高二數學(xué)知識點(diǎn)總結
總結是指對某一階段的工作、學(xué)習或思想中的經(jīng)驗或情況加以總結和概括的書(shū)面材料,它是增長(cháng)才干的一種好辦法,讓我們抽出時(shí)間寫(xiě)寫(xiě)總結吧?偨Y你想好怎么寫(xiě)了嗎?以下是小編整理的高二數學(xué)知識點(diǎn)總結,僅供參考,希望能夠幫助到大家。
高二數學(xué)知識點(diǎn)總結 1
1.不等式證明的依據
(2)不等式的性質(zhì)(略)
(3)重要不等式:①|(zhì)a|≥0;a2≥0;(a-b)2≥0(a、b∈R)
、赼2+b2≥2ab(a、b∈R,當且僅當a=b時(shí)取“=”號)
2.不等式的證明方法
(1)比較法:要證明a>b(a0(a-b<0),這種證明不等式的方法叫做比較法
用比較法證明不等式的步驟是:作差——變形——判斷符號
(2)綜合法:從已知條件出發(fā),依據不等式的性質(zhì)和已證明過(guò)的.不等式,推導出所要證明的不等式成立,這種證明不等式的方法叫做綜合法
(3)分析法:從欲證的不等式出發(fā),逐步分析使這不等式成立的充分條件,直到所需條件已判斷為正確時(shí),從而斷定原不等式成立,這種證明不等式的方法叫做分析法
證明不等式除以上三種基本方法外,還有反證法、數學(xué)歸納法等
高二數學(xué)知識點(diǎn)總結 2
考點(diǎn)一:求導公式。
例1.f(x)是f(x)13x2x1的導函數,則f(1)的值是3
考點(diǎn)二:導數的幾何意義。
例2.已知函數yf(x)的圖象在點(diǎn)M(1,f(1))處的切線(xiàn)方程是y
1x2,則f(1)f(1)2
,3)處的切線(xiàn)方程是例3.曲線(xiàn)yx32x24x2在點(diǎn)(1
點(diǎn)評:以上兩小題均是對導數的幾何意義的考查。
考點(diǎn)三:導數的幾何意義的應用。
例4.已知曲線(xiàn)C:yx33x22x,直線(xiàn)l:ykx,且直線(xiàn)l與曲線(xiàn)C相切于點(diǎn)x0,y0x00,求直線(xiàn)l的方程及切點(diǎn)坐標。
點(diǎn)評:本小題考查導數幾何意義的應用。解決此類(lèi)問(wèn)題時(shí)應注意“切點(diǎn)既在曲線(xiàn)上又在切線(xiàn)上”這個(gè)條件的'應用。函數在某點(diǎn)可導是相應曲線(xiàn)上過(guò)該點(diǎn)存在切線(xiàn)的充分條件,而不是必要條件。
考點(diǎn)四:函數的單調性。
例5.已知fxax3_1在R上是減函數,求a的取值范圍。32
點(diǎn)評:本題考查導數在函數單調性中的應用。對于高次函數單調性問(wèn)題,要有求導意識。
考點(diǎn)五:函數的極值。
例6.設函數f(x)2x33ax23bx8c在x1及x2時(shí)取得極值。
(1)求a、b的值;
(2)若對于任意的x[0,3],都有f(x)c2成立,求c的取值范圍。
點(diǎn)評:本題考查利用導數求函數的極值。求可導函數fx的極值步驟:
、偾髮礷x;
、谇骹x0的根;
、蹖x0的根在數軸上標出,得出單調區間,由fx在各區間上取值的正負可確定并求出函數fx的極值。
高二數學(xué)知識點(diǎn)總結 3
1、直線(xiàn)的傾斜角的概念:當直線(xiàn)l與x軸相交時(shí),取x軸作為基準,x軸正向與直線(xiàn)l向上方向之間所成的角α叫做直線(xiàn)l的傾斜角.特別地,當直線(xiàn)l與x軸平行或重合時(shí),規定α=0°.
2、傾斜角α的取值范圍:0°≤α<180°.
當直線(xiàn)l與x軸垂直時(shí),α=90°.
3、直線(xiàn)的斜率:
一條直線(xiàn)的傾斜角α(α≠90°)的正切值叫做這條直線(xiàn)的斜率,斜率常用小寫(xiě)字母k表示,也就是k=tanα
、女斨本(xiàn)l與x軸平行或重合時(shí),α=0°,k=tan0°=0;
、飘斨本(xiàn)l與x軸垂直時(shí),α=90°,k不存在.
