高一數學(xué)知識點(diǎn)總結(精選20篇)
總結是對某一特定時(shí)間段內的學(xué)習和工作生活等表現情況加以回顧和分析的一種書(shū)面材料,通過(guò)它可以正確認識以往學(xué)習和工作中的優(yōu)缺點(diǎn),讓我們抽出時(shí)間寫(xiě)寫(xiě)總結吧?偨Y怎么寫(xiě)才不會(huì )流于形式呢?下面是小編為大家收集的高一數學(xué)知識點(diǎn)總結,僅供參考,希望能夠幫助到大家。
高一數學(xué)知識點(diǎn)總結1
高一數學(xué)集合有關(guān)概念
集合的含義
集合的中元素的三個(gè)特性:
元素的確定性如:世界上的山
元素的'互異性如:由HAPPY的字母組成的集合{H,A,P,Y}
元素的無(wú)序性:如:{a,b,c}和{a,c,b}是表示同一個(gè)集合
3。集合的表示:{…}如:{我校的籃球隊員},{太平洋,大西洋,印度洋,北冰洋}
用拉丁字母表示集合:A={我校的籃球隊員},B={1,2,3,4,5}
集合的表示方法:列舉法與描述法。
注意:常用數集及其記法:
非負整數集(即自然數集)記作:N
正整數集N_N+整數集Z有理數集Q實(shí)數集R
列舉法:{a,b,c……}
描述法:將集合中的元素的公共屬性描述出來(lái),寫(xiě)在大括號內表示集合的方法。{x(R|x—3>2},{x|x—3>2}
語(yǔ)言描述法:例:{不是直角三角形的三角形}
Venn圖:
4、集合的分類(lèi):
有限集含有有限個(gè)元素的集合
無(wú)限集含有無(wú)限個(gè)元素的集合
空集不含任何元素的集合例:{x|x2=—5}
高一數學(xué)知識點(diǎn)總結2
內容子交并補集,還有冪指對函數。性質(zhì)奇偶與增減,觀(guān)察圖象最明顯。
復合函數式出現,性質(zhì)乘法法則辨,若要詳細證明它,還須將那定義抓。
指數與對數函數,初中學(xué)習方法,兩者互為反函數。底數非1的正數,1兩邊增減變故。
函數定義域好求。分母不能等于0,偶次方根須非負,零和負數無(wú)對數;
正切函數角不直,余切函數角不平;其余函數實(shí)數集,多種情況求交集。
兩個(gè)互為反函數,單調性質(zhì)都相同;圖象互為軸對稱(chēng),Y=X是對稱(chēng)軸;
求解非常有規律,反解換元定義域;反函數的定義域,原來(lái)函數的值域。
冪函數性質(zhì)易記,指數化既約分數;函數性質(zhì)看指數,奇母奇子奇函數,
奇母偶子偶函數,偶母非奇偶函數;圖象第一象限內,函數增減看正負。
形如y=k/x(k為常數且k≠0)的函數,叫做反比例函數。
自變量x的取值范圍是不等于0的一切實(shí)數。
反比例函數圖像性質(zhì):
反比例函數的圖像為雙曲線(xiàn)。
由于反比例函數屬于奇函數,有f(-x)=-f(x),圖像關(guān)于原點(diǎn)對稱(chēng)。
另外,從反比例函數的解析式可以得出,在反比例函數的圖像上任取一點(diǎn),向兩個(gè)坐標軸作垂線(xiàn),高中地理,這點(diǎn)、兩個(gè)垂足及原點(diǎn)所圍成的矩形面積是定值,為?k?。
如圖,上面給出了k分別為正和負(2和-2)時(shí)的`函數圖像。
當K>0時(shí),反比例函數圖像經(jīng)過(guò)一,三象限,是減函數
當K<0時(shí),反比例函數圖像經(jīng)過(guò)二,四象限,是增函數
反比例函數圖像只能無(wú)限趨向于坐標軸,無(wú)法和坐標軸相交。
知識點(diǎn):
1.過(guò)反比例函數圖象上任意一點(diǎn)作兩坐標軸的垂線(xiàn)段,這兩條垂線(xiàn)段與坐標軸圍成的矩形的面積為k。
2.對于雙曲線(xiàn)y=k/x,若在分母上加減任意一個(gè)實(shí)數(即y=k/(x±m)m為常數),就相當于將雙曲線(xiàn)圖象向左或右平移一個(gè)單位。(加一個(gè)數時(shí)向左平移,減一個(gè)數時(shí)向右平移)
高一數學(xué)知識點(diǎn)總結3
高一數學(xué)必修一知識點(diǎn)
指數函數
(一)指數與指數冪的運算
1.根式的概念:一般地,如果,那么叫做的次方根(nthroot),其中>1,且∈_.
當是奇數時(shí),正數的次方根是一個(gè)正數,負數的次方根是一個(gè)負數.此時(shí),的次方根用符號表示.式子叫做根式(radical),這里叫做根指數(radicalexponent),叫做被開(kāi)方數(radicand).
當是偶數時(shí),正數的次方根有兩個(gè),這兩個(gè)數互為相反數.此時(shí),正數的正的次方根用符號表示,負的次方根用符號-表示.正的次方根與負的次方根可以合并成±(>0).由此可得:負數沒(méi)有偶次方根;0的任何次方根都是0,記作。
注意:當是奇數時(shí),當是偶數時(shí),
2.分數指數冪
正數的分數指數冪的意義,規定:
0的正分數指數冪等于0,0的負分數指數冪沒(méi)有意義
指出:規定了分數指數冪的意義后,指數的概念就從整數指數推廣到了有理數指數,那么整數指數冪的運算性質(zhì)也同樣可以推廣到有理數指數冪.
3.實(shí)數指數冪的運算性質(zhì)
(二)指數函數及其性質(zhì)
1、指數函數的概念:一般地,函數叫做指數函數(exponential),其中x是自變量,函數的定義域為R.
注意:指數函數的底數的取值范圍,底數不能是負數、零和1.
2、指數函數的圖象和性質(zhì)
高一上冊數學(xué)必修一知識點(diǎn)梳理
空間幾何體表面積體積公式:
1、圓柱體:表面積:2πRr+2πRh體積:πR2h(R為圓柱體上下底圓半徑,h為圓柱體高)
2、圓錐體:表面積:πR2+πR[(h2+R2)的.]體積:πR2h/3(r為圓錐體低圓半徑,h為其高,
3、a-邊長(cháng),S=6a2,V=a3
4、長(cháng)方體a-長(cháng),b-寬,c-高S=2(ab+ac+bc)V=abc
5、棱柱S-h-高V=Sh
6、棱錐S-h-高V=Sh/3
7、S1和S2-上、下h-高V=h[S1+S2+(S1S2)^1/2]/3
8、S1-上底面積,S2-下底面積,S0-中h-高,V=h(S1+S2+4S0)/6
9、圓柱r-底半徑,h-高,C—底面周長(cháng)S底—底面積,S側—,S表—表面積C=2πrS底=πr2,S側=Ch,S表=Ch+2S底,V=S底h=πr2h
10、空心圓柱R-外圓半徑,r-內圓半徑h-高V=πh(R^2-r^2)
11、r-底半徑h-高V=πr^2h/3
12、r-上底半徑,R-下底半徑,h-高V=πh(R2+Rr+r2)/313、球r-半徑d-直徑V=4/3πr^3=πd^3/6
14、球缺h-球缺高,r-球半徑,a-球缺底半徑V=πh(3a2+h2)/6=πh2(3r-h)/3
15、球臺r1和r2-球臺上、下底半徑h-高V=πh[3(r12+r22)+h2]/6
16、圓環(huán)體R-環(huán)體半徑D-環(huán)體直徑r-環(huán)體截面半徑d-環(huán)體截面直徑V=2π2Rr2=π2Dd2/4
17、桶狀體D-桶腹直徑d-桶底直徑h-桶高V=πh(2D2+d2)/12,(母線(xiàn)是圓弧形,圓心是桶的中心)V=πh(2D2+Dd+3d2/4)/15(母線(xiàn)是拋物線(xiàn)形)
人教版高一數學(xué)必修一知識點(diǎn)梳理
1、柱、錐、臺、球的結構特征
(1)棱柱:
定義:有兩個(gè)面互相平行,其余各面都是四邊形,且每相鄰兩個(gè)四邊形的公共邊都互相平行,由這些面所圍成的幾何體。
分類(lèi):以底面多邊形的邊數作為分類(lèi)的標準分為三棱柱、四棱柱、五棱柱等。
表示:用各頂點(diǎn)字母,如五棱柱或用對角線(xiàn)的端點(diǎn)字母,如五棱柱。
幾何特征:兩底面是對應邊平行的全等多邊形;側面、對角面都是平行四邊形;側棱平行且相等;平行于底面的截面是與底面全等的多邊形。
(2)棱錐
定義:有一個(gè)面是多邊形,其余各面都是有一個(gè)公共頂點(diǎn)的三角形,由這些面所圍成的幾何體。
分類(lèi):以底面多邊形的邊數作為分類(lèi)的標準分為三棱錐、四棱錐、五棱錐等
表示:用各頂點(diǎn)字母,如五棱錐
幾何特征:側面、對角面都是三角形;平行于底面的截面與底面相似,其相似比等于頂點(diǎn)到截面距離與高的比的平方。
(3)棱臺:
定義:用一個(gè)平行于棱錐底面的平面去截棱錐,截面和底面之間的部分。
分類(lèi):以底面多邊形的邊數作為分類(lèi)的標準分為三棱態(tài)、四棱臺、五棱臺等
表示:用各頂點(diǎn)字母,如五棱臺
幾何特征:①上下底面是相似的平行多邊形②側面是梯形③側棱交于原棱錐的頂點(diǎn)
(4)圓柱:
定義:以矩形的一邊所在的直線(xiàn)為軸旋轉,其余三邊旋轉所成的曲面所圍成的幾何體。
幾何特征:①底面是全等的圓;②母線(xiàn)與軸平行;③軸與底面圓的半徑垂直;④側面展開(kāi)圖是一個(gè)矩形。
(5)圓錐:
定義:以直角三角形的一條直角邊為旋轉軸,旋轉一周所成的曲面所圍成的幾何體。
幾何特征:①底面是一個(gè)圓;②母線(xiàn)交于圓錐的頂點(diǎn);③側面展開(kāi)圖是一個(gè)扇形。
(6)圓臺:
定義:用一個(gè)平行于圓錐底面的平面去截圓錐,截面和底面之間的部分
幾何特征:①上下底面是兩個(gè)圓;②側面母線(xiàn)交于原圓錐的頂點(diǎn);③側面展開(kāi)圖是一個(gè)弓形。
(7)球體:
定義:以半圓的直徑所在直線(xiàn)為旋轉軸,半圓面旋轉一周形成的幾何體
幾何特征:①球的截面是圓;②球面上任意一點(diǎn)到球心的距離等于半徑。
2、空間幾何體的三視圖
定義三視圖:正視圖(光線(xiàn)從幾何體的前面向后面正投影);側視圖(從左向右)、俯視圖(從上向下)
注:正視圖反映了物體上下、左右的位置關(guān)系,即反映了物體的高度和長(cháng)度;
俯視圖反映了物體左右、前后的位置關(guān)系,即反映了物體的長(cháng)度和寬度;
側視圖反映了物體上下、前后的位置關(guān)系,即反映了物體的高度和寬度。
3、空間幾何體的直觀(guān)圖——斜二測畫(huà)法
斜二測畫(huà)法特點(diǎn):
、僭瓉(lái)與x軸平行的線(xiàn)段仍然與x平行且長(cháng)度不變;
、谠瓉(lái)與y軸平行的線(xiàn)段仍然與y平行,長(cháng)度為原來(lái)的一半。
高一數學(xué)知識點(diǎn)總結4
1.知識網(wǎng)絡(luò )圖
復數知識點(diǎn)網(wǎng)絡(luò )圖
2.復數中的難點(diǎn)
(1)復數的向量表示法的運算.對于復數的向量表示有些學(xué)生掌握得不好,對向量的運算的幾何意義的靈活掌握有一定的困難.對此應認真體會(huì )復數向量運算的幾何意義,對其靈活地加以證明.
