成人免费看黄网站无遮挡,caowo999,se94se欧美综合色,a级精品九九九大片免费看,欧美首页,波多野结衣一二三级,日韩亚洲欧美综合

初中數學(xué)知識點(diǎn)總結

時(shí)間:2025-03-07 08:32:03 知識點(diǎn)總結 我要投稿

初中數學(xué)知識點(diǎn)總結(15篇)

  總結是事后對某一階段的學(xué)習、工作或其完成情況加以回顧和分析的一種書(shū)面材料,它可以明確下一步的工作方向,少走彎路,少犯錯誤,提高工作效益,讓我們抽出時(shí)間寫(xiě)寫(xiě)總結吧。那么總結有什么格式呢?以下是小編收集整理的初中數學(xué)知識點(diǎn)總結,歡迎大家借鑒與參考,希望對大家有所幫助。

初中數學(xué)知識點(diǎn)總結(15篇)

初中數學(xué)知識點(diǎn)總結1

  一次函數:一次函數圖像與性質(zhì)是中考必考的內容之一。中考試題中分值約為10分左右題型多樣,形式靈活,綜合應用性強。甚至有存在探究題目出現。

  主要考察內容:

 、贂(huì )畫(huà)一次函數的圖像,并掌握其性質(zhì)。

 、跁(huì )根據已知條件,利用待定系數法確定一次函數的解析式。

 、勰苡靡淮魏瘮到鉀Q實(shí)際問(wèn)題。

 、芸疾煲籭c函數與二元一次方程組,一元一次不等式的關(guān)系。

  突破方法:

 、僬_理解掌握一次函數的概念,圖像和性質(zhì)。

 、谶\用數學(xué)結合的思想解與一次函數圖像有關(guān)的問(wèn)題。

 、壅莆沼么ㄏ禂捣ㄇ蛞淮魏瘮到馕鍪。

 、茏鲆恍┚C合題的訓練,提高分析問(wèn)題的能力。

  函數性質(zhì):

  1.y的變化值與對應的x的變化值成正比例,比值為k.即:y=kx+b(k,b為常數,k≠0),∵當x增加m,k(x+m)+b=y+km,km/m=k。

  2.當x=0時(shí),b為函數在y軸上的點(diǎn),坐標為(0,b)。

  3當b=0時(shí)(即y=kx),一次函數圖像變?yōu)檎壤瘮,正比例函數是特殊的一次函數?/p>

  4.在兩個(gè)一次函數表達式中:

  當兩一次函數表達式中的k相同,b也相同時(shí),兩一次函數圖像重合;當兩一次函數表達式中的k相同,b不相同時(shí),兩一次函數圖像平行;當兩一次函數表達式中的k不相同,b不相同時(shí),兩一次函數圖像相交;當兩一次函數表達式中的k不相同,b相同時(shí),兩一次函數圖像交于y軸上的同一點(diǎn)(0,b)。若兩個(gè)變量x,y間的關(guān)系式可以表示成Y=KX+b(k,b為常數,k不等于0)則稱(chēng)y是x的一次函數圖像性質(zhì)

  1、作法與圖形:通過(guò)如下3個(gè)步驟:

 。1)列表.

 。2)描點(diǎn);[一般取兩個(gè)點(diǎn),根據“兩點(diǎn)確定一條直線(xiàn)”的道理,也可叫“兩點(diǎn)法”。一般的y=kx+b(k≠0)的圖象過(guò)(0,b)和(-b/k,0)兩點(diǎn)畫(huà)直線(xiàn)即可。

  正比例函數y=kx(k≠0)的圖象是過(guò)坐標原點(diǎn)的一條直線(xiàn),一般。0,0)和(1,k)兩點(diǎn)。(3)連線(xiàn),可以作出一次函數的`圖象一條直線(xiàn)。因此,作一次函數的圖象只需知道2點(diǎn),并連成直線(xiàn)即可。(通常找函數圖象與x軸和y軸的交點(diǎn)分別是-k分之b與0,0與b).

  2、性質(zhì):

 。1)在一次函數上的任意一點(diǎn)P(x,y),都滿(mǎn)足等式:y=kx+b(k≠0)。

 。2)一次函數與y軸交點(diǎn)的坐標總是(0,b),與x軸總是交于(-b/k,0)正比例函數的圖像都是過(guò)原點(diǎn)。

  3、函數不是數,它是指某一變化過(guò)程中兩個(gè)變量之間的關(guān)系。

  4、k,b與函數圖像所在象限:

  y=kx時(shí)(即b等于0,y與x成正比例):

  當k>0時(shí),直線(xiàn)必通過(guò)第一、三象限,y隨x的增大而增大;當k0,b>0,這時(shí)此函數的圖象經(jīng)過(guò)第一、二、三象限;當k>0,b

初中數學(xué)知識點(diǎn)總結2

  1、圓是定點(diǎn)的距離等于定長(cháng)的點(diǎn)的集合

  2、圓的內部可以看作是圓心的距離小于半徑的點(diǎn)的集合3、圓的外部可以看作是圓心的距離大于半徑的點(diǎn)的集合4、同圓或等圓的半徑相等

  5、到定點(diǎn)的距離等于定長(cháng)的點(diǎn)的軌跡,是以定點(diǎn)為圓心,定長(cháng)為半徑的圓6、和已知線(xiàn)段兩個(gè)端點(diǎn)的距離相等的點(diǎn)的軌跡,是著(zhù)條線(xiàn)段的垂直平分線(xiàn)7、到已知角的兩邊距離相等的點(diǎn)的軌跡,是這個(gè)角的平分線(xiàn)

  8、到兩條平行線(xiàn)距離相等的點(diǎn)的軌跡,是和這兩條平行線(xiàn)平行且距離相等的一條直線(xiàn)

  9、定理不在同一直線(xiàn)上的三點(diǎn)確定一個(gè)圓。

  10、垂徑定理垂直于弦的直徑平分這條弦并且平分弦所對的兩條弧11、推論1:

 、倨椒窒遥ú皇侵睆剑┑闹睆酱怪庇谙,并且平分弦所對的兩條、谙业拇怪逼椒志(xiàn)經(jīng)過(guò)圓心,并且平分弦所對的兩條弧

 、燮椒窒宜鶎Φ囊粭l弧的'直徑,垂直平分弦,并且平分弦所對的另一條弧12、推論2:圓的兩條平行弦所夾的弧相等13、圓是以圓心為對稱(chēng)中心的中心對稱(chēng)圖形

  14、定理:在同圓或等圓中,相等的圓心角所對的弧相等,所對的弦相等,所對的弦的弦心距相等

  15、推論:在同圓或等圓中,如果兩個(gè)圓心角、兩條弧、兩條弦或兩弦的弦心距中有一組量相等那么它們所對應的其余各組量都相等

  16、定理:一條弧所對的圓周角等于它所對的圓心角的一半

  17、推論:1同弧或等弧所對的圓周角相等;同圓或等圓中,相等的圓周角所對的弧也相等

  18、推論:2半圓(或直徑)所對的圓周角是直角;90°的圓周角所對的弦是直徑

  19、推論:3如果三角形一邊上的中線(xiàn)等于這邊的一半,那么這個(gè)三角形是直角三角形

  20、定理:圓的內接四邊形的對角互補,并且任何一個(gè)外角都等于它的內對角

  21、①直線(xiàn)L和⊙O相交dr②直線(xiàn)L和⊙O相切d=r③直線(xiàn)L和⊙O相離dr

  22、切線(xiàn)的判定定理經(jīng)過(guò)半徑的外端并且垂直于這條半徑的直線(xiàn)是圓的切線(xiàn)23、切線(xiàn)的性質(zhì)定理圓的切線(xiàn)垂直于經(jīng)過(guò)切點(diǎn)的半徑24、推論1經(jīng)過(guò)圓心且垂直于切線(xiàn)的直線(xiàn)必經(jīng)過(guò)切點(diǎn)25、推論2經(jīng)過(guò)切點(diǎn)且垂直于切線(xiàn)的直線(xiàn)必經(jīng)過(guò)圓心

  26、切線(xiàn)長(cháng)定理:從圓外一點(diǎn)引圓的兩條切線(xiàn),它們的切線(xiàn)長(cháng)相等圓心和這一點(diǎn)的連線(xiàn)平分兩條切線(xiàn)的夾角

  27、圓的外切四邊形的兩組對邊的和相等

  28、弦切角定理:弦切角等于它所夾的弧對的圓周角

  29、推論:如果兩個(gè)弦切角所夾的弧相等,那么這兩個(gè)弦切角也相等30、相交弦定理:圓內的兩條相交弦,被交點(diǎn)分成的兩條線(xiàn)段長(cháng)的積相等31、推論:如果弦與直徑垂直相交,那么弦的一半是它分直徑所成的兩條線(xiàn)段的比例中項

  32、切割線(xiàn)定理:從圓外一點(diǎn)引圓的切線(xiàn)和割線(xiàn),切線(xiàn)長(cháng)是這點(diǎn)到割線(xiàn)與圓交點(diǎn)的兩條線(xiàn)段長(cháng)的比例中項

  33、推論:從圓外一點(diǎn)引圓的兩條割線(xiàn),這一點(diǎn)到每條割線(xiàn)與圓的交點(diǎn)的兩條線(xiàn)段長(cháng)的積相等

  34、如果兩個(gè)圓相切,那么切點(diǎn)一定在連心線(xiàn)上35、①兩圓外離dR+r②兩圓外切d=R+r

 、蹆蓤A相交R-rdR+r(Rr)④兩圓內切d=R-r(Rr)⑤兩圓內含dR-r(Rr)

  36、定理:相交兩圓的連心線(xiàn)垂直平分兩圓的公共弦37、定理:把圓分成n(n≥3):