由此可知,一條直線(xiàn)l的傾斜角α一定存在,但是斜率k不一定存在
4、直線(xiàn)的斜率公式:
給定兩點(diǎn)P1(x1,y1),P2(x2,y2),x1≠x2,用兩點(diǎn)的坐標來(lái)表示直線(xiàn)P1P2的.斜率:
斜率公式:
3.1.2兩條直線(xiàn)的平行與垂直
1、兩條直線(xiàn)都有斜率而且不重合,如果它們平行,那么它們的斜率相等;反之,如果它們的斜率相等,那么它們平行,即
注意:上面的等價(jià)是在兩條直線(xiàn)不重合且斜率存在的前提下才成立的,缺少這個(gè)前提,結論并不成立.即如果k1=k2,那么一定有L1∥L2
2、兩條直線(xiàn)都有斜率,如果它們互相垂直,那么它們的斜率互為負倒數;反之,如果它們的斜率互為負倒數,那么它們互相垂直,即
3.2.1直線(xiàn)的點(diǎn)斜式方程
1、直線(xiàn)的點(diǎn)斜式方程:直線(xiàn)經(jīng)過(guò)點(diǎn)且斜率為
2、、直線(xiàn)的斜截式方程:已知直線(xiàn)的斜率為
3.2.2直線(xiàn)的兩點(diǎn)式方程
1、直線(xiàn)的兩點(diǎn)式方程:已知兩點(diǎn)
2、直線(xiàn)的截距式方程:已知直線(xiàn)
3.2.3直線(xiàn)的一般式方程
1、直線(xiàn)的一般式方程:關(guān)于x、y的二元一次方程
(A,B不同時(shí)為0)
2、各種直線(xiàn)方程之間的互化。
3.3直線(xiàn)的交點(diǎn)坐標與距離公式
3.3.1兩直線(xiàn)的交點(diǎn)坐標
1、給出例題:兩直線(xiàn)交點(diǎn)坐標
L1:3x+4y-2=0
L1:2x+y+2=0
解:解方程組
得x=-2,y=2
所以L(fǎng)1與L2的交點(diǎn)坐標為M(-2,2)
3.3.2兩點(diǎn)間距離
兩點(diǎn)間的距離公式
3.3.3點(diǎn)到直線(xiàn)的距離公式
1.點(diǎn)到直線(xiàn)距離公式:
2、兩平行線(xiàn)間的距離公式:
高二數學(xué)知識點(diǎn)總結 4
一般地,設一個(gè)總體含有N個(gè)個(gè)體,從中逐個(gè)不放回地抽取n個(gè)個(gè)體作為樣本(n≤N),如果每次抽取時(shí)總體內的各個(gè)個(gè)體被抽到的機會(huì )都相等,就把這種抽樣方法叫做簡(jiǎn)單隨機抽樣。
簡(jiǎn)單隨機抽樣的特點(diǎn):
(1)用簡(jiǎn)單隨機抽樣從含有N個(gè)個(gè)體的總體中抽取一個(gè)容量為n的樣本時(shí),每次抽取一個(gè)個(gè)體時(shí)任一個(gè)體被抽到的概率為;在整個(gè)抽樣過(guò)程中各個(gè)個(gè)體被抽到的概率為
(2)簡(jiǎn)單隨機抽樣的特點(diǎn)是,逐個(gè)抽取,且各個(gè)個(gè)體被抽到的概率相等;
(3)簡(jiǎn)單隨機抽樣方法,體現了抽樣的客觀(guān)性與公平性,是其他更復雜抽樣方法的基礎
(4)簡(jiǎn)單隨機抽樣是不放回抽樣;它是逐個(gè)地進(jìn)行抽取;它是一種等概率抽樣
簡(jiǎn)單抽樣常用方法:
(1)抽簽法:先將總體中的所有個(gè)體(共有N個(gè))編號(號碼可從1到N),并把號碼寫(xiě)在形狀、大小相同的號簽上(號簽可用小球、卡片、紙條等制作),然后將這些號簽放在同一個(gè)箱子里,進(jìn)行均勻攪拌,抽簽時(shí)每次從中抽一個(gè)號簽,連續抽取n次,就得到一個(gè)容量為n的樣本適用范圍:總體的個(gè)體數不多時(shí)優(yōu)點(diǎn):抽簽法簡(jiǎn)便易行,當總體的個(gè)體數不太多時(shí)適宜采用抽簽法
(2)隨機數表法:隨機數表抽樣“三步曲”:第一步,將總體中的個(gè)體編號;第二步,選定開(kāi)始的.數字;第三步,獲取樣本號碼概率:
相關(guān)高中數學(xué)知識點(diǎn):系統抽樣
系統抽樣的概念:
當整體中個(gè)體數較多時(shí),將整體均分為幾個(gè)部分,然后按一定的規則,從每一個(gè)部分抽取1個(gè)個(gè)體而得到所需要的樣本的方法叫系統抽樣。
系統抽樣的步驟:
(1)采用隨機方式將總體中的個(gè)體編號;
(2)將整個(gè)編號進(jìn)行均勻分段在確定相鄰間隔k后,若不能均勻分段,即
=k不是整數時(shí),可采用隨機方法從總體中剔除一些個(gè)體,使總體中剩余的個(gè)體數N′滿(mǎn)足是整數;
(3)在第一段中采用簡(jiǎn)單隨機抽樣方法確定第一個(gè)被抽得的個(gè)體編號l;
(4)依次將l加上ik,i=1,2,…,(n-1),得到其余被抽取的個(gè)體的編號,從而得到整個(gè)樣本。
相關(guān)高中數學(xué)知識點(diǎn):分層抽樣
分層抽樣:
當已知總體由差異明顯的幾部分組成時(shí),常將總體分成幾部分,然后按照各部分所占的比例進(jìn)行抽樣,這種抽樣叫做分層抽樣,其所分成的各個(gè)部分叫做層。