(2)復數三角形式的乘方和開(kāi)方.有部分學(xué)生對運算法則知道,但對其靈活地運用有一定的困難,特別是開(kāi)方運算,應對此認真地加以訓練.
(3)復數的輻角主值的求法.
(4)利用復數的幾何意義靈活地解決問(wèn)題.復數可以用向量表示,同時(shí)復數的模和輻角都具有幾何意義,對他們的理解和應用有一定難度,應認真加以體會(huì ).
3.復數中的重點(diǎn)
(1)理解好復數的概念,弄清實(shí)數、虛數、純虛數的不同點(diǎn).
(2)熟練掌握復數三種表示法,以及它們間的互化,并能準確地求出復數的模和輻角.復數有代數,向量和三角三種表示法.特別是代數形式和三角形式的互化,以及求復數的模和輻角在解決具體問(wèn)題時(shí)經(jīng)常用到,是一個(gè)重點(diǎn)內容.
(3)復數的.三種表示法的各種運算,在運算中重視共軛復數以及模的有關(guān)性質(zhì).復數的運算是復數中的主要內容,掌握復數各種形式的運算,特別是復數運算的幾何意義更是重點(diǎn)內容.
(4)復數集中一元二次方程和二項方程的解法.
高一數學(xué)知識點(diǎn)總結5
高一下冊數學(xué)?贾R點(diǎn)
定義:
x軸正向與直線(xiàn)向上方向之間所成的角叫直線(xiàn)的傾斜角。特別地,當直線(xiàn)與x軸平行或重合時(shí),我們規定它的傾斜角為0度。
范圍:
傾斜角的取值范圍是0°≤α<180°。
理解:
(1)注意“兩個(gè)方向”:直線(xiàn)向上的方向、x軸的`正方向;
(2)規定當直線(xiàn)和x軸平行或重合時(shí),它的傾斜角為0度。
意義:
、僦本(xiàn)的傾斜角,體現了直線(xiàn)對x軸正向的傾斜程度;
、谠谄矫嬷苯亲鴺讼抵,每一條直線(xiàn)都有一個(gè)確定的傾斜角;
、蹆A斜角相同,未必表示同一條直線(xiàn)。
公式:
k=tanα
k>0時(shí)α∈(0°,90°)
k<0時(shí)α∈(90°,180°)
k=0時(shí)α=0°
當α=90°時(shí)k不存在
ax+by+c=0(a≠0)傾斜角為A,
則tanA=-a/b,
A=arctan(-a/b)
當a≠0時(shí),
傾斜角為90度,即與X軸垂直
高一數學(xué)知識點(diǎn)總結6
集合與元素
一個(gè)東西是集合還是元素并不是絕對的,很多情況下是相對的,集合是由元素組成的集合,元素是組成集合的元素。
例如:你所在的班級是一個(gè)集合,是由幾十個(gè)和你同齡的.同學(xué)組成的集合,你相對于這個(gè)班級集合來(lái)說(shuō),是它的一個(gè)元素;
而整個(gè)學(xué)校又是由許許多多個(gè)班級組成的集合,你所在的班級只是其中的一分子,是一個(gè)元素。
班級相對于你是集合,相對于學(xué)校是元素,參照物不同,得到的結論也不同,可見(jiàn),是集合還是元素,并不是絕對的。
.解集合問(wèn)題的關(guān)鍵
解集合問(wèn)題的關(guān)鍵:弄清集合是由哪些元素所構成的,也就是將抽象問(wèn)題具體化、形象化,將特征性質(zhì)描述法表示的集合用列舉法來(lái)表示,或用韋恩圖來(lái)表示抽象的集合,或用圖形來(lái)表示集合;比如用數軸來(lái)表示集合,或是集合的元素為有序實(shí)數對時(shí),可用平面直角坐標系中的圖形表示相關(guān)的集合等。
高一數學(xué)知識點(diǎn)總結7
1.多面體的結構特征
(1)棱柱有兩個(gè)面相互平行,其余各面都是平行四邊形,每相鄰兩個(gè)四邊形的公共邊平行。
正棱柱:側棱垂直于底面的棱柱叫做直棱柱,底面是正多邊形的直棱柱叫做正棱柱.反之,正棱柱的底面是正多邊形,側棱垂直于底面,側面是矩形。
(2)棱錐的底面是任意多邊形,側面是有一個(gè)公共頂點(diǎn)的三角形。
正棱錐:底面是正多邊形,頂點(diǎn)在底面的射影是底面正多邊形的中心的棱錐叫做正棱錐.特別地,各棱均相等的正三棱錐叫正四面體.反過(guò)來(lái),正棱錐的.底面是正多邊形,且頂點(diǎn)在底面的射影是底面正多邊形的中心。
(3)棱臺可由平行于底面的平面截棱錐得到,其上下底面是相似多邊形。
2.旋轉體的結構特征
(1)圓柱可以由矩形繞一邊所在直線(xiàn)旋轉一周得到.
(2)圓錐可以由直角三角形繞一條直角邊所在直線(xiàn)旋轉一周得到.