 、乓来芜B結各分點(diǎn)所得的多邊形是這個(gè)圓的內接正n邊形

 、平(jīng)過(guò)各分點(diǎn)作圓的切線(xiàn),以相鄰切線(xiàn)的交點(diǎn)為頂點(diǎn)的多邊形是這個(gè)圓的外切正n邊形

  38、定理:任何正多邊形都有一個(gè)外接圓和一個(gè)內切圓,這兩個(gè)圓是同心圓

  39、正n邊形的每個(gè)內角都等于(n-2)×180°/n40、定理:正n邊形的半徑和邊心距把正n邊形分成2n個(gè)全等的直角三角形

  41、正n邊形的面積Sn=pnrn/2p表示正n邊形的周長(cháng)42、正三角形面積√3a/4a表示邊長(cháng)

  43、如果在一個(gè)頂點(diǎn)周?chē)衚個(gè)正n邊形的角,由于這些角的和應為360°,因此k(n-2)180°/n=360°化為(n-2)(k-2)=444、弧長(cháng)計算公式:L=n兀R/180

  45、扇形面積公式:S扇形=n兀R^2/360=LR/246、內公切線(xiàn)長(cháng)=d-(R-r)外公切線(xiàn)長(cháng)=d-(R+r)

初中數學(xué)知識點(diǎn)總結3

  1、一元二次方程解法:

  (1)配方法:(X±a)2=b(b≥0)注:二次項系數必須化為1

  (2)公式法:aX2+bX+C=0(a≠0)確定a,b,c的值,計算b2-4ac≥0

  若b2-4ac>0則有兩個(gè)不相等的'實(shí)根,若b2-4ac=0則有兩個(gè)相等的實(shí)根,若b2-4ac<0則無(wú)解

  若b2-4ac≥0則用公式X=-b±√b2-4ac/2a注:必須化為一般形式

  (3)分解因式法

 、偬峁蚴椒ǎ簃a+mb=0→m(a+b)=0

  平方差公式:a2-b2=0→(a+b)(a-b)=0

 、谶\用公式法:

  完全平方公式:a2±2ab+b2=0→(a±b)2=0

 、凼窒喑朔

  2、銳角三角函數定義

  銳角角A的正弦(sin),余弦(cos)和正切(tan),余切(cot)以及正割(sec),余割(csc)都叫做角A的銳角三角函數。

  正弦(sin):對邊比斜邊,即sinA=a/c;

  余弦(cos):鄰邊比斜邊,即cosA=b/c;

  正切(tan):對邊比鄰邊,即tanA=a/b;

  余切(cot):鄰邊比對邊,即cotA=b/a;

  3、積的關(guān)系

  sinα=tanα·cosα

  cosα=cotα·sinα

  tanα=sinα·secα

  cotα=cosα·cscα

  secα=tanα·cscα

  cscα=secα·cotα

  4、倒數關(guān)系

  tanα·cotα=1

  sinα·cscα=1

  cosα·secα=1

  5、兩角和差公式

  sin(A+B) = sinAcosB+cosAsinB

  sin(A-B) = sinAcosB-cosAsinB

  cos(A+B) = cosAcosB-sinAsinB

  cos(A-B) = cosAcosB+sinAsinB

  tan(A+B) = (tanA+tanB)/(1-tanAtanB)

  tan(A-B) = (tanA-tanB)/(1+tanAtanB)

  cot(A+B) = (cotAcotB-1)/(cotB+cotA)

  cot(A-B) = (cotAcotB+1)/(cotB-cotA)

初中數學(xué)知識點(diǎn)總結4

  1.相似三角形定義:

  對應角相等,對應邊成比例的三角形,叫做相似三角形。

  2.相似三角形的表示方法:用符號"∽"表示,讀作"相似于"。

  3.相似三角形的相似比:

  相似三角形的對應邊的比叫做相似比。

  4.相似三角形的預備定理:

  平行于三角形一邊的直線(xiàn)和其他兩邊(或兩邊的延長(cháng)線(xiàn))相交,所截成的三角形與原三角形相似。

  從表中可以看出只要將全等三角形判定定理中的"對應邊相等"的條件改為"對應邊

  成比例"就可得到相似三角形的判定定理,這就是我們數學(xué)中的用類(lèi)比的方法,在舊知識的基礎上找出新知識并從中探究新知識掌握的方法。

  6.直角三角形相似:

  (1)直角三角形被斜邊上的高分成兩個(gè)直角三角形和原三角形相似。

  (2)如果一個(gè)直角三角形的斜邊和一條直角邊與另一個(gè)直角三角形的斜邊和一條直角邊對應成比例,那么這兩個(gè)直角三角形相似。

  7.相似三角形的性質(zhì)定理:

  (1)相似三角形的對應角相等。

  (2)相似三角形的'對應邊成比例。

  (3)相似三角形的對應高線(xiàn)的比,對應中線(xiàn)的比和對應角平分線(xiàn)的比都等于相似比。

  (4)相似三角形的周長(cháng)比等于相似比。

  (5)相似三角形的面積比等于相似比的平方。

  8. 相似三角形的傳遞性

  如果△ABC∽△A1B1C1,△A1B1C1∽△A2B2C2,那么△ABC∽A2B2C2

初中數學(xué)知識點(diǎn)總結5

  一、特殊的平行四邊形:

  1.矩形:

 。1)定義:有一個(gè)角是直角的平行四邊形。

 。2)性質(zhì):矩形的四個(gè)角都是直角;矩形的對角線(xiàn)平分且相等。

 。3)判定定理:

 、儆幸粋(gè)角是直角的平行四邊形叫做矩形。

 、趯蔷(xiàn)相等的平行四邊形是矩形。

 、塾腥齻(gè)角是直角的四邊形是矩形。

  直角三角形的性質(zhì):直角三角形中所對的直角邊等于斜邊的一半。

  2.菱形:

 。1)定義:鄰邊相等的平行四邊形。

 。2)性質(zhì):菱形的四條邊都相等;菱形的兩條對角線(xiàn)互相垂直,并且每一條對角線(xiàn)平分一組對角。

 。3)判定定理:

 、僖唤M鄰邊相等的平行四邊形是菱形。

 、趯蔷(xiàn)互相垂直的平行四邊形是菱形。

 、鬯臈l邊相等的四邊形是菱形。

 。4)面積:

  3.正方形:

 。1)定義:一個(gè)角是直角的菱形或鄰邊相等的矩形。

 。2)性質(zhì):四條邊都相等,四個(gè)角都是直角,對角線(xiàn)互相垂直平分。正方形既是矩形,又是菱形。

 。3)正方形判定定理:

 、賹蔷(xiàn)互相垂直平分且相等的四邊形是正方形;

 、谝唤M鄰邊相等,一個(gè)角為直角的平行四邊形是正方形;

 、蹖蔷(xiàn)互相垂直的矩形是正方形;

 、茑忂呄嗟鹊木匦问钦叫

 、萦幸粋(gè)角是直角的菱形是正方形;

 、迣蔷(xiàn)相等的菱形是正方形。

  二、矩形、菱形、正方形與平行四邊形、四邊形之間的聯(lián)系:

  1.矩形、菱形和正方形都是特殊的平行四邊形,其性質(zhì)都是在平行四邊形的基礎上擴充來(lái)的。矩形是由平行四邊形增加“一個(gè)角為90°”的條件得到的,它在角和對角線(xiàn)方面具有比平行四邊形更多的特性;菱形是由平行四邊形增加“一組鄰邊相等”的條件得到的,它在邊和對角線(xiàn)方面具有比平行四邊形更多的'特性;正方形是由平行四邊形增加“一組鄰邊相等”和“一個(gè)角為90°”兩個(gè)條件得到的,它在邊、角和對角線(xiàn)方面都具有比平行四邊形更多的特性。

  2.矩形、菱形的判定可以根據出發(fā)點(diǎn)不同而分成兩類(lèi):一類(lèi)是以四邊形為出發(fā)點(diǎn)進(jìn)行判定,另一類(lèi)是以平行四邊形為出發(fā)點(diǎn)進(jìn)行判定。而正方形除了上述兩個(gè)出發(fā)點(diǎn)外,還可以從矩形和菱形出發(fā)進(jìn)行判定。

  三、判定一個(gè)四邊形是特殊四邊形的步驟:

  常見(jiàn)考法

 。1)利用菱形、矩形、正方形的性質(zhì)進(jìn)行邊、角以及面積等計算;

 。2)靈活運用判定定理證明一個(gè)四邊形(或平行四邊形)是菱形、矩形、正方形;

 。3)一些折疊問(wèn)題;

 。4)矩形與直角三角形和等腰三角形有著(zhù)密切聯(lián)系、正方形與等腰直角三角形也有著(zhù)密切聯(lián)系。所以,以此為背景可以設置許多考題。

  誤區提醒

 。1)平行四邊形的所有性質(zhì)矩形、菱形、正方形都具有,但矩形、菱形、正方形具有的性質(zhì)平行四邊形不一定具有,這點(diǎn)易出現混淆;

 。2)矩形、菱形具有的性質(zhì)正方形都具有,而正方形具有的性質(zhì),矩形不一定具有,菱形也不一定具有,這點(diǎn)也易出現混淆;

 。3)不能正確的理解和運用判定定理進(jìn)行證明,(如在證明菱形時(shí),把四條邊相等的四邊形是菱形誤解成兩組鄰邊相等的四邊形是菱形);

 。4)再利用對角線(xiàn)長(cháng)度求菱形的面積時(shí),忘記乘;

 。5)判定一個(gè)四邊形是特殊的平行四邊形的條件不充分。

初中數學(xué)知識點(diǎn)總結6

  三角和的公式

  sin(α+β+γ)=sinα·cosβ·cosγ+cosα·sinβ·cosγ+cosα·cosβ·sinγ-sinα·sinβ·sinγ

  cos(α+β+γ)=cosα·cosβ·cosγ-cosα·sinβ·sinγ-sinα·cosβ·sinγ-sinα·sinβ·cosγ

  tan(α+β+γ)=(tanα+tanβ+tanγ-tanα·tanβ·tanγ)/(1-tanα·tanβ-tanβ·tanγ-tanγ·tanα)