利用分層抽樣抽取樣本,每一層按照它在總體中所占的比例進(jìn)行抽取。
不放回抽樣和放回抽樣:
在抽樣中,如果每次抽出個(gè)體后不再將它放回總體,稱(chēng)這樣的抽樣為不放回抽樣;如果每次抽出個(gè)體后再將它放回總體,稱(chēng)這樣的抽樣為放回抽樣
隨機抽樣、系統抽樣、分層抽樣都是不放回抽樣
分層抽樣的特點(diǎn):
(1)分層抽樣適用于差異明顯的幾部分組成的情況;
(2)在每一層進(jìn)行抽樣時(shí),在采用簡(jiǎn)單隨機抽樣或系統抽樣;
(3)分層抽樣充分利用已掌握的信息,使樣具有良好的代表性;
(4)分層抽樣也是等概率抽樣,而且在每層抽樣時(shí),可以根據具體情況采用不同的抽樣方法,因此應用較為廣泛。
高二數學(xué)知識點(diǎn)總結 5
1、向量的加法
向量的加法滿(mǎn)足平行四邊形法則和三角形法則。
AB+BC=AC。
a+b=(x+x,y+y)。
a+0=0+a=a。
向量加法的運算律:
交換律:a+b=b+a;
結合律:(a+b)+c=a+(b+c)。
2、向量的減法
如果a、b是互為相反的向量,那么a=-b,b=-a,a+b=0. 0的反向量為0
AB-AC=CB. 即“共同起點(diǎn),指向被減”
a=(x,y) b=(x,y) 則 a-b=(x-x,y-y)
3、數乘向量
實(shí)數λ和向量a的乘積是一個(gè)向量,記作λa,且∣λa∣=∣λ∣·∣a∣。
當λ>0時(shí),λa與a同方向;
當λ<0時(shí),λa與a反方向;
當λ=0時(shí),λa=0,方向任意。
當a=0時(shí),對于任意實(shí)數λ,都有λa=0。
注:按定義知,如果λa=0,那么λ=0或a=0。
實(shí)數λ叫做向量a的系數,乘數向量λa的幾何意義就是將表示向量a的有向線(xiàn)段伸長(cháng)或壓縮。
當∣λ∣>1時(shí),表示向量a的有向線(xiàn)段在原方向(λ>0)或反方向(λ<0)上伸長(cháng)為原來(lái)的`∣λ∣倍;
當∣λ∣<1時(shí),表示向量a的有向線(xiàn)段在原方向(λ>0)或反方向(λ<0)上縮短為原來(lái)的∣λ∣倍。
數與向量的乘法滿(mǎn)足下面的運算律
結合律:(λa)·b=λ(a·b)=(a·λb)。
向量對于數的分配律(第一分配律):(λ+μ)a=λa+μa.
數對于向量的分配律(第二分配律):λ(a+b)=λa+λb.
數乘向量的消去律:
、 如果實(shí)數λ≠0且λa=λb,那么a=b。
、 如果a≠0且λa=μa,那么λ=μ。
4、向量的的數量積
定義:兩個(gè)非零向量的夾角記為〈a,b〉,且〈a,b〉∈[0,π]。
定義:兩個(gè)向量的數量積(內積、點(diǎn)積)是一個(gè)數量,記作a·b。若a、b不共線(xiàn),則a·b=|a|·|b|·cos〈a,b〉;若a、b共線(xiàn),則a·b=+-∣a∣∣b∣。
向量的數量積的坐標表示:a·b=x·x+y·y。
向量的數量積的運算率
a·b=b·a(交換率);
(a+b)·c=a·c+b·c(分配率);
向量的數量積的性質(zhì)
a·a=|a|的平方。
a⊥b 〈=〉a·b=0。
|a·b|≤|a|·|b|。
高二數學(xué)知識點(diǎn)總結 6
第一章:集合和函數的基本概念,錯誤基本都集中在空集這一概念上,而每次考試基本都會(huì )在選填題上涉及這一概念,一個(gè)不小心就是五分沒(méi)了。次一級的知識點(diǎn)就是集合的韋恩圖,會(huì )畫(huà)圖,集合的“并、補、交、非”也就解決了,還有函數的定義域和函數的單調性、增減性的概念,這些都是函數的基礎而且不難理解。在第一輪復習中一定要反復去記這些概念,的'方法是寫(xiě)在筆記本上,每天至少看上一遍。
第二章:基本初等函數:指數、對數、冪函數三大函數的運算性質(zhì)及圖像。函數的幾大要素和相關(guān)考點(diǎn)基本都在函數圖像上有所體現,單調性、增減性、極值、零點(diǎn)等等。關(guān)于這三大函數的運算公式,多記多用,多做一點(diǎn)練習基本就沒(méi)多大問(wèn)題。函數圖像是這一章的重難點(diǎn),而且圖像問(wèn)題是不能靠記憶的,必須要理解,要會(huì )熟練的畫(huà)出函數圖像,定義域、值域、零點(diǎn)等等。對于冪函數還要搞清楚當指數冪大于一和小于一時(shí)圖像的不同及函數值的大小關(guān)系,這也是?汲ee點(diǎn)。另外指數函數和對數函數的對立關(guān)系及其相互之間要怎樣轉化問(wèn)題也要了解清楚。
第三章:函數的應用。主要就是函數與方程的結合。其實(shí)就是的實(shí)根,即函數的零點(diǎn),也就是函數圖像與X軸的交點(diǎn)。這三者之間的轉化關(guān)系是這一章的重點(diǎn),要學(xué)會(huì )在這三者之間的靈活轉化,以求能最簡(jiǎn)單的解決問(wèn)題。關(guān)于證明零點(diǎn)的方法,直接計算加得必有零點(diǎn),連續函數在x軸上方下方有定義則有零點(diǎn)等等,這是這一章的難點(diǎn),這幾種證明方法都要記得,多練習強化。這二次函數的零點(diǎn)的Δ判別法,這個(gè)倒不算難。