(3)圓臺可以由直角梯形繞直角腰所在直線(xiàn)旋轉一周或等腰梯形繞上下底面中心所在直線(xiàn)旋轉半周得到,也可由平行于底面的平面截圓錐得到。
(4)球可以由半圓面繞直徑旋轉一周或圓面繞直徑旋轉半周得到。
3.空間幾何體的三視圖
空間幾何體的三視圖是用平行投影得到,這種投影下,與投影面平行的平面圖形留下的影子,與平面圖形的形狀和大小是全等和相等的,三視圖包括正視圖、側視圖、俯視圖。
三視圖的長(cháng)度特征:“長(cháng)對正,寬相等,高平齊”,即正視圖和側視圖一樣高,正視圖和俯視圖一樣長(cháng),側視圖和俯視圖一樣寬.若相鄰兩物體的表面相交,表面的交線(xiàn)是它們的分界線(xiàn),在三視圖中,要注意實(shí)、虛線(xiàn)的畫(huà)法。
4.空間幾何體的直觀(guān)圖
空間幾何體的直觀(guān)圖常用斜二測畫(huà)法來(lái)畫(huà),基本步驟是:
(1)畫(huà)幾何體的底面
在已知圖形中取互相垂直的x軸、y軸,兩軸相交于點(diǎn)O,畫(huà)直觀(guān)圖時(shí),把它們畫(huà)成對應的x′軸、y′軸,兩軸相交于點(diǎn)O′,且使∠x(chóng)′O′y′=45°或135°,已知圖形中平行于x軸、y軸的線(xiàn)段,在直觀(guān)圖中平行于x′軸、y′軸.已知圖形中平行于x軸的線(xiàn)段,在直觀(guān)圖中長(cháng)度不變,平行于y軸的線(xiàn)段,長(cháng)度變?yōu)樵瓉?lái)的一半。
(2)畫(huà)幾何體的高
在已知圖形中過(guò)O點(diǎn)作z軸垂直于xOy平面,在直觀(guān)圖中對應的z′軸,也垂直于x′O′y′平面,已知圖形中平行于z軸的線(xiàn)段,在直觀(guān)圖中仍平行于z′軸且長(cháng)度不變。
高一數學(xué)知識點(diǎn)總結8
各種不同形式的直線(xiàn)方程的`局限性:
(1)點(diǎn)斜式和斜截式都不能表示斜率不存在的直線(xiàn);
(2)兩點(diǎn)式不能表示與坐標軸平行的直線(xiàn);
(3)截距式不能表示與坐標軸平行或過(guò)原點(diǎn)的直線(xiàn);
(4)直線(xiàn)方程的一般式中系數A、B不能同時(shí)為零。
高一數學(xué)知識點(diǎn)總結9
一、直線(xiàn)與方程
(1)直線(xiàn)的傾斜角
定義:x軸正向與直線(xiàn)向上方向之間所成的角叫直線(xiàn)的傾斜角。特別地,當直線(xiàn)與x軸平行或重合時(shí),我們規定它的傾斜角為0度。因此,傾斜角的取值范圍是0180
(2)直線(xiàn)的斜率
、俣x:傾斜角不是90的直線(xiàn),它的傾斜角的正切叫做這條直線(xiàn)的'斜率。直線(xiàn)的斜率常用k表示。即。斜率反映直線(xiàn)與軸的傾斜程度。當時(shí),。當時(shí),;當時(shí),不存在。
、谶^(guò)兩點(diǎn)的直線(xiàn)的斜率公式:
注意下面四點(diǎn):
(1)當時(shí),公式右邊無(wú)意義,直線(xiàn)的斜率不存在,傾斜角為90
(2)k與P1、P2的順序無(wú)關(guān);
(3)以后求斜率可不通過(guò)傾斜角而由直線(xiàn)上兩點(diǎn)的坐標直接求得;
(4)求直線(xiàn)的傾斜角可由直線(xiàn)上兩點(diǎn)的坐標先求斜率得到。
(3)直線(xiàn)方程
、冱c(diǎn)斜式:直線(xiàn)斜率k,且過(guò)點(diǎn)
注意:當直線(xiàn)的斜率為0時(shí),k=0,直線(xiàn)的方程是y=y1。當直線(xiàn)的斜率為90時(shí),直線(xiàn)的斜率不存在,它的方程不能用點(diǎn)斜式表示.但因l上每一點(diǎn)的橫坐標都等于x1,所以它的方程是x=x1。
、谛苯厥剑,直線(xiàn)斜率為k,直線(xiàn)在y軸上的截距為b
、蹆牲c(diǎn)式:()直線(xiàn)兩點(diǎn),
、芙鼐厥剑浩渲兄本(xiàn)與軸交于點(diǎn),與軸交于點(diǎn),即與軸、軸的截距分別為。
、菀话闶剑(A,B不全為0)
、菀话闶剑(A,B不全為0)
注意:○1各式的適用范圍
○2特殊的方程如:平行于x軸的直線(xiàn):(b為常數);平行于y軸的直線(xiàn):(a為常數);
(4)直線(xiàn)系方程:即具有某一共同性質(zhì)的直線(xiàn)
(一)平行直線(xiàn)系
平行于已知直線(xiàn)(是不全為0的常數)的直線(xiàn)系:(C為常數)
(二)過(guò)定點(diǎn)的直線(xiàn)系
(ⅰ)斜率為k的直線(xiàn)系:直線(xiàn)過(guò)定點(diǎn);
(ⅱ)過(guò)兩條直線(xiàn),的交點(diǎn)的直線(xiàn)系方程為(為參數),其中直線(xiàn)不在直線(xiàn)系中。
(5)兩直線(xiàn)平行與垂直;
注意:利用斜率判斷直線(xiàn)的平行與垂直時(shí),要注意斜率的存在與否。
(6)兩條直線(xiàn)的交點(diǎn)
相交:交點(diǎn)坐標即方程組的一組解。方程組無(wú)解;方程組有無(wú)數解與重合
(7)兩點(diǎn)間距離公式:設是平面直角坐標系中的兩個(gè)點(diǎn),則
(8)點(diǎn)到直線(xiàn)距離公式:一點(diǎn)到直線(xiàn)的距離
(9)兩平行直線(xiàn)距離公式:在任一直線(xiàn)上任取一點(diǎn),再轉化為點(diǎn)到直線(xiàn)的距離進(jìn)行求解。
高一數學(xué)知識點(diǎn)總結10
一、指數函數
(一)指數與指數冪的運算
1.根式的概念:一般地,如果,那么叫做的次方根(nthroot),其中>1,且∈_.
當是奇數時(shí),正數的次方根是一個(gè)正數,負數的次方根是一個(gè)負數.此時(shí),的次方根用符號表示.式子叫做根式(radical),這里叫做根指數(radicalexponent),叫做被開(kāi)方數(radicand).
當是偶數時(shí),正數的次方根有兩個(gè),這兩個(gè)數互為相反數.此時(shí),正數的正的次方根用符號表示,負的次方根用符號-表示.正的次方根與負的次方根可以合并成±(>0).由此可得:負數沒(méi)有偶次方根;0的任何次方根都是0,記作。
注意:當是奇數時(shí),當是偶數時(shí),
2.分數指數冪
正數的分數指數冪的意義,規定:
0的正分數指數冪等于0,0的負分數指數冪沒(méi)有意義
指出:規定了分數指數冪的意義后,指數的概念就從整數指數推廣到了有理數指數,那么整數指數冪的運算性質(zhì)也同樣可以推廣到有理數指數冪.
3.實(shí)數指數冪的運算性質(zhì)
(二)指數函數及其性質(zhì)
1、指數函數的概念:一般地,函數叫做指數函數(exponential),其中x是自變量,函數的定義域為R.
注意:指數函數的底數的取值范圍,底數不能是負數、零和1.
2、指數函數的圖象和性質(zhì)
【第三章:第三章函數的應用】
1、函數零點(diǎn)的概念:對于函數,把使成立的實(shí)數叫做函數的零點(diǎn)。
2、函數零點(diǎn)的意義:函數的零點(diǎn)就是方程實(shí)數根,亦即函數的圖象與軸交點(diǎn)的橫坐標。即:
方程有實(shí)數根函數的圖象與軸有交點(diǎn)函數有零點(diǎn).
3、函數零點(diǎn)的求法:
求函數的零點(diǎn):
(1)(代數法)求方程的實(shí)數根;
(2)(幾何法)對于不能用求根公式的方程,可以將它與函數的圖象聯(lián)系起來(lái),并利用函數的性質(zhì)找出零點(diǎn).
4、二次函數的零點(diǎn):
二次函數.
1)△>0,方程有兩不等實(shí)根,二次函數的圖象與軸有兩個(gè)交點(diǎn),二次函數有兩個(gè)零點(diǎn). 2)△=0,方程有兩相等實(shí)根(二重根),二次函數的圖象與軸有一個(gè)交點(diǎn),二次函數有一個(gè)二重零點(diǎn)或二階零點(diǎn).
3)△<0,方程無(wú)實(shí)根,二次函數的圖象與軸無(wú)交點(diǎn),二次函數無(wú)零點(diǎn).
3.2.1幾類(lèi)不同增長(cháng)的函數模型
【課 型】新授課
【教學(xué)目標】
結合實(shí)例體會(huì )直線(xiàn)上升、指數爆炸、對數增長(cháng)等不同增長(cháng)的函數模型意義, 理解它們的增長(cháng)差異性.
【教學(xué)重點(diǎn)、難點(diǎn)】
1. 教學(xué)重點(diǎn) 將實(shí)際問(wèn)題轉化為函數模型,比較常數函數、一次函數、指數函數、對數函數模型的增長(cháng)差異,結合實(shí)例體會(huì )直線(xiàn)上升、指數爆炸、對數增長(cháng)等不同函數類(lèi)型增長(cháng)的含義.
2.教學(xué)難點(diǎn) 選擇合適的數學(xué)模型分析解決實(shí)際問(wèn)題.
【學(xué)法與教學(xué)用具】
1. 學(xué)法:學(xué)生通過(guò)閱讀教材,動(dòng)手畫(huà)圖,自主學(xué)習、思考,并相互討論,進(jìn)行探索.
2.教學(xué)用具:多媒體.
【教學(xué)過(guò)程】
(一)引入實(shí)例,創(chuàng )設情景.
教師引導學(xué)生閱讀例1,分析其中的數量關(guān)系,思考應當選擇怎樣的函數模型來(lái)描述;由學(xué)生自己根據數量關(guān)系,歸納概括出相應的函數模型,寫(xiě)出每個(gè)方案的函數解析式,教師在數量關(guān)系的.分析、函數模型的選擇上作指導.
(二)互動(dòng)交流,探求新知.
1. 觀(guān)察數據,體會(huì )模型.
教師引導學(xué)生觀(guān)察例1表格中三種方案的數量變化情況,體會(huì )三種函數的增長(cháng)差異,說(shuō)出自己的發(fā)現,并進(jìn)行交流.
2. 作出圖象,描述特點(diǎn).
教師引導學(xué)生借助計算器作出三個(gè)方案的函數圖象,分析三種方案的不同變化趨勢,并進(jìn)行描述,為方案選擇提供依據.
(三)實(shí)例運用,鞏固提高.
1. 教師引導學(xué)生分析影響方案選擇的因素,使學(xué)生認識到要做出正確選擇除了考慮每天的收益,還要考慮一段時(shí)間內的總收益.學(xué)生通過(guò)自主活動(dòng),分析整理數據,并根據其中的信息做出推理判斷,獲得累計收益并給出本例的完整解答,然后全班進(jìn)行交流.
