高二數學(xué)知識點(diǎn)總結【常用15篇】
總結是指社會(huì )團體、企業(yè)單位和個(gè)人對某一階段的學(xué)習、工作或其完成情況加以回顧和分析,得出教訓和一些規律性認識的一種書(shū)面材料,它可以明確下一步的工作方向,少走彎路,少犯錯誤,提高工作效益,因此十分有必須要寫(xiě)一份總結哦。我們該怎么寫(xiě)總結呢?以下是小編幫大家整理的高二數學(xué)知識點(diǎn)總結,希望能夠幫助到大家。
高二數學(xué)知識點(diǎn)總結1
【不等關(guān)系及不等式】
一、不等關(guān)系及不等式知識點(diǎn)
1.不等式的定義
在客觀(guān)世界中,量與量之間的不等關(guān)系是普遍存在的,我們用數學(xué)符號、、連接兩個(gè)數或代數式以表示它們之間的不等關(guān)系,含有這些不等號的式子,叫做不等式.
2.比較兩個(gè)實(shí)數的大小
兩個(gè)實(shí)數的大小是用實(shí)數的`運算性質(zhì)來(lái)定義的,有a-baa-b=0a-ba0,則有a/baa/b=1a/ba
3.不等式的性質(zhì)
(1)對稱(chēng)性:ab
(2)傳遞性:ab,ba
(3)可加性:aa+cb+c,ab,ca+c
(4)可乘性:ab,cacb0,c0bd;
(5)可乘方:a0bn(nN,n
(6)可開(kāi)方:a0
(nN,n2).
注意:
一個(gè)技巧
作差法變形的技巧:作差法中變形是關(guān)鍵,常進(jìn)行因式分解或配方.
一種方法
待定系數法:求代數式的范圍時(shí),先用已知的代數式表示目標式,再利用多項式相等的法則求出參數,最后利用不等式的性質(zhì)求出目標式的范圍.
高二數學(xué)知識點(diǎn)總結2
1、對數學(xué)概念重新認識,深刻理解其內涵與外延,區分容易混淆的概念。如以角的概念為例,數學(xué)課本中出現了不少種角,如直線(xiàn)的斜角,兩條異面直線(xiàn)所成的角,直線(xiàn)與平面所成的角,復數的'輻角主值,夾角、倒角等,它們從各自的定義出法,都有一個(gè)確定的取值范圍。如兩條異面直線(xiàn)所成的角是銳角或直角,而不是鈍角,這樣保證了它的唯一性。對此理解、掌握了才不會(huì )出現概念性錯誤。
2、盡一步加深對數學(xué)定理、公式的理解與掌握,注意每個(gè)定理、公式的運用條件和范圍。如用平均值不等式求最值,必須滿(mǎn)三個(gè)條件,缺一不可。有的同學(xué)之所以出錯誤,不是對平均值不等式的結構不熟悉,就是忽視其應滿(mǎn)足的條件。
3、掌握數學(xué)典型命題所體現的思想與方法。如對等式的證明方法,就給大家提供了求二項式展開(kāi)式或多項式展開(kāi)式系數和的普遍方法。因此,端正思想,認真看書(shū),全面掌握,并結合其它資料和練習,加深對數學(xué)基礎知識的理解,從而為提高解題能力打下堅實(shí)的基礎。
高二數學(xué)知識點(diǎn)總結3
(1)必然事件:在條件S下,一定會(huì )發(fā)生的事件,叫相對于條件S的必然事件;
(2)不可能事件:在條件S下,一定不會(huì )發(fā)生的事件,叫相對于條件S的不可能事件;
(3)確定事件:必然事件和不可能事件統稱(chēng)為相對于條件S的確定事件;
(4)隨機事件:在條件S下可能發(fā)生也可能不發(fā)生的事件,叫相對于條件S的隨機事件;
(5)頻數與頻率:在相同的條件S下重復n次試驗,觀(guān)察某一事件A是否出現,稱(chēng)n次試驗中事件A出現的次數nA為事件A出現的頻數;稱(chēng)事件A出現的比例fn(A)=nnA為事件A出現的概率:對于給定的隨機事件A,如果隨著(zhù)試驗次數的增加,事件A發(fā)生的頻率fn(A)穩定在某個(gè)常數上,把這個(gè)常數記作P(A),稱(chēng)為事件A的概率。
(6)頻率與概率的區別與聯(lián)系:隨機事件的.頻率,指此事件發(fā)生的次數nA與試驗總次數n的比值nnA,它具有一定的穩定性,總在某個(gè)常數附近擺動(dòng),且隨著(zhù)試驗次數的不斷增多,這種擺動(dòng)幅度越來(lái)越小。我們把這個(gè)常數叫做隨機事件的概率,概率從數量上反映了隨機事件發(fā)生的可能性的大小。頻率在大量重復試驗的前提下可以近似地作為這個(gè)事件的概率。
然說(shuō)難度比較大,我建議考生,采取分部得分整個(gè)試
高二數學(xué)知識點(diǎn)總結4
一般地,設一個(gè)總體含有N個(gè)個(gè)體,從中逐個(gè)不放回地抽取n個(gè)個(gè)體作為樣本(n≤N),如果每次抽取時(shí)總體內的各個(gè)個(gè)體被抽到的機會(huì )都相等,就把這種抽樣方法叫做簡(jiǎn)單隨機抽樣。
簡(jiǎn)單隨機抽樣的特點(diǎn):
(1)用簡(jiǎn)單隨機抽樣從含有N個(gè)個(gè)體的總體中抽取一個(gè)容量為n的樣本時(shí),每次抽取一個(gè)個(gè)體時(shí)任一個(gè)體被抽到的概率為;在整個(gè)抽樣過(guò)程中各個(gè)個(gè)體被抽到的概率為
(2)簡(jiǎn)單隨機抽樣的特點(diǎn)是,逐個(gè)抽取,且各個(gè)個(gè)體被抽到的概率相等;
(3)簡(jiǎn)單隨機抽樣方法,體現了抽樣的客觀(guān)性與公平性,是其他更復雜抽樣方法的基礎.
(4)簡(jiǎn)單隨機抽樣是不放回抽樣;它是逐個(gè)地進(jìn)行抽取;它是一種等概率抽樣
簡(jiǎn)單抽樣常用方法:
(1)抽簽法:先將總體中的所有個(gè)體(共有N個(gè))編號(號碼可從1到N),并把號碼寫(xiě)在形狀、大小相同的號簽上(號簽可用小球、卡片、紙條等制作),然后將這些號簽放在同一個(gè)箱子里,進(jìn)行均勻攪拌,抽簽時(shí)每次從中抽一個(gè)號簽,連續抽取n次,就得到一個(gè)容量為n的樣本適用范圍:總體的個(gè)體數不多時(shí)優(yōu)點(diǎn):抽簽法簡(jiǎn)便易行,當總體的個(gè)體數不太多時(shí)適宜采用抽簽法.(2)隨機數表法:隨機數表抽樣“三步曲”:第一步,將總體中的個(gè)體編號;第二步,選定開(kāi)始的數字;第三步,獲取樣本號碼概率:
相關(guān)高中數學(xué)知識點(diǎn):系統抽樣
系統抽樣的概念:
當整體中個(gè)體數較多時(shí),將整體均分為幾個(gè)部分,然后按一定的規則,從每一個(gè)部分抽取1個(gè)個(gè)體而得到所需要的樣本的方法叫系統抽樣。
系統抽樣的步驟:
(1)采用隨機方式將總體中的個(gè)體編號;
(2)將整個(gè)編號進(jìn)行均勻分段在確定相鄰間隔k后,若不能均勻分段,即
=k不是整數時(shí),可采用隨機方法從總體中剔除一些個(gè)體,使總體中剩余的個(gè)體數N′滿(mǎn)足是整數;
(3)在第一段中采用簡(jiǎn)單隨機抽樣方法確定第一個(gè)被抽得的個(gè)體編號l;
(4)依次將l加上ik,i=1,2,…,(n-1),得到其余被抽取的.個(gè)體的編號,從而得到整個(gè)樣本。
相關(guān)高中數學(xué)知識點(diǎn):分層抽樣
分層抽樣:
當已知總體由差異明顯的幾部分組成時(shí),常將總體分成幾部分,然后按照各部分所占的比例進(jìn)行抽樣,這種抽樣叫做分層抽樣,其所分成的各個(gè)部分叫做層。
利用分層抽樣抽取樣本,每一層按照它在總體中所占的比例進(jìn)行抽取。
不放回抽樣和放回抽樣:
在抽樣中,如果每次抽出個(gè)體后不再將它放回總體,稱(chēng)這樣的抽樣為不放回抽樣;如果每次抽出個(gè)體后再將它放回總體,稱(chēng)這樣的抽樣為放回抽樣.
隨機抽樣、系統抽樣、分層抽樣都是不放回抽樣
分層抽樣的特點(diǎn):
(1)分層抽樣適用于差異明顯的幾部分組成的情況;
(2)在每一層進(jìn)行抽樣時(shí),在采用簡(jiǎn)單隨機抽樣或系統抽樣;
(3)分層抽樣充分利用已掌握的信息,使樣具有良好的代表性;
(4)分層抽樣也是等概率抽樣,而且在每層抽樣時(shí),可以根據具體情況采用不同的抽樣方法,因此應用較為廣泛。
高二數學(xué)知識點(diǎn)總結5
1、圓的定義
平面內到一定點(diǎn)的距離等于定長(cháng)的點(diǎn)的集合叫圓,定點(diǎn)為圓心,定長(cháng)為圓的半徑。
2、圓的方程
(x-a)^2+(y-b)^2=r^2
(1)標準方程,圓心(a,b),半徑為r;
(2)求圓方程的方法:
一般都采用待定系數法:先設后求。確定一個(gè)圓需要三個(gè)獨立條件,若利用圓的標準方程,需求出a,b,r;若利用一般方程,需要求出D,E,F;
另外要注意多利用圓的幾何性質(zhì):如弦的中垂線(xiàn)必經(jīng)過(guò)原點(diǎn),以此來(lái)確定圓心的位置。
3、直線(xiàn)與圓的位置關(guān)系
直線(xiàn)與圓的位置關(guān)系有相離,相切,相交三種情況:
(1)設直線(xiàn),圓,圓心到l的距離為,則有;;
(2)過(guò)圓外一點(diǎn)的切線(xiàn):①k不存在,驗證是否成立②k存在,設點(diǎn)斜式方程,用圓心到該直線(xiàn)距離=半徑,求解k,得到方程
(3)過(guò)圓上一點(diǎn)的切線(xiàn)方程:圓(x-a)2+(y-b)2=r2,圓上一點(diǎn)為(x0,y0),則過(guò)此點(diǎn)的切線(xiàn)方程為(x0-a)(x-a)+(y0-b)(y-b)=r2
練習題:
2.若圓(x-a)2+(y-b)2=r2過(guò)原點(diǎn),則()
A.a2-b2=0B.a2+b2=r2
C.a2+b2+r2=0D.a=0,b=0
選B.因為圓過(guò)原點(diǎn),所以(0,0)滿(mǎn)足方程,即(0-a)2+(0-b)2=r2,所以a2+b2=r2.
2、高二數學(xué)知識點(diǎn)及公式總結
空間中的垂直問(wèn)題
(1)線(xiàn)線(xiàn)、面面、線(xiàn)面垂直的定義
、賰蓷l異面直線(xiàn)的垂直:如果兩條異面直線(xiàn)所成的角是直角,就說(shuō)這兩條異面直線(xiàn)互相垂直。
、诰(xiàn)面垂直:如果一條直線(xiàn)和一個(gè)平面內的任何一條直線(xiàn)垂直,就說(shuō)這條直線(xiàn)和這個(gè)平面垂直。
、燮矫婧推矫娲怪保喝绻麅蓚(gè)平面相交,所成的二面角(從一條直線(xiàn)出發(fā)的兩個(gè)半平面所組成的圖形)是直二面角(平面角是直角),就說(shuō)這兩個(gè)平面垂直。
(2)垂直關(guān)系的判定和性質(zhì)定理
、倬(xiàn)面垂直判定定理和性質(zhì)定理
判定定理:如果一條直線(xiàn)和一個(gè)平面內的兩條相交直線(xiàn)都垂直,那么這條直線(xiàn)垂直這個(gè)平面。
性質(zhì)定理:如果兩條直線(xiàn)同垂直于一個(gè)平面,那么這兩條直線(xiàn)平行。
、诿婷娲怪钡呐卸ǘɡ砗托再|(zhì)定理
判定定理:如果一個(gè)平面經(jīng)過(guò)另一個(gè)平面的一條垂線(xiàn),那么這兩個(gè)平面互相垂直。
性質(zhì)定理:如果兩個(gè)平面互相垂直,那么在一個(gè)平面內垂直于他們的交線(xiàn)的直線(xiàn)垂直于另一個(gè)平面。
3、高二數學(xué)知識點(diǎn)及公式總結
1.1柱、錐、臺、球的結構特征
1.2空間幾何體的三視圖和直觀(guān)圖
11三視圖:
正視圖:從前往后
側視圖:從左往右
俯視圖:從上往下
22畫(huà)三視圖的原則:
長(cháng)對齊、高對齊、寬相等
33直觀(guān)圖:斜二測畫(huà)法
44斜二測畫(huà)法的步驟:
(1).平行于坐標軸的線(xiàn)依然平行于坐標軸;
(2).平行于y軸的線(xiàn)長(cháng)度變半,平行于x,z軸的線(xiàn)長(cháng)度不變;
(3).畫(huà)法要寫(xiě)好。
5用斜二測畫(huà)法畫(huà)出長(cháng)方體的步驟:(1)畫(huà)軸(2)畫(huà)底面(3)畫(huà)側棱(4)成圖
1.3空間幾何體的表面積與體積
(一)空間幾何體的表面積
1棱柱、棱錐的表面積:各個(gè)面面積之和
2圓柱的表面積3圓錐的表面積
4圓臺的表面積
5球的表面積
(二)空間幾何體的體積
1柱體的體積
2錐體的體積
3臺體的體積
4球體的體積
高二數學(xué)必修二知識點(diǎn):直線(xiàn)與平面的位置關(guān)系
2.1空間點(diǎn)、直線(xiàn)、平面之間的位置關(guān)系
2.1.1
1平面含義:平面是無(wú)限延展的
2平面的畫(huà)法及表示
(1)平面的畫(huà)法:水平放置的`平面通常畫(huà)成一個(gè)平行四邊形,銳角畫(huà)成450,且橫邊畫(huà)成鄰邊的2倍長(cháng)(如圖)
(2)平面通常用希臘字母α、β、γ等表示,如平面α、平面β等,也可以用表示平面的平行四邊形的四個(gè)頂點(diǎn)或者相對的兩個(gè)頂點(diǎn)的大寫(xiě)字母來(lái)表示,如平面AC、平面ABCD等。
3三個(gè)公理:
(1)公理1:如果一條直線(xiàn)上的兩點(diǎn)在一個(gè)平面內,那么這條直線(xiàn)在此平面內
符號表示為
A∈L
B∈L=>Lα
A∈α
B∈α
公理1作用:判斷直線(xiàn)是否在平面內
(2)公理2:過(guò)不在一條直線(xiàn)上的三點(diǎn),有且只有一個(gè)平面。
符號表示為:A、B、C三點(diǎn)不共線(xiàn)=>有且只有一個(gè)平面α,使A∈α、B∈α、C∈α。
公理2作用:確定一個(gè)平面的依據。
(3)公理3:如果兩個(gè)不重合的平面有一個(gè)公共點(diǎn),那么它們有且只有一條過(guò)該點(diǎn)的公共直線(xiàn)。
符號表示為:P∈α∩β=>α∩β=L,且P∈L
公理3作用:判定兩個(gè)平面是否相交的依據
2.1.2空間中直線(xiàn)與直線(xiàn)之間的位置關(guān)系
1空間的兩條直線(xiàn)有如下三種關(guān)系:
共面直線(xiàn)
相交直線(xiàn):同一平面內,有且只有一個(gè)公共點(diǎn);
平行直線(xiàn):同一平面內,沒(méi)有公共點(diǎn);
異面直線(xiàn):不同在任何一個(gè)平面內,沒(méi)有公共點(diǎn)。
2公理4:平行于同一條直線(xiàn)的兩條直線(xiàn)互相平行。
符號表示為:設a、b、c是三條直線(xiàn)
a∥b
c∥b
強調:公理4實(shí)質(zhì)上是說(shuō)平行具有傳遞性,在平面、空間這個(gè)性質(zhì)都適用。
公理4作用:判斷空間兩條直線(xiàn)平行的依據。
3等角定理:空間中如果兩個(gè)角的兩邊分別對應平行,那么這兩個(gè)角相等或互補
4注意點(diǎn):
、賏'與b'所成的角的大小只由a、b的相互位置來(lái)確定,與O的選擇無(wú)關(guān),為了簡(jiǎn)便,點(diǎn)O一般取在兩直線(xiàn)中的一條上;
、趦蓷l異面直線(xiàn)所成的角θ∈(0,);
、郛攦蓷l異面直線(xiàn)所成的角是直角時(shí),我們就說(shuō)這兩條異面直線(xiàn)互相垂直,記作a⊥b;
、軆蓷l直線(xiàn)互相垂直,有共面垂直與異面垂直兩種情形;
、萦嬎阒,通常把兩條異面直線(xiàn)所成的角轉化為兩條相交直線(xiàn)所成的角。
2.1.3—2.1.4空間中直線(xiàn)與平面、平面與平面之間的位置關(guān)系
1、直線(xiàn)與平面有三種位置關(guān)系:
(1)直線(xiàn)在平面內——有無(wú)數個(gè)公共點(diǎn)
(2)直線(xiàn)與平面相交——有且只有一個(gè)公共點(diǎn)
(3)直線(xiàn)在平面平行——沒(méi)有公共點(diǎn)
指出:直線(xiàn)與平面相交或平行的情況統稱(chēng)為直線(xiàn)在平面外,可用aα來(lái)表示
aαa∩α=Aa∥α
2.2.直線(xiàn)、平面平行的判定及其性質(zhì)
2.2.1直線(xiàn)與平面平行的判定
1、直線(xiàn)與平面平行的判定定理:平面外一條直線(xiàn)與此平面內的一條直線(xiàn)平行,則該直線(xiàn)與此平面平行。
簡(jiǎn)記為:線(xiàn)線(xiàn)平行,則線(xiàn)面平行。
符號表示:
aα
bβ=>a∥α
a∥b
2.2.2平面與平面平行的判定
1、兩個(gè)平面平行的判定定理:一個(gè)平面內的兩條交直線(xiàn)與另一個(gè)平面平行,則這兩個(gè)平面平行。
符號表示:
aβ
bβ
a∩b=Pβ∥α
a∥α
b∥α
2、判斷兩平面平行的方法有三種:
(1)用定義;
(2)判定定理;
(3)垂直于同一條直線(xiàn)的兩個(gè)平面平行。
2.2.3—2.2.4直線(xiàn)與平面、平面與平面平行的性質(zhì)
1、定理:一條直線(xiàn)與一個(gè)平面平行,則過(guò)這條直線(xiàn)的任一平面與此平面的交線(xiàn)與該直線(xiàn)平行。
簡(jiǎn)記為:線(xiàn)面平行則線(xiàn)線(xiàn)平行。
符號表示:
a∥α
aβa∥b
α∩β=b
作用:利用該定理可解決直線(xiàn)間的平行問(wèn)題。
2、定理:如果兩個(gè)平面同時(shí)與第三個(gè)平面相交,那么它們的交線(xiàn)平行。
符號表示:
α∥β
α∩γ=aa∥b
β∩γ=b
作用:可以由平面與平面平行得出直線(xiàn)與直線(xiàn)平行
2.3直線(xiàn)、平面垂直的判定及其性質(zhì)
2.3.1直線(xiàn)與平面垂直的判定
1、定義
如果直線(xiàn)L與平面α內的任意一條直線(xiàn)都垂直,我們就說(shuō)直線(xiàn)L與平面α互相垂直,記作L⊥α,直線(xiàn)L叫做平面α的垂線(xiàn),平面α叫做直線(xiàn)L的垂面。直線(xiàn)與平面垂直時(shí),它們公共點(diǎn)P叫做垂足。
2、判定定理:一條直線(xiàn)與一個(gè)平面內的兩條相交直線(xiàn)都垂直,則該直線(xiàn)與此平面垂直。
注意點(diǎn):a)定理中的“兩條相交直線(xiàn)”這一條件不可忽視;
b)定理體現了“直線(xiàn)與平面垂直”與“直線(xiàn)與直線(xiàn)垂直”互相轉化的數學(xué)思想。
2.3.2平面與平面垂直的判定
1、二面角的概念:表示從空間一直線(xiàn)出發(fā)的兩個(gè)半平面所組成的圖形
2、二面角的記法:二面角α-l-β或α-AB-β
3、兩個(gè)平面互相垂直的判定定理:一個(gè)平面過(guò)另一個(gè)平面的垂線(xiàn),則這兩個(gè)平面垂直。
2.3.3—2.3.4直線(xiàn)與平面、平面與平面垂直的性質(zhì)
1、定理:垂直于同一個(gè)平面的兩條直線(xiàn)平行。
2性質(zhì)定理:兩個(gè)平面垂直,則一個(gè)平面內垂直于交線(xiàn)的直線(xiàn)與另一個(gè)平面垂直。
4、高二數學(xué)知識點(diǎn)及公式總結
分層抽樣
先將總體中的所有單位按照某種特征或標志(性別、年齡等)劃分成若干類(lèi)型或層次,然后再在各個(gè)類(lèi)型或層次中采用簡(jiǎn)單隨機抽樣或系用抽樣的辦法抽取一個(gè)子樣本,最后,將這些子樣本合起來(lái)構成總體的樣本。
兩種方法
1.先以分層變量將總體劃分為若干層,再按照各層在總體中的比例從各層中抽取。
2.先以分層變量將總體劃分為若干層,再將各層中的元素按分層的順序整齊排列,最后用系統抽樣的方法抽取樣本。
2.分層抽樣是把異質(zhì)性較強的總體分成一個(gè)個(gè)同質(zhì)性較強的子總體,再抽取不同的子總體中的樣本分別代表該子總體,所有的樣本進(jìn)而代表總體。
分層標準
(1)以調查所要分析和研究的主要變量或相關(guān)的變量作為分層的標準。
(2)以保證各層內部同質(zhì)性強、各層之間異質(zhì)性強、突出總體內在結構的變量作為分層變量。
(3)以那些有明顯分層區分的變量作為分層變量。
分層的比例問(wèn)題
(1)按比例分層抽樣:根據各種類(lèi)型或層次中的單位數目占總體單位數目的比重來(lái)抽取子樣本的方法。
(2)不按比例分層抽樣:有的層次在總體中的比重太小,其樣本量就會(huì )非常少,此時(shí)采用該方法,主要是便于對不同層次的子總體進(jìn)行專(zhuān)門(mén)研究或進(jìn)行相互比較。如果要用樣本資料推斷總體時(shí),則需要先對各層的數據資料進(jìn)行加權處理,調整樣本中各層的比例,使數據恢復到總體中各層實(shí)際的比例結構。
5、高二數學(xué)知識點(diǎn)及公式總結
考點(diǎn)一:向量的概念、向量的基本定理
了解向量的實(shí)際背景,掌握向量、零向量、平行向量、共線(xiàn)向量、單位向量、相等向量等概念,理解向量的幾何表示,掌握平面向量的基本定理。
注意對向量概念的理解,向量是可以自由移動(dòng)的,平移后所得向量與原向量相同;兩個(gè)向量無(wú)法比較大小,它們的?杀容^大小。
考點(diǎn)二:向量的運算
向量的運算要求掌握向量的加減法運算,會(huì )用平行四邊形法則、三角形法則進(jìn)行向量的加減運算;掌握實(shí)數與向量的積運算,理解兩個(gè)向量共線(xiàn)的含義,會(huì )判斷兩個(gè)向量的平行關(guān)系;掌握向量的數量積的運算,體會(huì )平面向量的數量積與向量投影的關(guān)系,并理解其幾何意義,掌握數量積的坐標表達式,會(huì )進(jìn)行平面向量積的運算,能運用數量積表示兩個(gè)向量的夾角,會(huì )用向量積判斷兩個(gè)平面向量的垂直關(guān)系。
命題形式主要以選擇、填空題型出現,難度不大,考查重點(diǎn)為模和向量夾角的定義、夾角公式、向量的坐標運算,有時(shí)也會(huì )與其它內容相結合。
考點(diǎn)三:定比分點(diǎn)
掌握線(xiàn)段的定比分點(diǎn)和中點(diǎn)坐標公式,并能熟練應用,求點(diǎn)分有向線(xiàn)段所成比時(shí),可借助圖形來(lái)幫助理解。
重點(diǎn)考查定義和公式,主要以選擇題或填空題型出現,難度一般。由于向量應用的廣泛性,經(jīng)常也會(huì )與三角函數,解析幾何一并考查,若出現在解答題中,難度以中檔題為主,偶爾也以難度略高的題目。
考點(diǎn)四:向量與三角函數的綜合問(wèn)題
向量與三角函數的綜合問(wèn)題是高考經(jīng)常出現的問(wèn)題,考查了向量的知識,三角函數的知識,達到了高考中試題的覆蓋面的要求。
命題以三角函數作為坐標,以向量的坐標運算或向量與解三角形的內容相結合,也有向量與三角函數圖象平移結合的問(wèn)題,屬中檔偏易題。
考點(diǎn)五:平面向量與函數問(wèn)題的交匯
平面向量與函數交匯的問(wèn)題,主要是向量與二次函數結合的問(wèn)題為主,要注意自變量的取值范圍。
命題多以解答題為主,屬中檔題。
考點(diǎn)六:平面向量在平面幾何中的應用
向量的坐標表示實(shí)際上就是向量的代數表示.在引入向量的坐標表示后,使向量之間的運算代數化,這樣就可以將“形”和“數”緊密地結合在一起.因此,許多平面幾何問(wèn)題中較難解決的問(wèn)題,都可以轉化為大家熟悉的代數運算的論證.也就是把平面幾何圖形放到適當的坐標系中,賦予幾何圖形有關(guān)點(diǎn)與平面向量具體的坐標,這樣將有關(guān)平面幾何問(wèn)題轉化為相應的代數運算和向量運算,從而使問(wèn)題得到解決.
命題多以解答題為主,屬中等偏難的試題。
6、高二數學(xué)知識點(diǎn)及公式總結
1、圓的定義
平面內到一定點(diǎn)的距離等于定長(cháng)的點(diǎn)的集合叫圓,定點(diǎn)為圓心,定長(cháng)為圓的半徑。
2、圓的方程
(x-a)^2+(y-b)^2=r^2
(1)標準方程,圓心(a,b),半徑為r;
(2)求圓方程的方法:
一般都采用待定系數法:先設后求。確定一個(gè)圓需要三個(gè)獨立條件,若利用圓的標準方程,需求出a,b,r;若利用一般方程,需要求出D,E,F;
另外要注意多利用圓的幾何性質(zhì):如弦的中垂線(xiàn)必經(jīng)過(guò)原點(diǎn),以此來(lái)確定圓心的位置。
3、直線(xiàn)與圓的位置關(guān)系
直線(xiàn)與圓的位置關(guān)系有相離,相切,相交三種情況:
(1)設直線(xiàn),圓,圓心到l的距離為,則有;;
(2)過(guò)圓外一點(diǎn)的切線(xiàn):①k不存在,驗證是否成立②k存在,設點(diǎn)斜式方程,用圓心到該直線(xiàn)距離=半徑,求解k,得到方程
(3)過(guò)圓上一點(diǎn)的切線(xiàn)方程:圓(x-a)2+(y-b)2=r2,圓上一點(diǎn)為(x0,y0),則過(guò)此點(diǎn)的切線(xiàn)方程為(x0-a)(x-a)+(y0-b)(y-b)=r2
練習題:
2.若圓(x-a)2+(y-b)2=r2過(guò)原點(diǎn),則()
A.a2-b2=0B.a2+b2=r2
C.a2+b2+r2=0D.a=0,b=0
選B.因為圓過(guò)原點(diǎn),所以(0,0)滿(mǎn)足方程,即(0-a)2+(0-b)2=r2,所以a2+b2=r2.
7、高二數學(xué)公式總結
高中數學(xué)常用公式乘法與因式分
a2-b2=(a+b)(a-b)a3+b3=(a+b)(a2-ab+b2)a3-b3=(a-b(a2+ab+b2)
高中數學(xué)常用公式三角不等式
|a+b|≤|a|+|b||a-b|≤|a|+|b||a|≤b<=>-b≤a≤b
|a-b|≥|a|-|b|-|a|≤a≤|a|
一元二次方程的解-b+√(b2-4ac)/2a -b-√(b2-4ac)/2a
根與系數的關(guān)系X1+X2=-b/a X1_X2=c/a注:韋達定理
高中數學(xué)常用公式判別式
b2-4ac=0注:方程有兩個(gè)相等的實(shí)根
b2-4ac>0注:方程有兩個(gè)不等的實(shí)根
b2-4ac<0注:方程沒(méi)有實(shí)根,有共軛復數根
高中數學(xué)常用公式三角函數公式
兩角和公式
sin(A+B)=sinAcosB+cosAsinB sin(A-B)=sinAcosB-sinBcosA
cos(A+B)=cosAcosB-sinAsinB cos(A-B)=cosAcosB+sinAsinB
tan(A+B)=(tanA+tanB)/(1-tanAtanB) tan(A-B)=(tanA-tanB)/(1+tanAtanB)
ctg(A+B)=(ctgActgB-1)/(ctgB+ctgA) ctg(A-B)=(ctgActgB+1)/(ctgB-ctgA)
倍角公式
tan2A=2tanA/(1-tan2A)ctg2A=(ctg2A-1)/2ctga
cos2a=cos2a-sin2a=2cos2a-1=1-2sin2a
半角公式
sin(A/2)=√((1-cosA)/2)sin(A/2)=-√((1-cosA)/2)
cos(A/2)=√((1+cosA)/2)cos(A/2)=-√((1+cosA)/2)
tan(A/2)=√((1-cosA)/((1+cosA)) tan(A/2)=-√((1-cosA)/((1+cosA))
ctg(A/2)=√((1+cosA)/((1-cosA)) ctg(A/2)=-√((1+cosA)/((1-cosA))
和差化積
2sinAcosB=sin(A+B)+sin(A-B)2cosAsinB=sin(A+B)-sin(A-B)
2cosAcosB=cos(A+B)-sin(A-B)-2sinAsinB=cos(A+B)-cos(A-B)
sinA+sinB=2sin((A+B)/2)cos((A-B)/2cosA+cosB=2cos((A+B)/2)sin((A-B)/2)
tanA+tanB=sin(A+B)/cosAcosBtanA-tanB=sin(A-B)/cosAcosB
ctgA+ctgBsin(A+B)/sinAsinB-ctgA+ctgBsin(A+B)/sinAsinB
高中數學(xué)常用公式某些數列前n項和
1+2+3+4+5+6+7+8+9+…+n=n(n+1)/2 1+3+5+7+9+11+13+15+…+(2n-1)=n2
2+4+6+8+10+12+14+…+(2n)=n(n+1) 12+22+32+42+52+62+72+82+…+n2=n(n+1)(2n+1)/6
13+23+33+43+53+63+…n3=n2(n+1)2/4 1_2+2_3+3_4+4_5+5_6+6_7+…+n(n+1)=n(n+1)(n+2)/3
正弦定理a/sinA=b/sinB=c/sinC=2R注:其中R表示三角形的外接圓半徑
余弦定理b2=a2+c2-2accosB注:角B是邊a和邊c的夾角
高二數學(xué)知識點(diǎn)
集合
一、集合概念
(1)集合中元素的特征:確定性,互異性,無(wú)序性。
(2)集合與元素的關(guān)系用符號=表示。
(3)常用數集的符號表示:自然數集;正整數集;整數集;有理數集、實(shí)數集。
(4)集合的表示法:列舉法,描述法,韋恩圖。
(5)空集是指不含任何元素的集合。
空集是任何集合的子集,是任何非空集合的真子集。
函數
一、映射與函數:
(1)映射的概念:(2)一一映射:(3)函數的概念:
二、函數的三要素:
相同函數的判斷方法:①對應法則;②定義域(兩點(diǎn)必須同時(shí)具備)
(1)函數解析式的求法:
、俣x法(拼湊):②換元法:③待定系數法:④賦值法:
(2)函數定義域的求法:
、俸瑓(wèn)題的定義域要分類(lèi)討論;
、趯τ趯(shí)際問(wèn)題,在求出函數解析式后;必須求出其定義域,此時(shí)的定義域要根據實(shí)際意義來(lái)確定。
(3)函數值域的求法:
、倥浞椒:轉化為二次函數,利用二次函數的特征來(lái)求值;常轉化為型如:的形式;
、谀媲蠓(反求法):通過(guò)反解,用來(lái)表示,再由的取值范圍,通過(guò)解不等式,得出的取值范圍;常用來(lái)解,型如:;
、軗Q元法:通過(guò)變量代換轉化為能求值域的函數,化歸思想;
、萑怯薪绶:轉化為只含正弦、余弦的函數,運用三角函數有界性來(lái)求值域;
、藁静坏仁椒:轉化成型如:,利用平均值不等式公式來(lái)求值域;
、邌握{性法:函數為單調函數,可根據函數的單調性求值域。
、鄶敌谓Y合:根據函數的幾何圖形,利用數型結合的方法來(lái)求值域。
高二數學(xué)公式總結
8、高二數學(xué)公式總結
圓的公式
1、圓體積=4/3(pi)(r^3)
2、面積=(pi)(r^2)
3、周長(cháng)=2(pi)r
4、圓的標準方程(x-a)2+(y-b)2=r2
5、圓的一般方程x2+y2+dx+ey+f=0
橢圓公式
1、橢圓周長(cháng)公式:l=2πb+4(a-b)
2、橢圓周長(cháng)定理:橢圓的周長(cháng)等于該橢圓短半軸,長(cháng)為半徑的圓周長(cháng)(2πb)加上四倍的該橢圓長(cháng)半軸長(cháng)(a)與短半軸長(cháng)(b)的差.
3、橢圓面積公式:s=πab
4、橢圓面積定理:橢圓的面積等于圓周率(π)乘該橢圓長(cháng)半軸長(cháng)(a)與短半軸長(cháng)(b)的乘積。
以上橢圓周長(cháng)、面積公式中雖然沒(méi)有出現橢圓周率t,但這兩個(gè)公式都是通過(guò)橢圓周率t推導演變而來(lái)。
兩角和公式
1、sin(a+b)=sinacosb+cosasinbsin(a-b)=sinacosb-sinbcosa
2、cos(a+b)=cosacosb-sinasinbcos(a-b)=cosacosb+sinasinb
3、tan(a+b)=(tana+tanb)/(1-tanatanb)tan(a-b)=(tana-tanb)/(1+tanatanb)
4、ctg(a+b)=(ctgactgb-1)/(ctgb+ctga)ctg(a-b)=(ctgactgb+1)/(ctgb-ctga)
倍角公式
1、tan2a=2tana/(1-tan2a)ctg2a=(ctg2a-1)/2ctga
2、cos2a=cos2a-sin2a=2cos2a-1=1-2sin2a
半角公式
1、sin(a/2)=√((1-cosa)/2)sin(a/2)=-√((1-cosa)/2)
2、cos(a/2)=√((1+cosa)/2)cos(a/2)=-√((1+cosa)/2)
3、tan(a/2)=√((1-cosa)/((1+cosa))tan(a/2)=-√((1-cosa)/((1+cosa))
4、ctg(a/2)=√((1+cosa)/((1-cosa))ctg(a/2)=-√((1+cosa)/((1-cosa))
和差化積
1、2sinacosb=sin(a+b)+sin(a-b)2cosasinb=sin(a+b)-sin(a-b)
2、2cosacosb=cos(a+b)-sin(a-b)-2sinasinb=cos(a+b)-cos(a-b)
3、sina+sinb=2sin((a+b)/2)cos((a-b)/2cosa+cosb=2cos((a+b)/2)sin((a-b)/2)
4、tana+tanb=sin(a+b)/cosacosbtana-tanb=sin(a-b)/cosacosb
5、ctga+ctgbsin(a+b)/sinasinb-ctga+ctgbsin(a+b)/sinasinb
高二數學(xué)知識點(diǎn)總結6
一、集合、簡(jiǎn)易邏輯(14課時(shí),8個(gè))
1.集合;2.子集;3.補集;4.交集;5.并集;6.邏輯連結詞;7.四種命題;8.充要條件。
二、函數(30課時(shí),12個(gè))
1.映射;2.函數;3.函數的單調性;4.反函數;5.互為反函數的函數圖象間的關(guān)系;6.指數概念的擴充;7.有理指數冪的運算;8.指數函數;9.對數;10.對數的運算性質(zhì);11.對數函數.12.函數的應用舉例。
三、數列(12課時(shí),5個(gè))
1.數列;2.等差數列及其通項公式;3.等差數列前n項和公式;4.等比數列及其通頂公式;5.等比數列前n項和公式。
四、三角函數(46課時(shí),17個(gè))
1.角的概念的推廣;2.弧度制;3.任意角的三角函數;4.單位圓中的三角函數線(xiàn);5.同角三角函數的基本關(guān)系式;6.正弦、余弦的誘導公式;7.兩角和與差的正弦、余弦、正切;8.二倍角的正弦、余弦、正切;9.正弦函數、余弦函數的圖象和性質(zhì);10.周期函數;11.函數的奇偶性;12.函數的圖象;13.正切函數的圖象和性質(zhì);14.已知三角函數值求角;15.正弦定理;16.余弦定理;17.斜三角形解法舉例。
五、平面向量(12課時(shí),8個(gè))
1.向量;2.向量的加法與減法;3.實(shí)數與向量的積;4.平面向量的坐標表示;5.線(xiàn)段的定比分點(diǎn);6.平面向量的數量積;7.平面兩點(diǎn)間的距離;8.平移。
六、不等式(22課時(shí),5個(gè))
1.不等式;2.不等式的基本性質(zhì);3.不等式的證明;4.不等式的解法;5.含絕對值的不等式。
七、直線(xiàn)和圓的方程(22課時(shí),12個(gè))
1.直線(xiàn)的傾斜角和斜率;2.直線(xiàn)方程的點(diǎn)斜式和兩點(diǎn)式;3.直線(xiàn)方程的一般式;4.兩條直線(xiàn)平行與垂直的條件;5.兩條直線(xiàn)的交角;6.點(diǎn)到直線(xiàn)的距離;7.用二元一次不等式表示平面區域;8.簡(jiǎn)單線(xiàn)性規劃問(wèn)題;9.曲線(xiàn)與方程的概念;10.由已知條件列出曲線(xiàn)方程;11.圓的標準方程和一般方程;12.圓的參數方程。
八、圓錐曲線(xiàn)(18課時(shí),7個(gè))
1.橢圓及其標準方程;2.橢圓的簡(jiǎn)單幾何性質(zhì);3.橢圓的參數方程;4.雙曲線(xiàn)及其標準方程;5.雙曲線(xiàn)的簡(jiǎn)單幾何性質(zhì);6.拋物線(xiàn)及其標準方程;7.拋物線(xiàn)的簡(jiǎn)單幾何性質(zhì)。
九、直線(xiàn)、平面、簡(jiǎn)單何體(36課時(shí),28個(gè))
1.平面及基本性質(zhì);2.平面圖形直觀(guān)圖的畫(huà)法;3.平面直線(xiàn);4.直線(xiàn)和平面平行的判定與性質(zhì);5.直線(xiàn)和平面垂直的判定與性質(zhì);6.三垂線(xiàn)定理及其逆定理;7.兩個(gè)平面的位置關(guān)系;8.空間向量及其加法、減法與數乘;9.空間向量的坐標表示;10.空間向量的數量積;11.直線(xiàn)的方向向量;12.異面直線(xiàn)所成的角;13.異面直線(xiàn)的公垂線(xiàn);14.異面直線(xiàn)的距離;15.直線(xiàn)和平面垂直的性質(zhì);16.平面的法向量;17.點(diǎn)到平面的距離;18.直線(xiàn)和平面所成的角;19.向量在平面內的射影;20.平面與平面平行的性質(zhì);21.平行平面間的距離;22.二面角及其平面角;23.兩個(gè)平面垂直的判定和性質(zhì);24.多面體;25.棱柱;26.棱錐;27.正多面體;28.球。
十、排列、組合、二項式定理(18課時(shí),8個(gè))
1.分類(lèi)計數原理與分步計數原理;2.排列;3.排列數公式;4.組合;5.組合數公式;6.組合數的'兩個(gè)性質(zhì);7.二項式定理;8.二項展開(kāi)式的性質(zhì)。
十一、概率(12課時(shí),5個(gè))
1.隨機事件的概率;2.等可能事件的概率;3.互斥事件有一個(gè)發(fā)生的概率;4.相互獨立事件同時(shí)發(fā)生的概率;5.獨立重復試驗。
選修Ⅱ(24個(gè))
十二、概率與統計(14課時(shí),6個(gè))
1.離散型隨機變量的分布列;2.離散型隨機變量的期望值和方差;3.抽樣方法;4.總體分布的估計;5.正態(tài)分布;6.線(xiàn)性回歸。
十三、極限(12課時(shí),6個(gè))
1.數學(xué)歸納法;2.數學(xué)歸納法應用舉例;3.數列的極限;4.函數的極限;5.極限的四則運算;6.函數的連續性。
十四、導數(18課時(shí),8個(gè))
1.導數的概念;2.導數的幾何意義;3.幾種常見(jiàn)函數的導數;4.兩個(gè)函數的和、差、積、商的導數;5.復合函數的導數;6.基本導數公式;7.利用導數研究函數的單調性和極值;8.函數的最大值和最小值。
十五、復數(4課時(shí),4個(gè))
1.復數的概念;2.復數的加法和減法;3.復數的乘法和除法;4.復數的一元二次方程和二項方程的解法。
高二數學(xué)知識點(diǎn)總結7
(一)解三角形:
1、正弦定理:在中,、、分別為角、、的對邊,,則有
(為的外接圓的半徑)
2、正弦定理的變形公式:①,,;
、,,;③;
3、三角形面積公式:.
4、余弦定理:在中,有,推論:
(二)數列:
1.數列的有關(guān)概念:
(1)數列:按照一定次序排列的一列數。數列是有序的。數列是定義在自然數N_它的有限子集{1,2,3,…,n}上的'函數。
(2)通項公式:數列的第n項an與n之間的函數關(guān)系用一個(gè)公式來(lái)表示,這個(gè)公式即是該數列的通項公式。如:。
(3)遞推公式:已知數列{an}的第1項(或前幾項),且任一項an與他的前一項an-1(或前幾項)可以用一個(gè)公式來(lái)表示,這個(gè)公式即是該數列的遞推公式。
如:。
2.數列的表示方法:
(1)列舉法:如1,3,5,7,9,…(2)圖象法:用(n,an)孤立點(diǎn)表示。
(3)解析法:用通項公式表示。(4)遞推法:用遞推公式表示。
3.數列的分類(lèi):
4.數列{an}及前n項和之間的關(guān)系:
高二數學(xué)知識點(diǎn)總結8
數列
1、數列的定義及數列的通項公式:
、 an?f(n),數列是定義域為N
的函數f(n),當n依次取1,2,???時(shí)的一列函數值② i。歸納法
若S0?0,則an不分段;若S0?0,則an分段iii。若an?1?pan?q,則可設an?1?m?p(an?m)解得m,得等比數列?an?m?
?Sn?f(an)
iv。若Sn?f(an),先求a
1?得到關(guān)于an?1和an的.遞推關(guān)系式
S?f(a)n?1?n?1?Sn?2an?1
例如:Sn?2an?1先求a1,再構造方程組:??(下減上)an?1?2an?1?2an
?Sn?1?2an?1?1
2、等差數列:
、俣x:a
n?1?an=d(常數),證明數列是等差數列的重要工具。 ②通項d?0時(shí),an為關(guān)于n的一次函數;
d>0時(shí),an為單調遞增數列;d<0時(shí),a
n為單調遞減數列。
n(n?1)2
、矍皀?na1?
d,
d?0時(shí),Sn是關(guān)于n的不含常數項的一元二次函數,反之也成立。
、苄再|(zhì):ii。若?an?為等差數列,則am,am?k,am?2k,…仍為等差數列。 iii。若?an?為等差數列,則Sn,S2n?Sn,S3n?S2n,…仍為等差數列。 iv若A為a,b的等差中項,則有A?3。等比數列:
、俣x:
an?1an
?q(常數),是證明數列是等比數列的重要工具。
a?b2
、谕棔r(shí)為常數列)。
、。前n項和
需特別注意,公比為字母時(shí)要討論。
高二數學(xué)知識點(diǎn)總結9
概率性質(zhì)與公式
(1)加法公式:P(A+B)=p(A)+P(B)-P(AB),特別地,如果A與B互不相容,則P(A+B)=P(A)+P(B);
(2)差:P(A-B)=P(A)-P(AB),特別地,如果B包含于A(yíng),則P(A-B)=P(A)-P(B);
(3)乘法公式:P(AB)=P(A)P(B|A)或P(AB)=P(A|B)P(B),特別地,如果A與B相互獨立,則P(AB)=P(A)P(B);
(4)全概率公式:P(B)=∑P(Ai)P(B|Ai).它是由因求果,
貝葉斯公式:P(Aj|B)=P(Aj)P(B|Aj)/∑P(Ai)P(B|Ai).它是由果索因;
如果一個(gè)事件B可以在多種情形(原因)A1,A2,....,An下發(fā)生,則用全概率公式求B發(fā)生的'概率;如果事件B已經(jīng)發(fā)生,要求它是由Aj引起的概率,則用貝葉斯公式.
(5)二項概率公式:Pn(k)=C(n,k)p^k(1-p)^(n-k),k=0,1,2,....,n.當一個(gè)問(wèn)題可以看成n重貝努力試驗(三個(gè)條件:n次重復,每次只有A與A的逆可能發(fā)生,各次試驗結果相互獨立)時(shí),要考慮二項概率公式.
高二數學(xué)知識點(diǎn)總結10
排列組合
排列P------和順序有關(guān)
組合C-------不牽涉到順序的問(wèn)題
排列分順序,組合不分
例如把5本不同的書(shū)分給3個(gè)人,有幾種分法."排列"
把5本書(shū)分給3個(gè)人,有幾種分法"組合"
1.排列及計算公式
從n個(gè)不同元素中,任取m(m≤n)個(gè)元素按照一定的順序排成一列,叫做從n個(gè)不同元素中取出m個(gè)元素的一個(gè)排列;從n個(gè)不同元素中取出m(m≤n)個(gè)元素的所有排列的個(gè)數,叫做從n個(gè)不同元素中取出m個(gè)元素的排列數,用符號p(n,m)表示.
p(n,m)=n(n-1)(n-2)……(n-m+1)=n!/(n-m)!(規定0!=1).
2.組合及計算公式
從n個(gè)不同元素中,任取m(m≤n)個(gè)元素并成一組,叫做從n個(gè)不同元素中取出m個(gè)元素的一個(gè)組合;從n個(gè)不同元素中取出m(m≤n)個(gè)元素的所有組合的個(gè)數,叫做從n個(gè)不同元素中取出m個(gè)元素的.組合數.用符號
c(n,m)表示.
c(n,m)=p(n,m)/m!=n!/((n-m)!_!);c(n,m)=c(n,n-m);
3.其他排列與組合公式
從n個(gè)元素中取出r個(gè)元素的循環(huán)排列數=p(n,r)/r=n!/r(n-r)!.
n個(gè)元素被分成k類(lèi),每類(lèi)的個(gè)數分別是n1,n2,...nk這n個(gè)元素的全排列數為
n!/(n1!_2!_.._k!).
k類(lèi)元素,每類(lèi)的個(gè)數無(wú)限,從中取出m個(gè)元素的組合數為c(m+k-1,m).
排列(Pnm(n為下標,m為上標))
Pnm=n×(n-1)....(n-m+1);Pnm=n!/(n-m)!(注:!是階乘符號);Pnn(兩個(gè)n分別為上標和下標)=n!;0!=1;Pn1(n為下標1為上標)=n
組合(Cnm(n為下標,m為上標))
Cnm=Pnm/Pmm;Cnm=n!/m!(n-m)!;Cnn(兩個(gè)n分別為上標和下標)=1;Cn1(n為下標1為上標)=n;Cnm=Cnn-m
20xx-07-0813:30
公式P是指排列,從N個(gè)元素取R個(gè)進(jìn)行排列。公式C是指組合,從N個(gè)元素取R個(gè),不進(jìn)行排列。N-元素的總個(gè)數R參與選擇的元素個(gè)數!-階乘,如9!=9________
從N倒數r個(gè),表達式應該為n_n-1)_n-2)..(n-r+1);
因為從n到(n-r+1)個(gè)數為n-(n-r+1)=r
高二數學(xué)知識點(diǎn)總結11
課內重視聽(tīng)講,課后及時(shí)復習。
新知識的接受,數學(xué)能力的培養主要在課堂上進(jìn)行,所以要特點(diǎn)重視課內的學(xué)習效率,尋求正確的學(xué)習方法。上課時(shí)要緊跟老師的思路,積極展開(kāi)思維預測下面的步驟,比較自己的解題思路與教師所講有哪些不同。特別要抓住基礎知識和基本技能的學(xué)習,課后要及時(shí)復習不留疑點(diǎn)。首先要在做各種習題之前將老師所講的知識點(diǎn)回憶一遍,正確掌握各類(lèi)公式的推理過(guò)程,應盡量回憶而不采用不清楚立即翻書(shū)之舉。認真獨立完成作業(yè),勤于思考,從某種意義上講,應不造成不懂即問(wèn)的學(xué)習作風(fēng),對于有些題目由于自己的思路不清,一時(shí)難以解出,應讓自己冷靜下來(lái)認真分析題目,盡量自己解決。在每個(gè)階段的學(xué)習中要進(jìn)行整理和歸納總結,把知識的點(diǎn)、線(xiàn)、面結合起來(lái)交織成知識網(wǎng)絡(luò ),納入自己的知識體系。
適當多做題,養成良好的解題習慣。
要想學(xué)好數學(xué),多做題是難免的,熟悉掌握各種題型的解題思路。剛開(kāi)始要從基礎題入手,以課本上的習題為準,反復練習打好基礎,再找一些課外的習題,以幫助開(kāi)拓思路,提高自己的分析、解決能力,掌握一般的解題規律。對于一些易錯題,可備有錯題集,寫(xiě)出自己的解題思路和正確的解題過(guò)程兩者一起比較找出自己的錯誤所在,以便及時(shí)更正。在平時(shí)要養成良好的解題習慣。讓自己的精力高度集中,使大腦興奮,思維敏捷,能夠進(jìn)入最佳狀態(tài),在考試中能運用自如。實(shí)踐證明:越到關(guān)鍵時(shí)候,你所表現的解題習慣與平時(shí)練習無(wú)異。如果平時(shí)解題時(shí)隨便、粗心、大意等,往往在大考中充分暴露,故在平時(shí)養成良好的解題習慣是非常重要的。
調整心態(tài),正確對待考試。
首先,應把主要精力放在基礎知識、基本技能、基本方法這三個(gè)方面上,因為每次考試占絕大部分的.也是基礎性的題目,而對于那些難題及綜合性較強的題目作為調劑,認真思考,盡量讓自己理出頭緒,做完題后要總結歸納。調整好自己的心態(tài),使自己在任何時(shí)候鎮靜,思路有條不紊,克服浮躁的情緒。特別是對自己要有信心,永遠鼓勵自己,除了自己,誰(shuí)也不能把我打倒,要有自己不垮,誰(shuí)也不能打垮我的自豪感。
在考試前要做好準備,練練常規題,把自己的思路展開(kāi),切忌考前去在保證正確率的前提下提高解題速度。對于一些容易的基礎題要有十二分把握拿全分;對于一些難題,也要盡量拿分,考試中要學(xué)會(huì )嘗試得分,使自己的水平正常甚至超常發(fā)揮。
高二數學(xué)知識點(diǎn)總結12
直線(xiàn)方程:
1.點(diǎn)斜式:y-y0=k(x-x0)
(x0,y0)是直線(xiàn)所通過(guò)的已知點(diǎn)的坐標,k是直線(xiàn)的已知斜率。x是自變量,直線(xiàn)上任意一點(diǎn)的橫坐標;y是因變量,直線(xiàn)上任意一點(diǎn)的縱坐標。
2.斜截式:y=kx+b
直線(xiàn)的斜截式方程:y=kx+b,其中k是直線(xiàn)的斜率,b是直線(xiàn)在y軸上的截距。該方程叫做直線(xiàn)的斜截式方程,簡(jiǎn)稱(chēng)斜截式。此斜截式類(lèi)似于一次函數的表達式。
3.兩點(diǎn)式;(y-y1)/(y2-y1)=(x-x1)/(x2-x1)
如果x1=x2,y1=y2,那么兩點(diǎn)就重合了,相當于只有一個(gè)已知點(diǎn)了,這樣不能確定一條直線(xiàn)。
如果x1=x2,y1y2,那么此直線(xiàn)就是垂直于X軸的.一條直線(xiàn),其方程為x=x1,不能表示成上面的一般式。
如果x1x2,但y1=y2,那么此直線(xiàn)就是垂直于Y軸的一條直線(xiàn),其方程為y=y1,也不能表示成上面的一般式。
4.截距式x/a+y/b=1
對x的截距就是y=0時(shí),x的值,對y的截距就是x=0時(shí),y的值。x截距為a,y截距b,截距式就是:x/a+y/b=1下面由斜截式方程推導y=kx+b,-kx=b-y令x=0求出y=b,令y=0求出x=-b/k所以截距a=-b/k,b=b帶入得x/a+y/b=x/(-b/k)+y/b=-kx/b+y/b=(b-y)/b+y/b=b/b=1。
5.一般式;Ax+By+C=0
將ax+by+c=0變換可得y=-x/b-c/b(b不為零),其中-x/b=k(斜率),c/b=‘b’(截距)。ax+by+c=0在解析幾何中更常用,用方程處理起來(lái)比較方便。
高二數學(xué)知識點(diǎn)總結13
a^2-b^2=(a+b)(a-b)
a^3+b^3=(a+b)(a^2-ab+b^2)a^3-b^3=(a-b(a^2+ab+b^2)
三角不等式|a+b|≤|a|+|b||a-b|≤|a|+|b||a|≤b-b≤a≤b|a-b|≥|a|-|b|-|a|≤a≤|a|
一元二次方程的解-b+√(b^2-4ac)/2a-b-√(b^2-4ac)/2a根與系數的關(guān)系X1+X2=-b/aX1xX2=c/a注:韋達定理判別式
b^2-4ac=0注:方程有兩個(gè)相等的實(shí)根b^2-4ac>0注:方程有兩個(gè)不等的實(shí)根b^2-4ac1^3+2^3+3^3+4^3+5^3+6^3+…n^3=n2(n+1)2/4
1x2+2x3+3x4+4x5+5x6+6x7+…+n(n+1)=n(n+1)(n+2)/3
正弦定理a/sinA=b/sinB=c/sinC=2R注:其中R表示三角形的外接圓半徑余弦定理b^2=a^2+c^2-2accosB注:角B是邊a和邊c的夾角圓的標準方程(x-a)^2+(y-b)^2=^r2注:(a,b)是圓心坐標圓的一般方程x^2+y^2+Dx+Ey+F=0注:D^2+E^2-4F>0拋物線(xiàn)標準方程y^2=2pxy^2=-2pxx^2=2pyx^2=-2py直棱柱側面積S=cxh斜棱柱側面積S=c"xh
正棱錐側面積S=1/2cxh"正棱臺側面積S=1/2(c+c")h"圓臺側面積S=1/2(c+c")l=pi(R+r)l球的表面積S=4pixr2圓柱側面積S=cxh=2pixh圓錐側面積S=1/2xcxl=pixrxl
弧長(cháng)公式l=axra是圓心角的弧度數r>0扇形面積公式s=1/2xlxr錐體體積公式V=1/3xSxH圓錐體體積公式V=1/3xpixr2h斜棱柱體積V=S"L注:其中,S"是直截面面積,L是側棱長(cháng)柱體體積公式V=sxh圓柱體V=pixr2h定理
86平行線(xiàn)分線(xiàn)段成比例定理三條平行線(xiàn)截兩條直線(xiàn),所得的對應線(xiàn)段成比例87推論平行于三角形一邊的直線(xiàn)截其他兩邊(或兩邊的延長(cháng)線(xiàn)),所得的對應線(xiàn)段成比例
88定理如果一條直線(xiàn)截三角形的兩邊(或兩邊的延長(cháng)線(xiàn))所得的對應線(xiàn)段成比例,那么這條直線(xiàn)平行于三角形的第三邊
89平行于三角形的一邊,并且和其他兩邊相交的直線(xiàn),所截得的三角形的三邊與原三角形三邊對應成比例
90定理平行于三角形一邊的直線(xiàn)和其他兩邊(或兩邊的延長(cháng)線(xiàn))相交,所構成的三角形與原三角形相似
91相似三角形判定定理1兩角對應相等,兩三角形相似(ASA)92直角三角形被斜邊上的高分成的兩個(gè)直角三角形和原三角形相似93判定定理2兩邊對應成比例且?jiàn)A角相等,兩三角形相似(SAS)94判定定理3三邊對應成比例,兩三角形相似(SSS)
95定理如果一個(gè)直角三角形的斜邊和一條直角邊與另一個(gè)直角三角形的斜邊和一條直角邊對應成比例,那么這兩個(gè)直角三角形相似
96性質(zhì)定理1相似三角形對應高的比,對應中線(xiàn)的比與對應角平分線(xiàn)的比都等于相似比
97性質(zhì)定理2相似三角形周長(cháng)的比等于相似比
98性質(zhì)定理3相似三角形面積的比等于相似比的平方99任意銳角的正弦值等于它的余角的余弦值,任意銳角的余弦值等于它的余角的正弦值
100任意銳角的正切值等于它的余角的余切值,任意銳角的余切值等于它的余角的正切值
101圓是定點(diǎn)的距離等于定長(cháng)的點(diǎn)的xx
102圓的內部可以看作是圓心的距離小于半徑的點(diǎn)的xx103圓的外部可以看作是圓心的距離大于半徑的點(diǎn)的xx104同圓或等圓的半徑相等
105到定點(diǎn)的距離等于定長(cháng)的點(diǎn)的軌跡,是以定點(diǎn)為圓心,定長(cháng)為半徑的圓106和已知線(xiàn)段兩個(gè)端點(diǎn)的距離相等的點(diǎn)的軌跡,是著(zhù)條線(xiàn)段的垂直平分線(xiàn)107到已知角的兩邊距離相等的點(diǎn)的軌跡,是這個(gè)角的平分線(xiàn)
108到兩條平行線(xiàn)距離相等的點(diǎn)的軌跡,是和這兩條平行線(xiàn)平行且距離相等的一條直線(xiàn)
109定理不在同一直線(xiàn)上的三點(diǎn)確定一個(gè)圓。
110垂徑定理垂直于弦的直徑平分這條弦并且平分弦所對的兩條弧
111推論1①平分弦(不是直徑)的直徑垂直于弦,并且平分弦所對的兩條、谙业拇怪逼椒志(xiàn)經(jīng)過(guò)圓心,并且平分弦所對的兩條弧
、燮椒窒宜鶎Φ囊粭l弧的.直徑,垂直平分弦,并且平分弦所對的另一條弧112推論2圓的兩條平行弦所夾的弧相等113圓是以圓心為對稱(chēng)中心的中心對稱(chēng)圖形
114定理在同圓或等圓中,相等的圓心角所對的弧相等,所對的弦相等,所對的弦的弦心距相等
115推論在同圓或等圓中,如果兩個(gè)圓心角、兩條弧、兩條弦或兩弦的弦心距中有一組量相等那么它們所對應的其余各組量都相等
116定理一條弧所對的圓周角等于它所對的圓心角的一半
117推論1同弧或等弧所對的圓周角相等;同圓或等圓中,相等的圓周角所對的弧也相等
118推論2半圓(或直徑)所對的圓周角是直角;90°的圓周角所對的弦是直徑
119推論3如果三角形一邊上的中線(xiàn)等于這邊的一半,那么這個(gè)三角形是直角三角形
120定理圓的內接四邊形的對角互補,并且任何一個(gè)外角都等于它的內對角121①直線(xiàn)L和⊙O相交d<r②直線(xiàn)L和⊙O相切d=r③直線(xiàn)L和⊙O相離d>r
高二數學(xué)知識點(diǎn)總結14
已知函數有零點(diǎn)(方程有根)求參數取值常用的方法
1、直接法:
直接根據題設條件構建關(guān)于參數的不等式,再通過(guò)解不等式確定參數范圍。
2、分離參數法:
先將參數分離,轉化成求函數值域問(wèn)題加以解決。
3、數形結合法:
先對解析式變形,在同一平面直角坐標系中,畫(huà)出函數的`圖象,然后數形結合求解。
高二數學(xué)知識點(diǎn)總結15
用樣本的數字特征估計總體的數字特征
1、本均值:
2、樣本標準差:
3.用樣本估計總體時(shí),如果抽樣的方法比較合理,那么樣本可以反映總體的信息,但從樣本得到的信息會(huì )有偏差。在隨機抽樣中,這種偏差是不可避免的。
雖然我們用樣本數據得到的分布、均值和標準差并不是總體的'真正的分布、均值和標準差,而只是一個(gè)估計,但這種估計是合理的,特別是當樣本量很大時(shí),它們確實(shí)反映了總體的信息。
4.(1)如果把一組數據中的每一個(gè)數據都加上或減去同一個(gè)共同的常數,標準差不變
(2)如果把一組數據中的每一個(gè)數據乘以一個(gè)共同的常數k,標準差變?yōu)樵瓉?lái)的k倍
(3)一組數據中的值和最小值對標準差的影響,區間的應用;
“去掉一個(gè)分,去掉一個(gè)最低分”中的科學(xué)道理
【高二數學(xué)知識點(diǎn)總結】相關(guān)文章:
數學(xué)高二知識點(diǎn)總結03-07
高二數學(xué)知識點(diǎn)總結01-31
高二數學(xué)知識點(diǎn)總結12-18
高二數學(xué)知識點(diǎn)總結06-02