初中圓的知識點(diǎn)總結
總結是事后對某一階段的學(xué)習或工作情況作加以回顧檢查并分析評價(jià)的書(shū)面材料,它是增長(cháng)才干的一種好辦法,因此十分有必須要寫(xiě)一份總結哦?偨Y怎么寫(xiě)才能發(fā)揮它的作用呢?以下是小編幫大家整理的初中圓的知識點(diǎn)總結,希望能夠幫助到大家。
初中圓的知識點(diǎn)總結1
1、圓是定點(diǎn)的距離等于定長(cháng)的點(diǎn)的集合
2、圓的內部可以看作是圓心的距離小于半徑的點(diǎn)的集合3、圓的外部可以看作是圓心的距離大于半徑的點(diǎn)的集合4、同圓或等圓的半徑相等
5、到定點(diǎn)的距離等于定長(cháng)的點(diǎn)的軌跡,是以定點(diǎn)為圓心,定長(cháng)為半徑的圓6、和已知線(xiàn)段兩個(gè)端點(diǎn)的距離相等的點(diǎn)的軌跡,是著(zhù)條線(xiàn)段的垂直平分線(xiàn)7、到已知角的兩邊距離相等的點(diǎn)的軌跡,是這個(gè)角的'平分線(xiàn)
8、到兩條平行線(xiàn)距離相等的點(diǎn)的軌跡,是和這兩條平行線(xiàn)平行且距離相等的一條直線(xiàn)
9、定理不在同一直線(xiàn)上的三點(diǎn)確定一個(gè)圓。
10、垂徑定理垂直于弦的直徑平分這條弦并且平分弦所對的兩條弧11、推論1:
、倨椒窒遥ú皇侵睆剑┑闹睆酱怪庇谙,并且平分弦所對的兩條、谙业拇怪逼椒志(xiàn)經(jīng)過(guò)圓心,并且平分弦所對的兩條弧
、燮椒窒宜鶎Φ囊粭l弧的直徑,垂直平分弦,并且平分弦所對的另一條弧12、推論2:圓的兩條平行弦所夾的弧相等13、圓是以圓心為對稱(chēng)中心的中心對稱(chēng)圖形
14、定理:在同圓或等圓中,相等的圓心角所對的弧相等,所對的弦相等,所對的弦的弦心距相等
15、推論:在同圓或等圓中,如果兩個(gè)圓心角、兩條弧、兩條弦或兩弦的弦心距中有一組量相等那么它們所對應的其余各組量都相等
16、定理:一條弧所對的圓周角等于它所對的圓心角的一半
17、推論:1同弧或等弧所對的圓周角相等;同圓或等圓中,相等的圓周角所對的弧也相等
18、推論:2半圓(或直徑)所對的圓周角是直角;90°的圓周角所對的弦是直徑
19、推論:3如果三角形一邊上的中線(xiàn)等于這邊的一半,那么這個(gè)三角形是直角三角形
20、定理:圓的內接四邊形的對角互補,并且任何一個(gè)外角都等于它的內對角
21、①直線(xiàn)L和⊙O相交dr②直線(xiàn)L和⊙O相切d=r③直線(xiàn)L和⊙O相離dr
22、切線(xiàn)的判定定理經(jīng)過(guò)半徑的外端并且垂直于這條半徑的直線(xiàn)是圓的切線(xiàn)23、切線(xiàn)的性質(zhì)定理圓的切線(xiàn)垂直于經(jīng)過(guò)切點(diǎn)的半徑24、推論1經(jīng)過(guò)圓心且垂直于切線(xiàn)的直線(xiàn)必經(jīng)過(guò)切點(diǎn)25、推論2經(jīng)過(guò)切點(diǎn)且垂直于切線(xiàn)的直線(xiàn)必經(jīng)過(guò)圓心
26、切線(xiàn)長(cháng)定理:從圓外一點(diǎn)引圓的兩條切線(xiàn),它們的切線(xiàn)長(cháng)相等圓心和這一點(diǎn)的連線(xiàn)平分兩條切線(xiàn)的夾角
27、圓的外切四邊形的兩組對邊的和相等
28、弦切角定理:弦切角等于它所夾的弧對的圓周角
29、推論:如果兩個(gè)弦切角所夾的弧相等,那么這兩個(gè)弦切角也相等30、相交弦定理:圓內的兩條相交弦,被交點(diǎn)分成的兩條線(xiàn)段長(cháng)的積相等31、推論:如果弦與直徑垂直相交,那么弦的一半是它分直徑所成的兩條線(xiàn)段的比例中項
32、切割線(xiàn)定理:從圓外一點(diǎn)引圓的切線(xiàn)和割線(xiàn),切線(xiàn)長(cháng)是這點(diǎn)到割線(xiàn)與圓交點(diǎn)的兩條線(xiàn)段長(cháng)的比例中項
33、推論:從圓外一點(diǎn)引圓的兩條割線(xiàn),這一點(diǎn)到每條割線(xiàn)與圓的交點(diǎn)的兩條線(xiàn)段長(cháng)的積相等
34、如果兩個(gè)圓相切,那么切點(diǎn)一定在連心線(xiàn)上35、①兩圓外離dR+r②兩圓外切d=R+r
、蹆蓤A相交R-rdR+r(Rr)④兩圓內切d=R-r(Rr)⑤兩圓內含dR-r(Rr)
36、定理:相交兩圓的連心線(xiàn)垂直平分兩圓的公共弦37、定理:把圓分成n(n≥3):
、乓来芜B結各分點(diǎn)所得的多邊形是這個(gè)圓的內接正n邊形
、平(jīng)過(guò)各分點(diǎn)作圓的切線(xiàn),以相鄰切線(xiàn)的交點(diǎn)為頂點(diǎn)的多邊形是這個(gè)圓的外切正n邊形
38、定理:任何正多邊形都有一個(gè)外接圓和一個(gè)內切圓,這兩個(gè)圓是同心圓
39、正n邊形的每個(gè)內角都等于(n-2)×180°/n40、定理:正n邊形的半徑和邊心距把正n邊形分成2n個(gè)全等的直角三角形
41、正n邊形的面積Sn=pnrn/2p表示正n邊形的周長(cháng)42、正三角形面積√3a/4a表示邊長(cháng)
43、如果在一個(gè)頂點(diǎn)周?chē)衚個(gè)正n邊形的角,由于這些角的和應為360°,因此k(n-2)180°/n=360°化為(n-2)(k-2)=444、弧長(cháng)計算公式:L=n兀R/180
45、扇形面積公式:S扇形=n兀R^2/360=LR/246、內公切線(xiàn)長(cháng)=d-(R-r)外公切線(xiàn)長(cháng)=d-(R+r)
初中圓的知識點(diǎn)總結2
一、圓的認識
1、圓的定義
(1)在一個(gè)平面內,線(xiàn)段OA繞它的一個(gè)端點(diǎn)O旋轉一周, 另一個(gè)端點(diǎn)A隨之旋轉所形成的圖形叫做圓。固定的端點(diǎn)O 叫做圓心,線(xiàn)段OA叫做半徑,如右圖所示。
(2)圓可以看作是平面內到定點(diǎn)的距離等于定長(cháng)的點(diǎn)的集 合,定點(diǎn)為圓心,定長(cháng)為圓的半徑。
說(shuō)明:圓的位置由圓心確定,圓的大小由半徑確定,半 徑相等的兩個(gè)圓為等圓。
2、圓的有關(guān)概念
(1)弦:連結圓上任意兩點(diǎn)的線(xiàn)段。(如右圖中 的CD)。
(2)直徑:經(jīng)過(guò)圓心的弦(如右圖中的AB)。 直徑等于半徑的2倍。
(3)。簣A上任意兩點(diǎn)間的部分叫做圓弧。(如 右圖中的CD、CAD)其中大于半圓的弧叫做優(yōu)弧,如CAD,小于半圓的弧叫做劣弧。
(4)圓心角:如右圖中∠COD就是圓心角。
3、圓心角、弧、弦、弦心距之間的關(guān)系。
(1)定理:在同圓或等圓中,相等的圓心角所對的弧相等,所對的弦的弦心距相等。
(2)推論:在同圓或等圓中,如果兩個(gè)圓心角、兩條弧、兩條弦或兩條弦的"弦心距中有一組量相等,那么它們所對應的其余各組量都分別相等。
4、過(guò)三點(diǎn)的圓。
(1)定理:不在同一條直線(xiàn)上的三點(diǎn)確定一個(gè)圓。
(2)三角形的外接圓圓心(外心)是三邊垂直平分線(xiàn)的交點(diǎn)。
5、垂徑定理。
