成人免费看黄网站无遮挡,caowo999,se94se欧美综合色,a级精品九九九大片免费看,欧美首页,波多野结衣一二三级,日韩亚洲欧美综合

高三數學(xué)復習知識點(diǎn)總結

時(shí)間:2024-06-08 23:47:49 宇濤 知識點(diǎn)總結 我要投稿

高三數學(xué)復習知識點(diǎn)總結

  總結是在一段時(shí)間內對學(xué)習和工作生活等表現加以總結和概括的一種書(shū)面材料,通過(guò)它可以正確認識以往學(xué)習和工作中的優(yōu)缺點(diǎn),不如立即行動(dòng)起來(lái)寫(xiě)一份總結吧。那么總結有什么格式呢?以下是小編收集整理的高三數學(xué)復習知識點(diǎn)總結,供大家參考借鑒,希望可以幫助到有需要的朋友。

高三數學(xué)復習知識點(diǎn)總結

  公式

  1、圓柱體:

  表面積:2πRr+2πRh體積:πR2h(R為圓柱體上下底圓半徑,h為圓柱體高)

  2、圓錐體:

  表面積:πR2+πR[(h2+R2)的平方根]體積:πR2h/3(r為圓錐體低圓半徑,h為其高,

  3、正方體

  a-邊長(cháng),S=6a2,V=a3

  4、長(cháng)方體

  a-長(cháng),b-寬,c-高S=2(ab+ac+bc)V=abc

  5、棱柱

  S-底面積h-高V=Sh

  6、棱錐

  S-底面積h-高V=Sh/3

  7、棱臺

  S1和S2-上、下底面積h-高V=h[S1+S2+(S1S2)^1/2]/3

  8、擬柱體

  S1-上底面積,S2-下底面積,S0-中截面積

  h-高,V=h(S1+S2+4S0)/6

  9、圓柱

  r-底半徑,h-高,C—底面周長(cháng)

  S底—底面積,S側—側面積,S表—表面積C=2πr

  S底=πr2,S側=Ch,S表=Ch+2S底,V=S底h=πr2h

  10、空心圓柱

  R-外圓半徑,r-內圓半徑h-高V=πh(R^2-r^2)

  11、直圓錐

  r-底半徑h-高V=πr^2h/3

  12、圓臺

  r-上底半徑,R-下底半徑,h-高V=πh(R2+Rr+r2)/3

  13、球

  r:半徑

  d:直徑

  V=4/3πr^3=πd^3/6

  14、球缺

  h-球缺高,r-球半徑,a-球缺底半徑V=πh(3a2+h2)/6=πh2(3r-h)/3

  15、球臺

  r1和r2-球臺上、下底半徑h-高V=πh[3(r12+r22)+h2]/6

  16、圓環(huán)體

  R-環(huán)體半徑D-環(huán)體直徑r-環(huán)體截面半徑d-環(huán)體截面直徑

  V=2π2Rr2=π2Dd2/4

  17、桶狀體

  D-桶腹直徑d-桶底直徑h-桶高

  V=πh(2D2+d2)/12,(母線(xiàn)是圓弧形,圓心是桶的中心)

  V=πh(2D2+Dd+3d2/4)/15(母線(xiàn)是拋物線(xiàn)形)

  函數

  1、函數的奇偶性

  (1)若f(x)是偶函數,那么f(x)=f(-x);

  (2)若f(x)是奇函數,0在其定義域內,則f(0)=0(可用于求參數);

  (3)判斷函數奇偶性可用定義的等價(jià)形式:f(x)±f(-x)=0或(f(x)≠0);

  (4)若所給函數的解析式較為復雜,應先化簡(jiǎn),再判斷其奇偶性;

  (5)奇函數在對稱(chēng)的單調區間內有相同的單調性;偶函數在對稱(chēng)的單調區間內有相反的單調性;

  2、復合函數的有關(guān)問(wèn)題

  (1)復合函數定義域求法:若已知的定義域為[a,b],其復合函數f[g(x)]的定義域由不等式a≤g(x)≤b解出即可;若已知f[g(x)]的定義域為[a,b],求f(x)的定義域,相當于x∈[a,b]時(shí),求g(x)的值域(即f(x)的定義域);研究函數的問(wèn)題一定要注意定義域優(yōu)先的原則。