2. 教師引導學(xué)生分析例2中三種函數的不同增長(cháng)情況對于獎勵模型的影響,使學(xué)生明確問(wèn)題的實(shí)質(zhì)就是比較三個(gè)函數的增長(cháng)情況,進(jìn)一步體會(huì )三種基本函數模型在實(shí)際中廣泛應用,體會(huì )它們的增長(cháng)差異.
3.教師引導學(xué)生分析得出:要對每一個(gè)獎勵模型的獎金總額是否超出5萬(wàn)元,以及獎勵比例是否超過(guò)25%進(jìn)行分析,才能做出正確選擇,學(xué)會(huì )對數據的特點(diǎn)與作用進(jìn)行分析、判斷。
4.教師引導學(xué)生利用解析式,結合圖象,對例2的三個(gè)模型的增長(cháng)情況進(jìn)行分析比較,寫(xiě)出完整的解答過(guò)程.進(jìn)一步認識三個(gè)函數模型的增長(cháng)差異,并掌握解答的規范要求.
5.教師引導學(xué)生通過(guò)以上具體函數進(jìn)行比較分析,探究?jì)绾瘮?>0)、指數函數(>1)、對數函數(>1)在區間(0,+∞)上的增長(cháng)差異,并從函數的性質(zhì)上進(jìn)行研究、論證,同學(xué)之間進(jìn)行交流總結,形成結論性報告.教師對學(xué)生的結論進(jìn)行評析,借助信息技術(shù)手段進(jìn)行驗證演示.
6. 課堂練習
教材P98練習1、2,并由學(xué)生演示,進(jìn)行講評。
(四)歸納總結,提升認識.
教師通過(guò)計算機作圖進(jìn)行總結,使學(xué)生認識直線(xiàn)上升、指數爆炸、對數增長(cháng)等不同函數模型的含義及其差異,認識數學(xué)與現實(shí)生活、與其他學(xué)科的密切聯(lián)系,從而體會(huì )數學(xué)的實(shí)用價(jià)值和內在變化規律.
(五)布置作業(yè)
教材P107練習第2題
收集一些社會(huì )生活中普遍使用的遞增的一次函數、指數函數、對數函數的實(shí)例,對它們的增長(cháng)速度進(jìn)行比較,了解函數模型的廣泛應用,并思考。有時(shí)同一個(gè)實(shí)際問(wèn)題可以建立多個(gè)函數模型,在具體應用函數模型時(shí),應該怎樣選用合理的函數模型.
3.2.2 函數模型的應用實(shí)例(Ⅰ)
【課 型】新授課
【教學(xué)目標】
能夠找出簡(jiǎn)單實(shí)際問(wèn)題中的函數關(guān)系式,初步體會(huì )應用一次函數、二次函數模型解決實(shí)際問(wèn)題.
【教學(xué)重點(diǎn)與難點(diǎn)】
1.教學(xué)重點(diǎn):運用一次函數、二次函數模型解決一些實(shí)際問(wèn)題.
2. 教學(xué)難點(diǎn):將實(shí)際問(wèn)題轉變?yōu)閿祵W(xué)模型.
【學(xué)法與教學(xué)用具】
1. 學(xué)法:學(xué)生自主閱讀教材,采用嘗試、討論方式進(jìn)行探究.
2. 教學(xué)用具:多媒體
【教學(xué)過(guò)程】
(一)創(chuàng )設情景,揭示課題
引例:大約在一千五百年前,大數學(xué)家孫子在《孫子算經(jīng)》中記載了這樣的一道題:“今有雛兔同籠,上有三十五頭,下有九十四足,問(wèn)雛兔各幾何?”這四句的意思就是:有若干只有幾只雞和兔?你知道孫子是如何解答這個(gè)“雞兔同籠”問(wèn)題的嗎?你有什么更好的方法?老師介紹孫子的大膽解法:他假設砍去每只雞和兔一半的腳,則每只雞和兔就變成了“獨腳雞”和“雙腳兔”.這樣,“獨腳雞”和“雙腳兔”腳的數量與它們頭的數量之差,就是兔子數,即:47-35=12;雞數就是:35-12=23.
比例激發(fā)學(xué)生學(xué)習興趣,增強其求知欲望.
可引導學(xué)生運用方程的思想解答“雞兔同籠”問(wèn)題.
(二)結合實(shí)例,探求新知
例1. 某列火車(chē)眾北京西站開(kāi)往石家莊,全程277km,火車(chē)出發(fā)10min開(kāi)出13km后,以120km/h勻速行駛.試寫(xiě)出火車(chē)行駛的總路程S與勻速行駛的時(shí)間t之間的關(guān)系式,并求火車(chē)離開(kāi)北京2h內行駛的路程.
探索:
1)本例所涉及的變量有哪些?它們的取值范圍怎樣;
2)所涉及的變量的關(guān)系如何?
3)寫(xiě)出本例的解答過(guò)程.
老師提示:路程S和自變量t的取值范圍(即函數的定義域),注意t的實(shí)際意義.
學(xué)生獨立思考,完成解答,并相互討論、交流、評析.
例2.某商店出售茶壺和茶杯,茶壺每只定價(jià)20元,茶杯每只定價(jià)5元,該商店制定了兩種優(yōu)惠辦法:
1)本例所涉及的變量之間的關(guān)系可用何種函數模型來(lái)描述?
2)本例涉及到幾個(gè)函數模型?
3)如何理解“更省錢(qián)?”;
4)寫(xiě)出具體的解答過(guò)程.
在學(xué)生自主思考,相互討論完成本例題解答之后,老師小結:通過(guò)以上兩例,數學(xué)模型是用數學(xué)語(yǔ)言模擬現實(shí)的一種模型,它把實(shí)際問(wèn)題中某些事物的主要特征和關(guān)系抽象出來(lái),并用數學(xué)語(yǔ)言來(lái)表達,這一過(guò)程稱(chēng)為建模,是解應用題的關(guān)鍵。數學(xué)模型可采用各種形式,如方程(組),函數解析式,圖形與網(wǎng)絡(luò )等.
高一數學(xué)知識點(diǎn)總結11
函數的概念
函數的概念:設A、B是非空的數集,如果按照某個(gè)確定的對應關(guān)系f,使對于集合A中的任意一個(gè)數x,在集合B中都有確定的數f(x)和它對應,那么就稱(chēng)f:A---B為從集合A到集合B的一個(gè)函數.記作:y=f(x),x∈A.
(1)其中,x叫做自變量,x的取值范圍A叫做函數的定義域;
(2)與x的值相對應的y值叫做函數值,函數值的集合{f(x)|x∈A}叫做函數的值域.
函數的三要素:定義域、值域、對應法則
函數的表示方法:(1)解析法:明確函數的定義域
(2)圖想像:確定函數圖像是否連線(xiàn),函數的圖像可以是連續的曲線(xiàn)、直線(xiàn)、折線(xiàn)、離散的點(diǎn)等等。
(3)列表法:選取的自變量要有代表性,可以反應定義域的特征。
4、函數圖象知識歸納
(1)定義:在平面直角坐標系中,以函數y=f(x),(x∈A)中的x為橫坐標,函數值y為縱坐標的點(diǎn)P(x,y)的集合C,叫做函數y=f(x),(x∈A)的.圖象.C上每一點(diǎn)的坐標(x,y)均滿(mǎn)足函數關(guān)系y=f(x),反過(guò)來(lái),以滿(mǎn)足y=f(x)的每一組有序實(shí)數對x、y為坐標的點(diǎn)(x,y),均在C上.
(2)畫(huà)法
A、描點(diǎn)法:B、圖象變換法:平移變換;伸縮變換;對稱(chēng)變換,即平移。
(3)函數圖像平移變換的特點(diǎn):
1)加左減右——————只對x
2)上減下加——————只對y
3)函數y=f(x)關(guān)于X軸對稱(chēng)得函數y=-f(x)
4)函數y=f(x)關(guān)于Y軸對稱(chēng)得函數y=f(-x)
5)函數y=f(x)關(guān)于原點(diǎn)對稱(chēng)得函數y=-f(-x)
6)函數y=f(x)將x軸下面圖像翻到x軸上面去,x軸上面圖像不動(dòng)得
函數y=|f(x)|
7)函數y=f(x)先作x≥0的圖像,然后作關(guān)于y軸對稱(chēng)的圖像得函數f(|x|)
高一數學(xué)知識點(diǎn)總結12
1.函數的概念:設A、B是非空的數集,如果按照某個(gè)確定的對應關(guān)系f,使對于集合A中的任意一個(gè)數x,在集合B中都有唯一確定的數f(x)和它對應,那么就稱(chēng)f:A→B為從集合A到集合B的一個(gè)函數.記作:y=f(x),x∈A.其中,x叫做自變量,x的取值范圍A叫做函數的定義域;與x的值相對應的y值叫做函數值,函數值的集合{f(x)|x∈A}叫做函數的值域.
注意:2如果只給出解析式y=f(x),而沒(méi)有指明它的定義域,則函數的定義域即是指能使這個(gè)式子有意義的實(shí)數的集合;3函數的定義域、值域要寫(xiě)成集合或區間的形式.
定義域補充
能使函數式有意義的實(shí)數x的集合稱(chēng)為函數的定義域,求函數的定義域時(shí)列不等式組的主要依據是:(1)分式的分母不等于零;(2)偶次方根的被開(kāi)方數不小于零;(3)對數式的真數必須大于零;(4)指數、對數式的底必須大于零且不等于1.(5)如果函數是由一些基本函數通過(guò)四則運算結合而成的.那么,它的定義域是使各部分都有意義的x的值組成的集合.(6)指數為零底不可以等于零(6)實(shí)際問(wèn)題中的函數的定義域還要保證實(shí)際問(wèn)題有意義.