垂直于弦的直徑平分這條弦,并且平分弦所對的兩條弧。 推論:
(1)①平分弦(不是直徑)的直徑垂直于弦,并且平分弦所對的兩條弧;
、谙业拇怪逼椒志(xiàn)經(jīng)過(guò)圓心,并且平分弦所對的兩條弧;
、燮椒窒宜鶎Φ囊粭l弦的直徑,垂直平分弦,并且平分弦所對 的另一條弧。
(2)圓的兩條平行弦所夾的弧相等。
6、與圓相關(guān)的角
(1)與圓相關(guān)的角的定義
、賵A心角:頂點(diǎn)在圓心的角叫做圓心角。
、趫A周角:頂點(diǎn)在圓上且兩邊都和圓相交的角叫做圓周角。
、巯仪薪牵喉旤c(diǎn)在圓上,一邊和圓相交,另一連軸和圓相切的角叫做弦切角。
(2)與圓相關(guān)的角的性質(zhì)
、賵A心角的度數等于它所對的弦的度數;
、谝粭l弧所對的圓周角等于它所對的圓心角的一半;
、弁』虻然∷鶎Φ膱A周角相等;
、馨雸A(或直徑)所對的圓周角相等;
、菹仪薪堑扔谒鶌A的弧所對的圓周角;
、迌蓚(gè)弦切角所夾的'弧相等,那么這兩個(gè)弦切角也相等;
、邎A的內接四邊形的對角互補,并且任何一個(gè)外角都等于它的內對角。
二、與圓有關(guān)的位置關(guān)系
1、點(diǎn)與圓的位置關(guān)系
如果圓的半徑為r,某一點(diǎn)到圓心的距離為d,那么:
(1)點(diǎn)在圓外dr。
(2)點(diǎn)在圓上dr。
(3)點(diǎn)在圓內dr。
2、直線(xiàn)和圓的位置關(guān)系
設r為圓的半徑,d為圓心到直線(xiàn)的距離:
(1)直線(xiàn)和圓相離dr,直線(xiàn)與圓沒(méi)有交點(diǎn);
(2)直線(xiàn)和圓相切dr,直線(xiàn)與圓有唯一交點(diǎn);
(3)直線(xiàn)和圓相交dr,直線(xiàn)與圓有兩個(gè)交點(diǎn)。
3、圓的切線(xiàn)
(1)定義:和圓有唯一公共點(diǎn)的直線(xiàn)叫做圓的切線(xiàn),唯一公共點(diǎn)叫做切點(diǎn)。
(2)切線(xiàn)的判定定理,經(jīng)過(guò)半徑的外端且垂于這條半徑的直線(xiàn)是圓的切線(xiàn)。
(3)切線(xiàn)的性質(zhì)定理及推論。
定理:圓的切線(xiàn)垂直于經(jīng)過(guò)切點(diǎn)的半徑。 推論:
、俳(jīng)過(guò)圓心且垂直于切線(xiàn)的直線(xiàn)必經(jīng)過(guò)切點(diǎn);
、诮(jīng)過(guò)切點(diǎn)且垂直于切線(xiàn)的直線(xiàn)必經(jīng)過(guò)圓心。
4、兩圓的位置關(guān)系
設R、r為兩圓的半徑,d為圓心距
(1)兩圓外離dR+r;
(2)兩圓外切dR+r;
(3)兩圓相交R。
(4)兩圓內切d。
(5)兩圓內含dr
(注意:如果為d=0,則兩圓為同心圓。) R-r(R>r)。
5、兩圓連心線(xiàn)的性質(zhì)
(1)相交兩圓的連心線(xiàn),垂直平分公共弦,且平分兩條外公切線(xiàn)所夾的角。(注:平分兩外公切線(xiàn)所夾的角,通過(guò)角平分線(xiàn)的判定“到角的兩邊距離相等的點(diǎn),在這個(gè)角的平分線(xiàn)上”,很易證明。)
(2)相切兩圓的連心線(xiàn)必經(jīng)過(guò)切點(diǎn)。
(3)相離兩圓的連心線(xiàn)平分內公切線(xiàn)的夾角和外公切線(xiàn)的夾角。
6、兩圓公切線(xiàn)的性質(zhì)
(1)如果兩圓有兩條外公切線(xiàn),則兩外公切線(xiàn)長(cháng)相等。
(2)如果兩圓有兩條內公切線(xiàn),則兩內公切線(xiàn)長(cháng)相等。
7、與圓有關(guān)的比例線(xiàn)段問(wèn)題的一般思考方法
(1)直接應用相交弦、切割線(xiàn)定理及其推論;
(2)找相似三角形,當證明有關(guān)線(xiàn)段的比例式或等積式不能直接運用基本定理推導時(shí),通常是由“三點(diǎn)定形法”證三角形相似,其一般思路為等積式→比例式→中間比→相似三角形。
8、與圓相關(guān)的常用輔助線(xiàn)
(1)有弦,可作弦心距;
(2)有直徑,可作直徑所對的圓周角;
(3)有切點(diǎn),可作過(guò)切點(diǎn)的半徑;
(4)兩圓相交,可作公共弦;
(5)兩圓相切,可作公切線(xiàn);
(6)有半圓,可作整圓。
記憶口訣:有弦可作弦心距,中心圓心相連;兩圓相切公切線(xiàn),兩圓相交公共弦;遇到切點(diǎn)作半徑,圓與圓心連心;遇到直徑相直角,直角相對點(diǎn)共圓。(注:“心連心”為連心線(xiàn)。)
9、圓外切三角形和四邊形的性質(zhì)
(1)如右圖,△ABC是⊙O的外切三角形,D、E、F為切點(diǎn),則AD=AF=AB+AC-BD。
同理:直角三角形內切圓半徑R=a+b-c。(其中a、b為直角邊,c為斜邊)
(2)圓外切四邊形兩組對邊和相等,即如右圖,四邊形ABCD是⊙O的外切四邊形,則 AB+CD=AD+BC。
三、圓中的計算問(wèn)題
1、圓的有關(guān)計算
(1)圓周長(cháng):c=2pR。
(2)弧長(cháng):l=npR; 1802。
(3)圓面積:S=pR;1npR2。
(4)扇形面積:S扇形=lR=;2360。
(5)弓形面積:S弓形=S扇形±SD。
2、圓柱
圓柱的側面展開(kāi)圖是矩形,這個(gè)矩形的長(cháng)等于圓柱的底面周長(cháng)c,寬是圓柱的母線(xiàn)長(cháng)l,如果圓柱的底面半徑是r,則S圓柱側=cl=2prl。
3、圓錐
圓錐的側面展開(kāi)圖是扇形,這個(gè)扇形的弧長(cháng)等于圓錐底面周長(cháng)c,半徑等于圓錐母線(xiàn)長(cháng)l,若圓錐的底面半徑為r,這個(gè)扇形的圓心角為a,則a=r1360,S圓錐側=cl=prl。
初中圓的知識點(diǎn)總結3
1.不在同一直線(xiàn)上的三點(diǎn)確定一個(gè)圓。
2.垂徑定理垂直于弦的直徑平分這條弦并且平分弦所對的兩條弧
推論1①平分弦(不是直徑)的直徑垂直于弦,并且平分弦所對的兩條弧
、谙业拇怪逼椒志(xiàn)經(jīng)過(guò)圓心,并且平分弦所對的兩條弧
、燮椒窒宜鶎Φ囊粭l弧的直徑,垂直平分弦,并且平分弦所對的另一條弧
推論2圓的兩條平行弦所夾的弧相等
3.圓是以圓心為對稱(chēng)中心的中心對稱(chēng)圖形
4.圓是定點(diǎn)的距離等于定長(cháng)的點(diǎn)的集合
5.圓的內部可以看作是圓心的距離小于半徑的點(diǎn)的集合
6.圓的外部可以看作是圓心的距離大于半徑的點(diǎn)的集合
7.同圓或等圓的半徑相等
8.到定點(diǎn)的距離等于定長(cháng)的點(diǎn)的軌跡,是以定點(diǎn)為圓心,定長(cháng)為半徑的圓
9.定理在同圓或等圓中,相等的圓心角所對的弧相等,所對的弦相等,所對的弦的弦心距相等
10.推論在同圓或等圓中,如果兩個(gè)圓心角、兩條弧、兩條弦或兩弦的弦心距中有一組量相等那么它們所對應的其余各組量都相等。
11定理圓的內接四邊形的對角互補,并且任何一個(gè)外角都等于它的內對角
12.①直線(xiàn)L和⊙O相交d
、谥本(xiàn)L和⊙O相切d=r
、壑本(xiàn)L和⊙O相離d>r
13.切線(xiàn)的判定定理經(jīng)過(guò)半徑的`外端并且垂直于這條半徑的直線(xiàn)是圓的切線(xiàn)