  (2)復合函數的單調性由“同增異減”判定;

  3、函數圖像(或方程曲線(xiàn)的對稱(chēng)性)

  (1)證明函數圖像的對稱(chēng)性,即證明圖像上任意點(diǎn)關(guān)于對稱(chēng)中心(對稱(chēng)軸)的對稱(chēng)點(diǎn)仍在圖像上;

  (2)證明圖像C1與C2的對稱(chēng)性,即證明C1上任意點(diǎn)關(guān)于對稱(chēng)中心(對稱(chēng)軸)的對稱(chēng)點(diǎn)仍在C2上,反之亦然;

  (3)曲線(xiàn)C1:f(x,y)=0,關(guān)于y=x+a(y=-x+a)的對稱(chēng)曲線(xiàn)C2的方程為f(y-a,x+a)=0(或f(-y+a,-x+a)=0);

  (4)曲線(xiàn)C1:f(x,y)=0關(guān)于點(diǎn)(a,b)的對稱(chēng)曲線(xiàn)C2方程為:f(2a-x,2b-y)=0;

  (5)若函數y=f(x)對x∈R時(shí),f(a+x)=f(a-x)恒成立,則y=f(x)圖像關(guān)于直線(xiàn)x=a對稱(chēng);

  (6)函數y=f(x-a)與y=f(b-x)的圖像關(guān)于直線(xiàn)x=對稱(chēng);

  4、函數的周期性

  (1)y=f(x)對x∈R時(shí),f(x+a)=f(x-a)或f(x-2a)=f(x)(a>0)恒成立,則y=f(x)是周期為2a的周期函數;

  (2)若y=f(x)是偶函數,其圖像又關(guān)于直線(xiàn)x=a對稱(chēng),則f(x)是周期為2︱a︱的周期函數;

  (3)若y=f(x)奇函數,其圖像又關(guān)于直線(xiàn)x=a對稱(chēng),則f(x)是周期為4︱a︱的周期函數;

  (4)若y=f(x)關(guān)于點(diǎn)(a,0),(b,0)對稱(chēng),則f(x)是周期為2的周期函數;

  (5)y=f(x)的圖象關(guān)于直線(xiàn)x=a,x=b(a≠b)對稱(chēng),則函數y=f(x)是周期為2的周期函數;

  (6)y=f(x)對x∈R時(shí),f(x+a)=-f(x)(或f(x+a)=,則y=f(x)是周期為2的周期函數;

  5、方程k=f(x)有解k∈D(D為f(x)的值域);

  6、a≥f(x)恒成立a≥[f(x)]max,;a≤f(x)恒成立a≤[f(x)]min;

  7、(1)(a>0a≠1,b>0,n∈R+);

  (2)logaN=(a>0,a≠1,b>0,b≠1);

  (3)logab的符號由口訣“同正異負”記憶;

  (4)alogaN=N(a>0,a≠1,N>0);

  8、判斷對應是否為映射時(shí),抓住兩點(diǎn):

  (1)A中元素必須都有象且;

  (2)B中元素不一定都有原象,并且A中不同元素在B中可以有相同的象;

  9、能熟練地用定義證明函數的單調性,求反函數,判斷函數的奇偶性。

  10、對于反函數,應掌握以下一些結論:

  (1)定義域上的單調函數必有反函數;

  (2)奇函數的反函數也是奇函數;

  (3)定義域為非單元素集的偶函數不存在反函數;

  (4)周期函數不存在反函數;

  (5)互為反函數的兩個(gè)函數具有相同的單調性;

  (6)y=f(x)與y=f-1(x)互為反函數,設f(x)的定義域為A,值域為B,則有f[f--1(x)]=x(x∈B),f--1[f(x)]=x(x∈A);

  11、處理二次函數的問(wèn)題勿忘數形結合

  二次函數在閉區間上必有最值,求最值問(wèn)題用“兩看法”:一看開(kāi)口方向;二看對稱(chēng)軸與所給區間的相對位置關(guān)系;

  12、依據單調性

  利用一次函數在區間上的保號性可解決求一類(lèi)參數的范圍問(wèn)題;

  13、恒成立問(wèn)題的處理方法

  (1)分離參數法;

