成人免费看黄网站无遮挡,caowo999,se94se欧美综合色,a级精品九九九大片免费看,欧美首页,波多野结衣一二三级,日韩亚洲欧美综合

高二上冊數學(xué)知識點(diǎn)總結

時(shí)間:2024-09-06 11:39:28 曉麗 總結 我要投稿
  • 相關(guān)推薦

高二上冊數學(xué)知識點(diǎn)總結

  漫長(cháng)的學(xué)習生涯中,說(shuō)到知識點(diǎn),大家是不是都習慣性的重視?知識點(diǎn)就是一些?嫉膬热,或者考試經(jīng)常出題的地方。還在為沒(méi)有系統的知識點(diǎn)而發(fā)愁嗎?下面是小編整理的高二上冊數學(xué)知識點(diǎn)總結,歡迎閱讀與收藏。

高二上冊數學(xué)知識點(diǎn)總結

  高二上冊數學(xué)知識點(diǎn)總結

  基本概念

  公理1:如果一條直線(xiàn)上的兩點(diǎn)在一個(gè)平面內,那么這條直線(xiàn)上的所有的點(diǎn)都在這個(gè)平面內。

  公理2:如果兩個(gè)平面有一個(gè)公共點(diǎn),那么它們有且只有一條通過(guò)這個(gè)點(diǎn)的公共直線(xiàn)。

  公理3:過(guò)不在同一條直線(xiàn)上的三個(gè)點(diǎn),有且只有一個(gè)平面。

  推論1:經(jīng)過(guò)一條直線(xiàn)和這條直線(xiàn)外一點(diǎn),有且只有一個(gè)平面。

  推論2:經(jīng)過(guò)兩條相交直線(xiàn),有且只有一個(gè)平面。

  推論3:經(jīng)過(guò)兩條平行直線(xiàn),有且只有一個(gè)平面。

  公理4:平行于同一條直線(xiàn)的兩條直線(xiàn)互相平行。

  等角定理:如果一個(gè)角的兩邊和另一個(gè)角的兩邊分別平行并且方向相同,那么這兩個(gè)角相等。

  高二年級數學(xué)知識點(diǎn)

  空間兩條直線(xiàn)只有三種位置關(guān)系:平行、相交、異面

  按是否共面可分為兩類(lèi):

 。1)共面:平行、相交

 。2)異面:

  異面直線(xiàn)的定義:不同在任何一個(gè)平面內的兩條直線(xiàn)或既不平行也不相交。

  異面直線(xiàn)判定定理:用平面內一點(diǎn)與平面外一點(diǎn)的直線(xiàn),與平面內不經(jīng)過(guò)該點(diǎn)的直線(xiàn)是異面直線(xiàn)。

  兩異面直線(xiàn)所成的角:范圍為(0°,90°)esp?臻g向量法

  兩異面直線(xiàn)間距離:公垂線(xiàn)段(有且只有一條)esp?臻g向量法

  若從有無(wú)公共點(diǎn)的角度看可分為兩類(lèi):

 。1)有且僅有一個(gè)公共點(diǎn)——相交直線(xiàn);(2)沒(méi)有公共點(diǎn)——平行或異面

  直線(xiàn)和平面的位置關(guān)系:

  直線(xiàn)和平面只有三種位置關(guān)系:在平面內、與平面相交、與平面平行

 、僦本(xiàn)在平面內——有無(wú)數個(gè)公共點(diǎn)

 、谥本(xiàn)和平面相交——有且只有一個(gè)公共點(diǎn)

  直線(xiàn)與平面所成的角:平面的一條斜線(xiàn)和它在這個(gè)平面內的射影所成的銳角。

  空間向量法(找平面的法向量)

  規定:a、直線(xiàn)與平面垂直時(shí),所成的角為直角,b、直線(xiàn)與平面平行或在平面內,所成的角為0°角

  由此得直線(xiàn)和平面所成角的取值范圍為[0°,90°]

