成人免费看黄网站无遮挡,caowo999,se94se欧美综合色,a级精品九九九大片免费看,欧美首页,波多野结衣一二三级,日韩亚洲欧美综合

初中數學(xué)必考知識點(diǎn)總結

時(shí)間:2025-02-22 09:59:58 知識點(diǎn)總結 我要投稿
  • 相關(guān)推薦

初中數學(xué)必考知識點(diǎn)總結

  在平時(shí)的學(xué)習中,大家都背過(guò)不少知識點(diǎn),肯定對知識點(diǎn)非常熟悉吧!知識點(diǎn)是知識中的最小單位,最具體的內容,有時(shí)候也叫“考點(diǎn)”。哪些知識點(diǎn)能夠真正幫助到我們呢?下面是小編為大家收集的初中數學(xué)必考知識點(diǎn)總結,歡迎大家分享。

初中數學(xué)必考知識點(diǎn)總結

  初中數學(xué)必考知識點(diǎn)總結1

  中考數學(xué)知識點(diǎn):分式混合運算法則

  分式四則運算,順序乘除加減,乘除同級運算,除法符號須變(乘);乘法進(jìn)行化簡(jiǎn),因式分解在先,分子分母相約,然后再行運算;加減分母需同,分母化積關(guān)鍵;找出最簡(jiǎn)公分母,通分不是很難;變號必須兩處,結果要求最簡(jiǎn).

  分式混合運算法則:

  分式四則運算,順序乘除加減,乘除同級運算,除法符號須變(乘);

  乘法進(jìn)行化簡(jiǎn),因式分解在先,分子分母相約,然后再行運算;

  加減分母需同,分母化積關(guān)鍵;找出最簡(jiǎn)公分母,通分不是很難;

  變號必須兩處,結果要求最簡(jiǎn).

  中考數學(xué)二次根式的加減法知識點(diǎn)總結

  二次根式的加減法

  知識點(diǎn)1:同類(lèi)二次根式

  (Ⅰ)幾個(gè)二次根式化成最簡(jiǎn)二次根式以后,如果被開(kāi)方數相同,這幾個(gè)二次根式叫做同類(lèi)二次根式,如這樣的二次根式都是同類(lèi)二次根式。

  (Ⅱ)判斷同類(lèi)二次根式的方法:(1)首先將不是最簡(jiǎn)形式的二次根式化為最簡(jiǎn)二次根式以后,再看被開(kāi)方數是否相同。(2)幾個(gè)二次根式是否是同類(lèi)二次根式,只與被開(kāi)方數及根指數有關(guān),而與根號外的因式無(wú)關(guān)。

  知識點(diǎn)2:合并同類(lèi)二次根式的方法

  合并同類(lèi)二次根式的理論依據是逆用乘法對加法的分配律,合并同類(lèi)二次根式,只把它們的系數相加,根指數和被開(kāi)方數都不變,不是同類(lèi)二次根式的不能合并。

  知識點(diǎn)3:二次根式的加減法則

  二次根式相加減先把各個(gè)二次根式化成最簡(jiǎn)二次根式,再把同類(lèi)二次根式合并,合并的方法為系數相加,根式不變。

  知識點(diǎn)4:二次根式的混合運算方法和順序

  運算方法是利用加、減、乘、除法則以及與多項式乘法類(lèi)似法則進(jìn)行混合運算。運算的順序是先乘方,后乘除,最后加減,有括號的先算括號內的。

  知識點(diǎn)5:二次根式的加減法則與乘除法則的區別

  乘除法中,系數相乘,被開(kāi)方數相乘,與兩根式是否是同類(lèi)根式無(wú)關(guān),加減法中,系數相加,被開(kāi)方數不變而且兩根式須是同類(lèi)最簡(jiǎn)根式。

  中考數學(xué)知識點(diǎn):直角三角形

  ★重點(diǎn)★解直角三角形

  ☆內容提要☆

  一、三角函數

  1.定義:在Rt△ABC中,∠C=Rt∠,則sinA=;cosA=;tgA=;ctgA=.