  (2)轉化為一元二次方程的根的分布列不等式(組)求解;

  a(1)=a,a(n)為公差為r的等差數列

  通項公式:

  a(n)=a(n-1)+r=a(n-2)+2r=……=a[n-(n-1)]+(n-1)r=a(1)+(n-1)r=a+(n-1)r、

  可用歸納法證明。

  n=1時(shí),a(1)=a+(1-1)r=a。成立。

  假設n=k時(shí),等差數列的通項公式成立。a(k)=a+(k-1)r

  則,n=k+1時(shí),a(k+1)=a(k)+r=a+(k-1)r+r=a+[(k+1)-1]r、

  通項公式也成立。

  因此,由歸納法知,等差數列的通項公式是正確的。

  求和公式:

  S(n)=a(1)+a(2)+……+a(n)

  =a+(a+r)+……+[a+(n-1)r]

  =na+r[1+2+……+(n-1)]

  =na+n(n-1)r/2

  同樣,可用歸納法證明求和公式。

  a(1)=a,a(n)為公比為r(r不等于0)的等比數列

  通項公式:

  a(n)=a(n-1)r=a(n-2)r^2=……=a[n-(n-1)]r^(n-1)=a(1)r^(n-1)=ar^(n-1)、

  可用歸納法證明等比數列的通項公式。

  求和公式:

  S(n)=a(1)+a(2)+……+a(n)

  =a+ar+……+ar^(n-1)

  =a[1+r+……+r^(n-1)]

  r不等于1時(shí),

  S(n)=a[1-r^n]/[1-r]

  r=1時(shí),

  S(n)=na、

  同樣,可用歸納法證明求和公式。

  課后復習

  一、課后及時(shí)回憶

  如果等到把課堂內容遺忘得差不多時(shí)才復習,就幾乎等于重新學(xué)習,所以課堂學(xué)習的新知識必須及時(shí)復習。

  可以一個(gè)人單獨回憶,也可以幾個(gè)人在一起互相啟發(fā),補充回憶。一般按照教師板書(shū)的提綱和要領(lǐng)進(jìn)行,也可以按教材綱目結構進(jìn)行,從課題到重點(diǎn)內容,再到例題的每部分的細節,循序漸進(jìn)地進(jìn)行復習。在復習過(guò)程中要不失時(shí)機整理筆記,因為整理筆記也是一種有效的復習方法。

  二、定期重復鞏固

  即使是復習過(guò)的內容仍須定期鞏固,但是復習的次數應隨時(shí)間的增長(cháng)而逐步減小,間隔也可以逐漸拉長(cháng)?梢援斕祆柟绦轮R,每周進(jìn)行周小結,每月進(jìn)行階段性總結,期中、期末進(jìn)行全面系統的學(xué)期復習。從內容上看,每課知識即時(shí)回顧,每單元進(jìn)行知識梳理,每章節進(jìn)行知識歸納總結,必須把相關(guān)知識串聯(lián)在一起,形成知識網(wǎng)絡(luò ),達到對知識和方法的整體把握。

  三、科學(xué)合理安排

  復習一般可以分為集中復習和分散復習。實(shí)驗證明,分散復習的效果優(yōu)于集中復習,特殊情況除外。分散復習,可以把需要識記的材料適當分類(lèi),并且與其他的學(xué)習或娛樂(lè )或休息交替進(jìn)行,不至于單調使用某種思維方式,形成疲勞。分散復習也應結合各自認知水平,以及識記素材的特點(diǎn),把握重復次數與間隔時(shí)間,并非間隔時(shí)間越長(cháng)越好,而要適合自己的復習規律。

  數學(xué)的學(xué)習方法

  1.課前預習教材。課前可以把教材上第二天老師要講的內容看一下,看看哪些能看懂,哪些不懂。這樣老師在講課的時(shí)候我們就能帶著(zhù)問(wèn)題去聽(tīng),把自己沒(méi)看懂的問(wèn)題聽(tīng)懂。

  2.上課專(zhuān)心聽(tīng)講。這是很重要的,很多同學(xué)以為自己什么都弄懂了,就自己做自己的題目。其實(shí)即使是自己看懂了的,也可以看看老師也沒(méi)有另外的理解方法,老師的方法是不是比自己好。聽(tīng)老師有時(shí)候講比自己看更好。