  最小角定理:斜線(xiàn)與平面所成的角是斜線(xiàn)與該平面內任一條直線(xiàn)所成角中的最小角

  三垂線(xiàn)定理及逆定理:如果平面內的一條直線(xiàn),與這個(gè)平面的一條斜線(xiàn)的射影垂直,那么它也與這條斜線(xiàn)垂直

  直線(xiàn)和平面垂直

  直線(xiàn)和平面垂直的定義:如果一條直線(xiàn)a和一個(gè)平面內的任意一條直線(xiàn)都垂直,我們就說(shuō)直線(xiàn)a和平面互相垂直。直線(xiàn)a叫做平面的垂線(xiàn),平面叫做直線(xiàn)a的垂面。

  直線(xiàn)與平面垂直的判定定理:如果一條直線(xiàn)和一個(gè)平面內的兩條相交直線(xiàn)都垂直,那么這條直線(xiàn)垂直于這個(gè)平面。

  直線(xiàn)與平面垂直的性質(zhì)定理:如果兩條直線(xiàn)同垂直于一個(gè)平面,那么這兩條直線(xiàn)平行。

 、壑本(xiàn)和平面平行——沒(méi)有公共點(diǎn)

  直線(xiàn)和平面平行的定義:如果一條直線(xiàn)和一個(gè)平面沒(méi)有公共點(diǎn),那么我們就說(shuō)這條直線(xiàn)和這個(gè)平面平行。

  直線(xiàn)和平面平行的判定定理:如果平面外一條直線(xiàn)和這個(gè)平面內的一條直線(xiàn)平行,那么這條直線(xiàn)和這個(gè)平面平行。

  直線(xiàn)和平面平行的性質(zhì)定理:如果一條直線(xiàn)和一個(gè)平面平行,經(jīng)過(guò)這條直線(xiàn)的平面和這個(gè)平面相交,那么這條直線(xiàn)和交線(xiàn)平行。

  高二數學(xué)重點(diǎn)知識點(diǎn)梳理

  簡(jiǎn)單隨機抽樣的定義:

  一般地,設一個(gè)總體含有N個(gè)個(gè)體,從中逐個(gè)不放回地抽取n個(gè)個(gè)體作為樣本(n≤N),如果每次抽取時(shí)總體內的各個(gè)個(gè)體被抽到的機會(huì )都相等,就把這種抽樣方法叫做簡(jiǎn)單隨機抽樣。

  簡(jiǎn)單隨機抽樣的特點(diǎn):

 。1)用簡(jiǎn)單隨機抽樣從含有N個(gè)個(gè)體的總體中抽取一個(gè)容量為n的樣本時(shí),每次抽取一個(gè)個(gè)體時(shí)任一個(gè)體被抽到的概率為;在整個(gè)抽樣過(guò)程中各個(gè)個(gè)體被抽到的概率為

 。2)簡(jiǎn)單隨機抽樣的特點(diǎn)是,逐個(gè)抽取,且各個(gè)個(gè)體被抽到的概率相等;

 。3)簡(jiǎn)單隨機抽樣方法,體現了抽樣的客觀(guān)性與公平性,是其他更復雜抽樣方法的基礎。

 。4)簡(jiǎn)單隨機抽樣是不放回抽樣;它是逐個(gè)地進(jìn)行抽;它是一種等概率抽樣

  簡(jiǎn)單抽樣常用方法:

 。1)抽簽法:先將總體中的所有個(gè)體(共有N個(gè))編號(號碼可從1到N),并把號碼寫(xiě)在形狀、大小相同的號簽上(號簽可用小球、卡片、紙條等制作),然后將這些號簽放在同一個(gè)箱子里,進(jìn)行均勻攪拌,抽簽時(shí)每次從中抽一個(gè)號簽,連續抽取n次,就得到一個(gè)容量為n的樣本適用范圍:總體的個(gè)體數不多時(shí)優(yōu)點(diǎn):抽簽法簡(jiǎn)便易行,當總體的個(gè)體數不太多時(shí)適宜采用抽簽法。

 。2)隨機數表法:隨機數表抽樣“三步曲”:第一步,將總體中的個(gè)體編號;第二步,選定開(kāi)始的數字;第三步,獲取樣本號碼概率。

  高二上冊數學(xué)知識點(diǎn)總結

  一、導數的應用

  1、用導數研究函數的最值

  確定函數在其確定的定義域內可導(通常為開(kāi)區間),求出導函數在定義域內的零點(diǎn),研究在零點(diǎn)左、右的函數的單調性,若左增,右減,則在該零點(diǎn)處,函數去極大值;若左邊減少,右邊增加,則該零點(diǎn)處函數取極小值。