  2.特殊角的`三角函數值:

  0°30°45°60°90°

  sinα

  cosα

  tgα/

  ctgα/

  3.互余兩角的三角函數關(guān)系:sin(90°-α)=cosα;…

  4.三角函數值隨角度變化的關(guān)系

  5.查三角函數表

  二、解直角三角形

  1.定義:已知邊和角(兩個(gè),其中必有一邊)→所有未知的邊和角。

  2.依據:①邊的關(guān)系:

 、诮堑年P(guān)系:A+B=90°

 、圻吔顷P(guān)系:三角函數的定義。

  注意:盡量避免使用中間數據和除法。

  三、對實(shí)際問(wèn)題的處理

  1.俯、仰角:2.方位角、象限角:3.坡度:4.在兩個(gè)直角三角形中,都缺解直角三角形的條件時(shí),可用列方程的辦法解決。

  初中數學(xué)必考知識點(diǎn)總結2

  一、目標與要求

  1.了解一元二次方程及有關(guān)概念,一般式ax2+bx+c=0(a≠0)及其派生的概念,應用一元二次方程概念解決一些簡(jiǎn)單題目。

  2.掌握通過(guò)配方法、公式法、因式分解法降次──解一元二次方程,掌握依據實(shí)際問(wèn)題建立一元二次方程的數學(xué)模型的方法,應用熟練掌握以上知識解決問(wèn)題。

  二、重點(diǎn)

  1.一元二次方程及其它有關(guān)的概念及其一般形式和一元二次方程的有關(guān)概念并用這些概念解決問(wèn)題。

  2.判定一個(gè)數是否是方程的根;

  3.用配方法、公式法、因式分解法降次──解一元二次方程。

  4.運用開(kāi)平方法解形如(x+m)2=n(n≥0)的方程,領(lǐng)會(huì )降次──轉化的數學(xué)思想。

  5.利用實(shí)際問(wèn)題建立一元二次方程的數學(xué)模型,并解決這個(gè)問(wèn)題.

  三、難點(diǎn)

  1.一元二次方程配方法解題。

  2.通過(guò)提出問(wèn)題,建立一元二次方程的數學(xué)模型,再由一元一次方程的概念遷移到一元二次方程的概念。

  3.用公式法解一元二次方程時(shí)的討論。

  4.通過(guò)根據平方根的意義解形如x2=n,知識遷移到根據平方根的意義解形如(x+m)2=n(n≥0)的方程。

  5.建立一元二次方程實(shí)際問(wèn)題的數學(xué)模型,方程解與實(shí)際問(wèn)題解的`區別。

  6.由實(shí)際問(wèn)題列出的一元二次方程解出根后還要考慮這些根是否確定是實(shí)際問(wèn)題的根。

  7.知識框架

  四、知識點(diǎn)、概念總結

  1.一元二次方程:方程兩邊都是整式,只含有一個(gè)未知數(一元),并且未知數的最高次數是2(二次)的方程,叫做一元二次方程。

  2.一元二次方程有四個(gè)特點(diǎn):

  (1)含有一個(gè)未知數;

  (2)且未知數次數最高次數是2;

  (3)是整式方程。要判斷一個(gè)方程是否為一元二次方程,先看它是否為整式方程,若是,再對它進(jìn)行整理。如果能整理為 ax2+bx+c=0(a≠0)的形式,則這個(gè)方程就為一元二次方程。

  (4)將方程化為一般形式:ax2+bx+c=0時(shí),應滿(mǎn)足(a≠0)

  3. 一元二次方程的一般形式:一般地,任何一個(gè)關(guān)于x的一元二次方程,經(jīng)過(guò)整理,都能化成如下形式ax2+bx+c=0(a≠0)。

  一個(gè)一元二次方程經(jīng)過(guò)整理化成ax2+bx+c=0(a≠0)后,其中ax2是二次項,a是二次項系數;bx是一次項,b是一次項系數;c是常數項。

  初中數學(xué)必考知識點(diǎn)總結3

  函數

 、傥恢玫拇_定與平面直角坐標系

  位置的確定

  坐標變換

  平面直角坐標系內點(diǎn)的特征

  平面直角坐標系內點(diǎn)坐標的符號與點(diǎn)的象限位置

  對稱(chēng)問(wèn)題:P(x,y)→Q(x,- y)關(guān)于x軸對稱(chēng)P(x,y)→Q(- x,y)關(guān)于y軸對稱(chēng)P(x,y)→Q(- x,-y)關(guān)于原點(diǎn)對稱(chēng)