  3.課后認真復習。剛學(xué)的知識,還沒(méi)完全被消化吸收成為自己的知識,如果不及時(shí)復習,就很容易忘記。所以,課后一定要抽出一些時(shí)間,及時(shí)對所學(xué)進(jìn)行鞏固。

  4.公式定理牢記。高中數學(xué)很多題目就是各種公式定理的理解與應用,不牢記就別談做題。

  5.通過(guò)習題鞏固。數學(xué)是理科,需要通過(guò)一定量的習題來(lái)鞏固,量變積累到了一定量才能質(zhì)變嘛。這個(gè)并非要各位打題海戰術(shù),只要求各位做到熟練為止。

  6.錯題反復研究。自己準備一個(gè)錯題本,把考試時(shí)候做錯的題目記錄下來(lái),寫(xiě)上做錯的原因,反復研究,避免再次出錯。

  函數的知識點(diǎn)

  一、函數的定義域的常用求法:

  1、分式的分母不等于零;

  2、偶次方根的被開(kāi)方數大于等于零;

  3、對數的真數大于零;

  4、指數函數和對數函數的底數大于零且不等于1;

  5、三角函數正切函數y=tanx中x≠kπ+π/2;

  6、如果函數是由實(shí)際意義確定的解析式,應依據自變量的實(shí)際意義確定其取值范圍。

  二、函數的解析式的常用求法:

  1、定義法;

  2、換元法;

  3、待定系數法;

  4、函數方程法;

  5、參數法;

  6、配方法

  三、函數的值域的常用求法:

  1、換元法;

  2、配方法;

  3、判別式法;

  4、幾何法;

  5、不等式法;

  6、單調性法;

  7、直接法

  四、函數的最值的常用求法:

  1、配方法;

  2、換元法;

  3、不等式法;

  4、幾何法;

  5、單調性法

  五、函數單調性的常用結論:

  1、若f(x),g(x)均為某區間上的增(減)函數,則f(x)+g(x)在這個(gè)區間上也為增(減)函數。

  2、若f(x)為增(減)函數,則-f(x)為減(增)函數。

  3、若f(x)與g(x)的單調性相同,則f[g(x)]是增函數;若f(x)與g(x)的單調性不同,則f[g(x)]是減函數。

  4、奇函數在對稱(chēng)區間上的單調性相同,偶函數在對稱(chēng)區間上的單調性相反。

  5、常用函數的單調性解答:比較大小、求值域、求最值、解不等式、證不等式、作函數圖象。

  六、函數奇偶性的常用結論:

  1、如果一個(gè)奇函數在x=0處有定義,則f(0)=0,如果一個(gè)函數y=f(x)既是奇函數又是偶函數,則f(x)=0(反之不成立)。

  2、兩個(gè)奇(偶)函數之和(差)為奇(偶)函數;之積(商)為偶函數。

  3、一個(gè)奇函數與一個(gè)偶函數的積(商)為奇函數。

  4、兩個(gè)函數y=f(u)和u=g(x)復合而成的函數,只要其中有一個(gè)是偶函數,那么該復合函數就是偶函數;當兩個(gè)函數都是奇函數時(shí),該復合函數是奇函數。

  5、若函數f(x)的定義域關(guān)于原點(diǎn)對稱(chēng),則f(x)可以表示為f(x)=1/2[f(x)+f(-x)]+1/2[f(x)+f(-x)],該式的特點(diǎn)是:右端為一個(gè)奇函數和一個(gè)偶函數的和。

  數列的知識點(diǎn)

  1.數列的定義、分類(lèi)與通項公式

  (1)數列的定義:

 、贁盗校喊凑找欢樞蚺帕械囊涣袛

 、跀盗械捻棧簲盗兄械拿恳粋(gè)數

  (2)數列的分類(lèi):

  分類(lèi)標準類(lèi)型滿(mǎn)足條件

  項數有窮數列項數有限

  無(wú)窮數列項數無(wú)限

  項與項間的大小關(guān)系遞增數列an+1>an其中n∈N_

  遞減數列an+1

  常數列an+1=an

  (3)數列的通項公式:

  如果數列{an}的第n項與序號n之間的關(guān)系可以用一個(gè)式子來(lái)表示,那么這個(gè)公式叫做這個(gè)數列的通項公式

  2.數列的遞推公式

  如果已知數列{an}的首項(或前幾項),且任一項an與它的前一項an-1(n≥2)(或前幾項)間的關(guān)系可用一個(gè)公式來(lái)表示,那么這個(gè)公式叫數列的遞推公式