  倍角公式

  tan2A = 2tanA/(1-tan2 A)

  Sin2A=2SinA?CosA

  Cos2A = Cos^2 A--Sin2 A =2Cos2 A-1 =1-2sin^2 A

  三倍角公式

  sin3A = 3sinA-4(sinA)3;

  cos3A = 4(cosA)3 -3cosA

  tan3a = tan a ? tan(π/3+a)? tan(π/3-a)

  三角函數特殊值

  α=0° sinα=0 cosα=1 tαnα=0 cotα→∞ secα=1 cscα→∞

  α=15°(π/12) sinα=(√6-√2)/4 cosα=(√6+√2)/4 tαnα=2-√3 cotα=2+√3 secα=√6-√2 cscα=√6+√2

  α=22.5°(π/8) sinα=√(2-√2)/2 cosα=√(2+√2)/2 tαnα=√2-1 cotα=√2+1 secα=√(4-2√2) cscα=√(4+2√2)

  a=30°(π/6) sinα=1/2 cosα=√3/2 tαnα=√3/3 cotα=√3 secα=2√3/3 cscα=2

  α=45°(π/4) sinα=√2/2 cosα=√2/2 tαnα=1 cotα=1 secα=√2 cscα=√2

  α=60°(π/3) sinα=√3/2 cosα=1/2 tαnα=√3 cotα=√3/3 secα=2 cscα=2√3/3

  α=67.5°(3π/8) sinα=√(2+√2)/2 cosα=√(2-√2)/2 tαnα=√2+1 cotα=√2-1 secα=√(4+2√2) cscα=√(4-2√2)

  α=75°(5π/12) sinα=(√6+√2)/4 cosα=(√6-√2)/4 tαnα=2+√3 cotα=2-√3 secα=√6+√2 cscα=√6-√2

  α=90°(π/2) sinα=1 cosα=0 tαnα→∞ cotα=0 secα→∞ cscα=1

  α=180°(π) sinα=0 cosα=-1 tαnα=0 cotα→∞ secα=-1 cscα→∞

  α=270°(3π/2) sinα=-1 cosα=0 tαnα→∞ cotα=0 secα→∞ cscα=-1

  α=360°(2π) sinα=0 cosα=1 tαnα=0 cotα→∞ secα=1 cscα→∞

  三角函數記憶順口溜

  1三角函數記憶口訣

  “奇、偶”指的是π/2的倍數的.奇偶,“變與不變”指的是三角函數的名稱(chēng)的變化:“變”是指正弦變余弦,正切變余切。(反之亦然成立)“符號看象限”的含義是:把角α看做銳角,不考慮α角所在象限,看n·(π/2)±α是第幾象限角,從而得到等式右邊是正號還是負號。

  以cos(π/2+α)=-sinα為例,等式左邊cos(π/2+α)中n=1,所以右邊符號為sinα,把α看成銳角,所以π/2<(π/2+α)<π,y=cosx在區間(π/2,π)上小于零,所以右邊符號為負,所以右邊為-sinα。

  2符號判斷口訣

  全,S,T,C,正。這五個(gè)字口訣的意思就是說(shuō):第一象限內任何一個(gè)角的四種三角函數值都是“+”;第二象限內只有正弦是“+”,其余全部是“-”;第三象限內只有正切是“+”,其余全部是“-”;第四象限內只有余弦是“+”,其余全部是“-”。

  也可以這樣理解:一、二、三、四指的角所在象限。全正、正弦、正切、余弦指的是對應象限三角函數為正值的名稱(chēng)?谠E中未提及的都是負值。

  “ASTC”反Z。意即為“all(全部)”、“sin”、“tan”、“cos”按照將字母Z反過(guò)來(lái)寫(xiě)所占的象限對應的三角函數為正值。

  3三角函數順口溜

  三角函數是函數,象限符號坐標注。函數圖像單位圓,周期奇偶增減現。

  同角關(guān)系很重要,化簡(jiǎn)證明都需要。正六邊形頂點(diǎn)處,從上到下弦切割;

  中心記上數字一,連結頂點(diǎn)三角形。向下三角平方和,倒數關(guān)系是對角,

  頂點(diǎn)任意一函數,等于后面兩根除。誘導公式就是好,負化正后大化小,

  變成銳角好查表,化簡(jiǎn)證明少不了。二的一半整數倍,奇數化余偶不變,

  將其后者視銳角,符號原來(lái)函數判。兩角和的余弦值,化為單角好求值,

  余弦積減正弦積,換角變形眾公式。和差化積須同名,互余角度變名稱(chēng)。

  計算證明角先行,注意結構函數名,保持基本量不變,繁難向著(zhù)簡(jiǎn)易變。

  逆反原則作指導,升冪降次和差積。條件等式的證明,方程思想指路明。

  萬(wàn)能公式不一般,化為有理式居先。公式順用和逆用,變形運用加巧用;

  一加余弦想余弦,一減余弦想正弦,冪升一次角減半,升冪降次它為范;

  三角函數反函數,實(shí)質(zhì)就是求角度,先求三角函數值,再判角取值范圍;

  利用直角三角形,形象直觀(guān)好換名,簡(jiǎn)單三角的方程,化為最簡(jiǎn)求解集。

初中數學(xué)知識點(diǎn)總結7

  誘導公式的本質(zhì)

  所謂三角函數誘導公式,就是將角n(/2)的三角函數轉化為角的三角函數。

  常用的誘導公式

  公式一: 設為任意角,終邊相同的角的'同一三角函數的值相等:

  sin(2k)=sin kz

  cos(2k)=cos kz

  tan(2k)=tan kz

  cot(2k)=cot kz

  公式二: 設為任意角,的三角函數值與的三角函數值之間的關(guān)系:

  sin()=-sin

  cos()=-cos

  tan()=tan

  cot()=cot

  公式三: 任意角與 -的三角函數值之間的關(guān)系:

  sin(-)=-sin

  cos(-)=cos

  tan(-)=-tan

  cot(-)=-cot

  公式四: 利用公式二和公式三可以得到與的三角函數值之間的關(guān)系:

  sin()=sin

  cos()=-cos

  tan()=-tan

  cot()=-cot

初中數學(xué)知識點(diǎn)總結8

  知識點(diǎn)總結

  1.定義:兩組對邊分別平行的四邊形叫平行四邊形

  2.平行四邊形的性質(zhì)

 。1)平行四邊形的對邊平行且相等;

 。2)平行四邊形的鄰角互補,對角相等;

 。3)平行四邊形的對角線(xiàn)互相平分;

  3.平行四邊形的判定

  平行四邊形是幾何中一個(gè)重要內容,如何根據平行四邊形的性質(zhì),判定一個(gè)四邊形是平行四邊形是個(gè)重點(diǎn),下面就對平行四邊形的五種判定方法,進(jìn)行劃分:

  第一類(lèi):與四邊形的.對邊有關(guān)

 。1)兩組對邊分別平行的四邊形是平行四邊形;

 。2)兩組對邊分別相等的四邊形是平行四邊形;

 。3)一組對邊平行且相等的四邊形是平行四邊形;

  第二類(lèi):與四邊形的對角有關(guān)

 。4)兩組對角分別相等的四邊形是平行四邊形;

  第三類(lèi):與四邊形的對角線(xiàn)有關(guān)

 。5)對角線(xiàn)互相平分的四邊形是平行四邊形

  常見(jiàn)考法

 。1)利用平行四邊形的性質(zhì),求角度、線(xiàn)段長(cháng)、周長(cháng);

 。2)求平行四邊形某邊的取值范圍;

 。3)考查一些綜合計算問(wèn)題;

 。4)利用平行四邊形性質(zhì)證明角相等、線(xiàn)段相等和直線(xiàn)平行;

 。5)利用判定定理證明四邊形是平行四邊形。

  誤區提醒

 。1)平行四邊形的性質(zhì)較多,易把對角線(xiàn)互相平分,錯記成對角線(xiàn)相等;

 。2)“一組對邊平行且相等的四邊形是平行四邊形”錯記成“一組對邊平行,一組對邊相等的四邊形是平行四邊形”后者不是平行四邊形的判定定理,它只是個(gè)等腰梯形。

初中數學(xué)知識點(diǎn)總結9

  k0時(shí),y隨x的增大而減小,直線(xiàn)一定過(guò)二、四象限(3)若直線(xiàn)l1:yk1xb1l2:yk2xb2

  當k1k2時(shí),l1//l2;當b1b2b時(shí),l1與l2交于(0,b)點(diǎn)。

 。4)當b>0時(shí)直線(xiàn)與y軸交于原點(diǎn)上方;當b學(xué)大教育

  (1)是中心對稱(chēng)圖形,對中稱(chēng)心是原點(diǎn)(2)對稱(chēng)性:是軸直線(xiàn)yx和yx(2)是軸對稱(chēng)圖形,對稱(chēng)k0時(shí)兩支曲線(xiàn)分別位于一、三象限且每一象限內y隨x的增大而減。3)

  k0時(shí)兩支曲線(xiàn)分別位于二、四象限且每一象限內y隨x的增大而增大(4)過(guò)圖象上任一點(diǎn)作x軸與y軸的垂線(xiàn)與坐標軸構成的矩形面積為|k|。

  P(1)應用在u3.應用(2)應用在(3)其它F上SS上t其要點(diǎn)是會(huì )進(jìn)行“數結形合”來(lái)解決問(wèn)題二、二次函數

  1.定義:應注意的問(wèn)題

 。1)在表達式y=ax2+bx+c中(a、b、c為常數且a≠0)(2)二次項指數一定為22.圖象:拋物線(xiàn)

