必修一數學(xué)第二章知識點(diǎn)總結
總結是對某一階段的工作、學(xué)習或思想中的經(jīng)驗或情況進(jìn)行分析研究的書(shū)面材料,它能夠使頭腦更加清醒,目標更加明確,不妨坐下來(lái)好好寫(xiě)寫(xiě)總結吧?偨Y一般是怎么寫(xiě)的呢?以下是小編幫大家整理的必修一數學(xué)第二章知識點(diǎn)總結,僅供參考,歡迎大家閱讀。
必修一數學(xué)第二章知識點(diǎn)總結 篇1
函數簡(jiǎn)介
函數的定義通常分為傳統定義和近代定義,函數的兩個(gè)定義本質(zhì)是相同的,只是敘述概念的出發(fā)點(diǎn)不同,傳統定義是從運動(dòng)變化的觀(guān)點(diǎn)出發(fā),而近代定義是從集合、映射的觀(guān)點(diǎn)出發(fā)。
函數的近代定義是給定一個(gè)數集A,假設其中的元素為x,對A中的元素x施加對應法則f,記作f(x),得到另一數集B,假設B中的元素為y,則y與x之間的等量關(guān)系可以用y=f(x)表示。
函數概念含有三個(gè)要素:定義域A、值域B和對應法則f。其中核心是對應法則f,它是函數關(guān)系的本質(zhì)特征。
函數最早由中國清朝數學(xué)家李善蘭翻譯,出于其著(zhù)作《代數學(xué)》。之所以這么翻譯,他給出的原因是“凡此變數中函彼變數者,則此為彼之函數”,也即函數指一個(gè)量隨著(zhù)另一個(gè)量的變化而變化,或者說(shuō)一個(gè)量中包含另一個(gè)量。
一、一次函數定義與定義式:
自變量x和因變量y有如下關(guān)系:
y=kx+b
則此時(shí)稱(chēng)y是x的一次函數。
特別地,當b=0時(shí),y是x的正比例函數。
即:y=kx(k為常數,k≠0)
二、一次函數的性質(zhì):
1.y的變化值與對應的x的變化值成正比例,比值為k
即:y=kx+b(k為任意不為零的實(shí)數b取任何實(shí)數)
2.當x=0時(shí),b為函數在y軸上的截距。
三、一次函數的圖像及性質(zhì):
1.作法與圖形:通過(guò)如下3個(gè)步驟
(1)列表;
(2)描點(diǎn);
(3)連線(xiàn),可以作出一次函數的圖像——一條直線(xiàn)。因此,作一次函數的圖像只需知道2點(diǎn),并連成直線(xiàn)即可。(通常找函數圖像與x軸和y軸的交點(diǎn))
2.性質(zhì):(1)在一次函數上的任意一點(diǎn)P(x,y),都滿(mǎn)足等式:y=kx+b。(2)一次函數與y軸交點(diǎn)的坐標總是(0,b),與x軸總是交于(-b/k,0)正比例函數的圖像總是過(guò)原點(diǎn)。
3.k,b與函數圖像所在象限:
當k>0時(shí),直線(xiàn)必通過(guò)一、三象限,y隨x的增大而增大;
當k<0時(shí),直線(xiàn)必通過(guò)二、四象限,y隨x的增大而減小。
當b>0時(shí),直線(xiàn)必通過(guò)一、二象限;
當b=0時(shí),直線(xiàn)通過(guò)原點(diǎn)
當b<0時(shí),直線(xiàn)必通過(guò)三、四象限。
特別地,當b=O時(shí),直線(xiàn)通過(guò)原點(diǎn)O(0,0)表示的是正比例函數的圖像。
這時(shí),當k>0時(shí),直線(xiàn)只通過(guò)一、三象限;當k<0時(shí),直線(xiàn)只通過(guò)二、四象限。
四、確定一次函數的表達式:
已知點(diǎn)A(x1,y1);B(x2,y2),請確定過(guò)點(diǎn)A、B的一次函數的表達式。
(1)設一次函數的表達式(也叫解析式)為y=kx+b。
(2)因為在一次函數上的任意一點(diǎn)P(x,y),都滿(mǎn)足等式y=kx+b。所以可以列出2個(gè)方程:y1=kx1+b……①和y2=kx2+b……②
(3)解這個(gè)二元一次方程,得到k,b的值。
(4)最后得到一次函數的表達式。
五、一次函數在生活中的應用:
1.當時(shí)間t一定,距離s是速度v的一次函數。s=vt。
2.當水池抽水速度f(wàn)一定,水池中水量g是抽水時(shí)間t的一次函數。設水池中原有水量S。g=S-ft。
六、常用公式:
1.求函數圖像的k值:(y1-y2)/(x1-x2)
2.求與x軸平行線(xiàn)段的中點(diǎn):|x1-x2|/2
3.求與y軸平行線(xiàn)段的中點(diǎn):|y1-y2|/2
4.求任意線(xiàn)段的長(cháng):√(x1-x2)’2+(y1-y2)’2(注:根號下(x1-x2)與(y1-y2)的平方和)
數學(xué)集合與集合之間的關(guān)系知識點(diǎn)