  變量、自變量、因變量、函數的定義

  函數自變量、因變量的取值范圍(使式子有意義的條件、圖象法) 56、函數的圖象:變量的變化趨勢描述

 、谝淮魏瘮蹬c正比例函數

  一次函數的定義與正比例函數的定義

  一次函數的.圖象:直線(xiàn),畫(huà)法

  一次函數的性質(zhì)(增減性)

  一次函數y=kx+b(k≠0)中k、b符號與圖象位置

  待定系數法求一次函數的解析式(一設二列三解四回)

  一次函數的平移問(wèn)題

  一次函數與一元一次方程、一元一次不等式、二元一次方程的關(guān)系(圖象法)

  一次函數的實(shí)際應用

  一次函數的綜合應用(1)一次函數與方程綜合(2)一次函數與其它函數綜合(3)一次函數與不等式的綜合(4)一次函數與幾何綜合

  初中數學(xué)必考知識點(diǎn)總結4

  1.有理數:

 。1)凡能寫(xiě)成形式的數,都是有理數。正整數、0、負整數統稱(chēng)整數;正分數、負分數統稱(chēng)分數;整數和分數統稱(chēng)有理數。注意:0即不是正數,也不是負數;—a不一定是負數,+a也不一定是正數;p不是有理數;

 。2)有理數的分類(lèi):① ②

  2.數軸:數軸是規定了原點(diǎn)、正方向、單位長(cháng)度的一條直線(xiàn)。

  3.相反數:

 。1)只有符號不同的兩個(gè)數,我們說(shuō)其中一個(gè)是另一個(gè)的相反數;0的相反數還是0;

 。2)相反數的和為0?a+b=0?a、b互為相反數。

  4.絕對值:

 。1)正數的絕對值是其本身,0的絕對值是0,負數的絕對值是它的相反數;注意:絕對值的意義是數軸上表示某數的點(diǎn)離開(kāi)原點(diǎn)的距離;

 。2)絕對值可表示為:或;絕對值的問(wèn)題經(jīng)常分類(lèi)討論;

  5.有理數比大。海1)正數的絕對值越大,這個(gè)數越大;(2)正數永遠比0大,負數永遠比0;(3)正數大于一切負數;(4)兩個(gè)負數比大小,絕對值大的反而;(5)數軸上的兩個(gè)數,右邊的數總比左邊的數大;(6)大數—小數> 0,小數—大數< 0。

  6.互為倒數:乘積為1的兩個(gè)數互為倒數;注意:0沒(méi)有倒數;若a≠0,那么的倒數是;若ab=1?a、b互為倒數;若ab=—1?a、b互為負倒數。

  7.有理數加法法則:

 。1)同號兩數相加,取相同的符號,并把絕對值相加;

 。2)異號兩數相加,取絕對值較大的符號,并用較大的絕對值減去較小的絕對值;

 。3)一個(gè)數與0相加,仍得這個(gè)數。

  8.有理數加法的運算律:

 。1)加法的交換律:a+b=b+a;(2)加法的結合律:(a+b)+c=a+(b+c)。

  9.有理數減法法則:減去一個(gè)數,等于加上這個(gè)數的相反數;即a—b=a+(—b)。

  10.有理數乘法法則:

 。1)兩數相乘,同號為正,異號為負,并把絕對值相乘;

 。2)任何數同零相乘都得零;

 。3)幾個(gè)數相乘,有一個(gè)因式為零,積為零;各個(gè)因式都不為零,積的符號由負因式的個(gè)數決定。

  11.有理數乘法的運算律:

 。1)乘法的交換律:ab=ba;(2)乘法的結合律:(ab)c=a(bc);

 。3)乘法的分配律:a(b+c)=ab+ac 。

  12.有理數除法法則:除以一個(gè)數等于乘以這個(gè)數的倒數;注意:零不能做除數,。

  13.有理數乘方的法則:

 。1)正數的任何次冪都是正數;