14.切線(xiàn)的性質(zhì)定理圓的切線(xiàn)垂直于經(jīng)過(guò)切點(diǎn)的半徑
15.推論1經(jīng)過(guò)圓心且垂直于切線(xiàn)的直線(xiàn)必經(jīng)過(guò)切點(diǎn)
16.推論2經(jīng)過(guò)切點(diǎn)且垂直于切線(xiàn)的直線(xiàn)必經(jīng)過(guò)圓心
17.切線(xiàn)長(cháng)定理從圓外一點(diǎn)引圓的兩條切線(xiàn),它們的切線(xiàn)長(cháng)相等,圓心和這一點(diǎn)的連線(xiàn)平分兩條切線(xiàn)的夾角
18.圓的外切四邊形的兩組對邊的和相等外角等于內對角
19.如果兩個(gè)圓相切,那么切點(diǎn)一定在連心線(xiàn)上
20.①兩圓外離d>R+r
、趦蓤A外切d=R+r
、蹆蓤A相交R-rr)
、軆蓤A內切d=R-r(R>r)⑤兩圓內含dr)
21.定理相交兩圓的連心線(xiàn)垂直平分兩圓的公共弦
22.定理把圓分成n(n≥3):
、乓来芜B結各分點(diǎn)所得的多邊形是這個(gè)圓的內接正n邊形
、平(jīng)過(guò)各分點(diǎn)作圓的切線(xiàn),以相鄰切線(xiàn)的交點(diǎn)為頂點(diǎn)的多邊形是這個(gè)圓的外切正n邊形
23.定理任何正多邊形都有一個(gè)外接圓和一個(gè)內切圓,這兩個(gè)圓是同心圓
24.正n邊形的每個(gè)內角都等于(n-2)×180°/n
25.定理正n邊形的半徑和邊心距把正n邊形分成2n個(gè)全等的直角三角形
26.正n邊形的面積Sn=pnrn/2p表示正n邊形的周長(cháng)
27.正三角形面積√3a/4a表示邊長(cháng)
28.如果在一個(gè)頂點(diǎn)周?chē)衚個(gè)正n邊形的角,由于這些角的和應為360°,因此k×(n-2)180°/n=360°化為(n-2)(k-2)=4
29.弧長(cháng)計算公式:L=n兀R/180
30.扇形面積公式:S扇形=n兀R^2/360=LR/2
31.內公切線(xiàn)長(cháng)=d-(R-r)外公切線(xiàn)長(cháng)=d-(R+r)
32.定理一條弧所對的圓周角等于它所對的圓心角的一半
33.推論1同弧或等弧所對的圓周角相等;同圓或等圓中,相等的圓周角所對的弧也相等
34.推論2半圓(或直徑)所對的圓周角是直角;90°的圓周角所對的弦是直徑
35.弧長(cháng)公式l=a_ra是圓心角的弧度數r>0扇形面積公式s=1/2_l_r
初中圓的知識點(diǎn)總結4
初中數學(xué)知識點(diǎn)總結:圓與圓的位置關(guān)系
圓與圓的位置關(guān)系,我們做下面的知識點(diǎn)總結學(xué)習。
圓與圓的位置關(guān)系
1.兩個(gè)圓有且只有一個(gè)公共點(diǎn)時(shí),叫做這兩個(gè)圓外切.
2.相交兩圓的連心線(xiàn)垂直平分公共弦.
3.兩個(gè)圓有兩個(gè)公共點(diǎn)時(shí),叫做這兩個(gè)圓相交.
4.兩個(gè)圓內切時(shí),這兩個(gè)圓的公切線(xiàn)只有一條.
5.相切兩圓的連心線(xiàn)必過(guò)切點(diǎn).
相信同學(xué)們對圓與圓的位置關(guān)系知識點(diǎn)已經(jīng)很好的掌握了,后面我們進(jìn)行更多知識點(diǎn)的學(xué)習。
初中數學(xué)知識點(diǎn)總結:平面直角坐標系
下面是對平面直角坐標系的內容學(xué)習,希望同學(xué)們很好的掌握下面的內容。
平面直角坐標系:
在平面內畫(huà)兩條互相垂直、原點(diǎn)重合的數軸,組成平面直角坐標系。
水平的數軸稱(chēng)為x軸或橫軸,豎直的數軸稱(chēng)為y軸或縱軸,兩坐標軸的交點(diǎn)為平面直角坐標系的原點(diǎn)。
平面直角坐標系的要素:
、僭谕黄矫;②兩條數軸;③互相垂直;④原點(diǎn)重合。
三個(gè)規定:
、僬较虻囊幎M軸取向右為正方向,縱軸取向上為正方向
、趩挝婚L(cháng)度的規定;一般情況,橫軸、縱軸單位長(cháng)度相同;實(shí)際有時(shí)也可不同,但同一數軸上必須相同。
、巯笙薜囊幎ǎ河疑蠟榈谝幌笙、左上為第二象限、左下為第三象限、右下為第四象限。
相信上面對平面直角坐標系知識的講解學(xué)習,同學(xué)們已經(jīng)能很好的掌握了吧,希望同學(xué)們都能考試成功。
初中數學(xué)知識點(diǎn):平面直角坐標系的構成
對于平面直角坐標系的構成內容,下面我們一起來(lái)學(xué)習哦。
平面直角坐標系的構成
在同一個(gè)平面上互相垂直且有公共原點(diǎn)的兩條數軸構成平面直角坐標系,簡(jiǎn)稱(chēng)為直角坐標系。通常,兩條數軸分別置于水平位置與鉛直位置,取向右與向上的方向分別為兩條數軸的正方向。水平的數軸叫做X軸或橫軸,鉛直的數軸叫做Y軸或縱軸,X軸或Y軸統稱(chēng)為坐標軸,它們的公共原點(diǎn)O稱(chēng)為直角坐標系的原點(diǎn)。
通過(guò)上面對平面直角坐標系的構成知識的講解學(xué)習,希望同學(xué)們對上面的內容都能很好的掌握,同學(xué)們認真學(xué)習吧。
初中數學(xué)知識點(diǎn):點(diǎn)的坐標的性質(zhì)
下面是對數學(xué)中點(diǎn)的坐標的性質(zhì)知識學(xué)習,同學(xué)們認真看看哦。
點(diǎn)的坐標的性質(zhì)
建立了平面直角坐標系后,對于坐標系平面內的任何一點(diǎn),我們可以確定它的坐標。反過(guò)來(lái),對于任何一個(gè)坐標,我們可以在坐標平面內確定它所表示的一個(gè)點(diǎn)。
對于平面內任意一點(diǎn)C,過(guò)點(diǎn)C分別向X軸、Y軸作垂線(xiàn),垂足在X軸、Y軸上的對應點(diǎn)a,b分別叫做點(diǎn)C的橫坐標、縱坐標,有序實(shí)數對(a,b)叫做點(diǎn)C的坐標。
一個(gè)點(diǎn)在不同的象限或坐標軸上,點(diǎn)的坐標不一樣。
希望上面對點(diǎn)的坐標的性質(zhì)知識講解學(xué)習,同學(xué)們都能很好的掌握,相信同學(xué)們會(huì )在考試中取得優(yōu)異成績(jì)的。
初中數學(xué)知識點(diǎn):因式分解的'一般步驟
關(guān)于數學(xué)中因式分解的一般步驟內容學(xué)習,我們做下面的知識講解。
因式分解的一般步驟
如果多項式有公因式就先提公因式,沒(méi)有公因式的多項式就考慮運用公式法;若是四項或四項以上的多項式,通常采用分組分解法,最后運用十字相乘法分解因式。因此,可以概括為:“一提”、“二套”、“三分組”、“四十字”。
注意:因式分解一定要分解到每一個(gè)因式都不能再分解為止,否則就是不完全的因式分解,若題目沒(méi)有明確指出在哪個(gè)范圍內因式分解,應該是指在有理數范圍內因式分解,因此分解因式的結果,必須是幾個(gè)整式的積的形式。
相信上面對因式分解的一般步驟知識的內容講解學(xué)習,同學(xué)們已經(jīng)能很好的掌握了吧,希望同學(xué)們會(huì )考出好成績(jì)。
初中數學(xué)知識點(diǎn):因式分解
下面是對數學(xué)中因式分解內容的知識講解,希望同學(xué)們認真學(xué)習。
因式分解
