成人免费看黄网站无遮挡,caowo999,se94se欧美综合色,a级精品九九九大片免费看,欧美首页,波多野结衣一二三级,日韩亚洲欧美综合

初中數學(xué)知識點(diǎn)圓總結

時(shí)間:2022-08-02 12:14:29 總結 我要投稿

初中數學(xué)知識點(diǎn)圓總結

  在我們上學(xué)期間,不管我們學(xué)什么,都需要掌握一些知識點(diǎn),知識點(diǎn)就是“讓別人看完能理解”或者“通過(guò)練習我能掌握”的內容。為了幫助大家掌握重要知識點(diǎn),以下是小編為大家整理的初中數學(xué)知識點(diǎn)圓總結,僅供參考,歡迎大家閱讀。

初中數學(xué)知識點(diǎn)圓總結

  初中數學(xué)知識點(diǎn)圓總結1

  一、圓

  1、圓的有關(guān)性質(zhì)

  在一個(gè)平面內,線(xiàn)段OA繞它固定的一個(gè)端點(diǎn)O旋轉一周,另一個(gè)端點(diǎn)A隨之旋轉所形成的圖形叫圓,固定的端點(diǎn)O叫圓心,線(xiàn)段OA叫半徑。

  由圓的意義可知:

  圓上各點(diǎn)到定點(diǎn)(圓心O)的距離等于定長(cháng)的點(diǎn)都在圓上。

  就是說(shuō):圓是到定點(diǎn)的距離等于定長(cháng)的點(diǎn)的集合,圓的內部可以看作是到圓。心的距離小于半徑的點(diǎn)的集合。

  圓的外部可以看作是到圓心的距離大于半徑的點(diǎn)的集合。連結圓上任意兩點(diǎn)的線(xiàn)段叫做弦,經(jīng)過(guò)圓心的弦叫直徑。圓上任意兩點(diǎn)間的部分叫圓弧,簡(jiǎn)稱(chēng)弧。

  圓的任意一條直徑的兩個(gè)端點(diǎn)分圓成兩條弧,每一條弧都叫半圓,大于半圓的弧叫優(yōu);小于半圓的弧叫劣弧。由弦及其所對的弧組成的圓形叫弓形。

  圓心相同,半徑不相等的兩個(gè)圓叫同心圓。

  能夠重合的兩個(gè)圓叫等圓。

  同圓或等圓的半徑相等。

  在同圓或等圓中,能夠互相重合的弧叫等弧。

  二、過(guò)三點(diǎn)的圓

  l、過(guò)三點(diǎn)的圓

  過(guò)三點(diǎn)的圓的作法:利用中垂線(xiàn)找圓心

  定理不在同一直線(xiàn)上的三個(gè)點(diǎn)確定一個(gè)圓。

  經(jīng)過(guò)三角形各頂點(diǎn)的圓叫三角形的外接圓,外接圓的圓心叫外心,這個(gè)三角形叫圓的內接三角形。

  2、反證法

  反證法的三個(gè)步驟:

 、偌僭O命題的結論不成立;

 、趶倪@個(gè)假設出發(fā),經(jīng)過(guò)推理論證,得出矛盾;