構成函數的三要素:定義域、對應關(guān)系和值域
再注意:(1)構成函數三個(gè)要素是定義域、對應關(guān)系和值域.由于值域是由定義域和對應關(guān)系決定的,所以,如果兩個(gè)函數的定義域和對應關(guān)系完全一致,即稱(chēng)這兩個(gè)函數相等(或為同一函數)(2)兩個(gè)函數相等當且僅當它們的`定義域和對應關(guān)系完全一致,而與表示自變量和函數值的字母無(wú)關(guān)。相同函數的判斷方法:①表達式相同;②定義域一致(兩點(diǎn)必須同時(shí)具備)
值域補充
(1)、函數的值域取決于定義域和對應法則,不論采取什么方法求函數的值域都應先考慮其定義域.(2).應熟悉掌握一次函數、二次函數、指數、對數函數及各三角函數的值域,它是求解復雜函數值域的基礎。
3.函數圖象知識歸納
(1)定義:在平面直角坐標系中,以函數y=f(x),(x∈A)中的x為橫坐標,函數值y為縱坐標的點(diǎn)P(x,y)的集合C,叫做函數y=f(x),(x∈A)的圖象.
C上每一點(diǎn)的坐標(x,y)均滿(mǎn)足函數關(guān)系y=f(x),反過(guò)來(lái),以滿(mǎn)足y=f(x)的每一組有序實(shí)數對x、y為坐標的點(diǎn)(x,y),均在C上.即記為C={P(x,y)|y=f(x),x∈A}
圖象C一般的是一條光滑的連續曲線(xiàn)(或直線(xiàn)),也可能是由與任意平行與Y軸的直線(xiàn)最多只有一個(gè)交點(diǎn)的若干條曲線(xiàn)或離散點(diǎn)組成。
(2)畫(huà)法
A、描點(diǎn)法:根據函數解析式和定義域,求出x,y的一些對應值并列表,以(x,y)為坐標在坐標系內描出相應的點(diǎn)P(x,y),最后用平滑的曲線(xiàn)將這些點(diǎn)連接起來(lái).
B、圖象變換法(請參考必修4三角函數)
常用變換方法有三種,即平移變換、伸縮變換和對稱(chēng)變換
(3)作用:
1、直觀(guān)的看出函數的性質(zhì);2、利用數形結合的方法分析解題的思路。提高解題的速度。
高一數學(xué)知識點(diǎn)總結13
第一章集合與函數概念
一、集合有關(guān)概念
1.集合的含義
2.集合的中元素的三個(gè)特性:
(1)元素的確定性如:世界上最高的山
(2)元素的互異性如:由HAPPY的字母組成的集合{H,A,P,Y}(3)元素的無(wú)序性:如:{a,b,c}和{a,c,b}是表示同一個(gè)集合3.集合的表示:{}如:{我校的籃球隊員},{太平洋,大西洋,印度洋,北冰洋}
(1)用拉丁字母表示集合:A={我校的籃球隊員},B={1,2,3,4,5}(2)集合的表示方法:列舉法與描述法。注意:常用數集及其記法:非負整數集(即自然數集)記作:N
正整數集N*或N+整數集Z有理數集Q實(shí)數集R
1)列舉法:{a,b,c}
2)描述法:將集合中的元素的公共屬性描述出來(lái),寫(xiě)在大括號內表示集合
的方法。{xR|x-3>2},{x|x-3>2}
3)語(yǔ)言描述法:例:{不是直角三角形的三角形}4)Venn圖:
4、集合的分類(lèi):
(1)有限集含有有限個(gè)元素的集合(2)無(wú)限集含有無(wú)限個(gè)元素的集合
(3)空集不含任何元素的集合例:{x|x2=-5}
二、集合間的基本關(guān)系1.“包含”關(guān)系子集
注意:AB有兩種可能(1)A是B的一部分,;(2)A與B是同一集合。
反之:集合A不包含于集合B,或集合B不包含集合A,記作AB或BA2.“相等”關(guān)系:A=B(5≥5,且5≤5,則5=5)
實(shí)例:設A={x|x2-1=0}B={-1,1}“元素相同則兩集合相等”即:①任何一個(gè)集合是它本身的子集。AA
、谡孀蛹:如果AB,且AB那就說(shuō)集合A是集合B的真子集,記作ABA)
、廴绻鸄B,BC,那么AC④如果AB同時(shí)BA那么A=B
3.不含任何元素的集合叫做空集,記為Φ
規定:空集是任何集合的子集,空集是任何非空集合的真子集。有n個(gè)元素的集合,含有2n個(gè)子集,2n-1個(gè)真子集三、集合的'運算運算交集并集補集類(lèi)型定由所有屬于A(yíng)且屬義于B的元素所組成的集合,叫做A,B的交集.記作AB(讀由所有屬于集合A或屬于集合B的元素所組成的集合,叫做A,B的并集.記作:ABB(或
設S是一個(gè)集合,A是S的一個(gè)子集,由S中所有不屬于A(yíng)的元素組成的集合,叫做S中子集A的補集(或余集)
作‘A交B’),即(讀作‘A并B’),記作CSA,即AB={x|xA,且即AB={x|xA,xB}.或xB}).CSA={x|xS,且xA}韋恩ABABS圖A示圖1圖2性AA=AAA=A(CuA)(CuB)AΦ=ΦAΦ=AAAA=Cu(AB=BB=BAB)ABAABA(CuA)(CuB)質(zhì)ABBABB=Cu(AB)A(CuA)=UA(CuA)=Φ.
例題:
1.下列四組對象,能構成集合的是()
A某班所有高個(gè)子的學(xué)生B著(zhù)名的藝術(shù)家C一切很大的書(shū)D倒數等于它自身的實(shí)數2.集合{a,b,c}的真子集共有個(gè)
3.若集合M={y|y=x2-2x+1,xR},N={x|x≥0},則M與N的關(guān)系是
4.設集合A=x1x2,B=xxa,若AB,則a的取值范圍是
5.50名學(xué)生做的物理、化學(xué)兩種實(shí)驗,已知物理實(shí)驗做得正確得有人,化學(xué)實(shí)驗做得正確得有31人,兩種實(shí)驗都做錯得有4人,則這兩種實(shí)驗都做對的有人。
6.用描述法表示圖中陰影部分的點(diǎn)(含邊界上的點(diǎn))組成的集合M=.
7.已知集合A={x|x2+2x-8=0},B={x|x2-5x+6=0},C={x|x2-mx+m2-19=0},若B∩C≠Φ,A∩C=Φ,求m的值
二、函數的有關(guān)概念
1.函數的概念:設A、B是非空的數集,如果按照某個(gè)確定的對應關(guān)系f,使對于集合A中的任意一個(gè)數x,在集合B中都有唯一確定的數f(x)和它對應,那么就稱(chēng)f:A→B為從集合A到集合B的一個(gè)函數.記作:y=f(x),x∈A.其中,x叫做自變量,x的取值范圍A叫做函數的定義域;與x的值相對應的y值叫做函數值,函數值的集合{f(x)|x∈A}叫做函數的值域.注意:
1.定義域:能使函數式有意義的實(shí)數x的集合稱(chēng)為函數的定義域。求函數的定義域時(shí)列不等式組的主要依據是:
(1)分式的分母不等于零;
(2)偶次方根的被開(kāi)方數不小于零;
(3)對數式的真數必須大于零;
(4)指數、對數式的底必須大于零且不等于1.
(5)如果函數是由一些基本函數通過(guò)四則運算結合而成的那么,它的定義域是使各部分都有意義的x的值組成的集合.(6)指數為零底不可以等于零,
(7)實(shí)際問(wèn)題中的函數的定義域還要保證實(shí)際問(wèn)題有意義.相同函數的判斷方法:①表達式相同(與表示自變量和函數值的字母無(wú)關(guān));②定義域一致(兩點(diǎn)必須同時(shí)具備)(見(jiàn)課本21頁(yè)相關(guān)例2)
2.值域:先考慮其定義域(1)觀(guān)察法(2)配方法
(3)代換法
3.函數圖象知識歸納
(1)定義:在平面直角坐標系中,以函數y=f(x),(x∈A)中的x為橫坐標,函數值y為縱坐標的點(diǎn)P(x,y)的集合C,叫做函數y=f(x),(x∈A)的圖象.C上每一點(diǎn)的坐標(x,y)均滿(mǎn)足函數關(guān)系y=f(x),反過(guò)來(lái),以滿(mǎn)足y=f(x)的每一組有序實(shí)數對x、y為坐標的點(diǎn)(x,y),均在C上
(2)畫(huà)法A、描點(diǎn)法:B、圖象變換法
常用變換方法有三種
1)平移變換
2)伸縮變換
3)對稱(chēng)變換
4.區間的概念
。1)區間的分類(lèi):開(kāi)區間、閉區間、半開(kāi)半閉區間
。2)無(wú)窮區間
。3)區間的數軸表示
5.映射
一般地,設A、B是兩個(gè)非空的集合,如果按某一個(gè)確定的對應法則f,使對于集合A中的任意一個(gè)元素x,在集合B中都有唯一確定的元素y與之對應,那么就稱(chēng)對應f:AB為從集合A到集合B的一個(gè)映射。記作“f(對應關(guān)系):A(原象)B(象)”
對于映射f:A→B來(lái)說(shuō),則應滿(mǎn)足:
(1)集合A中的每一個(gè)元素,在集合B中都有象,并且象是唯一的;(2)集合A中不同的元素,在集合B中對應的象可以是同一個(gè);(3)不要求集合B中的每一個(gè)元素在集合A中都有原象。6.分段函數
(1)在定義域的不同部分上有不同的解析表達式的函數。(2)各部分的自變量的取值情況.