因式分解定義:把一個(gè)多項式化成幾個(gè)整式的積的形式的變形叫把這個(gè)多項式因式分解。
因式分解要素:①結果必須是整式②結果必須是積的形式③結果是等式④
因式分解與整式乘法的關(guān)系:m(a+b+c)
公因式:一個(gè)多項式每項都含有的公共的因式,叫做這個(gè)多項式各項的公因式。
公因式確定方法:①系數是整數時(shí)取各項最大公約數。②相同字母取最低次冪③系數最大公約數與相同字母取最低次冪的積就是這個(gè)多項式各項的公因式。
提取公因式步驟:
、俅_定公因式。②確定商式③公因式與商式寫(xiě)成積的形式。
分解因式注意;
、俨粶蕘G字母
、诓粶蕘G常數項注意查項數
、垭p重括號化成單括號
、芙Y果按數單字母單項式多項式順序排列
、菹嗤蚴綄(xiě)成冪的形式
、奘醉椮撎柗爬ㄌ柾
、呃ㄌ杻韧(lèi)項合并。
通過(guò)上面對因式分解內容知識的講解學(xué)習,相信同學(xué)們已經(jīng)能很好的掌握了吧,希望上面的內容給同學(xué)們的學(xué)習很好的幫助。
初中圓的知識點(diǎn)總結5
、僦本(xiàn)和圓無(wú)公共點(diǎn),稱(chēng)相離。 AB與圓O相離,d>r。
、谥本(xiàn)和圓有兩個(gè)公共點(diǎn),稱(chēng)相交,這條直線(xiàn)叫做圓的割線(xiàn)。AB與⊙O相交,d
、壑本(xiàn)和圓有且只有一公共點(diǎn),稱(chēng)相切,這條直線(xiàn)叫做圓的切線(xiàn),這個(gè)唯一的公共點(diǎn)叫做切點(diǎn)。AB與⊙O相切,d=r。(d為圓心到直線(xiàn)的距離)
平面內,直線(xiàn)Ax+By+C=0與圓x^2+y^2+Dx+Ey+F=0的'位置關(guān)系判斷一般方法是:
1.由Ax+By+C=0,可得y=(-C-Ax)/B,(其中B不等于0),代入x^2+y^2+Dx+Ey+F=0,即成為一個(gè)關(guān)于x的方程
如果b^2-4ac>0,則圓與直線(xiàn)有2交點(diǎn),即圓與直線(xiàn)相交。
如果b^2-4ac=0,則圓與直線(xiàn)有1交點(diǎn),即圓與直線(xiàn)相切。
如果b^2-4ac<0,則圓與直線(xiàn)有0交點(diǎn),即圓與直線(xiàn)相離。
2.如果B=0即直線(xiàn)為Ax+C=0,即x=-C/A,它平行于y軸(或垂直于x軸),將x^2+y^2+Dx+Ey+F=0化為(x-a)^2+(y-b)^2=r^2。令y=b,求出此時(shí)的兩個(gè)x值x1、x2,并且規定x1
當x=-C/Ax2時(shí),直線(xiàn)與圓相離;
初中圓的知識點(diǎn)總結6
考點(diǎn)一、圓的相關(guān)概念
1、圓的定義
在一個(gè)平面內,線(xiàn)段OA繞它固定的一個(gè)端點(diǎn)O旋轉一周,另一個(gè)端點(diǎn)A隨之旋轉所形成的圖形叫做圓,固定的端點(diǎn)O叫做圓心,線(xiàn)段OA叫做半徑。
2、圓的幾何表示
以點(diǎn)O為圓心的圓記作“⊙O”,讀作“圓O”
考點(diǎn)二、弦、弧等與圓有關(guān)的定義
。1)弦
連接圓上任意兩點(diǎn)的線(xiàn)段叫做弦。(如圖中的AB)
。2)直徑
經(jīng)過(guò)圓心的弦叫做直徑。(如途中的CD)
直徑等于半徑的2倍。
。3)半圓
圓的任意一條直徑的兩個(gè)端點(diǎn)分圓成兩條弧,每一條弧都叫做半圓。
。4)弧、優(yōu)弧、劣弧
圓上任意兩點(diǎn)間的部分叫做圓弧,簡(jiǎn)稱(chēng)弧。
弧用符號“⌒”表示,以A,B為端點(diǎn)的弧記作“”,讀作“圓弧AB”或“弧AB”。
大于半圓的弧叫做優(yōu)。ǘ嘤萌齻(gè)字母表示);小于半圓的弧叫做劣。ǘ嘤脙蓚(gè)字母表示)
考點(diǎn)三、垂徑定理及其推論(重要)
垂徑定理:垂直于弦的直徑平分這條弦,并且平分弦所對的弧。
推論1:(1)平分弦(不是直徑)的直徑垂直于弦,并且平分弦所對的兩條弧。
。2)弦的垂直平分線(xiàn)經(jīng)過(guò)圓心,并且平分弦所對的兩條弧。
。3)平分弦所對的一條弧的直徑垂直平分弦,并且平分弦所對的另一條弧。
*推論2:圓的兩條平行弦所夾的弧相等。
考點(diǎn)四、圓的對稱(chēng)性
1、圓的軸對稱(chēng)性
圓是軸對稱(chēng)圖形,經(jīng)過(guò)圓心的每一條直線(xiàn)都是它的對稱(chēng)軸。
2、圓的中心對稱(chēng)性
圓是以圓心為對稱(chēng)中心的中心對稱(chēng)圖形。
考點(diǎn)五、弧、弦、弦心距、圓心角之間的關(guān)系定理
1、圓心角
頂點(diǎn)在圓心的角叫做圓心角。
2、弦心距
從圓心到弦的距離叫做弦心距。
3、弧、弦、弦心距、圓心角之間的關(guān)系定理
在同圓或等圓中,相等的圓心角所對的弧相等,所對的弦想等,所對的弦的弦心距相等。
推論:在同圓或等圓中,如果兩個(gè)圓的圓心角、兩條弧、兩條弦或兩條弦的弦心距中有一組量相等,那么它們所對應的其余各組量都分別相等。
考點(diǎn)六、圓周角定理及其推論
1、圓周角
頂點(diǎn)在圓上,并且兩邊都和圓相交的角叫做圓周角。
2、圓周角定理(重要)
一條弧所對的圓周角等于它所對的圓心角的一半。
推論1:同弧或等弧所對的圓周角相等;同圓或等圓中,相等的圓周角所對的弧也相等。
推論2(△):半圓(或直徑)所對的圓周角是直角;90°的圓周角所對的弦是直徑。
考點(diǎn)七、點(diǎn)和圓的位置關(guān)系
設⊙O的半徑是r,點(diǎn)P到圓心O的距離為d
則有:dr點(diǎn)P在⊙O外。
考點(diǎn)八、直線(xiàn)與圓的位置關(guān)系
直線(xiàn)和圓有三種位置關(guān)系,具體如下:
。1)相交:直線(xiàn)和圓有兩個(gè)公共點(diǎn)時(shí),叫做直線(xiàn)和圓相交,這時(shí)直線(xiàn)叫做圓的割線(xiàn),公共點(diǎn)叫做交點(diǎn);
。2)相切:直線(xiàn)和圓有唯一公共點(diǎn)時(shí),叫做直線(xiàn)和圓相切,這時(shí)直線(xiàn)叫做圓的切線(xiàn),(3)相離:直線(xiàn)和圓沒(méi)有公共點(diǎn)時(shí),叫做直線(xiàn)和圓相離。 如果⊙O的半徑為r,圓心O到直線(xiàn)l的距離為d,那么:
直線(xiàn)l與⊙O相交dr;
考點(diǎn)九、圓內接四邊形
圓的內接四邊形定理:圓的內接四邊形的對角互補(重要),外角等于它的內對角。 即:在⊙O中, ∵四邊ABCD是內接四邊形
∴CBAD180 BD180
DAEC
考點(diǎn)十、切線(xiàn)的性質(zhì)與判定定理
1、切線(xiàn)的判定定理:過(guò)半徑外端且垂直于半徑的直線(xiàn)是切線(xiàn);
兩個(gè)條件:過(guò)半徑外端且垂直半徑,二者缺一不可 即:∵M(jìn)NOA且MN過(guò)半徑OA外端 ∴MN是⊙O的切線(xiàn) 2、性質(zhì)定理:切線(xiàn)垂直于過(guò)切點(diǎn)的半徑(如上圖)(記住理解即可,不會(huì )考證明題)
考點(diǎn)十一、切線(xiàn)長(cháng)定理
切線(xiàn)長(cháng)定理: 從圓外一點(diǎn)引圓的`兩條切線(xiàn),它們的切線(xiàn)長(cháng)
相等,這點(diǎn)和圓心的連線(xiàn)平分兩條切線(xiàn)的夾角。