某些指定的對象集在一起就成為一個(gè)集合集合符號,含有有限個(gè)元素叫有限集,含有無(wú)限個(gè)元素叫無(wú)限集,空集是不含任何元素的集,記做Φ?占侨魏渭系淖蛹,是任何非空集的真子集。任何集合是它本身的子集。子集,真子集都具有傳遞性。(說(shuō)明一下:如果集合A的所有元素同時(shí)都是集合B的元素,則A稱(chēng)作是B的子集,寫(xiě)作A B。若A是B的子集,且A不等于B,則A稱(chēng)作是B的真子集,一般寫(xiě)作A屬于B。中學(xué)教材課本里將符號下加了一個(gè)不等于符號,不要混淆,考試時(shí)還是要以課本為準。所有男人的集合是所有人的集合的真子集。)
高中數學(xué)的學(xué)習方法
多看輔導書(shū)
老師布置的作業(yè)我肯定都要做完,但我不會(huì )滿(mǎn)足于老師布置的作業(yè),我還要看一些輔導書(shū)籍,做一些輔導書(shū)籍上的作業(yè),直到我能理解定義、定理和公式的含義,一道題盡量用多種辦法去解題,做到舉一反三。我經(jīng)常買(mǎi)和課程有關(guān)的輔導書(shū)籍看,每一門(mén)課程我都有好幾本相關(guān)的輔導書(shū)籍。
定期整理歸納
每學(xué)完一章的內容,我都要進(jìn)行小結。把這章的內容歸納一下,把定義、定理、公式和這個(gè)定義、定理、公式有代表行的練習題寫(xiě)出來(lái),最后就是用幾句話(huà)把這一章的內容概括一下,目的是方便記憶。我寫(xiě)在一張紙上,放在口袋里,隨時(shí)會(huì )拿出這張紙來(lái)看一下。我一般不看完,只看前面幾個(gè)字,然后去想后面的內容,實(shí)在想不出來(lái)才再看一下的?荚嚽懊恳豢颇课叶际前褍热輾w納后,寫(xiě)在紙上放在口袋里,跑到?jīng)]人的大樹(shù)底下,一會(huì )看一下歸納的紙條,背誦內容和例題。
必修一數學(xué)第二章知識點(diǎn)總結 篇2
1、函數零點(diǎn)的定義
(1)對于函數)(xfy,我們把方程0)(xf的實(shí)數根叫做函數)(xfy)的零點(diǎn)。
(2)方程0)(xf有實(shí)根函數(yfx)的圖像與x軸有交點(diǎn)函數(yfx)有零點(diǎn)。因此判斷一個(gè)函數是否有零點(diǎn),有幾個(gè)零點(diǎn),就是判斷方程0)(xf是否有實(shí)數根,有幾個(gè)實(shí)數根。函數零點(diǎn)的求法:解方程0)(xf,所得實(shí)數根就是(fx)的零點(diǎn)(3)變號零點(diǎn)與不變號零點(diǎn)
、偃艉瘮(fx)在零點(diǎn)0x左右兩側的函數值異號,則稱(chēng)該零點(diǎn)為函數(fx)的變號零點(diǎn)。②若函數(fx)在零點(diǎn)0x左右兩側的函數值同號,則稱(chēng)該零點(diǎn)為函數(fx)的不變號零點(diǎn)。
、廴艉瘮(fx)在區間,ab上的圖像是一條連續的曲線(xiàn),則0
2、函數零點(diǎn)的判定
(1)零點(diǎn)存在性定理:如果函數)(xfy在區間],[ba上的圖象是連續不斷的曲線(xiàn),并且有(fa)(fb),那么,函數(xfy)在區間,ab內有零點(diǎn),即存在,(0bax,使得0)(0xf,這個(gè)0x也就是方程0)(xf的根。
(2)函數)(xfy零點(diǎn)個(gè)數(或方程0)(xf實(shí)數根的個(gè)數)確定方法
、俅鷶捣ǎ汉瘮)(xfy的零點(diǎn)0)(xf的根;②(幾何法)對于不能用求根公式的方程,可以將它與函數)(xfy的圖象聯(lián)系起來(lái),并利用函數的性質(zhì)找出零點(diǎn)。
(3)零點(diǎn)個(gè)數確定
0)(xfy有2個(gè)零點(diǎn)0)(xf有兩個(gè)不等實(shí)根;0)(xfy有1個(gè)零點(diǎn)0)(xf有兩個(gè)相等實(shí)根;0)(xfy無(wú)零點(diǎn)0)(xf無(wú)實(shí)根;對于二次函數在區間,ab上的零點(diǎn)個(gè)數,要結合圖像進(jìn)行確定.
3、二分法
(1)二分法的定義:對于在區間[,]ab上連續不斷且(fa)(fb)的函數(yfx),通過(guò)不斷地把函數(yfx)的零點(diǎn)所在的區間一分為二,使區間的兩個(gè)端點(diǎn)逐步逼近零點(diǎn),進(jìn)而得到零點(diǎn)的近似值的方法叫做二分法;
(2)用二分法求方程的近似解的步驟:
、俅_定區間[,]ab,驗證(fa)(fb)給定精確度e;
、谇髤^間(,)ab的中點(diǎn)c;③計算(fc);
(ⅰ)若(fc),則c就是函數的零點(diǎn);
(ⅱ)若(fa)(fc),則令bc(此時(shí)零點(diǎn)0(,)xac);(ⅲ)若(fc)(fb),則令ac(此時(shí)零點(diǎn)0(,)xcb);
、芘袛嗍欠襁_到精確度e,即ab,則得到零點(diǎn)近似值為a(或b);否則重復②至④步.