 、塾擅艿贸黾僭O不正確,從而肯定命題的結論正確。

  例如:求證三角形中最多只有一個(gè)角是鈍角。

  證明:設有兩個(gè)以上是鈍角

  則兩個(gè)鈍角之和>180°

  與三角形內角和等于180°矛盾。

  ∴不可能有二個(gè)以上是鈍角。

  即最多只能有一個(gè)是鈍角。

  三、垂直于弦的直徑

  圓是軸對稱(chēng)圖形,經(jīng)過(guò)圓心的每一條直線(xiàn)都是它的`對稱(chēng)軸。

  垂徑定理:垂直于弦的直徑平分這條弦,并且平分弦所對的兩條弧。

  推理1:平分弦(不是直徑)的直徑垂直于弦,并且平分弦所對兩條弧。

  弦的垂直平分線(xiàn)經(jīng)過(guò)圓心,并且平分弦所對的兩條弧。

  平分弦所對的一條弧的直徑,垂直平分弦,并且平分弦所對的另一個(gè)條弧。

  推理2:圓兩條平行弦所夾的弧相等。

  四、圓心角、弧、弦、弦心距之間的關(guān)系

  圓是以圓心為對稱(chēng)中心的中心對稱(chēng)圖形。

  實(shí)際上,圓繞圓心旋轉任意一個(gè)角度,都能夠與原來(lái)的圖形重合。

  頂點(diǎn)是圓心的角叫圓心角,從圓心到弦的距離叫弦心距。

  定理:在同圓或等圓中,相等的圓心角所對的弧相等,所對的弦相等,所對的弦心距相等。

  推理:在同圓或等圓中,如果兩個(gè)圓心角、兩條弧、兩條弦或兩條弦的弦心距中,有一組量相等,那么它們所對應的其余各組量都分別相等。

  五、圓周角

  頂點(diǎn)在圓上,并且兩邊都和圓相交的角叫圓周角。

  推理1:同弧或等弧所對的圓周角相等;同圓或等圓中,相等的圓周角所對的弧也相等。

  推理2:半圓(或直徑)所對的圓周角是直角;90°的圓周角所對的弦是直徑。

  推理3:如果三角形一邊上的中線(xiàn)等于這邊的一半,那么這個(gè)三角形是直角三角形。

  由于以上的定理、推理,所添加輔助線(xiàn)往往是添加能構成直徑上的圓周角的輔助線(xiàn)。

  六、圓的判定性質(zhì)

  1.不在同一直線(xiàn)上的三點(diǎn)確定一個(gè)圓。

  2.垂徑定理 垂直于弦的直徑平分這條弦并且平分弦所對的兩條弧

  推論1

 、倨椒窒(不是直徑)的直徑垂直于弦,并且平分弦所對的兩條弧

 、谙业拇怪逼椒志(xiàn)經(jīng)過(guò)圓心,并且平分弦所對的兩條弧

 、燮椒窒宜鶎Φ囊粭l弧的直徑,垂直平分弦,并且平分弦所對的另一條弧

  推論2 圓的兩條平行弦所夾的弧相等

  3.圓是以圓心為對稱(chēng)中心的中心對稱(chēng)圖形

  4.圓是定點(diǎn)的距離等于定長(cháng)的點(diǎn)的集合

  5.圓的內部可以看作是圓心的距離小于半徑的點(diǎn)的集合

  6.圓的外部可以看作是圓心的距離大于半徑的點(diǎn)的集合

  7.同圓或等圓的半徑相等

  8.到定點(diǎn)的距離等于定長(cháng)的點(diǎn)的軌跡,是以定點(diǎn)為圓心,定長(cháng)為半徑的圓

  9.定理 在同圓或等圓中,相等的圓心角所對的弧相等,所對的弦 相等,所對的弦的弦心距相等

  10.推論 在同圓或等圓中,如果兩個(gè)圓心角、兩條弧、兩條弦或兩 弦的弦心距中有一組量相等那么它們所對應的其余各組量都相等。

  11定理 圓的內接四邊形的對角互補,并且任何一個(gè)外角都等于它 的內對角

  12.①直線(xiàn)L和⊙O相交 d

 、谥本(xiàn)L和⊙O相切 d=r

 、壑本(xiàn)L和⊙O相離 dr

  13.切線(xiàn)的判定定理 經(jīng)過(guò)半徑的外端并且垂直于這條半徑的直線(xiàn)是圓的切線(xiàn)

  14.切線(xiàn)的性質(zhì)定理 圓的切線(xiàn)垂直于經(jīng)過(guò)切點(diǎn)的半徑

  15.推論1 經(jīng)過(guò)圓心且垂直于切線(xiàn)的直線(xiàn)必經(jīng)過(guò)切點(diǎn)

  16.推論2 經(jīng)過(guò)切點(diǎn)且垂直于切線(xiàn)的直線(xiàn)必經(jīng)過(guò)圓心

  17.切線(xiàn)長(cháng)定理 從圓外一點(diǎn)引圓的兩條切線(xiàn),它們的切線(xiàn)長(cháng)相等, 圓心和這一點(diǎn)的連線(xiàn)平分兩條切線(xiàn)的夾角

  18.圓的外切四邊形的兩組對邊的和相等 外角等于內對角

  19.如果兩個(gè)圓相切,那么切點(diǎn)一定在連心線(xiàn)上

  20.①兩圓外離 dR+r ②兩圓外切 d=R+r

 、.兩圓相交 R-rr)

 、.兩圓內切 d=R-r(Rr) ⑤兩圓內含dr)

  初中數學(xué)知識點(diǎn)圓總結2

  一.圓的定義

  1.平面上到定點(diǎn)的距離等于定長(cháng)的所有點(diǎn)組成的圖形叫做圓。

  2.平面上一條線(xiàn)段,繞它的一端旋轉360°,留下的軌跡叫圓。

  二.圓心

  1.定義1中的定點(diǎn)為圓心。

  2.定義2中繞的那一端的端點(diǎn)為圓心。

  3.圓任意兩條對稱(chēng)軸的交點(diǎn)為圓心。

  4.垂直于圓內任意一條弦且兩個(gè)端點(diǎn)在圓上的線(xiàn)段的二分點(diǎn)為圓心。

  注:圓心一般用字母O表示

  5.直徑:通過(guò)圓心,并且兩端都在圓上的線(xiàn)段叫做圓的直徑。直徑一般用字母d表示。

  6.半徑:連接圓心和圓上任意一點(diǎn)的線(xiàn)段,叫做圓的半徑。半徑一般用字母r表示。

  7.圓的直徑和半徑都有無(wú)數條。圓是軸對稱(chēng)圖形,每條直徑所在的直線(xiàn)是圓的對稱(chēng)軸。在同圓或等圓中:直徑是半徑的2倍,半徑是直徑的二分之一.d=2r或r=二分之d。