高二數學(xué)知識點(diǎn)總結 7
一、理解集合中的有關(guān)概念
(1)集合中元素的特征: 確定性 , 互異性 , 無(wú)序性 。
(2)集合與元素的關(guān)系用符號=表示。
(3)常用數集的符號表示:自然數集 ;正整數集 ;整數集 ;有理數集 、實(shí)數集 。
(4)集合的表示法: 列舉法 , 描述法 , 韋恩圖 。
(5)空集是指不含任何元素的集合。
空集是任何集合的子集,是任何非空集合的真子集。
二、函數
一、映射與函數:
(1)映射的概念:
(2)一一映射
(3)函數的概念:
二、函數的三要素:
相同函數的判斷方法:
、賹▌t ;
、诙x域 (兩點(diǎn)必須同時(shí)具備)
(1)函數解析式的求法:
、俣x法(拼湊):
、趽Q元法:
、鄞ㄏ禂捣:
、苜x值法:
(2)函數定義域的求法:
、俸瑓(wèn)題的定義域要分類(lèi)討論;
、趯τ趯(shí)際問(wèn)題,在求出函數解析式后;必須求出其定義域,此時(shí)的定義域要根據實(shí)際意義來(lái)確定。
(3)函數值域的求法:
、倥浞椒:轉化為二次函數,利用二次函數的特征來(lái)求值;常轉化為型如: 的形式;
、谀媲蠓(反求法):通過(guò)反解,用 來(lái)表示 ,再由 的取值范圍,通過(guò)解不等式,得出 的取值范圍;常用來(lái)解,型如: ;
、軗Q元法:通過(guò)變量代換轉化為能求值域的函數,化歸思想;
、萑怯薪绶:轉化為只含正弦、余弦的函數,運用三角函數有界性來(lái)求值域;
、藁静坏仁椒:轉化成型如: ,利用平均值不等式公式來(lái)求值域;
、邌握{性法:函數為單調函數,可根據函數的.單調性求值域。
、鄶敌谓Y合:根據函數的幾何圖形,利用數型結合的方法來(lái)求值域。
三、函數的性質(zhì)
函數的單調性、奇偶性、周期性
單調性:定義:注意定義是相對與某個(gè)具體的區間而言。
判定方法有:定義法(作差比較和作商比較)
導數法(適用于多項式函數)
復合函數法和圖像法。
應用:比較大小,證明不等式,解不等式。
奇偶性:定義:注意區間是否關(guān)于原點(diǎn)對稱(chēng),比較f(x) 與f(-x)的關(guān)系。f(x) -f(-x)=0 f(x) =f(-x) f(x)為偶函數;
f(x)+f(-x)=0 f(x) =-f(-x) f(x)為奇函數。
判別方法:定義法, 圖像法 ,復合函數法
應用:把函數值進(jìn)行轉化求解。
周期性:定義:若函數f(x)對定義域內的任意x滿(mǎn)足:f(x+T)=f(x),則T為函數f(x)的周期。
其他:若函數f(x)對定義域內的任意x滿(mǎn)足:f(x+a)=f(x-a),則2a為函數f(x)的周期
應用:求函數值和某個(gè)區間上的函數解析式。
四、圖形變換:函數圖像變換:(重點(diǎn))要求掌握常見(jiàn)基本函數的圖像,掌握函數圖像變換的一般規律。
常見(jiàn)圖像變化規律:(注意平移變化能夠用向量的語(yǔ)言解釋?zhuān)桶聪蛄科揭坡?lián)系起來(lái)思考)
平移變換 y=f(x)→y=f(x+a),y=f(x)+b
注意:(ⅰ)有系數,要先提取系數。如:把函數y=f(2x)經(jīng)過(guò) 平移得到函數y=f(2x+4)的圖象。
(ⅱ)會(huì )結合向量的平移,理解按照向量 (m,n)平移的意義。
對稱(chēng)變換 y=f(x)→y=f(-x),關(guān)于y軸對稱(chēng)
y=f(x)→y=-f(x) ,關(guān)于x軸對稱(chēng)
y=f(x)→y=f|x|,把x軸上方的圖象保留,x軸下方的圖象關(guān)于x軸對稱(chēng)
y=f(x)→y=|f(x)|把y軸右邊的圖象保留,然后將y軸右邊部分關(guān)于y軸對稱(chēng)。(注意:它是一個(gè)偶函數)
伸縮變換:y=f(x)→y=f(ωx),y=f(x)→y=Af(ωx+φ)具體參照三角函數的圖象變換。
一個(gè)重要結論:若f(a-x)=f(a+x),則函數y=f(x)的圖像關(guān)于直線(xiàn)x=a對稱(chēng);
高二數學(xué)知識點(diǎn)總結 8
一、導數的應用
1.用導數研究函數的最值
確定函數在其確定的定義域內可導(通常為開(kāi)區間),求出導函數在定義域內的零點(diǎn),研究在零點(diǎn)左、右的函數的單調性,若左增,右減,則在該零點(diǎn)處,函數去極大值;若左邊減少,右邊增加,則該零點(diǎn)處函數取極小值。學(xué)習了如何用導數研究函數的最值之后,可以做一個(gè)有關(guān)導數和函數的綜合題來(lái)檢驗下學(xué)習成果。
2.生活中常見(jiàn)的函數優(yōu)化問(wèn)題
1)費用、成本最省問(wèn)題
2)利潤、收益最大問(wèn)題
3)面積、體積最(大)問(wèn)題
二、推理與證明