  學(xué)習了如何用導數研究函數的最值之后,可以做一個(gè)有關(guān)導數和函數的綜合題來(lái)檢驗下學(xué)習成果。

  2、生活中常見(jiàn)的函數優(yōu)化問(wèn)題

  1)費用、成本最省問(wèn)題

  2)利潤、收益最大問(wèn)題

  3)面積、體積最(大)問(wèn)題

  二、推理與證明

  1、歸納推理:歸納推理是高二數學(xué)的一個(gè)重點(diǎn)內容,其難點(diǎn)就是有部分結論得到一般結論,的方法是充分考慮部分結論提供的信息,從中發(fā)現一般規律;類(lèi)比推理的難點(diǎn)是發(fā)現兩類(lèi)對象的相似特征,由其中一類(lèi)對象的特征得出另一類(lèi)對象的特征,的方法是利用已經(jīng)掌握的數學(xué)知識,分析兩類(lèi)對象之間的關(guān)系,通過(guò)兩類(lèi)對象已知的相似特征得出所需要的相似特征。

  2、類(lèi)比推理:由兩類(lèi)對象具有某些類(lèi)似特征和其中一類(lèi)對象的某些已知特征,推出另一類(lèi)對象也具有這些特征的推理稱(chēng)為類(lèi)比推理,簡(jiǎn)而言之,類(lèi)比推理是由特殊到特殊的推理。

  三、不等式

  對于含有參數的一元二次不等式解的討論

  1)二次項系數:如果二次項系數含有字母,要分二次項系數是正數、零和負數三種情況進(jìn)行討論。

  2)不等式對應方程的根:如果一元二次不等式對應的方程的根能夠通過(guò)因式分解的方法求出來(lái),則根據這兩個(gè)根的大小進(jìn)行分類(lèi)討論,這時(shí),兩個(gè)根的大小關(guān)系就是分類(lèi)標準,如果一元二次不等式對應的方程根不能通過(guò)因式分解的方法求出來(lái),則根據方程的判別式進(jìn)行分類(lèi)討論。

  通過(guò)不等式練習題能夠幫助你更加熟練的運用不等式的知識點(diǎn),例如用放縮法證明不等式這種技巧以及利用均值不等式求最值的九種技巧這樣的解題思路需要再做題的過(guò)程中總結出來(lái)。

  四、坐標平面上的直線(xiàn)

  1、內容要目:直線(xiàn)的點(diǎn)方向式方程、直線(xiàn)的點(diǎn)法向式方程、點(diǎn)斜式方程、直線(xiàn)方程的一般式、直線(xiàn)的傾斜角和斜率等。點(diǎn)到直線(xiàn)的距離,兩直線(xiàn)的夾角以及兩平行線(xiàn)之間的距離。

  2、基本要求:掌握求直線(xiàn)的方法,熟練轉化確定直線(xiàn)方向的不同條件(例如:直線(xiàn)方向向量、法向量、斜率、傾斜角等)。熟練判斷點(diǎn)與直線(xiàn)、直線(xiàn)與直線(xiàn)的不同位置,能正確求點(diǎn)到直線(xiàn)的距離、兩直線(xiàn)的交點(diǎn)坐標及兩直線(xiàn)的夾角大小。

  3、重難點(diǎn):初步建立代數方法解決幾何問(wèn)題的觀(guān)念,正確將幾何條件與代數表示進(jìn)行轉化,定量地研究點(diǎn)與直線(xiàn)、直線(xiàn)與直線(xiàn)的位置關(guān)系。根據兩個(gè)獨立條件求出直線(xiàn)方程。熟練運用待定系數法。

  五、圓錐曲線(xiàn)

  1、內容要目:直角坐標系中,曲線(xiàn)C是方程F(x,y)=0的曲線(xiàn)及方程F(x,y)=0是曲線(xiàn)C的方程,圓的標準方程及圓的一般方程。橢圓、雙曲線(xiàn)、拋物線(xiàn)的標準方程及它們的性質(zhì)。

  2、基本要求:理解曲線(xiàn)的方程與方程的曲線(xiàn)的意義,利用代數方法判斷定點(diǎn)是否在曲線(xiàn)