(3)分段函數的定義域是各段定義域的交集,值域是各段值域的并集.補充:復合函數
如果y=f(u)(u∈M),u=g(x)(x∈A),則y=f[g(x)]=F(x)(x∈A)稱(chēng)為f、g的復合函數。
二.函數的性質(zhì)
函數的單調性(局部性質(zhì))(1)增函數
設函數y=f(x)的定義域為I,如果對于定義域I內的某個(gè)區間D內的任意兩個(gè)自變量x1,x2,當x1>f(x2),那么就說(shuō)f(x)在這個(gè)區間上是減函數.區間D稱(chēng)為y=f(x)的單調
減區間.
注意:函數的單調性是函數的局部性質(zhì);
。2)圖象的特點(diǎn)
如果函數y=f(x)在某個(gè)區間是增函數或減函數,那么說(shuō)函數y=f(x)在這一區間上具有(嚴格的)單調性,在單調區間上增函數的圖象從左到右是上升的,減函數的圖象從左到右是下降的(3).函數單調區間與單調性的判定方法(A)定義法:
3利用函數單調性的判斷函數的最大(。┲担骸
如果函數y=f(x)在區間[a,b]上單調遞增,在區間[b,c]上單調遞減則函數y=f(x)在x=b處有最大值f(b);
如果函數y=f(x)在區間[a,b]上單調遞減,在區間[b,c]上單調遞增則函數y=f(x)在x=b處有最小值f(b);例題:
1.求下列函數的定義域:⑴yx2x15x332⑵y1(x1x12)2.設函數f(x)的定義域為[0,1],則函數f(x2)的定義域為_(kāi)_
3.若函數f(x1)的定義域為[2,3],則函數f(2x1)的定義域是4.函數
x2(x1)2,若f(x)3,則xf(x)x(1x2)2x(x2)2=
5.求下列函數的值域:
、舮x22x3(xR)⑵yx2x3x[1,2]
(3)yx12x(4)y6.已知函數
f(x1)x4x,求函數
2x4x52f(x),f(2x1)的解析式
7.已知函數f(x)滿(mǎn)足2f(x)f(x)3x4,則f(x)=。8.設f(x)是R上的奇函數,且當x[0,)時(shí),
f(x)x(13x),則當x(,0)時(shí)
f(x)=
f(x)在R上的解析式為9.求下列函數的單調區間:⑴yx22x3⑵y2x2x3⑶yx6x1
210.判斷函數yx31的單調性并證明你的結論.
211.設函數f(x)1x判斷它的奇偶性并且求證:f(1)f(x).
21xx
高一數學(xué)知識點(diǎn)總結14
知識點(diǎn)1
一、集合有關(guān)概念
1、集合的含義:某些指定的對象集在一起就成為一個(gè)集合,其中每一個(gè)對象叫元素。
2、集合的中元素的三個(gè)特性:
1、元素的確定性;
2、元素的互異性;
3、元素的無(wú)序性
說(shuō)明:(1)對于一個(gè)給定的集合,集合中的元素是確定的,任何一個(gè)對象或者是或者不是這個(gè)給定的集合的元素。
。2)任何一個(gè)給定的集合中,任何兩個(gè)元素都是不同的對象,相同的對象歸入一個(gè)集合時(shí),僅算一個(gè)元素。
。3)集合中的元素是平等的,沒(méi)有先后順序,因此判定兩個(gè)集合是否一樣,僅需比較它們的元素是否一樣,不需考查排列順序是否一樣。
。4)集合元素的三個(gè)特性使集合本身具有了確定性和整體性。
3、集合的表示:{…}如{我校的籃球隊員},{太平洋,大西洋,印度洋,北冰洋}
1、用拉丁字母表示集合:A={我校的籃球隊員},B={1,2,3,4,5}
2、集合的表示方法:列舉法與描述法。
注意。撼S脭导捌溆浄ǎ
非負整數集(即自然數集)記作:N
正整數集N或N+整數集Z有理數集Q實(shí)數集R
關(guān)于“屬于”的概念
集合的元素通常用小寫(xiě)的拉丁字母表示,如:a是集合A的元素,就說(shuō)a屬于集合A記作a∈A,相反,a不屬于集合A記作a?A
列舉法:把集合中的元素一一列舉出來(lái),然后用一個(gè)大括號括上。
描述法:將集合中的元素的公共屬性描述出來(lái),寫(xiě)在大括號內表示集合的方法。用確定的條件表示某些對象是否屬于這個(gè)集合的方法。
、僬Z(yǔ)言描述法:例:{不是直角三角形的三角形}
、跀祵W(xué)式子描述法:例:不等式x—3>2的解集是{x?R|x—3>2}或{x|x—3>2}
4、集合的分類(lèi):
1、有限集含有有限個(gè)元素的集合
2、無(wú)限集含有無(wú)限個(gè)元素的集合
3、空集不含任何元素的集合例:{x|x2=—5}
知識點(diǎn)2
I、定義與定義表達式
一般地,自變量x和因變量y之間存在如下關(guān)系:y=ax^2+bx+c
。╝,b,c為常數,a≠0,且a決定函數的開(kāi)口方向,a>0時(shí),開(kāi)口方向向上,a<0時(shí),開(kāi)口方向向下,IaI還可以決定開(kāi)口大小,IaI越大開(kāi)口就越小,IaI越小開(kāi)口就越大、)
則稱(chēng)y為x的二次函數。
二次函數表達式的右邊通常為二次三項式。
II、二次函數的三種表達式
一般式:y=ax^2+bx+c(a,b,c為常數,a≠0)
頂點(diǎn)式:y=a(x—h)^2+k[拋物線(xiàn)的頂點(diǎn)P(h,k)]
交點(diǎn)式:y=a(x—x?)(x—x?)[僅限于與x軸有交點(diǎn)A(x?,0)和B(x?,0)的拋物線(xiàn)]
注:在3種形式的互相轉化中,有如下關(guān)系:
h=—b/2ak=(4ac—b^2)/4ax?,x?=(—b±√b^2—4ac)/2a
III、二次函數的圖像
在平面直角坐標系中作出二次函數y=x^2的圖像,可以看出,二次函數的圖像是一條拋物線(xiàn)。
IV、拋物線(xiàn)的`性質(zhì)
1、拋物線(xiàn)是軸對稱(chēng)圖形。對稱(chēng)軸為直線(xiàn)x=—b/2a。對稱(chēng)軸與拋物線(xiàn)的交點(diǎn)為拋物線(xiàn)的頂點(diǎn)P。
特別地,當b=0時(shí),拋物線(xiàn)的對稱(chēng)軸是y軸(即直線(xiàn)x=0)
2、拋物線(xiàn)有一個(gè)頂點(diǎn)P,坐標為
P(—b/2a,(4ac—b^2)/4a)
當—b/2a=0時(shí),P在y軸上;當Δ=b^2—4ac=0時(shí),P在x軸上。
3、二次項系數a決定拋物線(xiàn)的開(kāi)口方向和大小。
當a>0時(shí),拋物線(xiàn)向上開(kāi)口;當a<0時(shí),拋物線(xiàn)向下開(kāi)口。
|a|越大,則拋物線(xiàn)的開(kāi)口越小。
知識點(diǎn)3
1、拋物線(xiàn)是軸對稱(chēng)圖形。對稱(chēng)軸為直線(xiàn)
x=—b/2a。
對稱(chēng)軸與拋物線(xiàn)的交點(diǎn)為拋物線(xiàn)的頂點(diǎn)P。
特別地,當b=0時(shí),拋物線(xiàn)的對稱(chēng)軸是y軸(即直線(xiàn)x=0)
2、拋物線(xiàn)有一個(gè)頂點(diǎn)P,坐標為
P(—b/2a,(4ac—b’2)/4a)
當—b/2a=0時(shí),P在y軸上;當Δ=b’2—4ac=0時(shí),P在x軸上。
3、二次項系數a決定拋物線(xiàn)的開(kāi)口方向和大小。
當a>0時(shí),拋物線(xiàn)向上開(kāi)口;當a<0時(shí),拋物線(xiàn)向下開(kāi)口。
|a|越大,則拋物線(xiàn)的開(kāi)口越小。
4、一次項系數b和二次項系數a共同決定對稱(chēng)軸的位置。
當a與b同號時(shí)(即ab>0),對稱(chēng)軸在y軸左;
當a與b異號時(shí)(即ab<0),對稱(chēng)軸在y軸右。
5、常數項c決定拋物線(xiàn)與y軸交點(diǎn)。
拋物線(xiàn)與y軸交于(0,c)
6、拋物線(xiàn)與x軸交點(diǎn)個(gè)數
Δ=b’2—4ac>0時(shí),拋物線(xiàn)與x軸有2個(gè)交點(diǎn)。
Δ=b’2—4ac=0時(shí),拋物線(xiàn)與x軸有1個(gè)交點(diǎn)。
Δ=b’2—4ac<0時(shí),拋物線(xiàn)與x軸沒(méi)有交點(diǎn)。X的取值是虛數(x=—b±√b’2—4ac的值的相反數,乘上虛數i,整個(gè)式子除以2a)
知識點(diǎn)4
對數函數
對數函數的一般形式為,它實(shí)際上就是指數函數的反函數。因此指數函數里對于a的規定,同樣適用于對數函數。
右圖給出對于不同大小a所表示的函數圖形:
可以看到對數函數的圖形只不過(guò)的指數函數的圖形的關(guān)于直線(xiàn)y=x的對稱(chēng)圖形,因為它們互為反函數。