即:∵PA、PB是的兩條切線(xiàn) ∴PAPB;PO平分BPA(用三角形全等證明)
考點(diǎn)十二、弧長(cháng)和扇形面積
1、弧長(cháng)公式
半徑為R的圓中,n°的圓心角所對的弧長(cháng)l的計算公式:
2、扇形面積公式
其中n是扇形的圓心角度數,R是扇形的半徑,l是扇形的弧長(cháng)。
3、圓錐的側面積
其中l是圓錐的母線(xiàn)長(cháng),r是圓錐的地面半徑。
考點(diǎn)十三、圓冪定理(一般不會(huì )考)
1、相交弦定理:圓內兩弦相交,交點(diǎn)分得的兩條線(xiàn)段的乘積相等。
即:在⊙O中,∵弦AB、CD相交于點(diǎn)P,∴PAPBPCPD
2、切割線(xiàn)定理:從圓外一點(diǎn)引圓的切線(xiàn)和割線(xiàn),切線(xiàn)長(cháng)是這點(diǎn)到割線(xiàn)與圓交點(diǎn)的兩條線(xiàn)段長(cháng)的比例中項。
即:在⊙O中,∵PA是切線(xiàn),PB是割線(xiàn)
∴ PA2PCPB
3、割線(xiàn)定理:從圓外一點(diǎn)引圓的兩條割線(xiàn),這一點(diǎn)到每條割線(xiàn)與圓的交點(diǎn)的兩條線(xiàn)段長(cháng)的積相等(如上圖)。
即:在⊙O中,∵PB、PE是割線(xiàn) ∴PCPBPDPE
初中圓的知識點(diǎn)總結7
一、圓
1、圓的有關(guān)性質(zhì)
在一個(gè)平面內,線(xiàn)段OA繞它固定的一個(gè)端點(diǎn)O旋轉一周,另一個(gè)端點(diǎn)A隨之旋轉所形成的圖形叫圓,固定的端點(diǎn)O叫圓心,線(xiàn)段OA叫半徑。
由圓的意義可知:
圓上各點(diǎn)到定點(diǎn)(圓心O)的距離等于定長(cháng)的點(diǎn)都在圓上。
就是說(shuō):圓是到定點(diǎn)的距離等于定長(cháng)的點(diǎn)的集合,圓的內部可以看作是到圓。心的距離小于半徑的點(diǎn)的集合。
圓的外部可以看作是到圓心的距離大于半徑的點(diǎn)的集合。連結圓上任意兩點(diǎn)的線(xiàn)段叫做弦,經(jīng)過(guò)圓心的.弦叫直徑。圓上任意兩點(diǎn)間的部分叫圓弧,簡(jiǎn)稱(chēng)弧。
圓的任意一條直徑的兩個(gè)端點(diǎn)分圓成兩條弧,每一條弧都叫半圓,大于半圓的弧叫優(yōu);小于半圓的弧叫劣弧。由弦及其所對的弧組成的圓形叫弓形。
圓心相同,半徑不相等的兩個(gè)圓叫同心圓。
能夠重合的兩個(gè)圓叫等圓。
同圓或等圓的半徑相等。
在同圓或等圓中,能夠互相重合的弧叫等弧。
二、過(guò)三點(diǎn)的圓
l、過(guò)三點(diǎn)的圓
過(guò)三點(diǎn)的圓的作法:利用中垂線(xiàn)找圓心
定理不在同一直線(xiàn)上的三個(gè)點(diǎn)確定一個(gè)圓。
經(jīng)過(guò)三角形各頂點(diǎn)的圓叫三角形的外接圓,外接圓的圓心叫外心,這個(gè)三角形叫圓的內接三角形。
2、反證法
反證法的三個(gè)步驟:
、偌僭O命題的結論不成立;
、趶倪@個(gè)假設出發(fā),經(jīng)過(guò)推理論證,得出矛盾;
、塾擅艿贸黾僭O不正確,從而肯定命題的結論正確。
例如:求證三角形中最多只有一個(gè)角是鈍角。
證明:設有兩個(gè)以上是鈍角
則兩個(gè)鈍角之和>180°
與三角形內角和等于180°矛盾。
∴不可能有二個(gè)以上是鈍角。
即最多只能有一個(gè)是鈍角。
三、垂直于弦的直徑
圓是軸對稱(chēng)圖形,經(jīng)過(guò)圓心的每一條直線(xiàn)都是它的對稱(chēng)軸。
垂徑定理:垂直于弦的直徑平分這條弦,并且平分弦所對的兩條弧。
推理1:平分弦(不是直徑)的直徑垂直于弦,并且平分弦所對兩條弧。
弦的垂直平分線(xiàn)經(jīng)過(guò)圓心,并且平分弦所對的兩條弧。
平分弦所對的一條弧的直徑,垂直平分弦,并且平分弦所對的另一個(gè)條弧。
推理2:圓兩條平行弦所夾的弧相等。
四、圓心角、弧、弦、弦心距之間的關(guān)系
圓是以圓心為對稱(chēng)中心的中心對稱(chēng)圖形。
實(shí)際上,圓繞圓心旋轉任意一個(gè)角度,都能夠與原來(lái)的圖形重合。
頂點(diǎn)是圓心的角叫圓心角,從圓心到弦的距離叫弦心距。
定理:在同圓或等圓中,相等的圓心角所對的弧相等,所對的弦相等,所對的弦心距相等。
推理:在同圓或等圓中,如果兩個(gè)圓心角、兩條弧、兩條弦或兩條弦的弦心距中,有一組量相等,那么它們所對應的其余各組量都分別相等。
五、圓周角
頂點(diǎn)在圓上,并且兩邊都和圓相交的角叫圓周角。
推理1:同弧或等弧所對的圓周角相等;同圓或等圓中,相等的圓周角所對的弧也相等。
推理2:半圓(或直徑)所對的圓周角是直角;90°的圓周角所對的弦是直徑。
推理3:如果三角形一邊上的中線(xiàn)等于這邊的一半,那么這個(gè)三角形是直角三角形。
由于以上的定理、推理,所添加輔助線(xiàn)往往是添加能構成直徑上的圓周角的輔助線(xiàn)。
初中圓的知識點(diǎn)總結8
1.圓是以圓心為對稱(chēng)中心的中心對稱(chēng)圖形;同圓或等圓的半徑相等。
2.到定點(diǎn)的距離等于定長(cháng)的點(diǎn)的軌跡,是以定點(diǎn)為圓心,定長(cháng)為半徑的圓。
3.定理在同圓或等圓中,相等的圓心角所對的弧相等,所對的弦相等,所對的弦的弦心距相等。
4.圓是定點(diǎn)的距離等于定長(cháng)的點(diǎn)的集合。
5.圓的內部可以看作是圓心的距離小于半徑的點(diǎn)的集合;圓的外部可以看作是圓心的距離大于半徑的點(diǎn)的集合。
6.不在同一直線(xiàn)上的三點(diǎn)確定一個(gè)圓。
7.垂徑定理垂直于弦的直徑平分這條弦并且平分弦所對的兩條弧。
推論1:
、倨椒窒(不是直徑)的直徑垂直于弦,并且平分弦所對的兩條弧;
、谙业拇怪逼椒志(xiàn)經(jīng)過(guò)圓心,并且平分弦所對的兩條弧;
、燮椒窒宜鶎Φ囊粭l弧的直徑,垂直平分弦,并且平分弦所對的另一條弧。
推論2:圓的兩條平行弦所夾的弧相等。
8.推論在同圓或等圓中,如果兩個(gè)圓心角、兩條弧、兩條弦或兩弦的弦心距中有一組量相等那么它們所對應的`其余各組量都相等。
9.定理圓的內接四邊形的對角互補,并且任何一個(gè)外角都等于它的內對角。
10.經(jīng)過(guò)切點(diǎn)且垂直于切線(xiàn)的直線(xiàn)必經(jīng)過(guò)圓心。
11.切線(xiàn)的判定定理經(jīng)過(guò)半徑的外端并且垂直于這條半徑的直線(xiàn)是圓的切線(xiàn)。
12.切線(xiàn)的性質(zhì)定理圓的切線(xiàn)垂直于經(jīng)過(guò)切點(diǎn)的半徑。
13.經(jīng)過(guò)圓心且垂直于切線(xiàn)的直線(xiàn)必經(jīng)過(guò)切點(diǎn)
14.切線(xiàn)長(cháng)定理從圓外一點(diǎn)引圓的兩條切線(xiàn),它們的切線(xiàn)長(cháng)相等,圓心和這一點(diǎn)的連線(xiàn)平分兩條切線(xiàn)的夾角。
15.圓的外切四邊形的兩組對邊的和相等外角等于內對角。
16.如果兩個(gè)圓相切,那么切點(diǎn)一定在連心線(xiàn)上。
17.