  上及求曲線(xiàn)的交點(diǎn)。掌握圓、橢圓、雙曲線(xiàn)、拋物線(xiàn)的定義和求這些曲線(xiàn)方程的基本方法。求曲線(xiàn)的交點(diǎn)之間的距離及交點(diǎn)的中點(diǎn)坐標。利用直線(xiàn)和圓、圓和圓的位置關(guān)系的幾何判定,確定它們的位置關(guān)系并利用解析法解決相應的幾何問(wèn)題。

  3、重難點(diǎn):建立數形結合的概念,理解曲線(xiàn)與方程的對應關(guān)系,掌握代數研究幾何的方法,掌握把已知條件轉化為等價(jià)的代數表示,通過(guò)代數方法解決幾何問(wèn)題。

  高二上冊數學(xué)知識點(diǎn)總結

  分層抽樣

  先將總體中的所有單位按照某種特征或標志(性別、年齡等)劃分成若干類(lèi)型或層次,然后再在各個(gè)類(lèi)型或層次中采用簡(jiǎn)單隨機抽樣或系用抽樣的辦法抽取一個(gè)子樣本,最后,將這些子樣本合起來(lái)構成總體的樣本。

  兩種方法

  1.先以分層變量將總體劃分為若干層,再按照各層在總體中的比例從各層中抽取。

  2.先以分層變量將總體劃分為若干層,再將各層中的元素按分層的順序整齊排列,最后用系統抽樣的方法抽取樣本。

  2.分層抽樣是把異質(zhì)性較強的總體分成一個(gè)個(gè)同質(zhì)性較強的子總體,再抽取不同的子總體中的樣本分別代表該子總體,所有的樣本進(jìn)而代表總體。

  分層標準

  (1)以調查所要分析和研究的主要變量或相關(guān)的變量作為分層的標準。

  (2)以保證各層內部同質(zhì)性強、各層之間異質(zhì)性強、突出總體內在結構的變量作為分層變量。

  (3)以那些有明顯分層區分的變量作為分層變量。

  分層的比例問(wèn)題

  (1)按比例分層抽樣:根據各種類(lèi)型或層次中的單位數目占總體單位數目的比重來(lái)抽取子樣本的方法。

  (2)不按比例分層抽樣:有的層次在總體中的比重太小,其樣本量就會(huì )非常少,此時(shí)采用該方法,主要是便于對不同層次的子總體進(jìn)行專(zhuān)門(mén)研究或進(jìn)行相互比較。如果要用樣本資料推斷總體時(shí),則需要先對各層的數據資料進(jìn)行加權處理,調整樣本中各層的比例,使數據恢復到總體中各層實(shí)際的比例結構。

  (1)定義:

  對于函數y=f(x)(x∈D),把使f(x)=0成立的實(shí)數x叫做函數y=f(x)(x∈D)的零點(diǎn)。

  (2)函數的零點(diǎn)與相應方程的根、函數的圖象與x軸交點(diǎn)間的關(guān)系:

  方程f(x)=0有實(shí)數根?函數y=f(x)的圖象與x軸有交點(diǎn)?函數y=f(x)有零點(diǎn)。

  (3)函數零點(diǎn)的判定(零點(diǎn)存在性定理):

  如果函數y=f(x)在區間[a,b]上的圖象是連續不斷的一條曲線(xiàn),并且有f(a)·f(b)<0,那么,函數y=f(x)在區間(a,b)內有零點(diǎn),即存在c∈(a,b),使得f(c)=0,這個(gè)c也就是方程f(x)=0的根。

  二二次函數y=ax2+bx+c(a>0)的圖象與零點(diǎn)的關(guān)系

  三二分法

  對于在區間[a,b]上連續不斷且f(a)·f(b)<0的函數y=f(x),通過(guò)不斷地把函數f(x)的零點(diǎn)所在的區間一分為二,使區間的兩個(gè)端點(diǎn)逐步逼近零點(diǎn),進(jìn)而得到零點(diǎn)近似值的方法叫做二分法。

  1、函數的零點(diǎn)不是點(diǎn):

  函數y=f(x)的零點(diǎn)就是方程f(x)=0的實(shí)數根,也就是函數y=f(x)的圖象與x軸交點(diǎn)的橫坐標,所以函數的零點(diǎn)是一個(gè)數,而不是一個(gè)點(diǎn).在寫(xiě)函數零點(diǎn)時(shí),所寫(xiě)的一定是一個(gè)數字,而不是一個(gè)坐標。