  3.對數列概念的理解

  (1)數列是按一定“順序”排列的一列數,一個(gè)數列不僅與構成它的“數”有關(guān),而且還與這些“數”的排列順序有關(guān),這有別于集合中元素的無(wú)序性。因此,若組成兩個(gè)數列的數相同而排列次序不同,那么它們就是不同的兩個(gè)數列

  (2)數列中的數可以重復出現,而集合中的元素不能重復出現,這也是數列與數集的區別

  4.數列的函數特征

  數列是一個(gè)定義域為正整數集N_(或它的有限子集{1,2,3,…,n})的特殊函數,數列的通項公式也就是相應的函數解析式,即f(n)=an(n∈N_)

  高考數學(xué)考察的知識點(diǎn)

  第一、高考數學(xué)中有函數、數列、三角函數、平面向量、不等式、立體幾何等九大章節。

  主要是考函數和導數,這是我們整個(gè)高中階段里最核心的板塊,在這個(gè)板塊里,重點(diǎn)考察兩個(gè)方面:

  第一個(gè)函數的性質(zhì),包括函數的單調性、奇偶性;

  第二是函數的解答題,重點(diǎn)考察的是二次函數和高次函數,分函數和它的一些分布問(wèn)題,但是這個(gè)分布重點(diǎn)還包含兩個(gè)分析就是二次方程的分布的問(wèn)題,這是第一個(gè)板塊。

  第二、平面向量和三角函數。

  重點(diǎn)考察三個(gè)方面:一個(gè)是劃減與求值,

  第一,重點(diǎn)掌握公式,重點(diǎn)掌握五組基本公式。

  第二,是三角函數的圖像和性質(zhì),這里重點(diǎn)掌握正弦函數和余弦函數的性質(zhì),

  第三,正弦定理和余弦定理來(lái)解三角形。難度比較小。

  第三、數列。

  數列這個(gè)板塊,重點(diǎn)考兩個(gè)方面:一個(gè)通項;一個(gè)是求和。

  第四、空間向量和立體幾何,在里面重點(diǎn)考察兩個(gè)方面:一個(gè)是證明;一個(gè)是計算。

  第五、概率和統計。

  這一板塊主要是屬于數學(xué)應用問(wèn)題的范疇,當然應該掌握下面幾個(gè)方面,第一……等可能的概率,第二………事件,第三是獨立事件,還有獨立重復事件發(fā)生的概率。

  第六、解析幾何。

  這是我們比較頭疼的問(wèn)題,是整個(gè)試卷里難度比較大,計算量的題,當然這一類(lèi)題,我總結下面五類(lèi)?嫉念}型,包括:

  第一類(lèi)所講的直線(xiàn)和曲線(xiàn)的位置關(guān)系,這是考試最多的內容?忌鷳撜莆账耐ǚ;

  第二類(lèi)我們所講的動(dòng)點(diǎn)問(wèn)題;

  第三類(lèi)是弦長(cháng)問(wèn)題;

  第四類(lèi)是對稱(chēng)問(wèn)題,這也是20xx年高考已經(jīng)考過(guò)的一點(diǎn);

  第五類(lèi)重點(diǎn)問(wèn)題,這類(lèi)題時(shí)往往覺(jué)得有思路,但是沒(méi)有答案,

  當然這里我相等的是,這道題盡管計算量很大,但是造成計算量大的原因,往往有這個(gè)原因,我們所選方法不是很恰當,因此,在這一章里我們要掌握比較好的算法,來(lái)提高我們做題的準確度,這是我們所講的第六大板塊。

  第七、押軸題。

  考生在備考復習時(shí),應該重點(diǎn)不等式計算的方法,雖然說(shuō)難度比較大,我建議考生,采取分部得分整個(gè)試卷不要留空白。這是高考所考的七大板塊核心的考點(diǎn)。

  平面圖形知識點(diǎn)