  3.圖象的性質(zhì):分五種情況可用表格來(lái)說(shuō)明表達式(1)y=ax2頂點(diǎn)坐標對稱(chēng)軸(0,0)最大(。┲祔最小=0y最大=0(2)y=ax2+c(0,0)y最小=0y最大=0(3)y=a(x-(h,0)h)2直線(xiàn)x=hy最小=0y最大=0y隨x的變化情況隨x增大而增大隨x增大而減小隨x的增大而增大隨x的增大而減小隨x的增大而增大隨x的增大而減小直線(xiàn)x=0(y軸)①若a>0,則x=0時(shí),若a>0,則x>0時(shí),y②若a0,則x=0時(shí),①若a>0,則x>0時(shí),y②若a0,則x=h時(shí),①若a>0,則x>h時(shí),y②若a學(xué)大教育

  表達式h)2+k頂點(diǎn)坐標對稱(chēng)軸直線(xiàn)x=h最大(。┲祔最小=ky最大=k(5)y=ax2+b(x+cb2ay隨x的變化情況隨x的增大而增大隨x的增大而減小b2a時(shí),①若a>0,則x>b2a(4)y=a(x-(h,k)①若a>0,則x=h時(shí),①若a>0,則x>h時(shí),y②若a0,則x=4acb24ay最小=4acb24ab時(shí),y隨x的增大而增大時(shí),②若a2a2a時(shí),y隨x的增大而減小b②若a學(xué)大教育

  一次函數圖象和性質(zhì)

  【知識梳理】

  1.正比例函數的一般形式是y=kx(k≠0),一次函數的一般形式是y=kx+b(k≠0).2.一次函數ykxb的圖象是經(jīng)過(guò)(3.一次函數ykxb的圖象與性質(zhì)

  圖像的大致位置經(jīng)過(guò)象限第象限第象限第象限第象限y隨x的增大y隨x的增大而y隨x的增大y隨x的.增大性質(zhì)而而而而

  【思想方法】數形結合

  k、b的符號k>0,b>0k>0,b<0k<0,b>0k<0,b<0b,0)和(0,b)兩點(diǎn)的一條直線(xiàn).k反比例函數圖象和性質(zhì)

  【知識梳理】

  1.反比例函數:一般地,如果兩個(gè)變量x、y之間的關(guān)系可以表示成y=或(k為常數,k≠0)的形式,那么稱(chēng)y是x的反比例函數.2.反比例函數的圖象和性質(zhì)

  k的符號k>0yoxk<0yox

  圖像的大致位置經(jīng)過(guò)象限性質(zhì)

  第象限在每一象限內,y隨x的增大而第象限在每一象限內,y隨x的增大而3.k的幾何含義:反比例函數y=的幾何意義,即過(guò)雙曲線(xiàn)y=

  k(k≠0)中比例系數kxk(k≠0)上任意一點(diǎn)P作x4

  x軸、y軸垂線(xiàn),設垂足分別為A、B,則所得矩形OAPB

  函數學(xué)習方法學(xué)大教育

  的面積為.

  【思想方法】數形結合

  二次函數圖象和性質(zhì)

  【知識梳理】

  1.二次函數ya(xh)2k的圖像和性質(zhì)

  圖象開(kāi)口對稱(chēng)軸頂點(diǎn)坐標最值增減性

  在對稱(chēng)軸左側在對稱(chēng)軸右側當x=時(shí),y有最值y隨x的增大而y隨x的增大而a>0yOa<0x當x=時(shí),y有最值y隨x的增大而y隨x的增大而銳角三角函數

  【思想方法】

  1.常用解題方法設k法2.常用基本圖形雙直角

  【例題精講】例題1.在△ABC中,∠C=90°.(1)若cosA=

  14,則tanB=______;(2)若cosA=,則tanB=______.255

  函數學(xué)習方法學(xué)大教育

  例題2.(1)已知:cosα=

  23,則銳角α的取值范圍是()A.0°

初中數學(xué)知識點(diǎn)總結10

  1、不在同一直線(xiàn)上的三點(diǎn)確定一個(gè)圓。

  2、垂徑定理:垂直于弦的直徑平分這條弦并且平分弦所對的兩條弧

  推論1

 、(不是直徑)的直徑垂直于弦,并且平分弦所對的兩條弧

 、谙业拇怪逼椒志(xiàn)經(jīng)過(guò)圓心,并且平分弦所對的兩條弧

 、燮椒窒宜鶎Φ囊粭l弧的直徑,垂直平分弦,并且平分弦所對的另一條弧

  推論2

  圓的兩條平行弦所夾的弧相等

  3、圓是以圓心為對稱(chēng)中心的中心對稱(chēng)圖形

  4、圓是定點(diǎn)的距離等于定長(cháng)的點(diǎn)的集合

  5、圓的內部可以看作是圓心的距離小于半徑的點(diǎn)的集合

  6、圓的外部可以看作是圓心的距離大于半徑的點(diǎn)的集合

  7、同圓或等圓的半徑相等

  8、到定點(diǎn)的距離等于定長(cháng)的點(diǎn)的軌跡,是以定點(diǎn)為圓心,定長(cháng)為半徑的圓

  9、定理在同圓或等圓中,相等的圓心角所對的弧相等,所對的弦相等,所對的弦的弦心距相等

  10、推論在同圓或等圓中,如果兩個(gè)圓心角、兩條弧、兩條弦或兩弦的弦心距中有一組量相等那么它們所對應的.其余各組量都相等。

  11、定理:圓的內接四邊形的對角互補,并且任何一個(gè)外角都等于它的內對角

  12、①直線(xiàn)L和⊙O相交d

 、谥本(xiàn)L和⊙O相切d=r

 、壑本(xiàn)L和⊙O相離d>r

  13、切線(xiàn)的判定定理:經(jīng)過(guò)半徑的外端并且垂直于這條半徑的直線(xiàn)是圓的切線(xiàn)

  14、切線(xiàn)的性質(zhì)定理:圓的切線(xiàn)垂直于經(jīng)過(guò)切點(diǎn)的半徑

  15、推論1經(jīng)過(guò)圓心且垂直于切線(xiàn)的直線(xiàn)必經(jīng)過(guò)切點(diǎn)

  16、推論2經(jīng)過(guò)切點(diǎn)且垂直于切線(xiàn)的直線(xiàn)必經(jīng)過(guò)圓心

  17、切線(xiàn)長(cháng)定理:從圓外一點(diǎn)引圓的兩條切線(xiàn),它們的切線(xiàn)長(cháng)相等,圓心和這一點(diǎn)的連線(xiàn)平分兩條切線(xiàn)的夾角

  18、圓的外切四邊形的兩組對邊的和相等,外角等于內對角

  19、如果兩個(gè)圓相切,那么切點(diǎn)一定在連心線(xiàn)上

  20、

 、賰蓤A外離d>R+r

 、趦蓤A外切d=R+r

 、蹆蓤A相交R-rr)

 、軆蓤A內切d=R-r(R>r)

 、輧蓤A內含dr)

初中數學(xué)知識點(diǎn)總結11

  1、乘法與因式分解

  a2-b2=(a+b)(a-b)a3+b3=(a+b)(a2-ab+b2)a3-b3=(a-b)(a2+ab+b2)

  2、三角不等式

  |a+b|≤|a|+|b||a-b|≤|a|+|b||a|≤b<=>-b≤a≤b

  |a-b|≥|a|-|b|-|a|≤a≤|a|

  3、一元二次方程的解

  -b+√(b2-4ac)/2a-b-b+√(b2-4ac)/2a

  4、根與系數的關(guān)系

  X1+X2=-b/a X1*X2=c/a注:韋達定理

  5、判別式

 、賐2-4a=0注:方程有相等的兩實(shí)根

 、赽2-4ac>0注:方程有一個(gè)實(shí)根

 、踒2-4ac<0注:方程有共軛復數根

  6、三角函數公式

 、賰山呛凸

  sin(A+B)=sinAcosB+cosAsinB sin(A-B)=sinAcosB-sinBcosA

  cos(A+B)=cosAcosB-sinAsinB cos(A-B)=cosAcosB+sinAsinB

  tan(A+B)=(tanA+tanB)/(1-tanAtanB)tan(A-B)=(tanA-tanB)/(1+tanAtanB)

  ctg(A+B)=(ctgActgB-1)/(ctgB+ctgA)ctg(A-B)=(ctgActgB+1)/(ctgB-ctgA)

 、诒督枪

  tan2A=2tanA/(1-tan2A)ctg2A=(ctg2A-1)/2ctga

  cos2a=cos2a-sin2a=2cos2a-1=1-2sin2a

 、郯虢枪

  sin(A/2)=√((1-cosA)/2)sin(A/2)=-√((1-cosA)/2)

  cos(A/2)=√((1+cosA)/2)cos(A/2)=-√((1+cosA)/2)

  tan(A/2)=√((1-cosA)/((1+cosA))tan(A/2)=-√((1-cosA)/((1+cosA))

  ctg(A/2)=√((1+cosA)/((1-cosA))ctg(A/2)=-√((1+cosA)/((1-cosA))

 、芎筒罨e

  2sinAcosB=sin(A+B)+sin(A-B)2cosAsinB=sin(A+B)-sin(A-B)

  2cosAcosB=cos(A+B)-sin(A-B)-2sinAsinB=cos(A+B)-cos(A-B)

  sinA+sinB=2sin((A+B)/2)cos((A-B)/2 cosA+cosB=2cos((A+B)/2)sin((A-B)/2)

  tanA+tanB=sin(A+B)/cosAcosB tanA-tanB=sin(A-B)/cosAcosB

  ctgA+ctgBsin(A+B)/sinAsinB-ctgA+ctgBsin(A+B)/sinAsinB

 、菽承⿺盗星皀項和

  1+2+3+4+5+6+7+8+9+…+n=n(n+1)/2

  1+3+5+7+9+11+13+15+…+(2n-1)=n2

  2+4+6+8+10+12+14+…+(2n)=n(n+1)