  2、對函數零點(diǎn)存在的判斷中,必須強調:

  (1)、f(x)在[a,b]上連續;

  (2)、f(a)·f(b)<0;

  (3)、在(a,b)內存在零點(diǎn)。

  這是零點(diǎn)存在的一個(gè)充分條件,但不必要。

  3、對于定義域內連續不斷的函數,其相鄰兩個(gè)零點(diǎn)之間的所有函數值保持同號。

  利用函數零點(diǎn)的存在性定理判斷零點(diǎn)所在的區間時(shí),首先看函數y=f(x)在區間[a,b]上的圖象是否連續不斷,再看是否有f(a)·f(b)<0.若有,則函數y=f(x)在區間(a,b)內必有零點(diǎn)。

  四判斷函數零點(diǎn)個(gè)數的常用方法

  1、解方程法:

  令f(x)=0,如果能求出解,則有幾個(gè)解就有幾個(gè)零點(diǎn)。

  2、零點(diǎn)存在性定理法:

  利用定理不僅要判斷函數在區間[a,b]上是連續不斷的曲線(xiàn),且f(a)·f(b)<0,還必須結合函數的圖象與性質(zhì)(如單調性、奇偶性、周期性、對稱(chēng)性)才能確定函數有多少個(gè)零點(diǎn)。

  3、數形結合法:

  轉化為兩個(gè)函數的圖象的交點(diǎn)個(gè)數問(wèn)題.先畫(huà)出兩個(gè)函數的圖象,看其交點(diǎn)的個(gè)數,其中交點(diǎn)的個(gè)數,就是函數零點(diǎn)的個(gè)數。

  已知函數有零點(diǎn)(方程有根)求參數取值常用的方法

  1、直接法:

  直接根據題設條件構建關(guān)于參數的不等式,再通過(guò)解不等式確定參數范圍。

  2、分離參數法:

  先將參數分離,轉化成求函數值域問(wèn)題加以解決。

  3、數形結合法:

  先對解析式變形,在同一平面直角坐標系中,畫(huà)出函數的圖象,然后數形結合求解。

  高二上冊數學(xué)知識點(diǎn)總結

  (1)必然事件:在條件S下,一定會(huì )發(fā)生的事件,叫相對于條件S的必然事件;

  (2)不可能事件:在條件S下,一定不會(huì )發(fā)生的事件,叫相對于條件S的不可能事件;

  (3)確定事件:必然事件和不可能事件統稱(chēng)為相對于條件S的確定事件;

  (4)隨機事件:在條件S下可能發(fā)生也可能不發(fā)生的事件,叫相對于條件S的隨機事件;

  (5)頻數與頻率:在相同的條件S下重復n次試驗,觀(guān)察某一事件A是否出現,稱(chēng)n次試驗中事件A出現的次數nA為事件A出現的頻數;稱(chēng)事件A出現的比例fn(A)=nnA為事件A出現的概率:對于給定的隨機事件A,如果隨著(zhù)試驗次數的增加,事件A發(fā)生的頻率fn(A)穩定在某個(gè)常數上,把這個(gè)常數記作P(A),稱(chēng)為事件A的概率。

  (6)頻率與概率的區別與聯(lián)系:隨機事件的頻率,指此事件發(fā)生的次數nA與試驗總次數n的比值nnA,它具有一定的穩定性,總在某個(gè)常數附近擺動(dòng),且隨著(zhù)試驗次數的不斷增多,這種擺動(dòng)幅度越來(lái)越小。我們把這個(gè)常數叫做隨機事件的概率,概率從數量上反映了隨機事件發(fā)生的可能性的大小。頻率在大量重復試驗的前提下可以近似地作為這個(gè)事件的概率。

  然說(shuō)難度比較大,我建議考生,采取分部得分整個(gè)試

  高二上冊數學(xué)知識點(diǎn)總結

  1、幾何概型的定義:如果每個(gè)事件發(fā)生的概率只與構成該事件區域的長(cháng)度(面積或體積)成比例,則稱(chēng)這樣的概率模型為幾何概率模型,簡(jiǎn)稱(chēng)幾何概型。

