上的點(diǎn)到角的兩邊的距離相等;
到角的兩邊距離相等的點(diǎn)在角的.平分線(xiàn)上.
第四章 軸對稱(chēng)
1 軸對稱(chēng)圖形和關(guān)于直線(xiàn)對稱(chēng)的兩個(gè)圖形
2 軸對稱(chēng)的性質(zhì)
軸對稱(chēng)圖形的對稱(chēng)軸是任何一對對應點(diǎn)所連線(xiàn)段的垂直平分線(xiàn);
如果兩個(gè)圖形關(guān)于某條直線(xiàn)對稱(chēng),那么對稱(chēng)軸是任何一對對應點(diǎn)所連的線(xiàn)段的垂直平分線(xiàn);
線(xiàn)段垂直平分線(xiàn)上的點(diǎn)到線(xiàn)段兩個(gè)端點(diǎn)的距離相等;
到線(xiàn)段兩個(gè)端點(diǎn)距離相等的點(diǎn)在這條線(xiàn)段的垂直平分線(xiàn)上
3 用坐標表示軸對稱(chēng)
點(diǎn)(x,y)關(guān)于x軸對稱(chēng)的點(diǎn)的坐標是(x,-y),關(guān)于y軸對稱(chēng)的點(diǎn)的坐標是(-x,y),關(guān)于原點(diǎn)對稱(chēng)的點(diǎn)的坐標是(-x,-y).
4 等腰三角形
等腰三角形的兩個(gè)底角相等;(等邊對等角)
等腰三角形的頂角平分線(xiàn)、底邊上的中線(xiàn)、底邊上的高線(xiàn)互相重合;(三線(xiàn)合一)
一個(gè)三角形的兩個(gè)相等的角所對的邊也相等.(等角對等邊)
5 等邊三角形的性質(zhì)和判定
等邊三角形的三個(gè)內角都相等,都等于60度;
三個(gè)角都相等的三角形是等邊三角形;
有一個(gè)角是60度的等腰三角形是等邊三角形;
推論:
直角三角形中,如果有一個(gè)銳角是30度,那么他所對的直角邊等于斜邊的一半.
在三角形中,大角對大邊,大邊對大角.
第五章 整式
1 整式定義、同類(lèi)項及其合并
2 整式的加減
3 整式的乘法
。1)同底數冪的乘法:
。2)冪的乘方
。3)積的乘方
。4)整式的乘法
4 乘法公式
。1)平方差公式
。2)完全平方公式
5 整式的除法
。1)同底數冪的除法
。2)整式的除法
6 因式分解
。1)提共因式法
。2)公式法
。3)十字相乘法
初二數學(xué)全套知識點(diǎn)總結4
第一章 分式
1 分式及其基本性質(zhì)
分式的分子和分母同時(shí)乘以(或除以)一個(gè)不等于零的整式,分式的只不變
2 分式的運算
。1)分式的乘除
乘法法則:分式乘以分式,用分子的積作為積的分子,分母的積作為積的分母
除法法則:分式除以分式,把除式的分子、分母顛倒位置后,與被除式相乘.
(2) 分式的加減
加減法法則:同分母分式相加減,分母不變,把分子相加減;
異分母分式相加減,先通分,變?yōu)橥帜傅姆质,再加減
3 整數指數冪的加減乘除法
4 分式方程及其解法
第二章 反比例函數
1 反比例函數的表達式、圖像、性質(zhì)
圖像:雙曲線(xiàn)
表達式:y=k/x(k不為0)
性質(zhì):兩支的增減性相同;
2 反比例函數在實(shí)際問(wèn)題中的應用
第三章 勾股定理
1 勾股定理:直角三角形的兩個(gè)直角邊的'平方和等于斜邊的平方
2 勾股定理的逆定理:如果一個(gè)三角形中,有兩個(gè)邊的平方和等于第三條邊的平方,那么這個(gè)三角形是直角三角形.
第四章 四邊形
1 平行四邊形
性質(zhì):對邊相等;對角相等;對角線(xiàn)互相平分.