  12+22+32+42+52+62+72+82+…+n2=n(n+1)(2n+1)/6

  13+23+33+43+53+63+…n3=n2(n+1)2/4

  1*2+2*3+3*4+4*5+5*6+6*7+…+n(n+1)=n(n+1)(n+2)/3

 、拚叶ɡ

  a/sinA=b/sinB=c/sinC=2R注:其中R表示三角形的外接圓半徑

 、哂嘞叶ɡ

  b2=a2+c2-2accosB注:角B是邊a和邊c的夾角

 、鄨A的方程

  圓的標準方程(x-a)2+(y-b)2=r2注:(a,b)是圓心坐標

  圓的一般方程x2+y2+Dx+Ey+F=0注:D2+E2-4F>0

 、崃Ⅲw體積與側面積

  直棱柱側面積S=c*h斜棱柱側面積S=c'*h

  正棱錐側面積S=1/2c*h'正棱臺側面積S=1/2(c+c')h'

  圓臺側面積S=1/2(c+c')l=pi(R+r)l球的表面積S=4pi*r2

  圓柱側面積S=c*h=2pi*h圓錐側面積S=1/2*c*l=pi*r*l

  弧長(cháng)公式l=a*r a是圓心角的弧度數r>0扇形面積公式s=1/2*l*r

  錐體體積公式V=1/3*S*H圓錐體體積公式V=1/3*pi*r2h

  斜棱柱體積V=S'L注:其中,S'是直截面面積,L是側棱長(cháng)

  柱體體積公式V=s*h圓柱體V=pi*r2h

  二、初中幾何公式

  1、平行線(xiàn)證明

 、俳(jīng)過(guò)直線(xiàn)外一點(diǎn),有且只有一條直線(xiàn)與這條直線(xiàn)平行

 、谌绻麅蓷l直線(xiàn)都和第三條直線(xiàn)平行,這兩條直線(xiàn)也互相平行

 、弁唤窍嗟,兩直線(xiàn)平行

 、軆儒e角相等,兩直線(xiàn)平行

 、萃?xún)冉腔パa,兩直線(xiàn)平行

 、迌芍本(xiàn)平行,同位角相等

 、邇芍本(xiàn)平行,內錯角相等

 、鄡芍本(xiàn)平行,同旁?xún)冉腔パa

  2、全等三角形證明

 、龠吔沁吂(SAS)有兩邊和它們的夾角對應相等的兩個(gè)三角形全等

 、诮沁吔枪(ASA)有兩角和它們的夾邊對應相等的兩個(gè)三角形全等

 、弁普(AAS)有兩角和其中一角的對邊對應相等的兩個(gè)三角形全等

 、苓呥呥吂(SSS)有三邊對應相等的兩個(gè)三角形全等

 、菪边、直角邊公理(HL)有斜邊和一條直角邊對應相等的兩個(gè)直角三角形全等

  3、三角形基本定理

 、俣ɡ1在角的平分線(xiàn)上的點(diǎn)到這個(gè)角的兩邊的距離相等

 、诙ɡ2到一個(gè)角的兩邊的距離相同的點(diǎn),在這個(gè)角的平分線(xiàn)上

 、劢堑钠椒志(xiàn)是到角的兩邊距離相等的所有點(diǎn)的集合

 、艿妊切蔚男再|(zhì)定理等腰三角形的兩個(gè)底角相等(即等邊對等角)

 、萃普1等腰三角形頂角的平分線(xiàn)平分底邊并且垂直于底邊

 、薜妊切蔚捻斀瞧椒志(xiàn)、底邊上的`中線(xiàn)和底邊上的高互相重合

 、咄普3等邊三角形的各角都相等,并且每一個(gè)角都等于60°

 、嗟妊切蔚呐卸ǘɡ砣绻粋(gè)三角形有兩個(gè)角相等,那么這兩個(gè)角所對的邊也相等(等角對等邊)

 、嶂苯侨切

  4、多邊形定理

 、俣ɡ硭倪呅蔚膬冉呛偷扔360°

 、谒倪呅蔚耐饨呛偷扔360°

 、鄱噙呅蝺冉呛投ɡ韓邊形的內角的和等于(n-2)×180°

 、芡普撊我舛噙叺耐饨呛偷扔360°

  5、平行四邊形證明與等腰梯形證明

 、倨叫兴倪呅涡再|(zhì)定理1平行四邊形的對角相等

 、谄叫兴倪呅涡再|(zhì)定理2平行四邊形的對邊相等

 、燮叫兴倪呅涡再|(zhì)定理3平行四邊形的對角線(xiàn)互相平分

  ……

 、芫匦涡再|(zhì)定理1矩形的四個(gè)角都是直角

 、菥匦涡再|(zhì)定理2矩形的對角線(xiàn)相等

  ……

 、薜妊菪涡再|(zhì)定理等腰梯形在同一底上的兩個(gè)角相等

 、叩妊菪闻卸ǘɡ碓谕坏咨系膬蓚(gè)角相等的梯形是等腰梯形

 、嗤普1經(jīng)過(guò)梯形一腰的中點(diǎn)與底平行的直線(xiàn),必平分另一腰

 、嵬普2經(jīng)過(guò)三角形一邊的中點(diǎn)與另一邊平行的直線(xiàn),必平分第三邊

  7、相似三角形證明

 、傧嗨迫切闻卸ǘɡ1兩角對應相等,兩三角形相似(ASA)

 、谂卸ǘɡ2兩邊對應成比例且?jiàn)A角相等,兩三角形相似(SAS)

 、叟卸ǘɡ3三邊對應成比例,兩三角形相似(SSS)

 、芏ɡ砣绻粋(gè)直角三角形的斜邊和一條直角邊與另一個(gè)直角三角形的斜邊和一條直角邊對應成比例,那么這兩個(gè)直角三角形相似

 、菪再|(zhì)定理1相似三角形對應高的比,對應中線(xiàn)的比與對應角平分線(xiàn)的比都等于相似比

 、扌再|(zhì)定理2相似三角形周長(cháng)的比等于相似比

 、咝再|(zhì)定理3相似三角形面積的比等于相似比的平方

  8、弦和圓的證明

 、俣ɡ聿辉谕恢本(xiàn)上的三點(diǎn)確定一個(gè)圓。

 、诖箯蕉ɡ泶怪庇谙业闹睆狡椒诌@條弦并且平分弦所對的兩條弧

 、弁普1

  平分弦(不是直徑)的直徑垂直于弦,并且平分弦所對的兩條弧

  弦的垂直平分線(xiàn)經(jīng)過(guò)圓心,并且平分弦所對的兩條弧

  平分弦所對的一條弧的直徑,垂直平分弦,并且平分弦所對的另一條弧

 、芡普2圓的兩條平行弦所夾的弧相等

 、輬A是以圓心為對稱(chēng)中心的中心對稱(chēng)圖形

 、薅ɡ碓谕瑘A或等圓中,相等的圓心角所對的弧相等,所對的弦

  相等,所對的弦的弦心距相等

 、呔(xiàn)與圓的位置關(guān)系

  直線(xiàn)L和⊙O相交d

  直線(xiàn)L和⊙O相切d=r

  直線(xiàn)L和⊙O相離d>r

 、鄨A與圓之間的位置關(guān)系

  兩圓外離d>R+r②兩圓外切d=R+r

  兩圓相交R-r

  兩圓內切d=R-r(R>r)

  兩圓內含dr)

  QQ截圖20150129173906.jpg

  三、數學(xué)學(xué)習方法

  1、突出一個(gè)“勤”字(克服一個(gè)“惰”字)

  數學(xué)家華羅庚曾經(jīng)說(shuō)過(guò):“聰明在于學(xué)習,天才在于勤奮”,“勤能補拙是良訓,一分辛勞一分才“:我們在學(xué)習的時(shí)候要突出一個(gè)勤字,克服一個(gè)“懶”字,怎么突出“勤”字,從這個(gè)字面上來(lái)看,要做到五勤:“耳勤”“眼勤”(耳朵聽(tīng),眼睛看,接受信息)

  “口勤”(討論,回答問(wèn)題,而不是講話(huà),消化信息)“腦勤”(善于思考問(wèn)題,積極思考問(wèn)題——吸收、儲存信息)那是不是做到以上四點(diǎn)就行了呢?不是。這個(gè)字還有缺陷,在聰下面加上“手”

  “手勤”(動(dòng)手多實(shí)踐,不僅光做題,做課件,做模型)

  這樣的人聰明不聰明?