  2、幾何概型的概率公式:P(A)=構成事件A的區域長(cháng)度(面積或體積);

  試驗的全部結果所構成的區域長(cháng)度(面積或體積)

  3、幾何概型的特點(diǎn):

  1)試驗中所有可能出現的結果(基本事件)有無(wú)限多個(gè);

  2)每個(gè)基本事件出現的可能性相等、

  4、幾何概型與古典概型的比較:一方面,古典概型具有有限性,即試驗結果是可數的;而幾何概型則是在試驗中出現無(wú)限多個(gè)結果,且與事件的區域長(cháng)度(或面積、體積等)有關(guān),即試驗結果具有無(wú)限性,是不可數的。這是二者的不同之處;另一方面,古典概型與幾何概型的試驗結果都具有等可能性,這是二者的共性。

  通過(guò)以上對于幾何概型的基本知識點(diǎn)的梳理,我們不難看出其要核是:要抓住幾何概型具有無(wú)限性和等可能性?xún)蓚(gè)特點(diǎn),無(wú)限性是指在一次試驗中,基本事件的個(gè)數可以是無(wú)限的,這是區分幾何概型與古典概型的關(guān)鍵所在;等可能性是指每一個(gè)基本事件發(fā)生的可能性是均等的,這是解題的基本前提。因此,用幾何概型求解的概率問(wèn)題和古典概型的基本思路是相同的,同屬于“比例法”,即隨機事件A的概率可以用“事件A包含的基本事件所占的圖形的長(cháng)度、面積(體積)和角度等”與“試驗的基本事件所占總長(cháng)度、面積(體積)和角度等”之比來(lái)表示。下面就幾何概型常見(jiàn)類(lèi)型題作一歸納梳理。

  高二上冊數學(xué)知識點(diǎn)總結

  1、學(xué)會(huì )三視圖的分析:

  2、斜二測畫(huà)法應注意的地方:

 。1)在已知圖形中取互相垂直的軸Ox、Oy。畫(huà)直觀(guān)圖時(shí),把它畫(huà)成對應軸ox、oy、使∠x(chóng)oy=45°(或135°);(2)平行于x軸的線(xiàn)段長(cháng)不變,平行于y軸的線(xiàn)段長(cháng)減半。(3)直觀(guān)圖中的45度原圖中就是90度,直觀(guān)圖中的90度原圖一定不是90度。

  3、表(側)面積與體積公式:

 、胖w:①表面積:S=S側+2S底;②側面積:S側=;③體積:V=S底h

 、棋F體:①表面積:S=S側+S底;②側面積:S側=;③體積:V=S底h:

 、桥_體①表面積:S=S側+S上底S下底②側面積:S側=

 、惹蝮w:①表面積:S=;②體積:V=

  4、位置關(guān)系的證明(主要方法):注意立體幾何證明的書(shū)寫(xiě)

 。1)直線(xiàn)與平面平行:①線(xiàn)線(xiàn)平行線(xiàn)面平行;②面面平行線(xiàn)面平行。

 。2)平面與平面平行:①線(xiàn)面平行面面平行。

 。3)垂直問(wèn)題:線(xiàn)線(xiàn)垂直線(xiàn)面垂直面面垂直。核心是線(xiàn)面垂直:垂直平面內的兩條相交直線(xiàn)

  5、求角:(步驟———————Ⅰ。找或作角;Ⅱ。求角)

 、女惷嬷本(xiàn)所成角的求法:平移法:平移直線(xiàn),構造三角形;

 、浦本(xiàn)與平面所成的角:直線(xiàn)與射影所成的角

  高二上冊數學(xué)知識點(diǎn)總結

  1.1柱、錐、臺、球的結構特征

  1.2空間幾何體的三視圖和直觀(guān)圖

  11三視圖:

  正視圖:從前往后

  側視圖:從左往右

  俯視圖:從上往下

  22畫(huà)三視圖的原則:

  長(cháng)對齊、高對齊、寬相等

  33直觀(guān)圖:斜二測畫(huà)法

  44斜二測畫(huà)法的步驟:

  (1).平行于坐標軸的線(xiàn)依然平行于坐標軸;

  (2).平行于y軸的線(xiàn)長(cháng)度變半,平行于x,z軸的線(xiàn)長(cháng)度不變;