。1)對數函數的定義域為大于0的實(shí)數集合。
。2)對數函數的值域為全部實(shí)數集合。
。3)函數總是通過(guò)(1,0)這點(diǎn)。
。4)a大于1時(shí),為單調遞增函數,并且上凸;a小于1大于0時(shí),函數為單調遞減函數,并且下凹。
。5)顯然對數函數。
知識點(diǎn)5
方程的根與函數的零點(diǎn)
1、函數零點(diǎn)的概念:對于函數,把使成立的實(shí)數叫做函數的零點(diǎn)。
2、函數零點(diǎn)的意義:函數的零點(diǎn)就是方程實(shí)數根,亦即函數的圖象與軸交點(diǎn)的橫坐標。即:方程有實(shí)數根,函數的圖象與坐標軸有交點(diǎn),函數有零點(diǎn)。
3、函數零點(diǎn)的求法:
。1)(代數法)求方程的實(shí)數根;
。2)(幾何法)對于不能用求根公式的方程,可以將它與函數的圖象聯(lián)系起來(lái),并利用函數的性質(zhì)找出零點(diǎn)。
4、二次函數的零點(diǎn):
。1)△>0,方程有兩不等實(shí)根,二次函數的圖象與軸有兩個(gè)交點(diǎn),二次函數有兩個(gè)零點(diǎn)。
。2)△=0,方程有兩相等實(shí)根(二重根),二次函數的圖象與軸有一個(gè)交點(diǎn),二次函數有一個(gè)二重零點(diǎn)或二階零點(diǎn)。
。3)△<0,方程無(wú)實(shí)根,二次函數的圖象與軸無(wú)交點(diǎn),二次函數無(wú)零點(diǎn)。
高一數學(xué)知識點(diǎn)總結15
集合的運算
運算類(lèi)型交 集并 集補 集
定義域 R定義域 R
值域>0值域>0
在R上單調遞增在R上單調遞減
非奇非偶函數非奇非偶函數
函數圖象都過(guò)定點(diǎn)(0,1)函數圖象都過(guò)定點(diǎn)(0,1)
注意:利用函數的單調性,結合圖象還可以看出:
。1)在[a,b]上, 值域是 或 ;
。2)若 ,則 ; 取遍所有正數當且僅當 ;
。3)對于指數函數 ,總有 ;
二、對數函數
。ㄒ唬⿲
1.對數的概念:
一般地,如果 ,那么數 叫做以 為底 的對數,記作: ( — 底數, — 真數, — 對數式)
說(shuō)明:○1 注意底數的限制 ,且 ;
○2 ;
○3 注意對數的書(shū)寫(xiě)格式.
兩個(gè)重要對數:
○1 常用對數:以10為底的對數 ;
○2 自然對數:以無(wú)理數 為底的對數的對數 .
指數式與對數式的互化
冪值 真數
。 N = b
底數
指數 對數
。ǘ⿲档倪\算性質(zhì)
如果 ,且 , , ,那么:
○1 + ;
○2 - ;
○3 .
注意:換底公式: ( ,且 ; ,且 ; ).
利用換底公式推導下面的結論:(1) ;(2) .
。3)、重要的公式 ①、負數與零沒(méi)有對數; ②、 , ③、對數恒等式
。ǘ⿲岛瘮
1、對數函數的概念:函數 ,且 叫做對數函數,其中 是自變量,函數的定義域是(0,+∞).
注意:○1 對數函數的定義與指數函數類(lèi)似,都是形式定義,注意辨別。如: , 都不是對數函數,而只能稱(chēng)其為對數型函數.
○2 對數函數對底數的限制: ,且 .
2、對數函數的性質(zhì):
a>10 定義域x>0定義域x>0 值域為R值域為R 在R上遞增在R上遞減 函數圖象都過(guò)定點(diǎn)(1,0)函數圖象都過(guò)定點(diǎn)(1,0) 。ㄈ﹥绾瘮 1、冪函數定義:一般地,形如 的函數稱(chēng)為冪函數,其中 為常數. 2、冪函數性質(zhì)歸納. 。1)所有的冪函數在(0,+∞)都有定義并且圖象都過(guò)點(diǎn)(1,1); 。2) 時(shí),冪函數的圖象通過(guò)原點(diǎn),并且在區間 上是增函數.特別地,當 時(shí),冪函數的圖象下凸;當 時(shí),冪函數的圖象上凸; 。3) 時(shí),冪函數的圖象在區間 上是減函數.在第一象限內,當 從右邊趨向原點(diǎn)時(shí),圖象在 軸右方無(wú)限地逼近 軸正半軸,當 趨于 時(shí),圖象在 軸上方無(wú)限地逼近 軸正半軸. 第四章 函數的應用 一、方程的根與函數的零點(diǎn) 1、函數零點(diǎn)的概念:對于函數 ,把使 成立的實(shí)數 叫做函數 的零點(diǎn)。 2、函數零點(diǎn)的意義:函數 的零點(diǎn)就是方程 實(shí)數根,亦即函數 的圖象與 軸交點(diǎn)的.橫坐標。 即:方程 有實(shí)數根 函數 的圖象與 軸有交點(diǎn) 函數 有零點(diǎn). 3、函數零點(diǎn)的求法: ○1 (代數法)求方程 的實(shí)數根; ○2 (幾何法)對于不能用求根公式的方程,可以將它與函數 的圖象聯(lián)系起來(lái),并利用函數的性質(zhì)找出零點(diǎn). 4、二次函數的零點(diǎn): 二次函數 . 。1)△>0,方程 有兩不等實(shí)根,二次函數的圖象與 軸有兩個(gè)交點(diǎn),二次函數有兩個(gè)零點(diǎn). 。2)△=0,方程 有兩相等實(shí)根,二次函數的圖象與 軸有一個(gè)交點(diǎn),二次函數有一個(gè)二重零點(diǎn)或二階零點(diǎn). 。3)△<0,方程 無(wú)實(shí)根,二次函數的圖象與 軸無(wú)交點(diǎn),二次函數無(wú)零點(diǎn). 5.函數的模型 棱錐 棱錐的定義:有一個(gè)面是多邊形,其余各面都是有一個(gè)公共頂點(diǎn)的三角形,這些面圍成的幾何體叫做棱錐 棱錐的的性質(zhì): (1)側棱交于一點(diǎn)。側面都是三角形 (2)平行于底面的截面與底面是相似的多邊形。且其面積比等于截得的棱錐的高與遠棱錐高的比的平方 正棱錐 正棱錐的定義:如果一個(gè)棱錐底面是正多邊形,并且頂點(diǎn)在底面內的射影是底面的中心,這樣的`棱錐叫做正棱錐。 正棱錐的性質(zhì): (1)各側棱交于一點(diǎn)且相等,各側面都是全等的等腰三角形。各等腰三角形底邊上的高相等,它叫做正棱錐的斜高。 (3)多個(gè)特殊的直角三角形 esp: a、相鄰兩側棱互相垂直的正三棱錐,由三垂線(xiàn)定理可得頂點(diǎn)在底面的射影為底面三角形的垂心。 b、四面體中有三對異面直線(xiàn),若有兩對互相垂直,則可得第三對也互相垂直。且頂點(diǎn)在底面的射影為底面三角形的垂心。 一、集合及其表示 1、集合的含義: “集合”這個(gè)詞首先讓我們想到的是上體育課或者開(kāi)會(huì )時(shí)老師經(jīng)常喊的“全體集合”。數學(xué)上的“集合”和這個(gè)意思是一樣的,只不過(guò)一個(gè)是動(dòng)詞一個(gè)是名詞而已。 所以集合的含義是:某些指定的對象集在一起就成為一個(gè)集合,簡(jiǎn)稱(chēng)集,其中每一個(gè)對象叫元素。比如高一二班集合,那么所有高一二班的同學(xué)就構成了一個(gè)集合,每一個(gè)同學(xué)就稱(chēng)為這個(gè)集合的元素。 2、集合的表示 通常用大寫(xiě)字母表示集合,用小寫(xiě)字母表示元素,如集合A={a,b,c}。a、b、c就是集合A中的元素,記作a∈A,相反,d不屬于集合A,記作d?A。 有一些特殊的集合需要記憶: 非負整數集(即自然數集)N正整數集N_或N+ 整數集Z有理數集Q實(shí)數集R 集合的表示方法:列舉法與描述法。 、倭信e法:{a,b,c……} 、诿枋龇ǎ簩⒓现械脑氐墓矊傩悦枋龀鰜(lái)。如{x?R|x-3>2},{x|x-3>2},{(x,y)|y=x2+1} 、壅Z(yǔ)言描述法:例:{不是直角三角形的'三角形} 例:不等式x-3>2的解集是{x?R|x-3>2}或{x|x-3>2} 強調:描述法表示集合應注意集合的代表元素 A={(x,y)|y=x2+3x+2}與B={y|y=x2+3x+2}不同。集合A中是數組元素(x,y),集合B中只有元素y。 3、集合的三個(gè)特性 (1)無(wú)序性 指集合中的元素排列沒(méi)有順序,如集合A={1,2},集合B={2,1},則集合A=B。 例題:集合A={1,2},B={a,b},若A=B,求a、b的值。 解:,A=B 注意:該題有兩組解。 (2)互異性 指集合中的元素不能重復,A={2,2}只能表示為{2} (3)確定性 集合的確定性是指組成集合的元素的性質(zhì)必須明確,不允許有模棱兩可、含混不清的情況。 