1.歸納推理:歸納推理是高二數學(xué)的一個(gè)重點(diǎn)內容,其難點(diǎn)就是有部分結論得到一般結論,破解的方法是充分考慮部分結論提供的信息,從中發(fā)現一般規律;類(lèi)比推理的難點(diǎn)是發(fā)現兩類(lèi)對象的相似特征,由其中一類(lèi)對象的特征得出另一類(lèi)對象的特征,破解的方法是利用已經(jīng)掌握的數學(xué)知識,分析兩類(lèi)對象之間的關(guān)系,通過(guò)兩類(lèi)對象已知的相似特征得出所需要的相似特征。
2.類(lèi)比推理:由兩類(lèi)對象具有某些類(lèi)似特征和其中一類(lèi)對象的某些已知特征,推出另一類(lèi)對象也具有這些特征的推理稱(chēng)為類(lèi)比推理,簡(jiǎn)而言之,類(lèi)比推理是由特殊到特殊的推理。
三、不等式
對于含有參數的一元二次不等式解的討論
1)二次項系數:如果二次項系數含有字母,要分二次項系數是正數、零和負數三種情況進(jìn)行討論。
2)不等式對應方程的根:如果一元二次不等式對應的方程的根能夠通過(guò)因式分解的方法求出來(lái),則根據這兩個(gè)根的大小進(jìn)行分類(lèi)討論,這時(shí),兩個(gè)根的大小關(guān)系就是分類(lèi)標準,如果一元二次不等式對應的方程根不能通過(guò)因式分解的方法求出來(lái),則根據方程的判別式進(jìn)行分類(lèi)討論。通過(guò)不等式練習題能夠幫助你更加熟練的運用不等式的知識點(diǎn),例如用放縮法證明不等式這種技巧以及利用均值不等式求最值的九種技巧這樣的解題思路需要再做題的`過(guò)程中總結出來(lái)。
拓展閱讀
說(shuō)明:以下內容為本文主關(guān)鍵詞的百科內容,一詞可能多意,僅作為參考閱讀內容,下載的文檔不包含此內容。每個(gè)關(guān)鍵詞后面會(huì )隨機推薦一個(gè)搜索引擎工具,方便用戶(hù)從多個(gè)垂直領(lǐng)域了解更多與本文相似的內容。
1、數學(xué):數學(xué),是研究數量、結構、變化、空間以及信息等概念的一門(mén)學(xué)科。數學(xué)是人類(lèi)對事物的抽象結構與模式進(jìn)行嚴格描述的一種通用手段,可以應用于現實(shí)世界的任何問(wèn)題,所有的數學(xué)對象本質(zhì)上都是人為定義的。從這個(gè)意義上,數學(xué)屬于形式科學(xué),而不是自然科學(xué)。不同的數學(xué)家和哲學(xué)家對數學(xué)的確切范圍和定義有一系列的看法。在人類(lèi)歷史發(fā)展和社會(huì )生活中,數學(xué)發(fā)揮著(zhù)不可替代的作用,同時(shí)也是學(xué)習和研究現代科學(xué)技術(shù)必不可少的基本工具。數學(xué)史數理邏輯與數學(xué)基礎a:演繹邏輯學(xué)(也稱(chēng)符號邏輯學(xué)),b:證明論(也稱(chēng)元數學(xué)),c:遞歸論,d:模型論,e:公理集合論,f:數學(xué)基礎,g:數理邏輯與數學(xué)基礎其他學(xué)科。數論a:初等數論,b:解析數論,c:代數數論,d:超越數論,e:丟番圖逼近,f:數的幾何,g:概率數論,h:計算數論,i:數論其他學(xué)科。代數學(xué)a:線(xiàn)性代數,b:群論,c:域論,d:李群,e:李代數,f:Kac-Moody代數,g:環(huán)論(包括交換環(huán)與交換代數,...頭條搜索更多高二數學(xué)下冊知識點(diǎn)總結
2、類(lèi)比推理:類(lèi)比推理亦稱(chēng)“類(lèi)推”。推理的一種形式。根據兩個(gè)對象在某些屬性上相同或相似,通過(guò)比較而推斷出它們在其他屬性上也相同的推理過(guò)程。它是從觀(guān)察個(gè)別現象開(kāi)始的,因而近似歸納推理。但它又不是由特殊到一般,而是由特殊到特殊,因而又不同于歸納推理。分完全類(lèi)推和不完全類(lèi)推兩種形式。完全類(lèi)推是兩個(gè)或兩類(lèi)事物在進(jìn)行比較的方面完全相同時(shí)的類(lèi)推;不完全類(lèi)推是兩個(gè)或兩類(lèi)事物在進(jìn)行比較的方面不完全相同時(shí)的類(lèi)推。這是科學(xué)研究中常用的方法之一。它是從特殊推向特殊的推理。類(lèi)比推理是根據兩個(gè)或兩類(lèi)對象有部分屬性相同,從而推出它們的其他屬性也相同的推理。簡(jiǎn)稱(chēng)類(lèi)推、類(lèi)比。以關(guān)于兩個(gè)事物某些屬性相同的判斷為前提,推出兩個(gè)事物的其他屬性相同的結論的推理。如聲和光有不少屬性相同--直線(xiàn)傳播,有反射、折射和干擾等現象;由此推出:既然聲有波動(dòng)性質(zhì),光也有波動(dòng)性質(zhì)。這就是類(lèi)比推理。類(lèi)比推理具有或然性。如果前提中確認的共同屬性很少,而且共同屬性和推出來(lái)的屬性沒(méi)有什么關(guān)系,這樣的類(lèi)比推...谷歌搜索更多高二數學(xué)下冊知識點(diǎn)總結
3、總結:總結是事后對某一階段的工作或某項工作的完成情況,包括取得的成績(jì)、存在的問(wèn)題及得到的經(jīng)驗和教訓加以回顧和分析,為今后的工作提供幫助和借鑒的一種書(shū)面材料。
。1)自身性?偨Y都是以第一人稱(chēng),從自身出發(fā)。它是單位或個(gè)人自身實(shí)踐活動(dòng)的反映,其內容行文來(lái)自自身實(shí)踐,其結論也為指導今后自身實(shí)踐。
。2)指導性?偨Y以回顧思考的方式對自身以往實(shí)踐做理性認識,找出事物本質(zhì)和發(fā)展規律,取得經(jīng)驗,避免失誤,以指導未來(lái)工作。
。3)理論性?偨Y是理論的升華,是對前一階段工作的經(jīng)驗、教訓的分析研究,借此上升到理論的高度,并從中提煉出有規律性的東西,從而提高認識,以正確的認識來(lái)把握客觀(guān)事物,更好地指導今后的實(shí)際工作。
。4)客觀(guān)性?偨Y是對實(shí)際工作再認識的過(guò)程,是對前一階段工作的回顧?偨Y的內容必須要完全忠于自身的客觀(guān)實(shí)踐,其材料必須以客觀(guān)事實(shí)為依據,不允許東拼西湊,要真實(shí)、客觀(guān)地分析情況、總結經(jīng)驗。
。5)綜合性總結。對某一單位、某一部門(mén)工作進(jìn)行全面性總結,既反...頭條搜索更多高二數學(xué)下冊知識點(diǎn)總結
4、因式分解:把一個(gè)多項式在一個(gè)范圍(如實(shí)數范圍內分解,即所有項均為實(shí)數)化為幾個(gè)整式的積的形式,這種式子變形叫做這個(gè)多項式的因式分解,也叫作把這個(gè)多項式分解因式。把一個(gè)多項式在一個(gè)范圍化為幾個(gè)整式的積的形式,這種式子變形叫做這個(gè)多項式的因式分解,也叫作把這個(gè)多項式分解因式。因式分解是中學(xué)數學(xué)中最重要的恒等變形之一,它被廣泛地應用于初等數學(xué)之中,在數學(xué)求根作圖、解一元二次方程方面也有很廣泛的應用,是解決許多數學(xué)問(wèn)題的有力工具。因式分解方法靈活,技巧性強。學(xué)習這些方法與技巧,不僅是掌握因式分解內容所需的,而且對于培養解題技能、發(fā)展思維能力都有著(zhù)十分獨特的作用。學(xué)習它,既可以復習整式的四則運算,又為學(xué)習分式打好基礎;學(xué)好它,既可以培養學(xué)生的觀(guān)察、思維發(fā)展性、運算能力,又可以提高綜合分析和解決問(wèn)題的能力;窘Y論:分解因式為整式乘法的逆過(guò)程。高級結論:在高等代數上,因式分解有一些重要結論,在初等代數層面上證明很困難,但是理解很容易。
高二數學(xué)知識點(diǎn)總結 9
考點(diǎn)一:向量的概念、向量的基本定理
【內容解讀】了解向量的實(shí)際背景,掌握向量、零向量、平行向量、共線(xiàn)向量、單位向量、相等向量等概念,理解向量的幾何表示,掌握平面向量的基本定理。
注意對向量概念的理解,向量是可以自由移動(dòng)的,平移后所得向量與原向量相同;兩個(gè)向量無(wú)法比較大小,它們的?杀容^大小。
考點(diǎn)二:向量的運算
【內容解讀】向量的運算要求掌握向量的加減法運算,會(huì )用平行四邊形法則、三角形法則進(jìn)行向量的加減運算;掌握實(shí)數與向量的積運算,理解兩個(gè)向量共線(xiàn)的含義,會(huì )判斷兩個(gè)向量的平行關(guān)系;掌握向量的數量積的運算,體會(huì )平面向量的數量積與向量投影的關(guān)系,并理解其幾何意義,掌握數量積的坐標表達式,會(huì )進(jìn)行平面向量積的運算,能運用數量積表示兩個(gè)向量的夾角,會(huì )用向量積判斷兩個(gè)平面向量的'垂直關(guān)系。
【命題規律】命題形式主要以選擇、填空題型出現,難度不大,考查重點(diǎn)為模和向量夾角的定義、夾角公式、向量的坐標運算,有時(shí)也會(huì )與其它內容相結合。
考點(diǎn)三:定比分點(diǎn)
【內容解讀】掌握線(xiàn)段的定比分點(diǎn)和中點(diǎn)坐標公式,并能熟練應用,求點(diǎn)分有向線(xiàn)段所成比時(shí),可借助圖形來(lái)幫助理解。
【命題規律】重點(diǎn)考查定義和公式,主要以選擇題或填空題型出現,難度一般。由于向量應用的廣泛性,經(jīng)常也會(huì )與三角函數,解析幾何一并考查,若出現在解答題中,難度以中檔題為主,偶爾也以難度略高的題目。
考點(diǎn)四:向量與三角函數的綜合問(wèn)題
【內容解讀】向量與三角函數的綜合問(wèn)題是高考經(jīng)常出現的問(wèn)題,考查了向量的知識,三角函數的知識,達到了高考中試題的覆蓋面的要求。
【命題規律】命題以三角函數作為坐標,以向量的坐標運算或向量與解三角形的內容相結合,也有向量與三角函數圖象平移結合的問(wèn)題,屬中檔偏易題。
考點(diǎn)五:平面向量與函數問(wèn)題的交匯
【內容解讀】平面向量與函數交匯的問(wèn)題,主要是向量與二次函數結合的問(wèn)題為主,要注意自變量的取值范圍。
【命題規律】命題多以解答題為主,屬中檔題。
考點(diǎn)六:平面向量在平面幾何中的應用
【內容解讀】向量的坐標表示實(shí)際上就是向量的代數表示。在引入向量的坐標表示后,使向量之間的運算代數化,這樣就可以將“形”和“數”緊密地結合在一起。因此,許多平面幾何問(wèn)題中較難解決的問(wèn)題,都可以轉化為大家熟悉的代數運算的論證.也就是把平面幾何圖形放到適當的坐標系中,賦予幾何圖形有關(guān)點(diǎn)與平面向量具體的坐標,這樣將有關(guān)平面幾何問(wèn)題轉化為相應的代數運算和向量運算,從而使問(wèn)題得到解決
【命題規律】命題多以解答題為主,屬中等偏難的試題。
高二數學(xué)知識點(diǎn)總結 10
在中國古代把數學(xué)叫算術(shù),又稱(chēng)算學(xué),最后才改為數學(xué)。
1.任意角
。1)角的分類(lèi):
、侔葱D方向不同分為正角、負角、零角。
、诎唇K邊位置不同分為象限角和軸線(xiàn)角。
。2)終邊相同的角:
終邊與角相同的角可寫(xiě)成+k360(kZ)。
。3)弧度制:
、1弧度的角:把長(cháng)度等于半徑長(cháng)的弧所對的圓心角叫做1弧度的角。
、谝幎ǎ赫堑幕《葦禐檎龜,負角的弧度數為負數,零角的弧度數為零,||=,l是以角作為圓心角時(shí)所對圓弧的長(cháng),r為半徑。
、塾没《茸鰡挝粊(lái)度量角的制度叫做弧度制。比值與所取的r的大小無(wú)關(guān),僅與角的大小有關(guān)。
、芑《扰c角度的`換算:360弧度;180弧度。
、莼¢L(cháng)公式:l=||r,扇形面積公式:S扇形=lr=||r2
2.任意角的三角函數
。1)任意角的三角函數定義:
設是一個(gè)任意角,角的終邊與單位圓交于點(diǎn)P(x,y),那么角的正弦、余弦、正切分別是:sin =y,cos =x,tan =,它們都是以角為自變量,以單位圓上點(diǎn)的坐標或坐標的比值為函數值的函數。
。2)三角函數在各象限內的符號口訣是:一全正、二正弦、三正切、四余弦。
3.三角函數線(xiàn)
設角的頂點(diǎn)在坐標原點(diǎn),始邊與x軸非負半軸重合,終邊與單位圓相交于點(diǎn)P,過(guò)P作PM垂直于x軸于M。由三角函數的定義知,點(diǎn)P的坐標為(cos_,sin_),即P(cos_,sin_),其中cos =OM,sin =MP,單位圓與x軸的正半軸交于點(diǎn)A,單位圓在A(yíng)點(diǎn)的切線(xiàn)與的終邊或其反向延長(cháng)線(xiàn)相交于點(diǎn)T,則tan =AT。我們把有向線(xiàn)段OM、MP、AT叫做的余弦線(xiàn)、正弦線(xiàn)、正切線(xiàn)。
高二數學(xué)知識點(diǎn)總結 11
1、幾何概型的定義:如果每個(gè)事件發(fā)生的概率只與構成該事件區域的長(cháng)度(面積或體積)成比例,則稱(chēng)這樣的概率模型為幾何概率模型,簡(jiǎn)稱(chēng)幾何概型。
2、幾何概型的概率公式:P(A)=構成事件A的區域長(cháng)度(面積或體積);
試驗的全部結果所構成的'區域長(cháng)度(面積或體積)
3、幾何概型的特點(diǎn):
1)試驗中所有可能出現的結果(基本事件)有無(wú)限多個(gè);
2)每個(gè)基本事件出現的可能性相等、
4、幾何概型與古典概型的比較:一方面,古典概型具有有限性,即試驗結果是可數的;而幾何概型則是在試驗中出現無(wú)限多個(gè)結果,且與事件的區域長(cháng)度(或面積、體積等)有關(guān),即試驗結果具有無(wú)限性,是不可數的。這是二者的不同之處;另一方面,古典概型與幾何概型的試驗結果都具有等可能性,這是二者的共性。
通過(guò)以上對于幾何概型的基本知識點(diǎn)的梳理,我們不難看出其要核是:要抓住幾何概型具有無(wú)限性和等可能性?xún)蓚(gè)特點(diǎn),無(wú)限性是指在一次試驗中,基本事件的個(gè)數可以是無(wú)限的,這是區分幾何概型與古典概型的關(guān)鍵所在;等可能性是指每一個(gè)基本事件發(fā)生的可能性是均等的,這是解題的基本前提。因此,用幾何概型求解的概率問(wèn)題和古典概型的基本思路是相同的,同屬于“比例法”,即隨機事件A的概率可以用“事件A包含的基本事件所占的圖形的長(cháng)度、面積(體積)和角度等”與“試驗的基本事件所占總長(cháng)度、面積(體積)和角度等”之比來(lái)表示。下面就幾何概型常見(jiàn)類(lèi)型題作一歸納梳理。
高二數學(xué)知識點(diǎn)總結 12
一、映射與函數:
(1)映射的概念:
(2)一一映射:
(3)函數的概念:
二、函數的三要素:
相同函數的判斷方法:
、賹▌t;
、诙x域(兩點(diǎn)必須同時(shí)具備)
(1)函數解析式的求法:
、俣x法(拼湊):
、趽Q元法:
、鄞ㄏ禂捣:
、苜x值法:
(2)函數定義域的求法:
、俸瑓(wèn)題的定義域要分類(lèi)討論;
、趯τ趯(shí)際問(wèn)題,在求出函數解析式后;必須求出其定義域,此時(shí)的定義域要根據實(shí)際意義來(lái)確定。
(3)函數值域的求法:
、倥浞椒:轉化為二次函數,利用二次函數的特征來(lái)求值;常轉化為型如:的形式;
、谀媲蠓(反求法):通過(guò)反解,用來(lái)表示,再由的'取值范圍,通過(guò)解不等式,得出的取值范圍;常用來(lái)解,型如:;
、軗Q元法:通過(guò)變量代換轉化為能求值域的函數,化歸思想;
、萑怯薪绶:轉化為只含正弦、余弦的函數,運用三角函數有界性來(lái)求值域;
、藁静坏仁椒:轉化成型如:,利用平均值不等式公式來(lái)求值域;
、邌握{性法:函數為單調函數,可根據函數的單調性求值域。
、鄶敌谓Y合:根據函數的幾何圖形,利用數型結合的方法來(lái)求值域。
高二數學(xué)知識點(diǎn)總結 13
(1)必然事件:在條件S下,一定會(huì )發(fā)生的事件,叫相對于條件S的必然事件;
(2)不可能事件:在條件S下,一定不會(huì )發(fā)生的事件,叫相對于條件S的不可能事件;
(3)確定事件:必然事件和不可能事件統稱(chēng)為相對于條件S的確定事件;
(4)隨機事件:在條件S下可能發(fā)生也可能不發(fā)生的事件,叫相對于條件S的隨機事件;
(5)頻數與頻率:在相同的條件S下重復n次試驗,觀(guān)察某一事件A是否出現,稱(chēng)n次試驗中事件A出現的次數nA為事件A出現的頻數;稱(chēng)事件A出現的比例fn(A)=nnA為事件A出現的概率:對于給定的隨機事件A,如果隨著(zhù)試驗次數的增加,事件A發(fā)生的頻率fn(A)穩定在某個(gè)常數上,把這個(gè)常數記作P(A),稱(chēng)為事件A的概率。
(6)頻率與概率的.區別與聯(lián)系:隨機事件的頻率,指此事件發(fā)生的次數nA與試驗總次數n的比值nnA,它具有一定的穩定性,總在某個(gè)常數附近擺動(dòng),且隨著(zhù)試驗次數的不斷增多,這種擺動(dòng)幅度越來(lái)越小。我們把這個(gè)常數叫做隨機事件的概率,概率從數量上反映了隨機事件發(fā)生的可能性的大小。頻率在大量重復試驗的前提下可以近似地作為這個(gè)事件的概率。
然說(shuō)難度比較大,我建議考生,采取分部得分整個(gè)試
高二數學(xué)知識點(diǎn)總結 14
1、對數學(xué)概念重新認識,深刻理解其內涵與外延,區分容易混淆的概念。如以角的概念為例,數學(xué)課本中出現了不少種角,如直線(xiàn)的斜角,兩條異面直線(xiàn)所成的角,直線(xiàn)與平面所成的角,復數的輻角主值,夾角、倒角等,它們從各自的定義出法,都有一個(gè)確定的取值范圍。如兩條異面直線(xiàn)所成的角是銳角或直角,而不是鈍角,這樣保證了它的唯一性。對此理解、掌握了才不會(huì )出現概念性錯誤。
2、盡一步加深對數學(xué)定理、公式的'理解與掌握,注意每個(gè)定理、公式的運用條件和范圍。如用平均值不等式求最值,必須滿(mǎn)三個(gè)條件,缺一不可。有的同學(xué)之所以出錯誤,不是對平均值不等式的結構不熟悉,就是忽視其應滿(mǎn)足的條件。
3、掌握數學(xué)典型命題所體現的思想與方法。如對等式的證明方法,就給大家提供了求二項式展開(kāi)式或多項式展開(kāi)式系數和的普遍方法。因此,端正思想,認真看書(shū),全面掌握,并結合其它資料和練習,加深對數學(xué)基礎知識的理解,從而為提高解題能力打下堅實(shí)的基礎。
高二數學(xué)知識點(diǎn)總結 15
等腰直角三角形面積公式:S=a2/2,S=ch/2=c2/4(其中a為直角邊,c為斜邊,h為斜邊上的高)。
面積公式
若假設等腰直角三角形兩腰分別為a,b,底為c,則可得其面積:
S=ab/2。
且由等腰直角三角形性質(zhì)可知:底邊c上的`高h=c/2,則三角面積可表示為:
S=ch/2=c2/4。
等腰直角三角形是一種特殊的三角形,具有所有三角形的性質(zhì):穩定性,兩直角邊相等直角邊夾一直角銳角45°,斜邊上中線(xiàn)角平分線(xiàn)垂線(xiàn)三線(xiàn)合一。
反正弦函數的導數:正弦函數y=sinx在[-π/2,π/2]上的反函數,叫做反正弦函數。記作arcsinx,表示一個(gè)正弦值為x的角,該角的范圍在[-π/2,π/2]區間內。定義域[-1,1],值域[-π/2,π/2]。
反函數求導方法
若F(X),G(X)互為反函數,則:F(X)_(X)=1
E.G.:y=arcsin_siny
y_=1(arcsinx)_siny)=1
y=1/(siny)=1/(cosy)=1/根號(1-sin^2y)=1/根號(1-x^2)
其余依此類(lèi)推
【高二數學(xué)知識點(diǎn)總結】相關(guān)文章:
數學(xué)高二知識點(diǎn)總結03-07
高二數學(xué)知識點(diǎn)總結06-02
高二數學(xué)知識點(diǎn)總結12-18
高二數學(xué)知識點(diǎn)總結01-31