  最大的提高學(xué)習效率,首先要做到——上課認真聽(tīng)講(這是根本)回家先復習再做題如果課聽(tīng)不好,就別想消化知識

  2、學(xué)好初中數學(xué)還有兩個(gè)要點(diǎn),要狠抓兩個(gè)要點(diǎn):

  學(xué)好數學(xué),一要(動(dòng)手),二要(動(dòng)腦)。動(dòng)腦就是要學(xué)會(huì )觀(guān)察分析問(wèn)題,學(xué)會(huì )思考,不要拿到題就做,找到已知和未知想象之間有什么聯(lián)系,多問(wèn)幾個(gè)為什么。動(dòng)手就是多實(shí)踐,多做題,要“拳不離手”(武術(shù))“曲不離口”(唱歌)。同學(xué)就是“題不離手”,這兩個(gè)要點(diǎn)大家要記住!皠(dòng)腦又動(dòng)手,才能最大地發(fā)揮大腦的效率”

  3、做到“三個(gè)一遍”

  大家聽(tīng)過(guò)“失敗是成功之母”聽(tīng)過(guò)“重復是學(xué)習之母”嗎?培根(18-19世紀英國的哲學(xué)家)——“知識就是力量”,“重復是學(xué)習之母”。如何重復,我給你們解釋一下:

  “上課要認真聽(tīng)一遍,動(dòng)手推一遍,想一遍”

  “下課看”

  “考試前”

  4、重視“四個(gè)依據”

  讀好一本教科書(shū)——它是教學(xué)、中考的主要依據;

  記好一本筆記——它是教師多年經(jīng)驗的結晶;

  做好做凈一本習題集——它是使知識拓寬;

  記好一本心得筆記,最好每人自己準備一本錯題集

初中數學(xué)知識點(diǎn)總結12

  1.一元一次方程:只含有一個(gè)未知數,并且未知數的次數是1,并且含未知數項的系數不是零的整式方程是一元一次方程。

  2.一元一次方程的標準形式:ax+b=0(x是未知數,a、b是已知數,且a≠0)。

  3.一元一次方程解法的一般步驟:整理方程……去分母……去括號……移項……合并同類(lèi)項……系數化為1 ……(檢驗方程的解)。

  4.列一元一次方程解應用題:

 。1)讀題分析法:多用于“和,差,倍,分問(wèn)題”

  仔細讀題,找出表示相等關(guān)系的關(guān)鍵字,例如:“大,小,多,少,是,共,合,為,完成,增加,減少,配套—————”,利用這些關(guān)鍵字列出文字等式,并且據題意設出未知數,最后利用題目中的量與量的關(guān)系填入代數式,得到方程。

 。2)畫(huà)圖分析法:多用于“行程問(wèn)題”

  利用圖形分析數學(xué)問(wèn)題是數形結合思想在數學(xué)中的體現,仔細讀題,依照題意畫(huà)出有關(guān)圖形,使圖形各部分具有特定的含義,通過(guò)圖形找相等關(guān)系是解決問(wèn)題的關(guān)鍵,從而取得布列方程的依據,最后利用量與量之間的關(guān)系(可把未知數看做已知量),填入有關(guān)的代數式是獲得方程的`基礎。

  11.列方程解應用題的常用公式:

 。1)行程問(wèn)題:距離=速度·時(shí)間;

 。2)工程問(wèn)題:工作量=工效·工時(shí);

 。3)比率問(wèn)題:部分=全體·比率;

 。4)順逆流問(wèn)題:順流速度=靜水速度+水流速度,逆流速度=靜水速度—水流速度;

 。5)商品價(jià)格問(wèn)題:售價(jià)=定價(jià)·折·,利潤=售價(jià)—成本,;

 。6)周長(cháng)、面積、體積問(wèn)題:C圓=2πR,S圓=πR2,C長(cháng)方形=2(a+b),S長(cháng)方形=ab,C正方形=4a,

  S正方形=a2,S環(huán)形=π(R2—r2),V長(cháng)方體=abc,V正方體=a3,V圓柱=πR2h,V圓錐= πR2h。

  本章內容是代數學(xué)的核心,也是所有代數方程的基礎。豐富多彩的問(wèn)題情境和解決問(wèn)題的快樂(lè )很容易激起學(xué)生對數學(xué)的樂(lè )趣,所以要注意引導學(xué)生從身邊的問(wèn)題研究起,進(jìn)行有效的數學(xué)活動(dòng)和合作交流,讓學(xué)生在主動(dòng)學(xué)習、探究學(xué)習的過(guò)程中獲得知識,提升能力,體會(huì )數學(xué)思想方法。

初中數學(xué)知識點(diǎn)總結13

  第一章 豐富的圖形世界

  1、幾何圖形

  從實(shí)物中抽象出來(lái)的各種圖形,包括立體圖形和平面圖形。

  2、點(diǎn)、線(xiàn)、面、體

  (1)幾何圖形的組成

  點(diǎn):線(xiàn)和線(xiàn)相交的地方是點(diǎn),它是幾何圖形中最基本的圖形。

  線(xiàn):面和面相交的地方是線(xiàn),分為直線(xiàn)和曲線(xiàn)。

  面:包圍著(zhù)體的是面,分為平面和曲面。

  體:幾何體也簡(jiǎn)稱(chēng)體。

  (2)點(diǎn)動(dòng)成線(xiàn),線(xiàn)動(dòng)成面,面動(dòng)成體。

  3、生活中的立體圖形

  生活中的立體圖形

  柱:棱柱:三棱柱、四棱柱(長(cháng)方體、正方體)、五棱柱、……

  正有理數 整數

  有理數 零 有理數

  負有理數 分數

  2、相反數:只有符號不同的兩個(gè)數叫做互為相反數,零的相反數是零

  3、數軸:規定了原點(diǎn)、正方向和單位長(cháng)度的直線(xiàn)叫做數軸(畫(huà)數軸時(shí),三要素缺一不可)。任何一個(gè)有理數都可以用數軸上的一個(gè)點(diǎn)來(lái)表示。

  4、倒數:如果a與b互為倒數,則有ab=1,反之亦成立。倒數等于本身的數是1和-1。零沒(méi)有倒數。

  5、絕對值:在數軸上,一個(gè)數所對應的點(diǎn)與原點(diǎn)的距離,叫做該數的絕對值,(|a|≥0)。若|a|=a,則a≥0;若|a|=-a,則a≤0。

  正數的絕對值是它本身;負數的絕對值是它的相反數;0的絕對值是0;橄喾磾档膬蓚(gè)數的絕對值相等。

  6、有理數比較大。赫龜荡笥0,負數小于0,正數大于負數;數軸上的兩個(gè)點(diǎn)所表示的數,右邊的總比左邊的大;兩個(gè)負數,絕對值大的反而小。

  7、有理數的運算:

  (1)五種運算:加、減、乘、除、乘方

  多個(gè)數相乘,積的符號由負因數的個(gè)數決定,當負因數有奇數個(gè)時(shí),積的符號為負;當負因數有偶數個(gè)時(shí),積的符號為正。只要有一個(gè)數為零,積就為零。

  有理數加法法則:

  同號兩數相加,取相同的符號,并把絕對值相加。

  異號兩數相加,絕對值值相等時(shí)和為0;絕對值不相等時(shí),取絕對值較大的加數的符號,并用較大的絕對值減去較小的絕對值。

  一個(gè)數同0相加,仍得這個(gè)數。

  互為相反數的兩個(gè)數相加和為0。

  有理數減法法則:減去一個(gè)數,等于加上這個(gè)數的相反數!

  有理數乘法法則:

  兩數相乘,同號得正,異號得負,并把絕對值相乘。

  任何數與0相乘,積仍為0。

  有理數除法法則:

  兩個(gè)有理數相除,同號得正,異號得負,并把絕對值相除。

  0除以任何非0的數都得0。

  注意:0不能作除數。

  有理數的乘方:求n個(gè)相同因數a的積的運算叫做乘方。

  正數的任何次冪都是正數,負數的偶次冪是正數,負數的奇次冪是負數。

  (2)有理數的運算順序

  先算乘方,再算乘除,最后算加減,如果有括號,先算括號里面的。

  (3)運算律

  加法交換律 加法結合律

  乘法交換律 乘法結合律

  乘法對加法的分配律

  8、科學(xué)記數法

  一般地,一個(gè)大于10的數可以表示成的形式,其中,n是正整數,這種記數方法叫做科學(xué)記數法。(n=整數位數-1)

  第三章 整式及其加減

  1、代數式

  用運算符號(加、減、乘、除、乘方、開(kāi)方等)把數或表示數的字母連接而成的式子叫做代數式。單獨的一個(gè)數或一個(gè)字母也是代數式。

  注意:①代數式中除了含有數、字母和運算符號外,還可以有括號;

 、诖鷶凳街胁缓小=、>、<、≠”等符號。等式和不等式都不是代數式,但等號和不等號兩邊的式子一般都是代數式;

 、鄞鷶凳街械淖帜杆硎镜臄当仨氁惯@個(gè)代數式有意義,是實(shí)際問(wèn)題的要符合實(shí)際問(wèn)題的意義。

  ※代數式的書(shū)寫(xiě)格式:

 、俅鷶凳街谐霈F乘號,通常省略不寫(xiě),如vt;

 、跀底峙c字母相乘時(shí),數字應寫(xiě)在字母前面,如4a;

 、蹘Х謹蹬c字母相乘時(shí),應先把帶分數化成假分數,如應寫(xiě)作;

 、軘底峙c數字相乘,一般仍用“×”號,即“×”號不省略;

 、菰诖鷶凳街谐霈F除法運算時(shí),一般寫(xiě)成分數的形式,如4÷(a-4)應寫(xiě)作;注意:分數線(xiàn)具有“÷”號和括號的雙重作用。

 、拊诒硎竞(或)差的代數式后有單位名稱(chēng)的,則必須把代數式括起來(lái),再將單位名稱(chēng)寫(xiě)在式子的后面,如平方米。

  2、整式:?jiǎn)雾検胶投囗検浇y稱(chēng)為整式。

 、賳雾検剑憾际菙底趾妥帜赋朔e的形式的代數式叫做單項式。單項式中,所有字母的指數之和叫做這個(gè)單項式的次數;數字因數叫做這個(gè)單項式的系數。

  注意:1.單獨的一個(gè)數或一個(gè)字母也是單項式;2.單獨一個(gè)非零數的次數是0;3.當單項式的系數為1或-1時(shí),這個(gè)“1”應省略不寫(xiě),如-ab的系數是-1,a3b的系數是1。