 。2)負數的奇次冪是負數;負數的偶次冪是正數;注意:當n為正奇數時(shí):(—a)n=—an或(a —b)n=—(b—a)n,當n為正偶數時(shí):(—a)n =an或(a—b)n=(b—a)n 。

  14.乘方的`定義:

 。1)求相同因式積的運算,叫做乘方;

 。2)乘方中,相同的因式叫做底數,相同因式的個(gè)數叫做指數,乘方的結果叫做冪;

  15.科學(xué)記數法:把一個(gè)大于10的數記成a×10n的形式,其中a是整數數位只有一位的數,這種記數法叫科學(xué)記數法。

  16.近似數的精確位:一個(gè)近似數,四舍五入到那一位,就說(shuō)這個(gè)近似數的精確到那一位。

  17.有效數字:從左邊第一個(gè)不為零的數字起,到精確的位數止,所有數字,都叫這個(gè)近似數的有效數字。

  18.混合運算法則:先乘方,后乘除,最后加減。

  本章內容要求學(xué)生正確認識有理數的概念,在實(shí)際生活和學(xué)習數軸的基礎上,理解正負數、相反數、絕對值的意義所在。重點(diǎn)利用有理數的運算法則解決實(shí)際問(wèn)題。

  體驗數學(xué)發(fā)展的一個(gè)重要原因是生活實(shí)際的需要。激發(fā)學(xué)生學(xué)習數學(xué)的興趣,教師培養學(xué)生的觀(guān)察、歸納與概括的能力,使學(xué)生建立正確的數感和解決實(shí)際問(wèn)題的能力。教師在講授本章內容時(shí),應該多創(chuàng )設情境,充分體現學(xué)生學(xué)習的主體性地位。

  初中數學(xué)必考知識點(diǎn)總結5

  1、菱形的定義:有一組鄰邊相等的平行四邊形叫做菱形。

  2、菱形的性質(zhì):⑴矩形具有平行四邊形的一切性質(zhì);

 、屏庑蔚乃臈l邊都相等;

 、橇庑蔚膬蓷l對角線(xiàn)互相垂直,并且每一條對角線(xiàn)平分一組對角。

 、攘庑问禽S對稱(chēng)圖形。

  提示:利用菱形的性質(zhì)可證得線(xiàn)段相等、角相等,它的對角線(xiàn)互相垂直且把菱形分成四個(gè)全等的直角三角形,由此又可與勾股定理聯(lián)系,可得對角線(xiàn)與邊之間的關(guān)系,即邊長(cháng)的平方等于對角線(xiàn)一半的平方和。

  3、因式分解定義:把一個(gè)多項式化成幾個(gè)整式的積的形式的變形叫把這個(gè)多項式因式分解。

  4、因式分解要素:①結果必須是整式②結果必須是積的形式③結果是等式④因式分解與整式乘法的關(guān)系:m(a+b+c)

  5、公因式:一個(gè)多項式每項都含有的公共的因式,叫做這個(gè)多項式各項的公因式。

  6、公因式確定方法:①系數是整數時(shí)取各項最大公約數。②相同字母取最低次冪③系數最大公約數與相同字母取最低次冪的積就是這個(gè)多項式各項的公因式。

  7、提取公因式步驟:①確定公因式。②確定商式③公因式與商式寫(xiě)成積的'形式。

  8、平方根表示法:一個(gè)非負數a的平方根記作,讀作正負根號a。a叫被開(kāi)方數。

  9、中被開(kāi)方數的取值范圍:被開(kāi)方數a≥0

  10、平方根性質(zhì):①一個(gè)正數的平方根有兩個(gè),它們互為相反數。②0的平方根是它本身0。③負數沒(méi)有平方根開(kāi)平方;求一個(gè)數的平方根的運算,叫做開(kāi)平方。

  11、平方根與算術(shù)平方根區別:定義不同、表示方法不同、個(gè)數不同、取值范圍不同。

  12、聯(lián)系:二者之間存在著(zhù)從屬關(guān)系;存在條件相同;0的算術(shù)平方根與平方根都是0

  13、含根號式子的意義:表示a的平方根,表示a的算術(shù)平方根,表示a的負的平方根。

  14、求正數a的算術(shù)平方根的方法;