判定:兩組對邊分別相等的四邊形是平行四邊形;
兩組對角分別相等的四邊形是平行四邊形;
對角線(xiàn)互相平分的四邊形是平行四邊形;
一組對邊平行而且相等的四邊形是平行四邊形.
推論:三角形的中位線(xiàn)平行第三邊,并且等于第三邊的一半.
2 特殊的平行四邊形:矩形、菱形、正方形
。1) 矩形
性質(zhì):矩形的四個(gè)角都是直角;
矩形的對角線(xiàn)相等;
矩形具有平行四邊形的所有性質(zhì)
判定: 有一個(gè)角是直角的平行四邊形是矩形;
對角線(xiàn)相等的平行四邊形是矩形;
推論: 直角三角形斜邊的中線(xiàn)等于斜邊的一半.
。2) 菱形
性質(zhì):菱形的四條邊都相等;
菱形的對角線(xiàn)互相垂直,并且每一條對角線(xiàn)平分一組對角;
菱形具有平行四邊形的一切性質(zhì)
判定:有一組鄰邊相等的平行四邊形是菱形;
對角線(xiàn)互相垂直的平行四邊形是菱形;
四邊相等的四邊形是菱形.
。3) 正方形:既是一種特殊的矩形,又是一種特殊的菱形,所以它具有矩形和菱形的所有性質(zhì).
3 梯形:直角梯形和等腰梯形
等腰梯形:等腰梯形同一底邊上的兩個(gè)角相等;
等腰梯形的兩條對角線(xiàn)相等;
同一個(gè)底上的兩個(gè)角相等的梯形是等腰梯形.
第五章 數據的分析
加權平均數、中位數、眾數、極差、方差
初二數學(xué)全套知識點(diǎn)總結5
實(shí)數
無(wú)理數:無(wú)限不循環(huán)小數叫無(wú)理數
平方根:
、偃绻粋(gè)正數X的平方等于A(yíng),那么這個(gè)正數X就叫做A的算術(shù)平方根。
、谌绻粋(gè)數X的平方等于A(yíng),那么這個(gè)數X就叫做A的平方根。
、垡粋(gè)正數有2個(gè)平方根/0的平方根為0/負數沒(méi)有平方根。
、芮笠粋(gè)數A的平方根運算,叫做開(kāi)平方,其中A叫做被開(kāi)方數。
立方根:
、偃绻粋(gè)數X的'立方等于A(yíng),那么這個(gè)數X就叫做A的立方根。
、谡龜档牧⒎礁钦龜、0的立方根是0、負數的立方根是負數。
、矍笠粋(gè)數A的立方根的運算叫開(kāi)立方,其中A叫做被開(kāi)方數。
實(shí)數:
、賹(shí)數分有理數和無(wú)理數。
、谠趯(shí)數范圍內,相反數,倒數,絕對值的意義和有理數范圍內的相反數,倒數,絕對值的意義完全一樣。
、勖恳粋(gè)實(shí)數都可以在數軸上的一個(gè)點(diǎn)來(lái)表示。
初二數學(xué)全套知識點(diǎn)總結6
平面直角坐標系:
在平面內畫(huà)兩條互相垂直、原點(diǎn)重合的數軸,組成平面直角坐標系。
水平的數軸稱(chēng)為x軸或橫軸,豎直的數軸稱(chēng)為y軸或縱軸,兩坐標軸的交點(diǎn)為平面直角坐標系的原點(diǎn)。
平面直角坐標系的要素:①在同一平面②兩條數軸③互相垂直④原點(diǎn)重合
三個(gè)規定:
、僬较虻囊幎M軸取向右為正方向,縱軸取向上為正方向
、趩挝婚L(cháng)度的'規定;一般情況,橫軸、縱軸單位長(cháng)度相同;實(shí)際有時(shí)也可不同,但同一數軸上必須相同。
、巯笙薜囊幎ǎ河疑蠟榈谝幌笙、左上為第二象限、左下為第三象限、右下為第四象限。
相信上面對平面直角坐標系知識的講解學(xué)習,同學(xué)們已經(jīng)能很好的掌握了吧,希望同學(xué)們都能考試成功。
平面直角坐標系的構成