  8.圓的半徑或直徑?jīng)Q定圓的大小,圓心決定圓的位置。

  三.圓的基本性質(zhì)

  1.圓的對稱(chēng)性

  (1)圓是軸對稱(chēng)圖形,它的對稱(chēng)軸是直徑所在的直線(xiàn)。

  (2)圓是中心對稱(chēng)圖形,它的對稱(chēng)中心是圓心。

  (3)圓是旋轉對稱(chēng)圖形。

  2.垂徑定理

  (1)垂直于弦的直徑平分這條弦,且平分這條弦所對的兩條弧。

  (2)推論:

  平分弦(非直徑)的直徑,垂直于弦且平分弦所對的兩條弧。

  平分弧的直徑,垂直平分弧所對的弦。

  3.圓心角的度數等于它所對弧的度數。圓周角的度數等于它所對弧度數的一半。

  (1)同弧所對的圓周角相等。

  (2)直徑所對的圓周角是直角;圓周角為直角,它所對的弦是直徑。

  4.在同圓或等圓中,兩條弦、兩條弧、兩個(gè)圓周角、兩個(gè)圓心角、兩條弦心距五對量中只要有一對量相等,其余四對量也分別相等。

  5.夾在平行線(xiàn)間的兩條弧相等。

  (1)過(guò)兩點(diǎn)的圓的圓心一定在兩點(diǎn)間連線(xiàn)段的中垂線(xiàn)上。

  (2)不在同一直線(xiàn)上的三點(diǎn)確定一個(gè)圓,圓心是三邊中垂線(xiàn)的交點(diǎn),它到三個(gè)點(diǎn)的距離相等。

  (直角三角形的外心就是斜邊的中點(diǎn)。)

  6.直線(xiàn)與圓的位置關(guān)系。d表示圓心到直線(xiàn)的距離,r表示圓的半徑。

  直線(xiàn)與圓有兩個(gè)交點(diǎn),直線(xiàn)與圓相交;直線(xiàn)與圓只有一個(gè)交點(diǎn),直線(xiàn)與圓相切;直線(xiàn)與圓沒(méi)有交點(diǎn),直線(xiàn)與圓相離。

  四.圓和圓

  1.兩個(gè)圓沒(méi)有公共點(diǎn)且每個(gè)圓的點(diǎn)都在另一個(gè)圓的外部時(shí),叫做這兩個(gè)圓的外離。

  2.兩個(gè)圓有唯一的公共點(diǎn)且除了這個(gè)公共點(diǎn)外,每個(gè)圓上的點(diǎn)都在另一個(gè)圓的外部,叫做兩個(gè)圓的外切。

  3.兩個(gè)圓有兩個(gè)交點(diǎn),叫做兩個(gè)圓的相交。

  4.兩個(gè)圓有唯一的公共點(diǎn)且除了這個(gè)公共點(diǎn)外,每個(gè)圓上的點(diǎn)都在另一個(gè)圓的內部,叫做兩個(gè)圓的內切。

  5.兩個(gè)圓沒(méi)有公共點(diǎn)且每個(gè)圓的點(diǎn)都在另一個(gè)圓的內部時(shí),叫做這兩個(gè)圓的內含。

  五.正多邊形和圓

  1.正多邊形的概念:各邊相等,各角也相等的多邊形叫做正多邊形。

  2.正多邊形與圓的關(guān)系:

  (1)將一個(gè)圓n(n≥3)等分(可以借助量角器),依次連結各等分點(diǎn)所得的多邊形是這個(gè)圓的內接正多邊形。

  (2)這個(gè)圓是這個(gè)正多邊形的外接圓。

【初中數學(xué)知識點(diǎn)圓總結】相關(guān)文章:

初中數學(xué)圓的知識點(diǎn)總結04-12

初中數學(xué)圓的知識點(diǎn)03-01

初中數學(xué)圓的知識點(diǎn)總結歸納02-07

初中數學(xué)知識點(diǎn)總結:圓04-11

人教版初中數學(xué)圓知識點(diǎn)總結04-24

數學(xué)圓知識點(diǎn)總結11-03

初中圓的知識點(diǎn)總結02-17

小升初數學(xué)圓的知識點(diǎn)總結03-29

初中圓知識點(diǎn)精華總結04-11