  1.有關(guān)平行與垂直(線(xiàn)線(xiàn)、線(xiàn)面及面面)的問(wèn)題,是在解決立體幾何問(wèn)題的過(guò)程中,大量的、反復遇到的,而且是以各種各樣的問(wèn)題(包括論證、計算角、與距離等)中不可缺少的內容,因此在主體幾何的總復習中,首先應從解決“平行與垂直”的有關(guān)問(wèn)題著(zhù)手,通過(guò)較為基本問(wèn)題,熟悉公理、定理的內容和功能,通過(guò)對問(wèn)題的分析與概括,掌握立體幾何中解決問(wèn)題的規律--充分利用線(xiàn)線(xiàn)平行(垂直)、線(xiàn)面平行(垂直)、面面平行(垂直)相互轉化的思想,以提高邏輯思維能力和空間想象能力。

  2.判定兩個(gè)平面平行的方法:

  (1)根據定義--證明兩平面沒(méi)有公共點(diǎn);

  (2)判定定理--證明一個(gè)平面內的兩條相交直線(xiàn)都平行于另一個(gè)平面;

  (3)證明兩平面同垂直于一條直線(xiàn)。

  3.兩個(gè)平面平行的主要性質(zhì):

  (1)由定義知:“兩平行平面沒(méi)有公共點(diǎn)”;

  (2)由定義推得:“兩個(gè)平面平行,其中一個(gè)平面內的直線(xiàn)必平行于另一個(gè)平面”;

  (3)兩個(gè)平面平行的性質(zhì)定理:“如果兩個(gè)平行平面同時(shí)和第三個(gè)平面相交,那么它們的交線(xiàn)平行”;

  (4)一條直線(xiàn)垂直于兩個(gè)平行平面中的一個(gè)平面,它也垂直于另一個(gè)平面;

  (5)夾在兩個(gè)平行平面間的平行線(xiàn)段相等;

  (6)經(jīng)過(guò)平面外一點(diǎn)只有一個(gè)平面和已知平面平行。

  高三數學(xué)知識點(diǎn)

  第一部分集合

 。1)含n個(gè)元素的集合的子集數為2^n,真子集數為2^n—1;非空真子集的數為2^n—2;

 。2)注意:討論的時(shí)候不要遺忘了的情況。

  第二部分函數與導數

  1、映射:注意

 、俚谝粋(gè)集合中的元素必須有象;

 、谝粚σ,或多對一。

  2、函數值域的求法:

 、俜治龇;

 、谂浞椒;

 、叟袆e式法;

 、芾煤瘮祮握{性

 、輷Q元法;

 、蘩镁挡坏仁;

 、呃脭敌谓Y合或幾何意義(斜率、距離、絕對值的意義等);

 、嗬煤瘮涤薪缧;

 、釋捣

  3、復合函數的有關(guān)問(wèn)題

 。1)復合函數定義域求法:

 、偃鬴(x)的定義域為〔a,b〕,則復合函數f[g(x)]的定義域由不等式a≤g(x)≤b解出

 、谌鬴[g(x)]的定義域為[a,b],求f(x)的定義域,相當于x∈[a,b]時(shí),求g(x)的值域。

 。2)復合函數單調性的判定:

 、偈紫葘⒃瘮捣纸鉃榛竞瘮担簝群瘮蹬c外函數;

 、诜謩e研究?jì)、外函數在各自定義域內的單調性;

 、鄹鶕巴詣t增,異性則減”來(lái)判斷原函數在其定義域內的單調性。

  注意:外函數的定義域是內函數的值域。

  4、分段函數:值域(最值)、單調性、圖象等問(wèn)題,先分段解決,再下結論。

  5、函數的奇偶性

 、藕瘮档亩x域關(guān)于原點(diǎn)對稱(chēng)是函數具有奇偶性的必要條件;

 、剖瞧婧瘮;

 、鞘桥己瘮;

 、绕婧瘮翟谠c(diǎn)有定義,則;

 、稍陉P(guān)于原點(diǎn)對稱(chēng)的單調區間內:奇函數有相同的單調性,偶函數有相反的單調性;

 。6)若所給函數的解析式較為復雜,應先等價(jià)變形,再判斷其奇偶性;

  1、對于函數f(x),如果對于定義域內任意一個(gè)x,都有f(—x)=—f(x),那么f(x)為奇函數;

  2、對于函數f(x),如果對于定義域內任意一個(gè)x,都有f(—x)=f(x),那么f(x)為偶函數;

  3、一般地,對于函數y=f(x),定義域內每一個(gè)自變量x,都有f(a+x)=2b—f(a—x),則y=f(x)的圖象關(guān)于點(diǎn)(a,b)成中心對稱(chēng);

  4、一般地,對于函數y=f(x),定義域內每一個(gè)自變量x都有f(a+x)=f(a—x),則它的圖象關(guān)于x=a成軸對稱(chēng)。

  5、函數是奇函數或是偶函數稱(chēng)為函數的奇偶性,函數的奇偶性是函數的整體性質(zhì);

  6、由函數奇偶性定義可知,函數具有奇偶性的一個(gè)必要條件是,對于定義域內的任意一個(gè)x,則—x也一定是定義域內的一個(gè)自變量(即定義域關(guān)于原點(diǎn)對稱(chēng))。

  高考數學(xué)知識點(diǎn)

  三角函數。

  注意歸一公式、誘導公式的正確性。

  數列題。

  1、證明一個(gè)數列是等差(等比)數列時(shí),最后下結論時(shí)要寫(xiě)上以誰(shuí)為首項,誰(shuí)為公差(公比)的等差(等比)數列;

  2、最后一問(wèn)證明不等式成立時(shí),如果一端是常數,另一端是含有n的式子時(shí),一般考慮用放縮法;如果兩端都是含n的式子,一般考慮數學(xué)歸納法(用數學(xué)歸納法時(shí),當n=k+1時(shí),一定利用上n=k時(shí)的假設,否則不正確。利用上假設后,如何把當前的式子轉化到目標式子,一般進(jìn)行適當的放縮,這一點(diǎn)是有難度的。簡(jiǎn)潔的方法是,用當前的式子減去目標式子,看符號,得到目標式子,下結論時(shí)一定寫(xiě)上綜上:由①②得證;

  3、證明不等式時(shí),有時(shí)構造函數,利用函數單調性很簡(jiǎn)單

  立體幾何題。

  1、證明線(xiàn)面位置關(guān)系,一般不需要去建系,更簡(jiǎn)單;

  2、求異面直線(xiàn)所成的角、線(xiàn)面角、二面角、存在性問(wèn)題、幾何體的高、表面積、體積等問(wèn)題時(shí),要建系;

  3、注意向量所成的角的余弦值(范圍)與所求角的余弦值(范圍)的關(guān)系。

  概率問(wèn)題。

  1、搞清隨機試驗包含的所有基本事件和所求事件包含的基本事件的個(gè)數;

  2、搞清是什么概率模型,套用哪個(gè)公式;

  3、記準均值、方差、標準差公式;

  4、求概率時(shí),正難則反(根據p1+p2+……+pn=1);

  5、注意計數時(shí)利用列舉、樹(shù)圖等基本方法;

  6、注意放回抽樣,不放回抽樣;

  正弦、余弦典型例題。

  1、在△ABC中,∠C=90°,a=1,c=4,則sinA的值為

  2、已知α為銳角,且,則α的度數是()A、30°B、45°C、60°D、90°

  3、在△ABC中,若,∠A,∠B為銳角,則∠C的度數是()A、75°B、90°C、105°D、120°

  4、若∠A為銳角,且,則A=()A、15°B、30°C、45°D、60°

  5、在△ABC中,AB=AC=2,AD⊥BC,垂足為D,且AD=,E是AC中點(diǎn),EF⊥BC,垂足為F,求sin∠EBF的值。

  正弦、余弦解題訣竅。

  1、已知兩角及一邊,或兩邊及一邊的對角(對三角形是否存在要討論)用正弦定理。

  2、已知三邊,或兩邊及其夾角用余弦定理

  3、余弦定理對于確定三角形形狀非常有用,只需要知道角的余弦值為正,為負,還是為零,就可以確定是鈍角。直角還是銳角。

【高三數學(xué)復習知識點(diǎn)總結】相關(guān)文章:

高三數學(xué)復習知識點(diǎn)總結范文12-12

高三數學(xué)復習知識點(diǎn)總結12篇12-08

高三化學(xué)復習知識點(diǎn)總結12-13

高三化學(xué)復習知識點(diǎn)10-24

高三數學(xué)知識點(diǎn)總結04-27

高三數學(xué)知識點(diǎn)總結03-08

高三數學(xué)知識點(diǎn)總結08-24

初中數學(xué)總復習圓知識點(diǎn)總結12-16

高三數學(xué)復習策略09-28