  完全平方數類(lèi)型:①想誰(shuí)的平方是數a。②所以a的平方根是多少。③用式子表示。

  求正數a的算術(shù)平方根,只需找出平方后等于a的正數。

  初中數學(xué)必考知識點(diǎn)總結6

  1、正數和負數的有關(guān)概念

  (1)正數:比0大的數叫做正數;

  負數:比0小的數叫做負數;

  0既不是正數,也不是負數。

  (2)正數和負數表示相反意義的量。

  2、有理數的概念及分類(lèi)

  3、有關(guān)數軸

  (1)數軸的三要素:原點(diǎn)、正方向、單位長(cháng)度。數軸是一條直線(xiàn)。

  (2)所有有理數都可以用數軸上的點(diǎn)來(lái)表示,但數軸上的點(diǎn)不一定都是有理數。

  (3)數軸上,右邊的數總比左邊的數大;表示正數的點(diǎn)在原點(diǎn)的右側,表示負數的點(diǎn)在原點(diǎn)的左側。

  (2)相反數:符號不同、絕對值相等的兩個(gè)數互為相反數。

  若a、b互為相反數,則a+b=0;

  相反數是本身的是0,正數的'相反數是負數,負數的相反數是正數。

  (3)絕對值最小的數是0;絕對值是本身的數是非負數。

  4、任何數的絕對值是非負數。

  最小的正整數是1,最大的負整數是-1。

  5、利用絕對值比較大小

  兩個(gè)正數比較:絕對值大的那個(gè)數大;

  兩個(gè)負數比較:先算出它們的絕對值,絕對值大的反而小。

  6、有理數加法

  (1)符號相同的兩數相加:和的符號與兩個(gè)加數的符號一致,和的絕對值等于兩個(gè)加數絕對值之和.

  (2)符號相反的兩數相加:當兩個(gè)加數絕對值不等時(shí),和的符號與絕對值較大的加數的符號相同,和的絕對值等于加數中較大的絕對值減去較小的絕對值;當兩個(gè)加數絕對值相等時(shí),兩個(gè)加數互為相反數,和為零.

  (3)一個(gè)數同零相加,仍得這個(gè)數.

  加法的交換律:a+b=b+a

  加法的結合律:(a+b)+c=a+(b+c)

  7、有理數減法:減去一個(gè)數,等于加上這個(gè)數的相反數。

  8、在把有理數加減混合運算統一為最簡(jiǎn)的形式,負數前面的加號可以省略不寫(xiě).

  例如:14+12+(-25)+(-17)可以寫(xiě)成省略括號的形式:14+12 -25-17,可以讀作“正14加12減25減17”,也可以讀作“正14、正12、負25、負17的和.”

  9、有理數的乘法

  兩個(gè)數相乘,同號得正,異號得負,再把絕對值相乘;任何數與0相乘都得0。

  第一步:確定積的符號 第二步:絕對值相乘

  10、乘積的符號的確定

  幾個(gè)有理數相乘,因數都不為 0 時(shí),積的符號由負因數的個(gè)數確定:當負因數有奇數個(gè)時(shí),積為負;

  當負因數有偶數個(gè)時(shí),積為正。幾個(gè)有理數相乘,有一個(gè)因數為零,積就為零。

  11、倒數:乘積為1的兩個(gè)數互為倒數,0沒(méi)有倒數。

  正數的倒數是正數,負數的倒數是負數。(互為倒數的兩個(gè)數符號一定相同)

  倒數是本身的只有1和-1。

【初中數學(xué)必考知識點(diǎn)總結】相關(guān)文章:

高考數學(xué)必考知識點(diǎn)總結06-28

必考知識點(diǎn)總結07-04

物理必考知識點(diǎn)總結01-09

小學(xué)升學(xué)考試必考知識點(diǎn)數學(xué)10-22

高中必考數學(xué)知識點(diǎn)歸納整理09-27

中考物理必考知識點(diǎn)總結07-02

初中數學(xué)的知識點(diǎn)總結03-11

初中數學(xué)的知識點(diǎn)總結09-19

高中化學(xué)必考知識點(diǎn)總結03-28

紅樓夢(mèng)必考知識點(diǎn)總結06-10