必修一數學(xué)第二章知識點(diǎn)總結 篇3
1、柱、錐、臺、球的結構特征
(1)棱柱:
定義:有兩個(gè)面互相平行,其余各面都是四邊形,且每相鄰兩個(gè)四邊形的公共邊都互相平行,由這些面所圍成的幾何體。
分類(lèi):以底面多邊形的邊數作為分類(lèi)的標準分為三棱柱、四棱柱、五棱柱等。
表示:用各頂點(diǎn)字母,如五棱柱或用對角線(xiàn)的端點(diǎn)字母,如五棱柱。
幾何特征:兩底面是對應邊平行的全等多邊形;側面、對角面都是平行四邊形;側棱平行且相等;平行于底面的截面是與底面全等的多邊形。
(2)棱錐
定義:有一個(gè)面是多邊形,其余各面都是有一個(gè)公共頂點(diǎn)的三角形,由這些面所圍成的幾何體。
分類(lèi):以底面多邊形的邊數作為分類(lèi)的標準分為三棱錐、四棱錐、五棱錐等
表示:用各頂點(diǎn)字母,如五棱錐
幾何特征:側面、對角面都是三角形;平行于底面的截面與底面相似,其相似比等于頂點(diǎn)到截面距離與高的比的平方。
(3)棱臺:
定義:用一個(gè)平行于棱錐底面的平面去截棱錐,截面和底面之間的部分。
分類(lèi):以底面多邊形的邊數作為分類(lèi)的標準分為三棱態(tài)、四棱臺、五棱臺等
表示:用各頂點(diǎn)字母,如五棱臺
幾何特征:①上下底面是相似的平行多邊形②側面是梯形③側棱交于原棱錐的頂點(diǎn)
(4)圓柱:
定義:以矩形的一邊所在的直線(xiàn)為軸旋轉,其余三邊旋轉所成的曲面所圍成的幾何體。
幾何特征:①底面是全等的圓;②母線(xiàn)與軸平行;③軸與底面圓的半徑垂直;④側面展開(kāi)圖是一個(gè)矩形。
(5)圓錐:
定義:以直角三角形的一條直角邊為旋轉軸,旋轉一周所成的曲面所圍成的幾何體。
幾何特征:①底面是一個(gè)圓;②母線(xiàn)交于圓錐的頂點(diǎn);③側面展開(kāi)圖是一個(gè)扇形。
(6)圓臺:
定義:用一個(gè)平行于圓錐底面的平面去截圓錐,截面和底面之間的部分
幾何特征:①上下底面是兩個(gè)圓;②側面母線(xiàn)交于原圓錐的頂點(diǎn);③側面展開(kāi)圖是一個(gè)弓形。
(7)球體:
定義:以半圓的直徑所在直線(xiàn)為旋轉軸,半圓面旋轉一周形成的幾何體
幾何特征:①球的截面是圓;②球面上任意一點(diǎn)到球心的距離等于半徑。
2、空間幾何體的三視圖
定義三視圖:正視圖(光線(xiàn)從幾何體的前面向后面正投影);側視圖(從左向右)、俯視圖(從上向下)
注:正視圖反映了物體上下、左右的位置關(guān)系,即反映了物體的高度和長(cháng)度;
俯視圖反映了物體左右、前后的位置關(guān)系,即反映了物體的長(cháng)度和寬度;
側視圖反映了物體上下、前后的位置關(guān)系,即反映了物體的高度和寬度。
3、空間幾何體的直觀(guān)圖——斜二測畫(huà)法
斜二測畫(huà)法特點(diǎn):
、僭瓉(lái)與x軸平行的線(xiàn)段仍然與x平行且長(cháng)度不變;
、谠瓉(lái)與y軸平行的線(xiàn)段仍然與y平行,長(cháng)度為原來(lái)的一半。
必修三數學(xué)學(xué)習方法
1、科學(xué)的預習方法
預習中發(fā)現的難點(diǎn),就是聽(tīng)課的重點(diǎn);對預習中遇到的沒(méi)有掌握好的有關(guān)的舊知識,可進(jìn)行補缺,以減聽(tīng)課過(guò)程中的困難;有助于提高思維能力,預習后把自己理解了的東西與老師的講解進(jìn)行比較、分析即可提高自己思維水平;預習后將課本的例題及老師要講授的習題提前完成,還可以培養自己的自學(xué)能力,與老師的方法進(jìn)行比較,可以發(fā)現更多的方法與技巧?傊,這樣會(huì )使你的聽(tīng)課更加有的放矢,你會(huì )知道哪些該重點(diǎn)聽(tīng),哪些該重點(diǎn)記。
2、科學(xué)的聽(tīng)課方式
聽(tīng)課的過(guò)程不是一個(gè)被動(dòng)參預的過(guò)程,要全身心地投入課堂學(xué)習,耳到、眼到、心到、口到、手到。還要想在老師前面,不斷思考:面對這個(gè)問(wèn)題我會(huì )怎么想?當老師講解時(shí),又要思考:老師為什么這樣想?這里用了什么思想方法?這樣做的目的是什么?這個(gè)題有沒(méi)有更好的方法?問(wèn)題多了,思路自然就開(kāi)闊了。
3、科學(xué)的記錄筆記
記問(wèn)題--將課堂上未聽(tīng)懂的問(wèn)題及時(shí)記下來(lái),便于課后請教同學(xué)或老師,把問(wèn)題弄懂弄通。
記疑點(diǎn)--對老師在課堂上講的內容有疑問(wèn)應及時(shí)記下,這類(lèi)疑點(diǎn),有可能是自己理解錯造成的,也有可能是老師講課疏忽大意造成的,記下來(lái)后,便于課后與老師商榷。
記方法--勤記老師講的解題技巧、思路及方法,這對于啟迪思維,開(kāi)闊視野,開(kāi)發(fā)智力,培養能力,并對提高解題水平大有益處。
必修三數學(xué)學(xué)習技巧
1.先看筆記后做作業(yè)。
有的同學(xué)感到,老師講過(guò)的,自己已經(jīng)聽(tīng)得明明白白了。但是為什么你這么做有那么多困難呢?原因是學(xué)生對教師所說(shuō)的理解沒(méi)有達到教師要求的水平。
因此,每天做作業(yè)之前,我們必須先看一下課本的相關(guān)內容和當天的課堂筆記。能否如此堅持,常常是好學(xué)生與差學(xué)生的最大區別。尤其是當練習不匹配時(shí),老師通常沒(méi)有剛剛講過(guò)的練習類(lèi)型,因此它們不能被比較和消化。如果你不重視這個(gè)實(shí)施,在很長(cháng)一段時(shí)間內,會(huì )造成很大的損失。
2.做題之后加強反思。
學(xué)生一定要明確,現在正做著(zhù)的題,一定不是考試的題目。但使用現在做主題的解決問(wèn)題的思路和方法。因此,我們應該反思我們所做的每一個(gè)問(wèn)題,并總結我們自己的收獲。
要總結出:這是一道什么內容的題,用的是什么方法。做到知識成片,問(wèn)題成串。日復一日,建立科學(xué)的網(wǎng)絡(luò )系統的內容和方法。俗話(huà)說(shuō):有錢(qián)難買(mǎi)回頭看。做完作業(yè),回頭細看,價(jià)值極大。這一回顧,是學(xué)習過(guò)程中一個(gè)非常重要的環(huán)節。