  (3).畫(huà)法要寫(xiě)好。

  5用斜二測畫(huà)法畫(huà)出長(cháng)方體的步驟:(1)畫(huà)軸(2)畫(huà)底面(3)畫(huà)側棱(4)成圖

  1.3空間幾何體的表面積與體積

  (一)空間幾何體的表面積

  1棱柱、棱錐的表面積:各個(gè)面面積之和

  2圓柱的表面積3圓錐的表面積

  4圓臺的表面積

  5球的表面積

  (二)空間幾何體的體積

  1柱體的體積

  2錐體的體積

  3臺體的體積

  4球體的體積

  高二數學(xué)必修二知識點(diǎn):直線(xiàn)與平面的位置關(guān)系

  2.1空間點(diǎn)、直線(xiàn)、平面之間的位置關(guān)系

  2.1.1

  1平面含義:平面是無(wú)限延展的

  2平面的畫(huà)法及表示

  (1)平面的畫(huà)法:水平放置的平面通常畫(huà)成一個(gè)平行四邊形,銳角畫(huà)成450,且橫邊畫(huà)成鄰邊的2倍長(cháng)(如圖)

  (2)平面通常用希臘字母α、β、γ等表示,如平面α、平面β等,也可以用表示平面的平行四邊形的四個(gè)頂點(diǎn)或者相對的兩個(gè)頂點(diǎn)的大寫(xiě)字母來(lái)表示,如平面AC、平面ABCD等。

  3三個(gè)公理:

  (1)公理1:如果一條直線(xiàn)上的兩點(diǎn)在一個(gè)平面內,那么這條直線(xiàn)在此平面內

  符號表示為

  A∈L

  B∈L=>Lα

  A∈α

  B∈α

  公理1作用:判斷直線(xiàn)是否在平面內

  (2)公理2:過(guò)不在一條直線(xiàn)上的三點(diǎn),有且只有一個(gè)平面。

  符號表示為:A、B、C三點(diǎn)不共線(xiàn)=>有且只有一個(gè)平面α,

  使A∈α、B∈α、C∈α。

  公理2作用:確定一個(gè)平面的依據。

  (3)公理3:如果兩個(gè)不重合的平面有一個(gè)公共點(diǎn),那么它們有且只有一條過(guò)該點(diǎn)的公共直線(xiàn)。

  符號表示為:P∈α∩β=>α∩β=L,且P∈L

  公理3作用:判定兩個(gè)平面是否相交的依據

  2.1.2空間中直線(xiàn)與直線(xiàn)之間的位置關(guān)系

  1空間的兩條直線(xiàn)有如下三種關(guān)系:

  共面直線(xiàn)

  相交直線(xiàn):同一平面內,有且只有一個(gè)公共點(diǎn);

  平行直線(xiàn):同一平面內,沒(méi)有公共點(diǎn);

  異面直線(xiàn):不同在任何一個(gè)平面內,沒(méi)有公共點(diǎn)。

  2公理4:平行于同一條直線(xiàn)的兩條直線(xiàn)互相平行。

  符號表示為:設a、b、c是三條直線(xiàn)

  a∥b

  c∥b

  強調:公理4實(shí)質(zhì)上是說(shuō)平行具有傳遞性,在平面、空間這個(gè)性質(zhì)都適用。

  公理4作用:判斷空間兩條直線(xiàn)平行的依據。

  3等角定理:空間中如果兩個(gè)角的兩邊分別對應平行,那么這兩個(gè)角相等或互補

  4注意點(diǎn):

 、賏與b所成的角的大小只由a、b的相互位置來(lái)確定,與O的選擇無(wú)關(guān),為了簡(jiǎn)便,點(diǎn)O一般取在兩直線(xiàn)中的一條上;

 、趦蓷l異面直線(xiàn)所成的角θ∈(0,);

 、郛攦蓷l異面直線(xiàn)所成的角是直角時(shí),我們就說(shuō)這兩條異面直線(xiàn)互相垂直,記作a⊥b;

 、軆蓷l直線(xiàn)互相垂直,有共面垂直與異面垂直兩種情形;

 、萦嬎阒,通常把兩條異面直線(xiàn)所成的角轉化為兩條相交直線(xiàn)所成的角。

  2.1.3—2.1.4空間中直線(xiàn)與平面、平面與平面之間的位置關(guān)系

  1、直線(xiàn)與平面有三種位置關(guān)系:

  (1)直線(xiàn)在平面內——有無(wú)數個(gè)公共點(diǎn)

  (2)直線(xiàn)與平面相交——有且只有一個(gè)公共點(diǎn)

  (3)直線(xiàn)在平面平行——沒(méi)有公共點(diǎn)

  指出:直線(xiàn)與平面相交或平行的情況統稱(chēng)為直線(xiàn)在平面外,可用aα來(lái)表示

  aαa∩α=Aa∥α

  2.2.直線(xiàn)、平面平行的判定及其性質(zhì)

  2.2.1直線(xiàn)與平面平行的判定

  1、直線(xiàn)與平面平行的判定定理:平面外一條直線(xiàn)與此平面內的一條直線(xiàn)平行,則該直線(xiàn)與此平面平行。

  簡(jiǎn)記為:線(xiàn)線(xiàn)平行,則線(xiàn)面平行。

  符號表示:

  aα

  bβ=>a∥α

  a∥b

  2.2.2平面與平面平行的判定

  1、兩個(gè)平面平行的判定定理:一個(gè)平面內的兩條交直線(xiàn)與另一個(gè)平面平行,則這兩個(gè)平面平行。

  符號表示:

  aβ

  bβ

  a∩b=Pβ∥α

  a∥α

  b∥α

  2、判斷兩平面平行的方法有三種:

  (1)用定義;

  (2)判定定理;

  (3)垂直于同一條直線(xiàn)的兩個(gè)平面平行。

  2.2.3—2.2.4直線(xiàn)與平面、平面與平面平行的性質(zhì)

  1、定理:一條直線(xiàn)與一個(gè)平面平行,則過(guò)這條直線(xiàn)的任一平面與此平面的交線(xiàn)與該直線(xiàn)平行。

  簡(jiǎn)記為:線(xiàn)面平行則線(xiàn)線(xiàn)平行。

  符號表示:

  a∥α

  aβa∥b

  α∩β=b

  作用:利用該定理可解決直線(xiàn)間的平行問(wèn)題。

  2、定理:如果兩個(gè)平面同時(shí)與第三個(gè)平面相交,那么它們的交線(xiàn)平行。

  符號表示:

  α∥β

  α∩γ=aa∥b

  β∩γ=b

  作用:可以由平面與平面平行得出直線(xiàn)與直線(xiàn)平行

  2.3直線(xiàn)、平面垂直的判定及其性質(zhì)

  2.3.1直線(xiàn)與平面垂直的判定

  1、定義

  如果直線(xiàn)L與平面α內的任意一條直線(xiàn)都垂直,我們就說(shuō)直線(xiàn)L與平面α互相垂直,記作L⊥α,直線(xiàn)L叫做平面α的垂線(xiàn),平面α叫做直線(xiàn)L的垂面。直線(xiàn)與平面垂直時(shí),它們公共點(diǎn)P叫做垂足。

  2、判定定理:一條直線(xiàn)與一個(gè)平面內的兩條相交直線(xiàn)都垂直,則該直線(xiàn)與此平面垂直。

  注意點(diǎn):a)定理中的“兩條相交直線(xiàn)”這一條件不可忽視;

  b)定理體現了“直線(xiàn)與平面垂直”與“直線(xiàn)與直線(xiàn)垂直”互相轉化的數學(xué)思想。

  2.3.2平面與平面垂直的判定

  1、二面角的概念:表示從空間一直線(xiàn)出發(fā)的兩個(gè)半平面所組成的圖形

  2、二面角的記法:二面角α-l-β或α-AB-β

  3、兩個(gè)平面互相垂直的判定定理:一個(gè)平面過(guò)另一個(gè)平面的垂線(xiàn),則這兩個(gè)平面垂直。

  2.3.3—2.3.4直線(xiàn)與平面、平面與平面垂直的性質(zhì)

  1、定理:垂直于同一個(gè)平面的兩條直線(xiàn)平行。

  2性質(zhì)定理:兩個(gè)平面垂直,則一個(gè)平面內垂直于交線(xiàn)的直線(xiàn)與另一個(gè)平面垂直。