 、诙囗検剑簬讉(gè)單項式的和叫做多項式。多項式中,每個(gè)單項式叫做多項式的項;次數最高的項的次數叫做多項式的次數。

  3、同類(lèi)項:所含字母相同,并且相同字母的指數也相同的項叫做同類(lèi)項。

  注意:①同類(lèi)項有兩個(gè)條件:a.所含字母相同;b.相同字母的指數也相同。

 、谕(lèi)項與系數無(wú)關(guān),與字母的排列順序無(wú)關(guān);

 、蹘讉(gè)常數項也是同類(lèi)項。

  4、合并同類(lèi)項法則:把同類(lèi)項的系數相加,字母和字母的指數不變。

  5、去括號法則

 、俑鶕ダㄌ柗▌t去括號:

  括號前面是“+”號,把括號和它前面的“+”號去掉,括號里各項都不改變符號;括號前面是“-”號,把括號和它前面的“-”號去掉,括號里各項都改變符號。

 、诟鶕峙渎扇ダㄌ枺

  括號前面是“+”號看成+1,括號前面是“-”號看成-1,根據乘法的分配律用+1或-1去乘括號里的每一項以達到去括號的目的。

  6、添括號法則

  添“+”號和括號,添到括號里的各項符號都不改變;添“-”號和括號,添到括號里的各項符號都要改變。

  7、整式的運算:

  整式的加減法:(1)去括號;(2)合并同類(lèi)項。

  第四章 基本平面圖形

  2、直線(xiàn)的性質(zhì)

  (1)直線(xiàn)公理:經(jīng)過(guò)兩個(gè)點(diǎn)有且只有一條直線(xiàn)。(兩點(diǎn)確定一條直線(xiàn)。)

  (2)過(guò)一點(diǎn)的直線(xiàn)有無(wú)數條。

  (3)直線(xiàn)是是向兩方面無(wú)限延伸的',無(wú)端點(diǎn),不可度量,不能比較大小。

  3、線(xiàn)段的性質(zhì)

  (1)線(xiàn)段公理:兩點(diǎn)之間的所有連線(xiàn)中,線(xiàn)段最短。(兩點(diǎn)之間線(xiàn)段最短。)

  (2)兩點(diǎn)之間的距離:兩點(diǎn)之間線(xiàn)段的長(cháng)度,叫做這兩點(diǎn)之間的距離。

  (3)線(xiàn)段的大小關(guān)系和它們的長(cháng)度的大小關(guān)系是一致的。

  4、線(xiàn)段的中點(diǎn):

  點(diǎn)M把線(xiàn)段AB分成相等的兩條相等的線(xiàn)段AM與BM,點(diǎn)M叫做線(xiàn)段AB的中點(diǎn)。AM = BM =1/2AB (或AB=2AM=2BM)。

  5、角:

  有公共端點(diǎn)的兩條射線(xiàn)組成的圖形叫做角,兩條射線(xiàn)的公共端點(diǎn)叫做這個(gè)角的頂點(diǎn),這兩條射線(xiàn)叫做這個(gè)角的邊;颍航且部梢钥闯墒且粭l射線(xiàn)繞著(zhù)它的端點(diǎn)旋轉而成的。

  6、角的表示

  角的表示方法有以下四種:

 、儆脭底直硎締为毜慕,如∠1,∠2,∠3等。

 、谟眯(xiě)的希臘字母表示單獨的一個(gè)角,如∠α,∠β,∠γ,∠θ等。

 、塾靡粋(gè)大寫(xiě)英文字母表示一個(gè)獨立(在一個(gè)頂點(diǎn)處只有一個(gè)角)的角,如∠B,∠C等。

 、苡萌齻(gè)大寫(xiě)英文字母表示任一個(gè)角,如∠BAD,∠BAE,∠CAE等。

  注意:用三個(gè)大寫(xiě)字母表示角時(shí),一定要把頂點(diǎn)字母寫(xiě)在中間,邊上的字母寫(xiě)在兩側。

  7、角的度量

  角的度量有如下規定:把一個(gè)平角180等分,每一份就是1度的角,單位是度,用“°”表示,1度記作“1°”,n度記作“n°”。

  把1°的角60等分,每一份叫做1分的角,1分記作“1’”。

  把1’的角60等分,每一份叫做1秒的角,1秒記作“1””。

  1°=60’,1’=60”

  8、角的平分線(xiàn)

  從一個(gè)角的頂點(diǎn)引出的一條射線(xiàn),把這個(gè)角分成兩個(gè)相等的角,這條射線(xiàn)叫做這個(gè)角的平分線(xiàn)。

  9、角的性質(zhì)

  (1)角的大小與邊的長(cháng)短無(wú)關(guān),只與構成角的兩條射線(xiàn)的幅度大小有關(guān)。

  (2)角的大小可以度量,可以比較,角可以參與運算。

  10、平角和周角:一條射線(xiàn)繞著(zhù)它的端點(diǎn)旋轉,當終邊和始邊成一條直線(xiàn)時(shí),所形成的角叫做平角。終邊繼續旋轉,當它又和始邊重合時(shí),所形成的角叫做周角。

  11、多邊形:由若干條不在同一條直線(xiàn)上的線(xiàn)段首尾順次相連組成的封閉平面圖形叫做多邊形。連接不相鄰兩個(gè)頂點(diǎn)的線(xiàn)段叫做多邊形的對角線(xiàn)。

  從一個(gè)n邊形的同一個(gè)頂點(diǎn)出發(fā),分別連接這個(gè)頂點(diǎn)與其余各頂點(diǎn),可以畫(huà)(n-3)條對角線(xiàn),把這個(gè)n邊形分割成(n-2)個(gè)三角形。

  12、圓:平面上,一條線(xiàn)段繞著(zhù)一個(gè)端點(diǎn)旋轉一周,另一個(gè)端點(diǎn)形成的圖形叫做圓。固定的端點(diǎn)O稱(chēng)為圓心,線(xiàn)段OA的長(cháng)稱(chēng)為半徑的長(cháng)(通常簡(jiǎn)稱(chēng)為半徑)。

  圓上任意兩點(diǎn)A、B間的部分叫做圓弧,簡(jiǎn)稱(chēng)弧,讀作“圓弧AB”或“弧AB”;由一條弧AB和經(jīng)過(guò)這條弧的端點(diǎn)的兩條半徑OA、OB所組成的圖形叫做扇形。頂點(diǎn)在圓心的角叫做圓心角。

  第五章 一元一次方程

  1、方程

  含有未知數的等式叫做方程。

  2、方程的解

  能使方程左右兩邊相等的未知數的值叫做方程的解。

  3、等式的性質(zhì)

  (1)等式的兩邊同時(shí)加上(或減去)同一個(gè)代數式,所得結果仍是等式。

  (2)等式的兩邊同時(shí)乘以同一個(gè)數((或除以同一個(gè)不為0的數),所得結果仍是等式。

  4、一元一次方程

  只含有一個(gè)未知數,并且未知數的最高次數是1的整式方程叫做一元一次方程。

  5、移項:把方程中的某一項,改變符號后,從方程的一邊移到另一邊,這種變形叫做移項.

  6、解一元一次方程的一般步驟:

  (1)去分母(2)去括號(3)移項(把方程中的某一項改變符號后,從方程的一邊移到另一邊,這種變形叫移項。)(4)合并同類(lèi)項(5)將未知數的系數化為1

  第六章 數據的收集與整理

  1、普查與抽樣調查

  為了特定目的對全部考察對象進(jìn)行的全面調查,叫做普查。其中被考察對象的全體叫做總體,組成總體的每一個(gè)被考察對象稱(chēng)為個(gè)體。

  從總體中抽取部分個(gè)體進(jìn)行調查,這種調查稱(chēng)為抽樣調查,其中從總體抽取的一部分個(gè)體叫做總體的一個(gè)樣本。

  2、扇形統計圖

  扇形統計圖:利用圓與扇形來(lái)表示總體與部分的關(guān)系,扇形的大小反映部分占總體的百分比的大小,這樣的統計圖叫做扇形統計圖。(各個(gè)扇形所占的百分比之和為1)

  圓心角度數=360°×該項所占的百分比。(各個(gè)部分的圓心角度數之和為360°)

  3、頻數直方圖

  頻數直方圖是一種特殊的條形統計圖,它將統計對象的數據進(jìn)行了分組畫(huà)在橫軸上,縱軸表示各組數據的頻數。

  4、各種統計圖的特點(diǎn)

  條形統計圖:能清楚地表示出每個(gè)項目的具體數目。

  折線(xiàn)統計圖:能清楚地反映事物的變化情況。

  扇形統計圖:能清楚地表示出各部分在總體中所占的百分比。

初中數學(xué)知識點(diǎn)總結14

  1.常量和變量

  在某變化過(guò)程中可以取不同數值的量,叫做變量.在某變化過(guò)程中保持同一數值的量或數,叫常量或常數.

  2.函數

  設在一個(gè)變化過(guò)程中有兩個(gè)變量x與y,如果對于x在某一范圍的每一個(gè)值,y都有唯一的值與它對應,那么就說(shuō)x是自變量,y是x的函數.

  3.自變量的取值范圍

  (1)整式:自變量取一切實(shí)數.(2)分式:分母不為零.

  (3)偶次方根:被開(kāi)方數為非負數.

  (4)零指數與負整數指數冪:底數不為零.

  4.函數值

  對于自變量在取值范圍內的一個(gè)確定的值,如當x=a時(shí),函數有唯一確定的對應值,這個(gè)對應值,叫做x=a時(shí)的函數值.

  5.函數的表示法

  (1)解析法;(2)列表法;(3)圖象法.

  6.函數的圖象

  把自變量x的一個(gè)值和函數y的對應值分別作為點(diǎn)的橫坐標和縱坐標,可以在平面直角坐標系內描出一個(gè)點(diǎn),所有這些點(diǎn)的集合,叫做這個(gè)函數的圖象.由函數解析式畫(huà)函數圖象的步驟:

  (1)寫(xiě)出函數解析式及自變量的取值范圍;

  (2)列表:列表給出自變量與函數的一些對應值;

  (3)描點(diǎn):以表中對應值為坐標,在坐標平面內描出相應的點(diǎn);

  (4)連線(xiàn):用平滑曲線(xiàn),按照自變量由小到大的順序,把所描各點(diǎn)連接起來(lái).

  7.一次函數

  (1)一次函數

  如果y=kx+b(k、b是常數,k≠0),那么y叫做x的一次函數.

  特別地,當b=0時(shí),一次函數y=kx+b成為y=kx(k是常數,k≠0),這時(shí),y叫做x的正比例函數.

  (2)一次函數的圖象

  一次函數y=kx+b的圖象是一條經(jīng)過(guò)(0,b)點(diǎn)和點(diǎn)的直線(xiàn).特別地,正比例函數圖象是一條經(jīng)過(guò)原點(diǎn)的直線(xiàn).需要說(shuō)明的是,在平面直角坐標系中,“直線(xiàn)”并不等價(jià)于“一次函數y=kx+b(k≠0)的圖象”,因為還有直線(xiàn)y=m(此時(shí)k=0)和直線(xiàn)x=n(此時(shí)k不存在),它們不是一次函數圖象.

  (3)一次函數的性質(zhì)

  當k>0時(shí),y隨x的增大而增大;當k<0時(shí),y隨x的增大而減。本(xiàn)y=kx+b與y軸的交點(diǎn)坐標為(0,b),與x軸的交點(diǎn)坐標為.

  (4)用函數觀(guān)點(diǎn)看方程(組)與不等式

 、偃魏我辉淮畏匠潭伎梢赞D化為ax+b=0(a,b為常數,a≠0)的形式,所以解一元一次方程可以轉化為:一次函數y=kx+b(k,b為常數,k≠0),當y=0時(shí),求相應的自變量的值,從圖象上看,相當于已知直線(xiàn)y=kx+b,確定它與x軸交點(diǎn)的橫坐標.

 、诙淮畏匠探M對應兩個(gè)一次函數,于是也對應兩條直線(xiàn),從“數”的角度看,解方程組相當于考慮自變量為何值時(shí)兩個(gè)函數值相等,以及這兩個(gè)函數值是何值;從“形”的角度看,解方程組相當于確定兩條直線(xiàn)的交點(diǎn)的坐標.

 、廴魏我辉淮尾坏仁蕉伎梢赞D化ax+b>0或ax+b<0(a、b為常數,a≠0)的形式,解一元一次不等式可以看做:當一次函數值大于0或小于0時(shí),求自變量相應的取值范圍.

  8.反比例函數(1)反比例函數

 。1)如果(k是常數,k≠0),那么y叫做x的反比例函數.

  (2)反比例函數的圖象反比例函數的圖象是雙曲線(xiàn).

  (3)反比例函數的性質(zhì)

 、佼攌>0時(shí),圖象的兩個(gè)分支分別在第一、三象限內,在各自的象限內,y隨x的增大而減。

 、诋攌<0時(shí),圖象的兩個(gè)分支分別在第二、四象限內,在各自的象限內,y隨x的增大而增大.

 、鄯幢壤瘮祱D象關(guān)于直線(xiàn)y=±x對稱(chēng),關(guān)于原點(diǎn)對稱(chēng).

  (4)k的兩種求法

 、偃酎c(diǎn)(x0,y0)在雙曲線(xiàn)上,則k=x0y0.②k的幾何意義:

  若雙曲線(xiàn)上任一點(diǎn)A(x,y),AB⊥x軸于B,則S△AOB

  (5)正比例函數和反比例函數的交點(diǎn)問(wèn)題

  若正比例函數y=k1x(k1≠0),反比例函數,則當k1k2<0時(shí),兩函數圖象無(wú)交點(diǎn);

  當k1k2>0時(shí),兩函數圖象有兩個(gè)交點(diǎn),坐標分別為由此可知,正反比例函數的圖象若有交點(diǎn),兩交點(diǎn)一定關(guān)于原點(diǎn)對稱(chēng).

  1.二次函數

  如果y=ax2+bx+c(a,b,c為常數,a≠0),那么y叫做x的二次函數.

  幾種特殊的二次函數:y=ax2(a≠0);y=ax2+c(ac≠0);y=ax2+bx(ab≠0);y=a(x-h(huán))2(a≠0).

  2.二次函數的圖象

  二次函數y=ax2+bx+c的圖象是對稱(chēng)軸平行于y軸的一條拋物線(xiàn).由y=ax2(a≠0)的圖象,通過(guò)平移可得到y=a(x-h(huán))2+k(a≠0)的圖象.

  3.二次函數的性質(zhì)

  二次函數y=ax2+bx+c的性質(zhì)對應在它的圖象上,有如下性質(zhì):

  (1)拋物線(xiàn)y=ax2+bx+c的`頂點(diǎn)是,對稱(chēng)軸是直線(xiàn),頂點(diǎn)必在對稱(chēng)軸上;

  (2)若a>0,拋物線(xiàn)y=ax2+bx+c的開(kāi)口向上,因此,對于拋物線(xiàn)上的任意一點(diǎn)(x,y),當x<時(shí),y隨x的增大而減;當x>時(shí),y隨x的增大而增大;當x=,y有最小值;若a<0,拋物線(xiàn)y=ax2+bx+c的開(kāi)口向下,因此,對于拋物線(xiàn)上的任意一點(diǎn)(x,y),當x<,y隨x的增大而增大;當時(shí),y隨x的增大而減;當x=時(shí),y有最大值;

  (3)拋物線(xiàn)y=ax2+bx+c與y軸的交點(diǎn)為(0,c);

  (4)在二次函數y=ax2+bx+c中,令y=0可得到拋物線(xiàn)y=ax2+bx+c與x軸交點(diǎn)的情況:

 。0時(shí),拋物線(xiàn)y=ax2+bx+c與x軸沒(méi)有公共點(diǎn).=0時(shí),拋物線(xiàn)y=ax2+bx+c與x軸只有一個(gè)公共點(diǎn),即為此拋物線(xiàn)的頂點(diǎn);當=b2-4ac>0,拋物線(xiàn)y=ax2+bx+c與x軸有兩個(gè)不同的公共點(diǎn),它們的坐標分別是和,這兩點(diǎn)的距離為;當當4.拋物線(xiàn)的平移

  拋物線(xiàn)y=a(x-h(huán))2+k與y=ax2形狀相同,位置不同.把拋物線(xiàn)y=ax2向上(下)、向左(右)平移,可以得到拋物線(xiàn)y=a(x-h(huán))2+k.平移的方向、距離要根據h、k的值來(lái)決定.

初中數學(xué)知識點(diǎn)總結15

  定義

  對應角相等,對應邊成比例的兩個(gè)三角形叫做相似三角形

  比值與比的概念

  比值是一個(gè)具體的數字如:AB/EF=2

  而比不是一個(gè)具體的數字如:AB/EF=2:1判定方法

  證兩個(gè)相似三角形應該把表示對應頂點(diǎn)的字母寫(xiě)在對應的位置上。如果是文字語(yǔ)言的“△ABC與△DEF相似”,那么就說(shuō)明這兩個(gè)三角形的對應頂點(diǎn)可能沒(méi)有寫(xiě)在對應的位置上,而如果是符號語(yǔ)言的“△ABC∽△DEF”,那么就說(shuō)明這兩個(gè)三角形的對應頂點(diǎn)寫(xiě)在了對應的位置上。

  方法一(預備定理)

  平行于三角形一邊的直線(xiàn)截其它兩邊所在的直線(xiàn),截得的三角形與原三角形相似。(這是相似三角形判定的定理,是以下判定方法證明的基礎。這個(gè)引理的證明方法需要平行線(xiàn)與線(xiàn)段成比例的'證明)

  方法二

  如果一個(gè)三角形的兩個(gè)角與另一個(gè)三角形的兩個(gè)角對應相等,那么這兩個(gè)三角形相似。

  方法三

  如果兩個(gè)三角形的兩組對應邊成比例,并且相應的夾角相等,

  那么這兩個(gè)三角形相似

  方法四

  如果兩個(gè)三角形的三組對應邊成比例,那么這兩個(gè)三角形相似

  方法五(定義)

  對應角相等,對應邊成比例的兩個(gè)三角形叫做相似三角形

  三個(gè)基本型

  Z型A型反A型

  方法六

  兩個(gè)直角三角形中,斜邊與直角邊對應成比例,那么兩三角形相似。一定相似的三角形

  1、兩個(gè)全等的三角形

  (全等三角形是特殊的相似三角形,相似比為1:1)

  2、兩個(gè)等腰三角形

  (兩個(gè)等腰三角形,如果其中的任意一個(gè)頂角或底角相等,那么這兩個(gè)等腰三角形相似。)

  3、兩個(gè)等邊三角形

  (兩個(gè)等邊三角形,三角都是60度,且邊邊相等,所以相似)

  4、直角三角形中由斜邊的高形成的三個(gè)三角形(母子三角形)

  圖形的學(xué)習需要大家對于知識的詳細了解和滲透,而不是一帶而過(guò)。

【初中數學(xué)知識點(diǎn)總結】相關(guān)文章:

初中數學(xué)的知識點(diǎn)總結09-19

初中數學(xué)的知識點(diǎn)總結03-11

初中數學(xué)知識點(diǎn)總結05-30

初中數學(xué)知識點(diǎn)總結10-24

初中數學(xué)函數知識點(diǎn)總結04-08

初中數學(xué)必考知識點(diǎn)總結02-22

初中數學(xué)代數知識點(diǎn)總結03-06

初中數學(xué)知識點(diǎn)總結06-24

初中數學(xué)的知識點(diǎn)總結大全12-09

初中數學(xué)知識點(diǎn)總結03-07