、賰蓤A外離d>R+r
、趦蓤A外切d=R+r
、蹆蓤A相交d>R-r)
、軆蓤A內切d=R-r(R>r)
、輧蓤A內含d=r)
18.定理把圓分成n(n≥3):
、乓来芜B結各分點(diǎn)所得的多邊形是這個(gè)圓的內接正n邊形
、平(jīng)過(guò)各分點(diǎn)作圓的切線(xiàn),以相鄰切線(xiàn)的交點(diǎn)為頂點(diǎn)的多邊形是這個(gè)圓的外切正n邊形。
19.定理任何正多邊形都有一個(gè)外接圓和一個(gè)內切圓,這兩個(gè)圓是同心圓。
20.弧長(cháng)計算公式:L=n兀R/180;扇形面積公式:S扇形=n兀R^2/360=LR/2。
21.內公切線(xiàn)長(cháng)= d-(R-r)外公切線(xiàn)長(cháng)= d-(R+r)。
22.定理一條弧所對的圓周角等于它所對的圓心角的一半。
23.推論1同弧或等弧所對的圓周角相等;同圓或等圓中,相等的圓周角所對的弧也相等。
24.推論2半圓(或直徑)所對的圓周角是直角;90°的圓周角所對的弦是直徑。
初中圓的知識點(diǎn)總結9
1、圓是定點(diǎn)的距離等于定長(cháng)的點(diǎn)的集合
2、圓的內部可以看作是圓心的距離小于半徑的點(diǎn)的集合
3、圓的外部可以看作是圓心的距離大于半徑的點(diǎn)的集合
4、同圓或等圓的半徑相等
5、到定點(diǎn)的距離等于定長(cháng)的點(diǎn)的軌跡,是以定點(diǎn)為圓心,定長(cháng)為半徑的圓
6、和已知線(xiàn)段兩個(gè)端點(diǎn)的距離相等的點(diǎn)的軌跡,是著(zhù)條線(xiàn)段的垂直平分線(xiàn)7、到已知角的兩邊距離相等的點(diǎn)的軌跡,是這個(gè)角的平分線(xiàn)
8、到兩條平行線(xiàn)距離相等的點(diǎn)的軌跡,是和這兩條平行線(xiàn)平行且距離相等的一條直線(xiàn)
9、定理不在同一直線(xiàn)上的三點(diǎn)確定一個(gè)圓。
10、垂徑定理垂直于弦的直徑平分這條弦并且平分弦所對的兩條弧
11、推論1:①平分弦(不是直徑)的直徑垂直于弦,并且平分弦所對的兩條、谙业拇怪逼椒志(xiàn)經(jīng)過(guò)圓心,并且平分弦所對的兩條、燮椒窒宜鶎Φ囊粭l弧的直徑,垂直平分弦,并且平分弦所對的另一條弧
12、推論2:圓的兩條平行弦所夾的弧相等
13、圓是以圓心為對稱(chēng)中心的中心對稱(chēng)圖形
14、定理:在同圓或等圓中,相等的圓心角所對的弧相等,所對的弦相等,所對的弦的弦心距相等
15、推論:在同圓或等圓中,如果兩個(gè)圓心角、兩條弧、兩條弦或兩弦的弦心距中有一組量相等那么它們所對應的其余各組量都相等
16、定理:一條弧所對的圓周角等于它所對的圓心角的一半
17、推論:1同弧或等弧所對的圓周角相等;同圓或等圓中,相等的圓周角所對的弧也相等
18、推論:2半圓(或直徑)所對的圓周角是直角;90°的圓周角所對的弦是直徑
19、推論:3如果三角形一邊上的中線(xiàn)等于這邊的一半,那么這個(gè)三角形是直角三角形
20、定理:圓的內接四邊形的對角互補,并且任何一個(gè)外角都等于它的內對角
21、①直線(xiàn)L和⊙O相交dr②直線(xiàn)L和⊙O相切d=r③直線(xiàn)L和⊙O相離dr
22、切線(xiàn)的判定定理經(jīng)過(guò)半徑的外端并且垂直于這條半徑的直線(xiàn)是圓的切線(xiàn)23、切線(xiàn)的性質(zhì)定理圓的切線(xiàn)垂直于經(jīng)過(guò)切點(diǎn)的半徑24、推論1經(jīng)過(guò)圓心且垂直于切線(xiàn)的直線(xiàn)必經(jīng)過(guò)切點(diǎn)25、推論2經(jīng)過(guò)切點(diǎn)且垂直于切線(xiàn)的直線(xiàn)必經(jīng)過(guò)圓心
26、切線(xiàn)長(cháng)定理:從圓外一點(diǎn)引圓的兩條切線(xiàn),它們的切線(xiàn)長(cháng)相等圓心和這一點(diǎn)的連線(xiàn)平分兩條切線(xiàn)的夾角
27、圓的外切四邊形的兩組對邊的和相等
28、弦切角定理:弦切角等于它所夾的弧對的圓周角
29、推論:如果兩個(gè)弦切角所夾的弧相等,那么這兩個(gè)弦切角也相等30、相交弦定理:圓內的兩條相交弦,被交點(diǎn)分成的兩條線(xiàn)段長(cháng)的積相等31、推論:如果弦與直徑垂直相交,那么弦的`一半是它分直徑所成的兩條線(xiàn)段的比例中項
32、切割線(xiàn)定理:從圓外一點(diǎn)引圓的切線(xiàn)和割線(xiàn),切線(xiàn)長(cháng)是這點(diǎn)到割線(xiàn)與圓交點(diǎn)的兩條線(xiàn)段長(cháng)的比例中項
33、推論:從圓外一點(diǎn)引圓的兩條割線(xiàn),這一點(diǎn)到每條割線(xiàn)與圓的交點(diǎn)的兩條線(xiàn)段長(cháng)的積相等
34、如果兩個(gè)圓相切,那么切點(diǎn)一定在連心線(xiàn)上
35、①兩圓外離dR+r②兩圓外切d=R+r③兩圓相交R—rdR+r(Rr)④兩圓內切d=R—r(Rr)⑤兩圓內含dR—r(Rr)
36、定理:相交兩圓的連心線(xiàn)垂直平分兩圓的公共弦
37、定理:把圓分成n(n≥3):⑴依次連結各分點(diǎn)所得的多邊形是這個(gè)圓的內接正n邊形⑵經(jīng)過(guò)各分點(diǎn)作圓的切線(xiàn),以相鄰切線(xiàn)的交點(diǎn)為頂點(diǎn)的多邊形是這個(gè)圓的外切正n邊形
38、定理:任何正多邊形都有一個(gè)外接圓和一個(gè)內切圓,這兩個(gè)圓是同心圓
39、正n邊形的每個(gè)內角都等于(n—2)×180°/n40、定理:正n邊形的半徑和邊心距把正n邊形分成2n個(gè)全等的直角三角形
41、正n邊形的面積Sn=pnrn/2p表示正n邊形的周長(cháng)42、正三角形面積√3a/4a表示邊長(cháng)
43、如果在一個(gè)頂點(diǎn)周?chē)衚個(gè)正n邊形的角,由于這些角的和應為360°,因此k(n—2)180°/n=360°化為(n—2)(k—2)=444、弧長(cháng)計算公式:L=n兀R/180
45、扇形面積公式:S扇形=n兀R^2/360=LR/246、內公切線(xiàn)長(cháng)=d—(R—r)外公切線(xiàn)長(cháng)=d—(R+r)
初中圓的知識點(diǎn)總結10