一、函數的概念與表示 1、映射 (1)映射:設A、B是兩個(gè)集合,如果按照某種映射法則f,對于集合A中的任一個(gè)元素,在集合B中都有唯一的元素和它對應,則這樣的對應(包括集合A、B以及A到B的對應法則f)叫做集合A到集合B的映射,記作f:A→B。 注意點(diǎn):(1)對映射定義的理解。(2)判斷一個(gè)對應是映射的方法。一對多不是映射,多對一是映射 2、函數 構成函數概念的三要素 、俣x域②對應法則③值域 兩個(gè)函數是同一個(gè)函數的條件:三要素有兩個(gè)相同 二、函數的`解析式與定義域 1、求函數定義域的主要依據: (1)分式的分母不為零; (2)偶次方根的被開(kāi)方數不小于零,零取零次方?jīng)]有意義; (3)對數函數的真數必須大于零; (4)指數函數和對數函數的底數必須大于零且不等于1; 三、函數的值域 1求函數值域的方法 、僦苯臃ǎ簭淖宰兞縳的范圍出發(fā),推出y=f(x)的取值范圍,適合于簡(jiǎn)單的復合函數; 、趽Q元法:利用換元法將函數轉化為二次函數求值域,適合根式內外皆為一次式; 、叟袆e式法:運用方程思想,依據二次方程有根,求出y的取值范圍;適合分母為二次且∈R的分式; 、芊蛛x常數:適合分子分母皆為一次式(x有范圍限制時(shí)要畫(huà)圖); 、輪握{性法:利用函數的單調性求值域; 、迗D象法:二次函數必畫(huà)草圖求其值域; 、呃脤μ柡瘮 、鄮缀我饬x法:由數形結合,轉化距離等求值域。主要是含絕對值函數 四.函數的奇偶性 1.定義:設y=f(x),x∈A,如果對于任意∈A,都有,則稱(chēng)y=f(x)為偶函數。 如果對于任意∈A,都有,則稱(chēng)y=f(x)為奇 函數。 2.性質(zhì): 、賧=f(x)是偶函數y=f(x)的圖象關(guān)于軸對稱(chēng),y=f(x)是奇函數y=f(x)的圖象關(guān)于原點(diǎn)對稱(chēng), 、谌艉瘮礷(x)的定義域關(guān)于原點(diǎn)對稱(chēng),則f(0)=0 、燮妗榔=奇偶±偶=偶奇×奇=偶偶×偶=偶奇×偶=奇[兩函數的定義域D1,D2,D1∩D2要關(guān)于原點(diǎn)對稱(chēng)] 3.奇偶性的判斷 、倏炊x域是否關(guān)于原點(diǎn)對稱(chēng)②看f(x)與f(-x)的關(guān)系 五、函數的單調性 1、函數單調性的定義: 2設是定義在M上的函數,若f(x)與g(x)的單調性相反,則在M上是減函數;若f(x)與g(x)的單調性相同,則在M上是增函數。 函數圖象知識歸納 (1)定義:在平面直角坐標系中,以函數y=f(x),(x∈A)中的x為橫坐標,函數值y為縱坐標的點(diǎn)P(x,y)的函數C,叫做函數y=f(x),(x∈A)的圖象.C上每一點(diǎn)的坐標(x,y)均滿(mǎn)足函數關(guān)系y=f(x),反過(guò)來(lái),以滿(mǎn)足y=f(x)的每一組有序實(shí)數對x、y為坐標的點(diǎn)(x,y),均在C上. (2)畫(huà)法 A、描點(diǎn)法: B、圖象變換法 常用變換方法有三種 1)平移變換 2)伸縮變換 3)對稱(chēng)變換 4.高中數學(xué)函數區間的概念 (1)函數區間的分類(lèi):開(kāi)區間、閉區間、半開(kāi)半閉區間 (2)無(wú)窮區間 5.映射 一般地,設A、B是兩個(gè)非空的函數,如果按某一個(gè)確定的對應法則f,使對于函數A中的任意一個(gè)元素x,在函數B中都有確定的元素y與之對應,那么就稱(chēng)對應f:AB為從函數A到函數B的一個(gè)映射。記作“f(對應關(guān)系):A(原象)B(象)” 對于映射f:A→B來(lái)說(shuō),則應滿(mǎn)足: (1)函數A中的每一個(gè)元素,在函數B中都有象,并且象是的; (2)函數A中不同的元素,在函數B中對應的象可以是同一個(gè); (3)不要求函數B中的每一個(gè)元素在函數A中都有原象。 6.高中數學(xué)函數之分段函數 (1)在定義域的不同部分上有不同的解析表達式的.函數。 (2)各部分的自變量的取值情況. (3)分段函數的定義域是各段定義域的交集,值域是各段值域的并集. 補充:復合函數 如果y=f(u)(u∈M),u=g(x)(x∈A),則y=f[g(x)]=F(x)(x∈A)稱(chēng)為f、g的復合函數。 冪函數的性質(zhì): 對于a的取值為非零有理數,有必要分成幾種情況來(lái)討論各自的特性: 首先我們知道如果a=p/q,q和p都是整數,則x^(p/q)=q次根號(x的p次方),如果q是奇數,函數的定義域是R,如果q是偶數,函數的定義域是[0,+∞)。當指數n是負整數時(shí),設a=—k,則x=1/(x^k),顯然x≠0,函數的定義域是(—∞,0)∪(0,+∞)。因此可以看到x所受到的限制來(lái)源于兩點(diǎn),一是有可能作為分母而不能是0,一是有可能在偶數次的根號下而不能為負數,那么我們就可以知道: 排除了為0與負數兩種可能,即對于x>0,則a可以是任意實(shí)數; 排除了為0這種可能,即對于x<0x="">0的所有實(shí)數,q不能是偶數; 排除了為負數這種可能,即對于x為大于且等于0的所有實(shí)數,a就不能是負數。 總結起來(lái),就可以得到當a為不同的數值時(shí),冪函數的定義域的不同情況如下:如果a為任意實(shí)數,則函數的定義域為大于0的所有實(shí)數; 如果a為負數,則x肯定不能為0,不過(guò)這時(shí)函數的定義域還必須根據q的奇偶性來(lái)確定,即如果同時(shí)q為偶數,則x不能小于0,這時(shí)函數的定義域為大于0的所有實(shí)數;如果同時(shí)q為奇數,則函數的定義域為不等于0的所有實(shí)數。 在x大于0時(shí),函數的值域總是大于0的實(shí)數。 在x小于0時(shí),則只有同時(shí)q為奇數,函數的值域為非零的實(shí)數。 而只有a為正數,0才進(jìn)入函數的值域。 由于x大于0是對a的任意取值都有意義的,因此下面給出冪函數在第一象限的各自情況。 可以看到: 。1)所有的圖形都通過(guò)(1,1)這點(diǎn)。 。2)當a大于0時(shí),冪函數為單調遞增的,而a小于0時(shí),冪函數為單調遞減函數。 。3)當a大于1時(shí),冪函數圖形下凹;當a小于1大于0時(shí),冪函數圖形上凸。 。4)當a小于0時(shí),a越小,圖形傾斜程度越大。 。5)a大于0,函數過(guò)(0,0);a小于0,函數不過(guò)(0,0)點(diǎn)。 。6)顯然冪函數。 解題方法:換元法 解數學(xué)題時(shí),把某個(gè)式子看成一個(gè)整體,用一個(gè)變量去代替它,從而使問(wèn)題得到簡(jiǎn)化,這種方法叫換元法。換元的.實(shí)質(zhì)是轉化,關(guān)鍵是構造元和設元,理論依據是等量代換,目的是變換研究對象,將問(wèn)題移至新對象的知識背景中去研究,從而使非標準型問(wèn)題標準化、復雜問(wèn)題簡(jiǎn)單化,變得容易處理。 換元法又稱(chēng)輔助元素法、變量代換法。通過(guò)引進(jìn)新的變量,可以把分散的條件聯(lián)系起來(lái),隱含的條件顯露出來(lái),或者把條件與結論聯(lián)系起來(lái);蛘咦?yōu)槭煜さ男问,把復雜的計算和推證簡(jiǎn)化。 它可以化高次為低次、化分式為整式、化無(wú)理式為有理式、化超越式為代數式,在研究方程、不等式、函數、數列、三角等問(wèn)題中有廣泛的應用。 練習題: 1、若f(x)=x2—x+b,且f(log2a)=b,log2[f(a)]=2(a≠1)。 。1)求f(log2x)的最小值及對應的x值; 。2)x取何值時(shí),f(log2x)>f(1)且log2[f(x)] 2、已知函數f(x)=3x+k(k為常數),A(—2k,2)是函數y=f—1(x)圖象上的點(diǎn)。 。1)求實(shí)數k的值及函數f—1(x)的解析式; 。2)將y=f—1(x)的圖象按向量a=(3,0)平移,得到函數y=g(x)的圖象,若2f—1(x+—3)—g(x)≥1恒成立,試求實(shí)數m的取值范圍。 【高一數學(xué)知識點(diǎn)總結】相關(guān)文章: 高一數學(xué)知識點(diǎn)總結11-19 高一數學(xué)知識點(diǎn)總結06-12 高一數學(xué)知識點(diǎn)總結16
高一數學(xué)知識點(diǎn)總結17
高一數學(xué)知識點(diǎn)總結18
高一數學(xué)知識點(diǎn)總結19
高一數學(xué)知識點(diǎn)總結20