在同一個(gè)平面上互相垂直且有公共原點(diǎn)的兩條數軸構成平面直角坐標系,簡(jiǎn)稱(chēng)為直角坐標系。通常,兩條數軸分別置于水平位置與鉛直位置,取向右與向上的方向分別為兩條數軸的正方向。水平的數軸叫做X軸或橫軸,鉛直的數軸叫做Y軸或縱軸,X軸或Y軸統稱(chēng)為坐標軸,它們的公共原點(diǎn)O稱(chēng)為直角坐標系的原點(diǎn)。
點(diǎn)的坐標的性質(zhì)
建立了平面直角坐標系后,對于坐標系平面內的任何一點(diǎn),我們可以確定它的坐標。反過(guò)來(lái),對于任何一個(gè)坐標,我們可以在坐標平面內確定它所表示的一個(gè)點(diǎn)。
對于平面內任意一點(diǎn)C,過(guò)點(diǎn)C分別向X軸、Y軸作垂線(xiàn),垂足在X軸、Y軸上的對應點(diǎn)a,b分別叫做點(diǎn)C的橫坐標、縱坐標,有序實(shí)數對(a,b)叫做點(diǎn)C的坐標。
一個(gè)點(diǎn)在不同的象限或坐標軸上,點(diǎn)的坐標不一樣。
初二數學(xué)全套知識點(diǎn)總結7
因式分解的一般步驟
如果多項式有公因式就先提公因式,沒(méi)有公因式的多項式就考慮運用公式法;若是四項或四項以上的多項式,
通常采用分組分解法,最后運用十字相乘法分解因式。因此,可以概括為:“一提”、“二套”、“三分組”、“四十字”。
注意:因式分解一定要分解到每一個(gè)因式都不能再分解為止,否則就是不完全的因式分解,若題目沒(méi)有明確指出在哪個(gè)范圍內因式分解,應該是指在有理數范圍內因式分解,因此分解因式的結果,必須是幾個(gè)整式的積的'形式。
因式分解定義:把一個(gè)多項式化成幾個(gè)整式的積的形式的變形叫把這個(gè)多項式因式分解。
因式分解要素:①結果必須是整式②結果必須是積的形式③結果是等式④
因式分解與整式乘法的關(guān)系:m(a+b+c)
公因式:一個(gè)多項式每項都含有的公共的因式,叫做這個(gè)多項式各項的公因式。
公因式確定方法:①系數是整數時(shí)取各項最大公約數。②相同字母取最低次冪③系數最大公約數與相同字母取最低次冪的積就是這個(gè)多項式各項的公因式。
提取公因式步驟:
、俅_定公因式。②確定商式③公因式與商式寫(xiě)成積的形式。
分解因式注意;
、俨粶蕘G字母
、诓粶蕘G常數項注意查項數
、垭p重括號化成單括號
、芙Y果按數單字母單項式多項式順序排列
、菹嗤蚴綄(xiě)成冪的形式
、奘醉椮撎柗爬ㄌ柾
、呃ㄌ杻韧(lèi)項合并。
初二數學(xué)全套知識點(diǎn)總結8
軸對稱(chēng)
1.如果一個(gè)平面圖形沿著(zhù)一條直線(xiàn)折疊后,直線(xiàn)兩旁的部分能夠互相重合,那么這個(gè)圖形叫做軸對稱(chēng)圖形,這條直線(xiàn)叫做對稱(chēng)軸。
2.性質(zhì)
(1)成軸對稱(chēng)的兩個(gè)圖形全等;
(2)如果兩個(gè)圖形成軸對稱(chēng),那么對稱(chēng)軸是對稱(chēng)點(diǎn)連線(xiàn)的垂直平分線(xiàn)。
一次函數
(一)一次函數是函數中的一種,一般形如y=kx+b(k,b是常數,k≠0),其中x是自變量,y是因變量。特別地,當b=0時(shí),y=kx+b(k為常數,k≠0),y叫做x的正比例函數。
(二)函數三要素
1.定義域:設x、y是兩個(gè)變量,變量x的變化范圍為D,如果對于每一個(gè)數x∈D,變量y遵照一定的法則總有確定的數值與之對應,則稱(chēng)y是x的函數,記作y=f(x),x∈D,x稱(chēng)為自變量,y稱(chēng)為因變量,數集D稱(chēng)為這個(gè)函數的定義域。
2.在函數經(jīng)典定義中,因變量改變而改變的取值范圍叫做這個(gè)函數的值域,在函數現代定義中是指定義域中所有元素在某個(gè)對應法則下對應的所有的象所組成的集合。如:f(x)=x,那么f(x)的取值范圍就是函數f(x)的值域。
3.對應法則:一般地說(shuō),在函數記號y=f(x)中,“f”即表示對應法則,等式y=f(x)表明,對于定義域中的任意的x值,在對應法則“f”的作用下,即可得到值域中唯一y值。
(三)一次函數的表示方法
1.解析式法:用含自變量x的式子表示函數的方法叫做解析式法。
2.列表法:把一系列x的值對應的函數值y列成一個(gè)表來(lái)表示的函數關(guān)系的方法叫做列表法。
3.圖像法:用圖象來(lái)表示函數關(guān)系的方法叫做圖象法。
(四)一次函數的性質(zhì)
1.y的變化值與對應的x的變化值成正比例,比值為k。即:y=kx+b(k≠0)(k不等于0,且k,b為常數)。
2.當x=0時(shí),b為函數在y軸上的交點(diǎn),坐標為(0,b)。當y=0時(shí),該函數圖象在x軸上的交點(diǎn)坐標為(-b/k,0)。
3.k為一次函數y=kx+b的斜率,k=tanθ(角θ為一次函數圖象與x軸正方向夾角,θ≠90°)。
4.當b=0時(shí)(即y=kx),一次函數圖象變?yōu)檎壤瘮,正比例函數是特殊?一次函數。
5.函數圖象性質(zhì):當k相同,且b不相等,圖像平行;當k不同,且b相等,圖象相交于Y軸;當k互為負倒數時(shí),兩直線(xiàn)垂直。
6.平移時(shí):上加下減在末尾,左加右減在中間。
直角三角形
1.勾股定理及其逆定理
定理:直角三角形的兩條直角邊的等于的平方。
逆定理:如果三角形兩邊的平方和等于第三邊的平方,那么這個(gè)三角形是直角三角形。
2.含30°的直角三角形的邊的性質(zhì)
定理:在直角三角形中,如果一個(gè)銳角等于30°,那么等于的一半。
3.直角三角形斜邊上的中線(xiàn)等于斜邊的一半。
要點(diǎn)詮釋?zhuān)孩俟垂啥ɡ淼哪娑ɡ碓谡Z(yǔ)言敘述的時(shí)候一定要注意,不能說(shuō)成“兩條邊的平方和等于斜邊的平方”,應該說(shuō)成“三角形兩邊的平方和等于第三邊的平方”。
、谥苯侨切蔚娜扰卸ǚ椒,HL還有SSS,SAS,ASA,AAS,一共有5種判定方法。
圖形的平移與旋轉
1.平移,是指在同一平面內,將一個(gè)圖形上的所有點(diǎn)都按照某個(gè)直線(xiàn)方向做相同距離的移動(dòng),這樣的圖形運動(dòng)叫做圖形的平移運動(dòng),簡(jiǎn)稱(chēng)平移。
2.平移性質(zhì)
(1)圖形平移前后的形狀和大小沒(méi)有變化,只是位置發(fā)生變化。
(2)圖形平移后,對應點(diǎn)連成的線(xiàn)段平行(或在同一直線(xiàn)上)且相等。
初二數學(xué)全套知識點(diǎn)總結9
一次函數
(1)正比例函數:一般地,形如y=kx(k是常數,k?0)的函數,叫做正比例函數,其中k叫做比例系數;
(2)正比例函數圖像特征:一些過(guò)原點(diǎn)的直線(xiàn);
(3)圖像性質(zhì):
、佼攌>0時(shí),函數y=kx的圖像經(jīng)過(guò)第一、三象限,從左向右上升,即隨著(zhù)x的增大y也增大;②當k<0時(shí),函數y=kx的圖像經(jīng)過(guò)第二、四象限,從左向右下降,即隨著(zhù)x的增大y反而減;
(4)求正比例函數的解析式:已知一個(gè)非原點(diǎn)即可;
(5)畫(huà)正比例函數圖像:經(jīng)過(guò)原點(diǎn)和點(diǎn)(1,k);(或另外一個(gè)非原點(diǎn))
(6)一次函數:一般地,形如y=kx+b(k、b是常數,k?0)的函數,叫做一次函數;
(7)正比例函數是一種特殊的一次函數;(因為當b=0時(shí),y=kx+b即為y=kx)
(8)一次函數圖像特征:一些直線(xiàn);
(9)性質(zhì):
、賧=kx與y=kx+b的傾斜程度一樣,y=kx+b可看成由y=kx平移|b|個(gè)單位長(cháng)度而得;(當b>0,向上平移;當b<0,向下平移)
、诋攌>0時(shí),直線(xiàn)y=kx+b由左至右上升,即y隨著(zhù)x的增大而增大;
、郛攌<0時(shí),直線(xiàn)y=kx+b由左至右下降,即y隨著(zhù)x的增大而減;
、墚攂>0時(shí),直線(xiàn)y=kx+b與y軸正半軸有交點(diǎn)為(0,b);
、莓攂<0時(shí),直線(xiàn)y=kx+b與y軸負半軸有交點(diǎn)為(0,b);
(10)求一次函數的解析式:即要求k與b的值;
(11)畫(huà)一次函數的圖像:已知兩點(diǎn);
用函數觀(guān)點(diǎn)看方程(組)與不等式
(1)解一元一次方程可以轉化為:當某個(gè)一次函數的值為0時(shí),求相應的.自變量的值;從圖像上看,這相當于已知直線(xiàn)y=kx+b,確定它與x軸交點(diǎn)的橫坐標的值;
(2)解一元一次不等式可以看作:當一次函數值大(小)于0時(shí),求自變量相應的取值范圍;
(3)每個(gè)二元一次方程都對應一個(gè)一元一次函數,于是也對應一條直線(xiàn);
(4)一般地,每個(gè)二元一次方程組都對應兩個(gè)一次函數,于是也對應兩條直線(xiàn)。從“數”的角度看,解方程組相當于考慮自變量為何值時(shí)兩個(gè)函數的值相等,以及這個(gè)函數值是何值;從“形”的角度看,解方程組相當于確定兩條直線(xiàn)交點(diǎn)的坐標;
初二數學(xué)全套知識點(diǎn)總結10
1、正方形的概念
有一組鄰邊相等并且有一個(gè)角是直角的平行四邊形叫做正方形。
2、正方形的性質(zhì)
(1)具有平行四邊形、矩形、菱形的一切性質(zhì);
(2)正方形的'四個(gè)角都是直角,四條邊都相等;
(3)正方形的兩條對角線(xiàn)相等,并且互相垂直平分,每一條對角線(xiàn)平分一組對角;
(4)正方形是軸對稱(chēng)圖形,有4條對稱(chēng)軸;
(5)正方形的一條對角線(xiàn)把正方形分成兩個(gè)全等的等腰直角三角形,兩條對角線(xiàn)把正方形分成四個(gè)全等的小等腰直角三角形;
(6)正方形的一條對角線(xiàn)上的一點(diǎn)到另一條對角線(xiàn)的兩端點(diǎn)的距離相等。
3、正方形的判定
(1)判定一個(gè)四邊形是正方形的主要依據是定義,途徑有兩種:
先證它是矩形,再證有一組鄰邊相等。
先證它是菱形,再證有一個(gè)角是直角。
(2)判定一個(gè)四邊形為正方形的一般順序如下:
先證明它是平行四邊形;
再證明它是菱形(或矩形);
最后證明它是矩形(或菱形)。
【初二數學(xué)全套知識點(diǎn)總結】相關(guān)文章:
初二數學(xué)知識點(diǎn)總結06-21
初二數學(xué)上冊知識點(diǎn)總結(經(jīng)典)10-21
初二數學(xué)知識點(diǎn)總結(精選15篇)06-08