首先你要有一個(gè)好的態(tài)度,有些人學(xué)習數學(xué),可能有的階段會(huì )喜歡學(xué)習,但是某一階段,對數學(xué)就沒(méi)有什么興趣了,可能每個(gè)人都會(huì )有這樣一個(gè)階段,但是如果發(fā)現自己不喜歡學(xué)習數學(xué)了,一定要克制自己,在學(xué)習數學(xué)上,保持一個(gè)良好的學(xué)習態(tài)度,這是你學(xué)好數學(xué)的第一步。
充分的利用好上課的時(shí)間,上課時(shí)間你所掌握的知識,會(huì )比你在課下學(xué)很長(cháng)時(shí)間都有用,所以珍惜課堂老師所講的內容,老師的某些話(huà)對我們以后做數學(xué)題都很有幫助,如果你上課走神,這些話(huà)沒(méi)有聽(tīng)到,你在做題的時(shí)候,可能會(huì )走很多彎路,做題的效率也會(huì )降低,一旦有這樣的情況,可能你就會(huì )不喜歡數學(xué)了。
學(xué)習最重要的是思考,會(huì )思考數學(xué)才能學(xué)好,數學(xué)中的'題都是需要我們去舉一反三的,沒(méi)做一道題,都要思考一下,圍繞著(zhù)這道題的知識點(diǎn),還會(huì )有什么樣的題型出現,哪怕是遇到不會(huì )的題,也要勤加的思考,如果你把知識點(diǎn)自認為學(xué)習透徹,那么就用做題檢驗吧,數學(xué)中多做題是必須的,成績(jì)都是用題堆積出來(lái)的,很少會(huì )有人不做題數學(xué)成績(jì)很高的。
初中圓的知識點(diǎn)總結11
1.不在同一直線(xiàn)上的三點(diǎn)確定一個(gè)圓。
2.垂徑定理 垂直于弦的直徑平分這條弦并且平分弦所對的兩條弧
推論1: ①平分弦(不是直徑)的直徑垂直于弦,并且平分弦所對的兩條弧
、谙业拇怪逼椒志(xiàn)經(jīng)過(guò)圓心,并且平分弦所對的兩條弧 、燮椒窒宜鶎Φ囊粭l弧的直徑,垂直平分弦,并且平分弦所對的另一條弧
推論2 :圓的兩條平行弦所夾的弧相等
3.圓是以圓心為對稱(chēng)中心的中心對稱(chēng)圖形。
4.圓是定點(diǎn)的距離等于定長(cháng)的點(diǎn)的集合。
5.圓的內部可以看作是圓心的距離小于半徑的點(diǎn)的集合。
6.圓的外部可以看作是圓心的距離大于半徑的點(diǎn)的集合。
7.同圓或等圓的半徑相等。
8.到定點(diǎn)的距離等于定長(cháng)的點(diǎn)的軌跡,是以定點(diǎn)為圓心,定長(cháng)為半徑的圓。
9.定理 在同圓或等圓中,相等的圓心角所對的弧相等,所對的弦 相等,所對的弦的弦心距相等。
10.推論 在同圓或等圓中,如果兩個(gè)圓心角、兩條弧、兩條弦或兩 弦的弦心距中有一組量相等那么它們所對應的其余各組量都相等。
11定理 圓的內接四邊形的對角互補,并且任何一個(gè)外角都等于它 的內對角。
12.①直線(xiàn)L和⊙O相交 d 、谥本(xiàn)L和⊙O相切 d=r 、壑本(xiàn)L和⊙O相離 d>r
13.切線(xiàn)的判定定理 經(jīng)過(guò)半徑的外端并且垂直于這條半徑的直線(xiàn)是圓的切線(xiàn)。
14.切線(xiàn)的性質(zhì)定理 圓的切線(xiàn)垂直于經(jīng)過(guò)切點(diǎn)的半徑。
15.推論1 經(jīng)過(guò)圓心且垂直于切線(xiàn)的直線(xiàn)必經(jīng)過(guò)切點(diǎn)。
16.推論2 經(jīng)過(guò)切點(diǎn)且垂直于切線(xiàn)的直線(xiàn)必經(jīng)過(guò)圓心。
17.切線(xiàn)長(cháng)定理 從圓外一點(diǎn)引圓的兩條切線(xiàn),它們的切線(xiàn)長(cháng)相等, 圓心和這一點(diǎn)的連線(xiàn)平分兩條切線(xiàn)的夾角。
18.圓的外切四邊形的兩組對邊的和相等 外角等于內對角。
19.如果兩個(gè)圓相切,那么切點(diǎn)一定在連心線(xiàn)上。
20.①兩圓外離 d>R+r ②兩圓外切 d=R+r 、.兩圓相交 R-rr) 、.兩圓內切 d=R-r(R>r) ⑤兩圓內含dr)
21.定理 相交兩圓的連心線(xiàn)垂直平分兩圓的公共弦。
22.定理 把圓分成n(n≥3): 、乓来芜B結各分點(diǎn)所得的多邊形是這個(gè)圓的內接正n邊形 、平(jīng)過(guò)各分點(diǎn)作圓的切線(xiàn),以相鄰切線(xiàn)的交點(diǎn)為頂點(diǎn)的多邊形是這個(gè)圓的外切正n邊形。
23.定理 任何正多邊形都有一個(gè)外接圓和一個(gè)內切圓,這兩個(gè)圓是同心圓。
24.正n邊形的每個(gè)內角都等于(n-2)×180°/n。
25.定理 正n邊形的半徑和邊心距把正n邊形分成2n個(gè)全等的直角三角形。
26.正n邊形的面積Sn=pnrn/2 p表示正n邊形的周長(cháng)。
27.正三角形面積√3a/4 a表示邊長(cháng)。
28.如果在一個(gè)頂點(diǎn)周?chē)衚個(gè)正n邊形的角,由于這些角的和應為 360°,因此k×(n-2)180°/n=360°化為(n-2)(k-2)=4。
29.弧長(cháng)計算公式:L=n兀R/180。
30.扇形面積公式:S扇形=n兀R^2/360=LR/2。
31.內公切線(xiàn)長(cháng)= d-(R-r) 外公切線(xiàn)長(cháng)= d-(R+r)。
32.定理 一條弧所對的圓周角等于它所對的圓心角的一半。
33.推論1 同弧或等弧所對的圓周角相等;同圓或等圓中,相等的圓周角所對的弧也相等。
34.推論2 半圓(或直徑)所對的圓周角是直角;90°的圓周角所 對的弦是直徑。
35.弧長(cháng)公式 l=a*r a是圓心角的弧度數r >0 扇形面積公式 s=1/2*l*r。
1.直接法:根據選擇題的題設條件,通過(guò)計算、推理或判斷,最后得到題目的所求。
2.特殊值法:(特殊值淘汰法)有些選擇題所涉及的數學(xué)命題與字母的取值范圍有關(guān);
在解這類(lèi)選擇題時(shí),可以考慮從取值范圍內選取某幾個(gè)特殊值,代入原命題進(jìn)行驗證,然后淘汰錯誤的,保留正確的.。
3.淘汰法:把題目所給的四個(gè)結論逐一代回原題的題干中進(jìn)行驗證,把錯誤的淘汰掉,直至找到正確的答案。
4.逐步淘汰法:如果我們在計算或推導的過(guò)程中不是一步到位,而是逐步進(jìn)行,既采用“走一走、瞧一瞧”的策略;
每走一步都與四個(gè)結論比較一次,淘汰掉不可能的,這樣也許走不到最后一步,三個(gè)錯誤的結論就被全部淘汰掉了。