我們應該看看我們做得對不對;還有什么解決辦法;問(wèn)題在知識體系中的地位是什么;解決辦法的實(shí)質(zhì)是什么;問(wèn)題中的知識是否可以與我們所要求的交換,以及我們是否可以作出適當的補充或刪除。有了以上五個(gè)回頭看,解題能力才能與日俱增。投入的時(shí)間雖少,效果卻很大?煞Q(chēng)為事半功倍。
有人認為,要想學(xué)好數學(xué),只要多做題,功到自然成。數學(xué)要不要刷題?一般說(shuō)做的題太少,很多熟能生巧的問(wèn)題就會(huì )無(wú)從談起。因此,應該適當地多刷題。但是,只顧鉆入題海,堆積題目,在考試中一般也是難有作為的。要把提高當成自己的目標,要把自己的活動(dòng)合理地系統地組織起來(lái),要總結反思,進(jìn)行章節總結是非常重要的。
必修一數學(xué)第二章知識點(diǎn)總結 篇4
一、集合有關(guān)概念
1、集合的含義:某些指定的對象集在一起就成為一個(gè)集合,其中每一個(gè)對象叫元素。
2、集合的中元素的三個(gè)特性:
1.元素的確定性;
2.元素的互異性;
3.元素的無(wú)序性
說(shuō)明:
(1)對于一個(gè)給定的集合,集合中的元素是確定的,任何一個(gè)對象或者是或者不是這個(gè)給定的集合的'元素。
(2)任何一個(gè)給定的集合中,任何兩個(gè)元素都是不同的對象,相同的對象歸入一個(gè)集合時(shí),僅算一個(gè)元素。
(3)集合中的元素是平等的,沒(méi)有先后順序,因此判定兩個(gè)集合是否一樣,僅需比較它們的元素是否一樣,不需考查排列順序是否一樣。
(4)集合元素的三個(gè)特性使集合本身具有了確定性和整體性。
3、集合的表示:{…}如{我校的籃球隊員},{太平洋,大西洋,印度洋,北冰洋}
1.用拉丁字母表示集合:A={我校的籃球隊員},B={1,2,3,4,5}
2.集合的表示方法:列舉法與描述法。
注意。撼S脭导捌溆浄ǎ
非負整數集(即自然數集)記作:N
正整數集N_或N+整數集Z有理數集Q實(shí)數集R
關(guān)于“屬于”的概念
集合的元素通常用小寫(xiě)的拉丁字母表示,如:a是集合A的元素,就說(shuō)a屬于集合A記作a∈A,相反,a不屬于集合A記作a?A
列舉法:把集合中的元素一一列舉出來(lái),然后用一個(gè)大括號括上。
描述法:將集合中的元素的公共屬性描述出來(lái),寫(xiě)在大括號內表示集合的方法。用確定的條件表示某些對象是否屬于這個(gè)集合的方法。
、僬Z(yǔ)言描述法:例:{不是直角三角形的三角形}
、跀祵W(xué)式子描述法:例:不等式_-3>2的'解集是{_?R_-3>2}或{__-3>2}
4、集合的分類(lèi):
1.有限集含有有限個(gè)元素的集合
2.無(wú)限集含有無(wú)限個(gè)元素的集合
3.空集不含任何元素的集合例:{__2=-5}
二、集合間的基本關(guān)系
1.“包含”關(guān)系—子集
注意:有兩種可能(1)A是B的一部分,;(2)A與B是同一集合。
反之:集合A不包含于集合B,或集合B不包含集合A,記作AB或BA
2.“相等”關(guān)系(5≥5,且5≤5,則5=5)
實(shí)例:設A={__2-1=0}B={-1,1}“元素相同”
結論:對于兩個(gè)集合A與B,如果集合A的任何一個(gè)元素都是集合B的元素,同時(shí),集合B的任何一個(gè)元素都是集合A的元素,我們就說(shuō)集合A等于集合B,即:A=B
、偃魏我粋(gè)集合是它本身的子集。AíA
、谡孀蛹:如果AíB,且A1B那就說(shuō)集合A是集合B的真子集,記作AB(或BA)
、廴绻鸄íB,BíC,那么AíC
、苋绻鸄íB同時(shí)BíA那么A=B
3.不含任何元素的集合叫做空集,記為Φ
規定:空集是任何集合的子集,空集是任何非空集合的真子集
反比例函數
形如y=k/_(k為常數且k≠0)的函數,叫做反比例函數。
自變量_的取值范圍是不等于0的一切實(shí)數。
反比例函數圖像性質(zhì):
反比例函數的圖像為雙曲線(xiàn)。
由于反比例函數屬于奇函數,有f(-_)=-f(_),圖像關(guān)于原點(diǎn)對稱(chēng)。
另外,從反比例函數的解析式可以得出,在反比例函數的圖像上任取一點(diǎn),向兩個(gè)坐標軸作垂線(xiàn),這點(diǎn)、兩個(gè)垂足及原點(diǎn)所圍成的矩形面積是定值,為∣k∣。
如圖,上面給出了k分別為正和負(2和-2)時(shí)的函數圖像。
當K>0時(shí),反比例函數圖像經(jīng)過(guò)一,三象限,是減函數
當K<0時(shí),反比例函數圖像經(jīng)過(guò)二,四象限,是增函數
反比例函數圖像只能無(wú)限趨向于坐標軸,無(wú)法和坐標軸相交。
知識點(diǎn):
1.過(guò)反比例函數圖象上任意一點(diǎn)作兩坐標軸的垂線(xiàn)段,這兩條垂線(xiàn)段與坐標軸圍成的矩形的面積為|k|。
2.對于雙曲線(xiàn)y=k/_,若在分母上加減任意一個(gè)實(shí)數(即y=k/(_±m)m為常數),就相當于將雙曲線(xiàn)圖象向左或右平移一個(gè)單位。(加一個(gè)數時(shí)向左平移,減一個(gè)數時(shí)向右平移)
銳角三角函數公式
sinα=∠α的對邊/斜邊
cosα=∠α的鄰邊/斜邊
tanα=∠α的對邊/∠α的鄰邊
cotα=∠α的鄰邊/∠α的對邊
數學(xué)中什么叫棱
物體上的條狀突起,或不同方向的兩個(gè)平面相連接的部分。棱柱是幾何學(xué)中的一種常見(jiàn)的三維多面體,指上下底面平行且全等,側棱平行且相等的封閉幾何體。在正方體和長(cháng)方體中,具有12個(gè)棱長(cháng),且棱長(cháng)在不同的幾何體中有不同的特點(diǎn)。
必修一數學(xué)第二章知識點(diǎn)總結 篇5
1、柱、錐、臺、球的結構特征
(1)棱柱:
幾何特征:兩底面是對應邊平行的全等多邊形;側面、對角面都是平行四邊形;側棱平行且相等;平行于底面的截面是與底面全等的多邊形.
(2)棱錐
幾何特征:側面、對角面都是三角形;平行于底面的截面與底面相似,其相似比等于頂點(diǎn)到截面距離與高的比的平方.
(3)棱臺:
幾何特征:①上下底面是相似的平行多邊形
、趥让媸翘菪
、蹅壤饨挥谠忮F的頂點(diǎn)
(4)圓柱:定義:以矩形的一邊所在的直線(xiàn)為軸旋轉,其余三邊旋轉所成
幾何特征:①底面是全等的圓;
、谀妇(xiàn)與軸平行;
、圯S與底面圓的半徑垂直;
、軅让嬲归_(kāi)圖是一個(gè)矩形.
(5)圓錐:定義:以直角三角形的一條直角邊為旋轉軸,旋轉一周所成
幾何特征:①底面是一個(gè)圓;
、谀妇(xiàn)交于圓錐的頂點(diǎn);
、蹅让嬲归_(kāi)圖是一個(gè)扇形.
(6)圓臺:定義:以直角梯形的垂直與底邊的腰為旋轉軸,旋轉一周所成
幾何特征:①上下底面是兩個(gè)圓;
、趥让婺妇(xiàn)交于原圓錐的頂點(diǎn);
、蹅让嬲归_(kāi)圖是一個(gè)弓形.
(7)球體:定義:以半圓的直徑所在直線(xiàn)為旋轉軸,半圓面旋轉一周形成的幾何體
幾何特征:①球的截面是圓;
、谇蛎嫔先我庖稽c(diǎn)到球心的距離等于半徑.
2、空間幾何體的三視圖
定義三視圖:正視圖(光線(xiàn)從幾何體的前面向后面正投影);側視圖(從左向右)、
俯視圖(從上向下)
注:正視圖反映了物體的高度和長(cháng)度;俯視圖反映了物體的長(cháng)度和寬度;側視圖反映了物體的高度和寬度.
3、空間幾何體的直觀(guān)圖——斜二測畫(huà)法
斜二測畫(huà)法特點(diǎn):①原來(lái)與x軸平行的線(xiàn)段仍然與x平行且長(cháng)度不變;
、谠瓉(lái)與y軸平行的線(xiàn)段仍然與y平行,長(cháng)度為原來(lái)的一半.
4、柱體、錐體、臺體的表面積與體積
(1)幾何體的表面積為幾何體各個(gè)面的面積的和.
(2)特殊幾何體表面積公式(c為底面周長(cháng),h為高,為斜高,l為母線(xiàn))
(3)柱體、錐體、臺體的體積公式
2高中數學(xué)必修二知識點(diǎn)總結:直線(xiàn)與方程
(1)直線(xiàn)的傾斜角
定義:x軸正向與直線(xiàn)向上方向之間所成的角叫直線(xiàn)的傾斜角.特別地,當直線(xiàn)與x軸平行或重合時(shí),我們規定它的傾斜角為0度.因此,傾斜角的取值范圍是0°≤α<180°
(2)直線(xiàn)的斜率
、俣x:傾斜角不是90°的直線(xiàn),它的傾斜角的正切叫做這條直線(xiàn)的斜率.直線(xiàn)的斜率常用k表示.即.斜率反映直線(xiàn)與軸的傾斜程度.
當時(shí),;當時(shí),;當時(shí),不存在.
、谶^(guò)兩點(diǎn)的直線(xiàn)的斜率公式:
注意下面四點(diǎn):(1)當時(shí),公式右邊無(wú)意義,直線(xiàn)的斜率不存在,傾斜角為90°;
(2)k與P1、P2的順序無(wú)關(guān);(3)以后求斜率可不通過(guò)傾斜角而由直線(xiàn)上兩點(diǎn)的坐標直接求得;
(4)求直線(xiàn)的傾斜角可由直線(xiàn)上兩點(diǎn)的坐標先求斜率得到.
(3)直線(xiàn)方程
、冱c(diǎn)斜式:直線(xiàn)斜率k,且過(guò)點(diǎn)
注意:當直線(xiàn)的斜率為0°時(shí),k=0,直線(xiàn)的方程是y=y1.
當直線(xiàn)的斜率為90°時(shí),直線(xiàn)的斜率不存在,它的方程不能用點(diǎn)斜式表示.但因l上每一點(diǎn)的橫坐標都等于x1,所以它的方程是x=x1.
、谛苯厥剑,直線(xiàn)斜率為k,直線(xiàn)在y軸上的截距為b
、蹆牲c(diǎn)式:()直線(xiàn)兩點(diǎn),
、芙鼐厥剑
其中直線(xiàn)與軸交于點(diǎn),與軸交于點(diǎn),即與軸、軸的截距分別為.
、菀话闶剑(A,B不全為0)
注意:各式的適用范圍特殊的方程如:
平行于x軸的直線(xiàn):(b為常數);平行于y軸的直線(xiàn):(a為常數);
(5)直線(xiàn)系方程:即具有某一共同性質(zhì)的直線(xiàn)
(一)平行直線(xiàn)系
平行于已知直線(xiàn)(是不全為0的常數)的直線(xiàn)系:(C為常數)
(二)垂直直線(xiàn)系
垂直于已知直線(xiàn)(是不全為0的常數)的直線(xiàn)系:(C為常數)
(三)過(guò)定點(diǎn)的直線(xiàn)系
(ⅰ)斜率為k的直線(xiàn)系:,直線(xiàn)過(guò)定點(diǎn);
(ⅱ)過(guò)兩條直線(xiàn),的交點(diǎn)的直線(xiàn)系方程為
(為參數),其中直線(xiàn)不在直線(xiàn)系中.
(6)兩直線(xiàn)平行與垂直
注意:利用斜率判斷直線(xiàn)的平行與垂直時(shí),要注意斜率的存在與否.
(7)兩條直線(xiàn)的交點(diǎn)
相交
交點(diǎn)坐標即方程組的一組解.
方程組無(wú)解;方程組有無(wú)數解與重合
(8)兩點(diǎn)間距離公式:設是平面直角坐標系中的兩個(gè)點(diǎn)
(9)點(diǎn)到直線(xiàn)距離公式:一點(diǎn)到直線(xiàn)的距離
(10)兩平行直線(xiàn)距離公式
在任一直線(xiàn)上任取一點(diǎn),再轉化為點(diǎn)到直線(xiàn)的距離進(jìn)行求解.
3高中數學(xué)必修二知識點(diǎn)總結:圓的方程
1、圓的定義:平面內到一定點(diǎn)的距離等于定長(cháng)的點(diǎn)的集合叫圓,定點(diǎn)為圓心,定長(cháng)為圓的半徑.
2、圓的方程
(1)標準方程,圓心,半徑為r;
(2)一般方程
當時(shí),方程表示圓,此時(shí)圓心為,半徑為
當時(shí),表示一個(gè)點(diǎn);當時(shí),方程不表示任何圖形.
(3)求圓方程的方法:
一般都采用待定系數法:先設后求.確定一個(gè)圓需要三個(gè)獨立條件,若利用圓的標準方程,
需求出a,b,r;若利用一般方程,需要求出D,E,F;
另外要注意多利用圓的幾何性質(zhì):如弦的中垂線(xiàn)必經(jīng)過(guò)原點(diǎn),以此來(lái)確定圓心的位置.
高中數學(xué)必修二知識點(diǎn)總結:直線(xiàn)與圓的位置關(guān)系:
直線(xiàn)與圓的位置關(guān)系有相離,相切,相交三種情況:
(1)設直線(xiàn),圓,圓心到l的距離為,則有;;
(2)過(guò)圓外一點(diǎn)的切線(xiàn):①k不存在,驗證是否成立②k存在,設點(diǎn)斜式方程,用圓心到該直線(xiàn)距離=半徑,求解k,得到方程【一定兩解】
(3)過(guò)圓上一點(diǎn)的切線(xiàn)方程:圓(x-a)2+(y-b)2=r2,圓上一點(diǎn)為(x0,y0),則過(guò)此點(diǎn)的切線(xiàn)方程為(x0-a)(x-a)+(y0-b)(y-b)=r2
4、圓與圓的位置關(guān)系:通過(guò)兩圓半徑的和(差),與圓心距(d)之間的大小比較來(lái)確定.
設圓,
兩圓的位置關(guān)系常通過(guò)兩圓半徑的和(差),與圓心距(d)之間的大小比較來(lái)確定.
當時(shí)兩圓外離,此時(shí)有公切線(xiàn)四條;
當時(shí)兩圓外切,連心線(xiàn)過(guò)切點(diǎn),有外公切線(xiàn)兩條,內公切線(xiàn)一條;
當時(shí)兩圓相交,連心線(xiàn)垂直平分公共弦,有兩條外公切線(xiàn);
當時(shí),兩圓內切,連心線(xiàn)經(jīng)過(guò)切點(diǎn),只有一條公切線(xiàn);
當時(shí),兩圓內含;當時(shí),為同心圓.
注意:已知圓上兩點(diǎn),圓心必在中垂線(xiàn)上;已知兩圓相切,兩圓心與切點(diǎn)共線(xiàn)
4、空間點(diǎn)、直線(xiàn)、平面的位置關(guān)系
公理1:如果一條直線(xiàn)的兩點(diǎn)在一個(gè)平面內,那么這條直線(xiàn)是所有的點(diǎn)都在這個(gè)平面內.
應用:判斷直線(xiàn)是否在平面內
用符號語(yǔ)言表示公理1:
公理2:如果兩個(gè)不重合的平面有一個(gè)公共點(diǎn),那么它們有且只有一條過(guò)該點(diǎn)的公共直線(xiàn)
符號:平面α和β相交,交線(xiàn)是a,記作α∩β=a.
符號語(yǔ)言:
公理2的作用:
、偎桥卸▋蓚(gè)平面相交的方法.
、谒f(shuō)明兩個(gè)平面的交線(xiàn)與兩個(gè)平面公共點(diǎn)之間的關(guān)系:交線(xiàn)必過(guò)公共點(diǎn).
、鬯梢耘袛帱c(diǎn)在直線(xiàn)上,即證若干個(gè)點(diǎn)共線(xiàn)的重要依據.
公理3:經(jīng)過(guò)不在同一條直線(xiàn)上的三點(diǎn),有且只有一個(gè)平面.
推論:一直線(xiàn)和直線(xiàn)外一點(diǎn)確定一平面;兩相交直線(xiàn)確定一平面;兩平行直線(xiàn)確定一平面.
公理3及其推論作用:①它是空間內確定平面的依據②它是證明平面重合的依據
公理4:平行于同一條直線(xiàn)的兩條直線(xiàn)互相平行
4高中數學(xué)必修二知識點(diǎn)總結:空間直線(xiàn)與直線(xiàn)之間的位置關(guān)系
、佼惷嬷本(xiàn)定義:不同在任何一個(gè)平面內的兩條直線(xiàn)
、诋惷嬷本(xiàn)性質(zhì):既不平行,又不相交.
、郛惷嬷本(xiàn)判定:過(guò)平面外一點(diǎn)與平面內一點(diǎn)的直線(xiàn)與平面內不過(guò)該店的直線(xiàn)是異面直線(xiàn)
、墚惷嬷本(xiàn)所成角:作平行,令兩線(xiàn)相交,所得銳角或直角,即所成角.兩條異面直線(xiàn)所成角的范圍是(0°,90°],若兩條異面直線(xiàn)所成的角是直角,我們就說(shuō)這兩條異面直線(xiàn)互相垂直.
求異面直線(xiàn)所成角步驟:
A、利用定義構造角,可固定一條,平移另一條,或兩條同時(shí)平移到某個(gè)特殊的位置,頂點(diǎn)選在特殊的位置上.B、證明作出的角即為所求角C、利用三角形來(lái)求角
(7)等角定理:如果一個(gè)角的兩邊和另一個(gè)角的兩邊分別平行,那么這兩角相等或互補.
(8)空間直線(xiàn)與平面之間的位置關(guān)系
直線(xiàn)在平面內——有無(wú)數個(gè)公共點(diǎn).
三種位置關(guān)系的符號表示:aαa∩α=Aa‖α
(9)平面與平面之間的位置關(guān)系:平行——沒(méi)有公共點(diǎn);α‖β
相交——有一條公共直線(xiàn).α∩β=b
5、空間中的平行問(wèn)題
(1)直線(xiàn)與平面平行的判定及其性質(zhì)
線(xiàn)面平行的判定定理:平面外一條直線(xiàn)與此平面內一條直線(xiàn)平行,則該直線(xiàn)與此平面平行.
線(xiàn)線(xiàn)平行線(xiàn)面平行
線(xiàn)面平行的性質(zhì)定理:如果一條直線(xiàn)和一個(gè)平面平行,經(jīng)過(guò)這條直線(xiàn)的平面和這個(gè)平面相交,
那么這條直線(xiàn)和交線(xiàn)平行.線(xiàn)面平行線(xiàn)線(xiàn)平行
(2)平面與平面平行的判定及其性質(zhì)
兩個(gè)平面平行的判定定理
(1)如果一個(gè)平面內的兩條相交直線(xiàn)都平行于另一個(gè)平面,那么這兩個(gè)平面平行
(線(xiàn)面平行→面面平行),
(2)如果在兩個(gè)平面內,各有兩組相交直線(xiàn)對應平行,那么這兩個(gè)平面平行.
(線(xiàn)線(xiàn)平行→面面平行),
(3)垂直于同一條直線(xiàn)的兩個(gè)平面平行,
兩個(gè)平面平行的性質(zhì)定理
(1)如果兩個(gè)平面平行,那么某一個(gè)平面內的直線(xiàn)與另一個(gè)平面平行.(面面平行→線(xiàn)面平行)
(2)如果兩個(gè)平行平面都和第三個(gè)平面相交,那么它們的交線(xiàn)平行.(面面平行→線(xiàn)線(xiàn)平行)
7、空間中的垂直問(wèn)題
(1)線(xiàn)線(xiàn)、面面、線(xiàn)面垂直的定義
、賰蓷l異面直線(xiàn)的垂直:如果兩條異面直線(xiàn)所成的角是直角,就說(shuō)這兩條異面直線(xiàn)互相垂直.
、诰(xiàn)面垂直:如果一條直線(xiàn)和一個(gè)平面內的任何一條直線(xiàn)垂直,就說(shuō)這條直線(xiàn)和這個(gè)平面垂直.
、燮矫婧推矫娲怪保喝绻麅蓚(gè)平面相交,所成的二面角(從一條直線(xiàn)出發(fā)的兩個(gè)半平面所組成的圖形)是直二面角(平面角是直角),就說(shuō)這兩個(gè)平面垂直.
(2)垂直關(guān)系的判定和性質(zhì)定理
、倬(xiàn)面垂直判定定理和性質(zhì)定理
判定定理:如果一條直線(xiàn)和一個(gè)平面內的兩條相交直線(xiàn)都垂直,那么這條直線(xiàn)垂直這個(gè)平面.
性質(zhì)定理:如果兩條直線(xiàn)同垂直于一個(gè)平面,那么這兩條直線(xiàn)平行.
、诿婷娲怪钡呐卸ǘɡ砗托再|(zhì)定理
判定定理:如果一個(gè)平面經(jīng)過(guò)另一個(gè)平面的一條垂線(xiàn),那么這兩個(gè)平面互相垂直.
性質(zhì)定理:如果兩個(gè)平面互相垂直,那么在一個(gè)平面內垂直于他們的交線(xiàn)的直線(xiàn)垂直于另一個(gè)平面.
9、空間角問(wèn)題
(1)直線(xiàn)與直線(xiàn)所成的角
、賰善叫兄本(xiàn)所成的角:規定為.
、趦蓷l相交直線(xiàn)所成的角:兩條直線(xiàn)相交其中不大于直角的角,叫這兩條直線(xiàn)所成的角.
、蹆蓷l異面直線(xiàn)所成的角:過(guò)空間任意一點(diǎn)O,分別作與兩條異面直線(xiàn)a,b平行的直線(xiàn),形成兩條相交直線(xiàn),這兩條相交直線(xiàn)所成的不大于直角的角叫做兩條異面直線(xiàn)所成的角.
(2)直線(xiàn)和平面所成的角
、倨矫娴钠叫芯(xiàn)與平面所成的角:規定為.②平面的垂線(xiàn)與平面所成的角:規定為.
、燮矫娴男本(xiàn)與平面所成的角:平面的一條斜線(xiàn)和它在平面內的射影所成的銳角,叫做這條直線(xiàn)和這個(gè)平面所成的角.
求斜線(xiàn)與平面所成角的思路類(lèi)似于求異面直線(xiàn)所成角:“一作,二證,三計算”.
在“作角”時(shí)依定義關(guān)鍵作射影,由射影定義知關(guān)鍵在于斜線(xiàn)上一點(diǎn)到面的垂線(xiàn),
在解題時(shí),注意挖掘題設中兩個(gè)主要信息:(1)斜線(xiàn)上一點(diǎn)到面的垂線(xiàn);(2)過(guò)斜線(xiàn)上的一點(diǎn)或過(guò)斜線(xiàn)的平面與已知面垂直,由面面垂直性質(zhì)易得垂線(xiàn).
(3)二面角和二面角的平面角
、俣娼堑亩x:從一條直線(xiàn)出發(fā)的兩個(gè)半平面所組成的圖形叫做二面角,這條直線(xiàn)叫做二面角的棱,這兩個(gè)半平面叫做二面角的面.
、诙娼堑钠矫娼牵阂远娼堑睦馍先我庖稽c(diǎn)為頂點(diǎn),在兩個(gè)面內分別作垂直于棱的兩條射線(xiàn),這兩條射線(xiàn)所成的角叫二面角的平面角.
、壑倍娼牵浩矫娼鞘侵苯堑亩娼墙兄倍娼.
兩相交平面如果所組成的二面角是直二面角,那么這兩個(gè)平面垂直;反過(guò)來(lái),如果兩個(gè)平面垂直,那么所成的二面角為直二面角
、芮蠖娼堑姆椒
定義法:在棱上選擇有關(guān)點(diǎn),過(guò)這個(gè)點(diǎn)分別在兩個(gè)面內作垂直于棱的射線(xiàn)得到平面角
垂面法:已知二面角內一點(diǎn)到兩個(gè)面的垂線(xiàn)時(shí),過(guò)兩垂線(xiàn)作平面與兩個(gè)面的交線(xiàn)所成的角為二面角的平面角
5高中數學(xué)必修二知識點(diǎn)總結:解三角形
(1)正弦定理和余弦定理
掌握正弦定理、余弦定理,并能解決一些簡(jiǎn)單的三角形度量問(wèn)題.
(2)應用
能夠運用正弦定理、余弦定理等知識和方法解決一些與測量和幾何計算有關(guān)的實(shí)際問(wèn)題.
6高中數學(xué)必修二知識點(diǎn)總結:數列
(1)數列的概念和簡(jiǎn)單表示法
、倭私鈹盗械母拍詈蛶追N簡(jiǎn)單的表示方法(列表、圖象、通項公式).
、诹私鈹盗惺亲宰兞繛檎麛档囊活(lèi)函數.
(2)等差數列、等比數列
、倮斫獾炔顢盗、等比數列的概念.
、谡莆盏炔顢盗、等比數列的通項公式與前項和公式.
、勰茉诰唧w的問(wèn)題情境中,識別數列的等差關(guān)系或等比關(guān)系,并能用有關(guān)知識解決相應的問(wèn)題.
、芰私獾炔顢盗信c一次函數、等比數列與指數函數的關(guān)系.
高中數學(xué)必修二知識點(diǎn)總結:不等式
7高中數學(xué)必修二知識點(diǎn)總結:不等關(guān)系
了解現實(shí)世界和日常生活中的不等關(guān)系,了解不等式(組)的實(shí)際背景.
(2)一元二次不等式
、贂(huì )從實(shí)際情境中抽象出一元二次不等式模型.
、谕ㄟ^(guò)函數圖象了解一元二次不等式與相應的二次函數、一元二次方程的聯(lián)系.
、蹠(huì )解一元二次不等式,對給定的一元二次不等式,會(huì )設計求解的程序框圖.
(3)二元一次不等式組與簡(jiǎn)單線(xiàn)性規劃問(wèn)題
、贂(huì )從實(shí)際情境中抽象出二元一次不等式組.
、诹私舛淮尾坏仁降膸缀我饬x,能用平面區域表示二元一次不等式組.
、蹠(huì )從實(shí)際情境中抽象出一些簡(jiǎn)單的二元線(xiàn)性規劃問(wèn)題,并能加以解決.
(4)基本不等式:
、倭私饣静坏仁降淖C明過(guò)程.
、跁(huì )用基本不等式解決簡(jiǎn)單的最大(小)值問(wèn)題圓的輔助線(xiàn)一般為連圓心與切線(xiàn)或者連圓心與弦中點(diǎn)
必修一數學(xué)第二章知識點(diǎn)總結 篇6
、殴顬閐的等差數列,各項同加一數所得數列仍是等差數列,其公差仍為d。
、乒顬閐的等差數列,各項同乘以常數k所得數列仍是等差數列,其公差為kd。
、侨魗a}、為等差數列,則{a±b}與{ka+b}(k、b為非零常數)也是等差數列。
、葘θ魏蝝、n,在等差數列{a}中有:a=a+(n—m)d,特別地,當m=1時(shí),便得等差數列的通項公式,此式較等差數列的通項公式更具有一般性。
、、一般地,如果l,k,p,…,m,n,r,…皆為自然數,且l+k+p+…=m+n+r+…(兩邊的自然數個(gè)數相等),那么當{a}為等差數列時(shí),有:a+a+a+…=a+a+a+…。
、使顬閐的等差數列,從中取出等距離的項,構成一個(gè)新數列,此數列仍是等差數列,其公差為kd(k為取出項數之差)。
、巳绻鹻a}是等差數列,公差為d,那么,a,a,…,a、a也是等差數列,其公差為—d;在等差數列{a}中,a—a=a—a=md。(其中m、k、)
、淘诘炔顢盗兄,從第一項起,每一項(有窮數列末項除外)都是它前后兩項的等差中項。
、彤敼頳>0時(shí),等差數列中的數隨項數的增大而增大;當d<0時(shí),等差數列中的數隨項數的減少而減;d=0時(shí),等差數列中的數等于一個(gè)常數。
、卧Oa,a,a為等差數列中的三項,且a與a,a與a的項距差之比=(≠—1),則a=。
、艛盗衶a}為等差數列的充要條件是:數列{a}的前n項和S可以寫(xiě)成S=an+bn的形式(其中a、b為常數)。
、圃诘炔顢盗衶a}中,當項數為2n(nN)時(shí),S—S=nd,=;當項數為(2n—1)(n)時(shí),S—S=a,=。
、侨魯盗衶a}為等差數列,則S,S—S,S—S,…仍然成等差數列,公差為。
、热魞蓚(gè)等差數列{a}、的前n項和分別是S、T(n為奇數),則=。
、稍诘炔顢盗衶a}中,S=a,S=b(n>m),則S=(a—b)。
、实炔顢盗衶a}中,是n的一次函數,且點(diǎn)(n,)均在直線(xiàn)y=x+(a—)上。
、擞浀炔顢盗衶a}的前n項和為S。①若a>0,公差d<0,則當a≥0且a≤0時(shí),S;②若a<0,公差d>0,則當a≤0且a≥0時(shí),S最小。
【必修一數學(xué)第二章知識點(diǎn)總結】相關(guān)文章:
必修2第二章知識點(diǎn)總結03-31