5.數形結合法:根據數學(xué)問(wèn)題的條件和結論之間的內在聯(lián)系,既分析其代數含義,又揭示其幾何意義;
使數量關(guān)系和圖形巧妙和諧地結合起來(lái),并充分利用這種結合,尋求解題思路,使問(wèn)題得到解決。
常用的數學(xué)思想方法
1.數形結合思想:就是根據數學(xué)問(wèn)題的條件和結論之間的內在聯(lián)系,既分析其代數含義,又揭示其幾何意義;
使數量關(guān)系和圖形巧妙和諧地結合起來(lái),并充分利用這種結合,尋求解體思路,使問(wèn)題得到解決。
2.聯(lián)系與轉化的思想:事物之間是相互聯(lián)系、相互制約的,是可以相互轉化的。數學(xué)學(xué)科的各部分之間也是相互聯(lián)系,可以相互轉化的。
在解題時(shí),如果能恰當處理它們之間的相互轉化,往往可以化難為易,化繁為簡(jiǎn)。
如:代換轉化、已知與未知的轉化、特殊與一般的轉化、具體與抽象的轉化、部分與整體的轉化、動(dòng)與靜的轉化等等。
3.分類(lèi)討論的思想:在數學(xué)中,我們常常需要根據研究對象性質(zhì)的差異,分各種不同情況予以考查;
這種分類(lèi)思考的方法,是一種重要的數學(xué)思想方法,同時(shí)也是一種重要的解題策略。
4.待定系數法:當我們所研究的數學(xué)式子具有某種特定形式時(shí),要確定它,只要求出式子中待確定的字母得值就可以了。
為此,把已知條件代入這個(gè)待定形式的式子中,往往會(huì )得到含待定字母的方程或方程組,然后解這個(gè)方程或方程組就使問(wèn)題得到解決。
5.配方法:就是把一個(gè)代數式設法構造成平方式,然后再進(jìn)行所需要的變化。
配方法是初中代數中重要的變形技巧,配方法在分解因式、解方程、討論二次函數等問(wèn)題,都有重要的作用。
6.換元法:在解題過(guò)程中,把某個(gè)或某些字母的式子作為一個(gè)整體,用一個(gè)新的字母表示,以便進(jìn)一步解決問(wèn)題的一種方法。
換元法可以把一個(gè)較為復雜的式子化簡(jiǎn),把問(wèn)題歸結為比原來(lái)更為基本的問(wèn)題,從而達到化繁為簡(jiǎn),化難為易的目的。
7.分析法:在研究或證明一個(gè)命題時(shí),又結論向已知條件追溯,既從結論開(kāi)始,推求它成立的充分條件,這個(gè)條件的成立還不顯然;
則再把它當作結論,進(jìn)一步研究它成立的充分條件,直至達到已知條件為止,從而使命題得到證明。這種思維過(guò)程通常稱(chēng)為“執果尋因”
8.綜合法:在研究或證明命題時(shí),如果推理的方向是從已知條件開(kāi)始,逐步推導得到結論,這種思維過(guò)程通常稱(chēng)為“由因導果”
9.演繹法:由一般到特殊的推理方法。
10.歸納法:由一般到特殊的推理方法。
初中圓的知識點(diǎn)總結12
一、一次函數圖象y=kx+b
一次函數的圖象可以由k、b的正負來(lái)決定:
k大于零是一撇(由左下至右上,增函數)
k小于零是一捺(由右上至左下,減函數)
b等于零必過(guò)原點(diǎn);
b大于零交點(diǎn)(指圖象與y軸的交點(diǎn))在上方(指x軸上方)
b小于零交點(diǎn)(指圖象與y軸的交點(diǎn))在下方(指x軸下方)
其圖象經(jīng)過(guò)(0,b)和(—b/k,0)這兩點(diǎn)(兩點(diǎn)就可以決定一條直線(xiàn)),且(0,b)在y軸上,(—b/k,0)在x軸上。
b的數值就是一次函數在y軸上的截距(不是距離,有正、負、零之分)。
二、不等式組的解集
1、步驟:去分母(后分子應加上括號)、去括號、移項、合并同類(lèi)項、系數化為1。
2、解一元一次不等式組時(shí),先求出各個(gè)不等式的解集,然后按不等式組解集的四種類(lèi)型所反映的規律,寫(xiě)出不等式組的解集:不等式組解集的確定方法,若a
A的解集是解集小小的取小
B的解集是解集大大的取大
C的.解集是解集大小的小大的取中間
D的解集是空集解集大大的小小的無(wú)解
另需注意等于的問(wèn)題。
三、零的描述
1、零既不是正數也不是負數,是介于正數和負數之間的數。零是自然數,是整數,是偶數。
A、零是表示具有相反意義的量的基準數。
B、零是判定正、負數的界限。
C、在一切非負數中有一個(gè)最小值是0;在一切非正數中有一個(gè)最大值是0。
2、零的運算性質(zhì)
A、乘方:零的正整數次冪都是零。
B、除法:零除以任何不等于零的數都得零;零不能作除數;0沒(méi)有倒數。
C、乘法:零乘以任何數都得零。ab=0a、b中至少有一個(gè)是0。
D、加法a、b互為相反數a+b=0
E、減法(比較大小用)a—b=0a=b;a—b0ab;a—b0a
3、在近似數中,當0作為有效數字時(shí),它表示不同的精確度,不能省略。
四、因式分解分解方法
首先提取公因式,然后依次用公式,十字相乘,分組分解法,若都不行,再拆項添項試一試。必須進(jìn)行到每一個(gè)多項式因式不能再分解為止
1、提公因式法
首先觀(guān)察多項式的結構特點(diǎn),確定多項式的公因式。當多項式各項的公因式是一個(gè)多項式時(shí),可以用設輔助元的方法把它轉化為單項式,也可以把這個(gè)多項式因式看作一個(gè)整體,直接提取公因式;當多項式各項的公因式是隱含的時(shí)候,要把多項式進(jìn)行適當的變形,或改變符號,直到可確定多項式的公因式。
2、公式
a2—b2=(a+b)(a—b)
a2+2ab+b2=(a+b)2
a2—2ab+b2=(a—b)2,還立方差和及其他公式
3、十字相乘
運用公式x2+(p+q)x+pq=(x+q)(x+p)進(jìn)行因式分解。
將常數項分解成滿(mǎn)足要求的兩個(gè)因數積的多次嘗試,一般步驟:
、倭谐龀淀椃纸獬蓛蓚(gè)因數的積各種可能情況;
、趪L試其中的哪兩個(gè)因數的和恰好等于一次項系數。
4、分組分解法
多項式am+an+bm+bn,這四項中沒(méi)有公因式,所以不能用提取公因式法,再看它又不能用公式、十字相乘法分解因式。如果把它分成兩組(am+an)和(bm+bn),這兩組能分別用提取公因式的方法分別分解因式。
原式=(am+an)+(bm+bn)
=a(m+n)+b(m+n)
再提公因式(m+n)
a(m+n)+b(m+n)
=(m+n)?(a+b)。
可見(jiàn)如把一個(gè)多項式的項分組并提取公因式后它們的另一個(gè)因式正好相同,那么這個(gè)多項式就可以用分組分解法來(lái)分解因式。
【初中圓的知識點(diǎn)總結】相關(guān)文章: