成人免费看黄网站无遮挡,caowo999,se94se欧美综合色,a级精品九九九大片免费看,欧美首页,波多野结衣一二三级,日韩亚洲欧美综合

高中數學(xué)《橢圓的標準方程》說(shuō)課稿

時(shí)間:2022-07-27 19:16:49 數學(xué)說(shuō)課稿 我要投稿

高中數學(xué)《橢圓的標準方程》說(shuō)課稿

  作為一位優(yōu)秀的人民教師,時(shí)常會(huì )需要準備好說(shuō)課稿,說(shuō)課稿有助于提高教師理論素養和駕馭教材的能力。我們該怎么去寫(xiě)說(shuō)課稿呢?下面是小編整理的高中數學(xué)《橢圓的標準方程》說(shuō)課稿,歡迎大家分享。

高中數學(xué)《橢圓的標準方程》說(shuō)課稿

高中數學(xué)《橢圓的標準方程》說(shuō)課稿1

各位專(zhuān)家:

  您好!我叫陸威,來(lái)自江蘇省宿遷中學(xué),今天我說(shuō)課的課題是“橢圓的標準方程”,下面我從教材分析、教法設計、學(xué)法設計、學(xué)情分析、教學(xué)程序、板書(shū)設計和評價(jià)設計等七個(gè)方面向各位闡述我對本節課的構思與設計。

  一、教材分析

1、地位及作用

  圓錐曲線(xiàn)是一個(gè)重要的幾何模型,有許多幾何性質(zhì),這些性質(zhì)在日常生活、生產(chǎn)和科學(xué)技術(shù)中有著(zhù)廣泛的應用。同時(shí),圓錐曲線(xiàn)也是體現數形結合思想的重要素材。

  推導橢圓的標準方程的方法對雙曲線(xiàn)、拋物線(xiàn)方程的推導具有直接的類(lèi)比作用,為學(xué)習雙曲線(xiàn)、拋物線(xiàn)內容提供了基本模式和理論基礎。因此本節課具有承前啟后的作用,是本章的重點(diǎn)內容。

  2、教學(xué)內容與教材處理

  橢圓的標準方程共兩課時(shí),第一課時(shí)所研究的是橢圓標準方程的建立及其簡(jiǎn)單運用,涉及的數學(xué)方法有觀(guān)察、比較、歸納、猜想、推理驗證等,我將以課堂教學(xué)的組織者、引導者、合作者的身份,組織學(xué)生動(dòng)手實(shí)驗、歸納猜想、推理驗證,引導學(xué)生逐個(gè)突破難點(diǎn),自主完成問(wèn)題,使學(xué)生通過(guò)各種數學(xué)活動(dòng),掌握各種數學(xué)基本技能,初步學(xué)會(huì )從數學(xué)角度去觀(guān)察事物和思考問(wèn)題,產(chǎn)生學(xué)習數學(xué)的愿望和興趣。

  3、教學(xué)目標

  根據教學(xué)大綱和學(xué)生已有的認知基礎,我將本節課的教學(xué)目標確定如下:

  1、知識目標

 、俳⒅苯亲鴺讼,根據橢圓的定義建立橢圓的標準方程,

 、谀芨鶕阎獥l件求橢圓的標準方程,

 、圻M(jìn)一步感受曲線(xiàn)方程的概念,了解建立曲線(xiàn)方程的基本方法,體會(huì )數形結合的數學(xué)思想。

  2、能力目標

 、僮寣W(xué)生感知數學(xué)知識與實(shí)際生活的密切聯(lián)系,培養解決實(shí)際問(wèn)題的能力,

 、谂囵B學(xué)生的觀(guān)察能力、歸納能力、探索發(fā)現能力,

 、厶岣哌\用坐標法解決幾何問(wèn)題的能力及運算能力。

  3、情感目標

 、儆H身經(jīng)歷橢圓標準方程的獲得過(guò)程,感受數學(xué)美的熏陶,

 、谕ㄟ^(guò)主動(dòng)探索,合作交流,感受探索的樂(lè )趣和成功的體驗,體會(huì )數學(xué)的理性和嚴謹,

 、垧B成實(shí)事求是的科學(xué)態(tài)度和契而不舍的鉆研精神,形成學(xué)習數學(xué)知識的積極態(tài)度。

  4、重點(diǎn)難點(diǎn)

  基于以上分析,我將本課的教學(xué)重點(diǎn)、難點(diǎn)確定為:

 、僦攸c(diǎn):感受建立曲線(xiàn)方程的基本過(guò)程,掌握橢圓的標準方程及其推導方法,

 、陔y點(diǎn):橢圓的標準方程的推導。

  二、教法設計

  在教法上,主要采用探究性教學(xué)法和啟發(fā)式教學(xué)法。以啟發(fā)、引導為主,采用設疑的形式,逐步讓學(xué)生進(jìn)行探究性的學(xué)習。探究性學(xué)習就是充分利用了青少年學(xué)生富有創(chuàng )造性和好奇心,敢想敢為,對新事物具有濃厚的興趣的特點(diǎn)。讓學(xué)生根據教學(xué)目標的要求和題目中的已知條件,自覺(jué)主動(dòng)地創(chuàng )造性地去分析問(wèn)題、討論問(wèn)題、解決問(wèn)題。

  三、學(xué)法設計

  通過(guò)創(chuàng )設情境,充分調動(dòng)學(xué)生已有的學(xué)習經(jīng)驗,讓學(xué)生經(jīng)歷“觀(guān)察——猜想——證明——應用”的過(guò)程,發(fā)現新的知識,把學(xué)生的潛意識狀態(tài)的好奇心變?yōu)樽杂X(jué)求知的創(chuàng )新意識。又通過(guò)實(shí)際操作,使剛產(chǎn)生的數學(xué)知識得到完善,提高了學(xué)生動(dòng)手動(dòng)腦的能力和增強了研究探索的綜合素質(zhì)。

  四、學(xué)情分析

  1、能力分析

 、賹W(xué)生已初步掌握用坐標法研究直線(xiàn)和圓的方程,

 、趯袃蓚(gè)根式方程的化簡(jiǎn)能力薄弱。

  2、認知分析

 、賹W(xué)生已初步熟悉求曲線(xiàn)方程的基本步驟,

 、趯W(xué)生已經(jīng)掌握直線(xiàn)和圓的方程及圓錐曲線(xiàn)的概念,對曲線(xiàn)的方程的概念有一定的了解,

 、蹖W(xué)生已經(jīng)初步掌握研究直線(xiàn)和圓的基本方法。

  3、情感分析

  學(xué)生具有積極的學(xué)習態(tài)度,強烈的探究欲望,能主動(dòng)參與研究。

  五、教學(xué)程序

  從建構主義的角度來(lái)看,數學(xué)學(xué)習是指學(xué)生自己建構數學(xué)知識的活動(dòng),在數學(xué)活動(dòng)過(guò)程中,學(xué)生與教材及教師產(chǎn)生交互作用,形成了數學(xué)知識、技能和能力,發(fā)展了情感態(tài)度和思維品質(zhì);谶@一理論,我把這一節課的教學(xué)程序分成六個(gè)步驟來(lái)進(jìn)行。

高中數學(xué)《橢圓的標準方程》說(shuō)課稿2

  一、教學(xué)目標:

  知識與技能目標:準確理解橢圓的定義,掌握橢圓的標準方程及其推導。

  過(guò)程與方法目標:通過(guò)引導學(xué)生親自動(dòng)手嘗試畫(huà)圖、發(fā)現橢圓的形成過(guò)程進(jìn)而歸納出橢圓的定義,培養學(xué)生觀(guān)察、辨析、歸納問(wèn)題的能力。

  情感、態(tài)度與價(jià)值觀(guān)目標:通過(guò)經(jīng)歷橢圓方程的化簡(jiǎn),增強學(xué)生戰勝困難的意志品質(zhì)并體會(huì )數學(xué)的簡(jiǎn)潔美、對稱(chēng)美,通過(guò)討論橢圓方程推導的等價(jià)性養成學(xué)生扎實(shí)嚴謹的科學(xué)態(tài)度。

  二、教學(xué)重點(diǎn)、難點(diǎn):

  重點(diǎn)是橢圓的定義及標準方程,難點(diǎn)是推導橢圓的標準方程。

  三、教學(xué)過(guò)程:

  教學(xué)環(huán)節

  教學(xué)內容和形式

  設計意圖

  復習

  提問(wèn):

 。1)圓的定義是什么?圓的標準方程的形式怎樣?

 。2)如何推導圓的標準方程呢?

  激活學(xué)生已有的認知結構,為本課推導橢圓標準方程提供了方法與策略。

  講授新課

  一、授新

  1.橢圓的定義:(略)

  活動(dòng)過(guò)程:

  操作-----交流-----歸納-----多媒體演示-----聯(lián)系生活

  形成概念:

  操作:

  <1>固定一條細繩的兩端,用筆尖將細繩拉緊并運動(dòng),在紙上你得到了怎樣的圖形?

  在動(dòng)手過(guò)程中,培養學(xué)生觀(guān)察、辨析、歸納問(wèn)題的能力。

  在變化的過(guò)程中發(fā)現圓與橢圓的聯(lián)系;建立起用聯(lián)系與發(fā)展的觀(guān)點(diǎn)看問(wèn)題;為下一節深入研究方程系數的幾何意義埋下伏筆。

  教學(xué)環(huán)節

  深化概念:

  注:1、平面內。

  2、若,則點(diǎn)P的軌跡為橢圓。

  若,則點(diǎn)P的軌跡為線(xiàn)段。

  若,則點(diǎn)P的軌跡不存在。

  聯(lián)系生活:

  情境1.生活中,你見(jiàn)過(guò)哪些類(lèi)似橢圓的圖形或物體?

  情境2.讓學(xué)生觀(guān)察傾斜的圓柱形水杯的水面邊界線(xiàn),并從中抽象出數學(xué)模型.(教師用多媒體演示)

  情境3.觀(guān)看天體運行的軌道圖片。

  教學(xué)內容和形式:

  準確理解橢圓的定義。

  滲透數學(xué)源于生活,圓錐曲線(xiàn)在生產(chǎn)和技術(shù)中有著(zhù)廣泛的應用。

  設計意圖:

  2.橢圓的標準方程:

  例:已知點(diǎn)、為橢圓的兩個(gè)焦點(diǎn),P為橢圓上的任意一點(diǎn),且,其中,求橢圓的方程

  活動(dòng)過(guò)程:點(diǎn)撥-----板演-----點(diǎn)評

  一般步驟:

  (1)建系設點(diǎn)

  (2)寫(xiě)出點(diǎn)的集合

  (3)寫(xiě)出代數方程

  (4)化簡(jiǎn)方程:

  <1>請一位基礎較好,書(shū)寫(xiě)規范的同學(xué)板演。

 。5)證明:討論推導的等價(jià)性

  掌握橢圓標準方程及推導方法。

  培養學(xué)生戰勝困難的`意志品質(zhì)并感受數學(xué)的簡(jiǎn)潔美、對稱(chēng)美。

  養成學(xué)生扎實(shí)嚴謹的科學(xué)態(tài)度。

  應用

  舉例

  教學(xué)環(huán)節

  二、應用

  例1.(1)橢圓的焦點(diǎn)坐標為:

  (2)橢圓的焦距為4,則m的值為:

  活動(dòng)過(guò)程:思考-----解答-----點(diǎn)評

  例2.已知橢圓焦點(diǎn)的坐標分別是(-4,0)、(4,0),橢圓上一點(diǎn)P到兩焦點(diǎn)的距離的和等于10,求橢圓的標準方程

  活動(dòng)過(guò)程:思考-----解答-----點(diǎn)評

  變式<1>已知橢圓焦點(diǎn)的坐標分別是(-4,0)(4,0),且經(jīng)過(guò)點(diǎn),求橢圓的標準方程。

  求橢圓的標準方程

  活動(dòng)過(guò)程:思考-----解答-----點(diǎn)評

  認清橢圓兩種標準方程形式上的特征。

  課堂小結:

  提問(wèn):本節課學(xué)習的主要知識是什么?你學(xué)會(huì )了哪些數學(xué)思想與方法?

  活動(dòng)過(guò)程:教師提問(wèn)-----學(xué)生小結-----師生補充完善。

  讓學(xué)生回顧本節所學(xué)知識與方法,以逐步提高學(xué)生自我獲取知識的能力。

  作業(yè)布置:

  作業(yè):教材第95頁(yè),練習2、4,第96頁(yè)習題8-1,1、2、3、

  探索:平面內到兩個(gè)定點(diǎn)的距離差、積、商為定值的點(diǎn)的軌跡是否存在?若存在軌跡是什么?

  分層次布置作業(yè),幫助學(xué)生鞏固所學(xué)知識;為學(xué)有余力的學(xué)生留有進(jìn)一步探索、發(fā)展的空間。

  四、板書(shū)設計

  8.1橢圓及其標準方程

  一、復習引入二、新課講解三、習題研討

  1.橢圓的定義

  2.橢圓的標準方程

  總體說(shuō)明:本節課的設計力圖貫徹"以人的發(fā)展為本"的教育理念,體現"教師為主導,學(xué)生為主體"的現代教學(xué)思想。在對橢圓定義的講授中,遵循從生動(dòng)直觀(guān)到抽象概括的教學(xué)原則和教學(xué)途徑,通過(guò)引導學(xué)生親自動(dòng)手嘗試畫(huà)圖、發(fā)現橢圓的形成過(guò)程進(jìn)而歸納出橢圓的定義,培養學(xué)生觀(guān)察、辨析、歸納問(wèn)題的能力;讓橢圓生動(dòng)靈活地呈現在學(xué)生面前,更有助于學(xué)生理解橢圓的內涵和外延。對本課另一難點(diǎn)標準方程推導的講授中,在關(guān)鍵處設疑,以疑導思,讓學(xué)生先從目的、再從方法上考慮,引導學(xué)生對比、分析,師生共同完成。通過(guò)經(jīng)歷橢圓方程的化簡(jiǎn),增強了學(xué)生戰勝困難的意志品質(zhì)并體會(huì )數學(xué)的簡(jiǎn)潔美、對稱(chēng)美.通過(guò)討論橢圓方程推導的等價(jià)性養成學(xué)生扎實(shí)嚴謹的科學(xué)態(tài)度。設計的例題及變式練習,充分利用新知識解決問(wèn)題,使所學(xué)內容得以鞏固。變式(2)的設計讓學(xué)生站在方程的角度認清橢圓兩種標準方程形式上的特征,將學(xué)生的思維提升到了一個(gè)新的高度。課后分層次布置作業(yè),幫助學(xué)生鞏固所學(xué)知識;課后探索更為學(xué)有余力的學(xué)生留有進(jìn)一步探索、發(fā)展的空間。在教學(xué)中借助多媒體生動(dòng)、直觀(guān)、形象的特點(diǎn)來(lái)突出教學(xué)重點(diǎn)。自始至終很好地調動(dòng)學(xué)生的積極性,挖掘他們的內在潛能,提高學(xué)生的綜合素質(zhì)。

高中數學(xué)《橢圓的標準方程》說(shuō)課稿3

  一、教學(xué)目標

 。1)知識與能力目標:學(xué)習橢圓的定義,掌握橢圓標準方程的兩種形式及其推

  導過(guò)程;能根據條件確定橢圓的標準方程,掌握用待定系數法求橢圓的標準方程。

 。2)過(guò)程與方法目標:通過(guò)對橢圓概念的引入教學(xué),培養學(xué)生的觀(guān)察能力和探

  索能力;通過(guò)對橢圓標準方程的推導,使學(xué)生進(jìn)一步掌握求曲線(xiàn)方程的一般方法,提高學(xué)生運用坐標法解決幾何問(wèn)題的能力,并滲透數形結合和等價(jià)轉化的數學(xué)思想方法。

 。3)情感、態(tài)度與價(jià)值觀(guān)目標:通過(guò)讓學(xué)生大膽探索橢圓的定義和標準方程,激發(fā)學(xué)生學(xué)習數學(xué)的積極性,培養學(xué)生的學(xué)習興趣和創(chuàng )新意識,培養學(xué)生勇于探索的精神和滲透辯證唯物主義的方法論和認識論。

  二、教學(xué)重點(diǎn)、難點(diǎn)

 。1)教學(xué)重點(diǎn):橢圓的定義及橢圓標準方程,用待定系數法和定義法求曲線(xiàn)方程。

 。2)教學(xué)難點(diǎn):橢圓標準方程的建立和推導。

  三、教學(xué)過(guò)程

  (一)創(chuàng )設情境,引入概念

  1、動(dòng)畫(huà)演示,描繪出橢圓軌跡圖形。

  2、實(shí)驗演示。

  思考:橢圓是滿(mǎn)足什么條件的點(diǎn)的軌跡呢?

  (二)實(shí)驗探究,形成概念

  1、動(dòng)手實(shí)驗:學(xué)生分組動(dòng)手畫(huà)出橢圓。

  實(shí)驗探究:

  保持繩長(cháng)不變,改變兩個(gè)圖釘之間的距離,畫(huà)出的橢圓有什么變化?

  思考:根據上面探究實(shí)踐回答,橢圓是滿(mǎn)足什么條件的點(diǎn)的軌跡?

  2、概括橢圓定義

  引導學(xué)生概括橢圓定義橢圓定義:平面內與兩個(gè)定點(diǎn)距離的和等于常數(大于)的點(diǎn)的軌跡叫橢圓。

  教師指出:這兩個(gè)定點(diǎn)叫橢圓的焦點(diǎn),兩焦點(diǎn)的距離叫橢圓的焦距。

  思考:焦點(diǎn)為的橢圓上任一點(diǎn)M,有什么性質(zhì)?

  令橢圓上任一點(diǎn)M,則有

  (三)研討探究,推導方程

  1、知識回顧:利用坐標法求曲線(xiàn)方程的一般方法和步驟是什么?

  2、研討探究

  問(wèn)題:如圖已知焦點(diǎn)為的橢圓,且=2c,對橢圓上任一點(diǎn)M,有

  ,嘗試推導橢圓的方程。

  思考:如何建立坐標系,使求出的方程更為簡(jiǎn)單?

  將各組學(xué)生的討論方案歸納起來(lái)評議,選定以下兩種方案,由各組學(xué)生自己完成設點(diǎn)、列式、化簡(jiǎn)。

  方案一方案二

  按方案一建立坐標系,師生研討探究得到橢圓標準方程

  =1(),其中b2=a2-c2(b>0);

  選定方案二建立坐標系,由學(xué)生完成方程化簡(jiǎn)過(guò)程,可得出=1,同樣也有a2-c2=b2(b>0)。

  教師指出:我們所得的兩個(gè)方程=1和=1()都是橢圓的標準方程。

  (四)歸納概括,方程特征

  1、觀(guān)察橢圓圖形及其標準方程,師生共同總結歸納

 。1)橢圓標準方程對應的橢圓中心在原點(diǎn),以焦點(diǎn)所在軸為坐標軸;

 。2)橢圓標準方程形式:左邊是兩個(gè)分式的平方和,右邊是1;

 。3)橢圓標準方程中三個(gè)參數a,b,c關(guān)系:;

 。4)橢圓焦點(diǎn)的位置由標準方程中分母的大小確定;

 。5)求橢圓標準方程時(shí),可運用待定系數法求出a,b的值。

  2、在歸納總結的基礎上,填下表

  標準方程

  圖形a,b,c關(guān)系焦點(diǎn)坐標焦點(diǎn)位置

  在x軸上

  在y軸上

  (五)例題研討,變式精析

  例1、求適合下列條件的橢圓的標準方程

 。1)兩個(gè)焦點(diǎn)的坐標分別是,橢圓上一點(diǎn)P到兩焦點(diǎn)距離和等于10。

 。2)兩焦點(diǎn)坐標分別是,并且橢圓經(jīng)過(guò)點(diǎn)。

  例2、(1)若橢圓標準方程為及焦點(diǎn)坐標。

 。2)若橢圓經(jīng)過(guò)兩點(diǎn)求橢圓標準方程。

 。3)若橢圓的一個(gè)焦點(diǎn)是,則k的值為。

 。ˋ)(B)8(C)(D)32

  例3、如圖,已知一個(gè)圓的圓心為坐標原點(diǎn),半徑為2,從這個(gè)圓上任意一點(diǎn)P向x軸作垂線(xiàn)段,求線(xiàn)段中點(diǎn)M的軌跡。

  (六)變式訓練,探索創(chuàng )新

  1、寫(xiě)出適合下列條件的橢圓標準方程

 。1),焦點(diǎn)在x軸上;

 。2)焦點(diǎn)在x軸上,焦距等于4,并且經(jīng)過(guò)點(diǎn)P;

  2、若方程表示焦點(diǎn)在y軸上的橢圓,則k的范圍。

  3、已知B,C是兩個(gè)定點(diǎn),周長(cháng)為16,求頂點(diǎn)A的軌跡方程。

  4、已知橢圓的焦距相等,求實(shí)數m的值。

  5、在橢圓上上求一點(diǎn),使它與兩個(gè)焦點(diǎn)連線(xiàn)互相垂直。

  6、已知P是橢圓上一點(diǎn),其中為其焦點(diǎn)且,求三解形面積。

  (七)小結歸納,提高認識

  師生共同歸納本節所學(xué)內容、知識規律以及所學(xué)的數學(xué)思想和方法。

  (八)作業(yè)訓練,鞏固提高

  課本第96頁(yè)習題§8。1第3題、第5題、第6題。

  課后思考題:

  1、知是橢圓的兩個(gè)焦點(diǎn),AB是過(guò)的弦,則周長(cháng)是。

 。ˋ)2a(B)4a(C)8a(D)2a2b

  2、的兩個(gè)頂點(diǎn)A,B的坐標分別是邊AC,BC所在直線(xiàn)的斜

  率之積等于,求頂點(diǎn)C的軌跡方程。

  2、與圓外切,同時(shí)與圓內切,求動(dòng)圓圓心的軌跡方程,并說(shuō)明它是什么樣的曲線(xiàn)?

  教學(xué)設計說(shuō)明

  橢圓是圓錐曲線(xiàn)中重要的一種,本節內容的學(xué)習是后繼學(xué)習其它圓錐曲線(xiàn)的基礎,坐標法是解析幾何中的重要數學(xué)方法,橢圓方程的推導是利用坐標法求曲線(xiàn)方程的很好應用實(shí)例。本節課內容的學(xué)習能很好地在課堂教學(xué)中展現新課程的理念,主要采用學(xué)生自主探究學(xué)習的方式,使培養學(xué)生的探索精神和創(chuàng )新能力的教學(xué)思想貫穿于本節課教學(xué)設計的始終。

  橢圓是生活中常見(jiàn)的圖形,通過(guò)實(shí)驗演示,創(chuàng )設生動(dòng)而直觀(guān)的情境,使學(xué)生親身體會(huì )橢圓與生活聯(lián)系,有助于激發(fā)學(xué)生對橢圓知識的學(xué)習興趣;在橢圓概念引入的過(guò)程中,改變了直接給出橢圓概念和動(dòng)畫(huà)畫(huà)出橢圓的方式,而采用學(xué)生動(dòng)手畫(huà)橢圓并合作探究的學(xué)習方式,讓學(xué)生親身經(jīng)歷橢圓概念形成的數學(xué)化過(guò)程,有利于培養學(xué)生觀(guān)察分析、抽象概括的能力。

  橢圓方程的化簡(jiǎn)是學(xué)生從未經(jīng)歷的問(wèn)題,方程的推導過(guò)程采用學(xué)生分組探究,師生共同研討方程的化簡(jiǎn)和方程的特征,可以讓學(xué)生主體參與橢圓方程建立的具體過(guò)程,使學(xué)生真正了解橢圓標準方程的來(lái)源,并在這種師生嘗試探究、合作討論的活動(dòng)中,使學(xué)生體會(huì )成功的快樂(lè ),提高學(xué)生的數學(xué)探究能力,培養學(xué)生獨立主動(dòng)獲取知識的能力。

  設計例題、習題的研討探究變式訓練,是為了讓學(xué)生能靈活地運用橢圓的知識解決問(wèn)題,同時(shí)也是為了更好地調動(dòng)、活躍學(xué)生的思維,發(fā)展學(xué)生數學(xué)思維能力,讓學(xué)生在解決問(wèn)題中發(fā)展學(xué)生的數學(xué)應用意識和創(chuàng )新能力,同時(shí)培養學(xué)生大膽實(shí)踐、勇于探索的精神,開(kāi)闊學(xué)生知識應用視野。

高中數學(xué)《橢圓的標準方程》說(shuō)課稿4

  一、說(shuō)教材:

  1. 地位及作用:

  “橢圓及其標準方程”是高中《解析幾何》第二章第七節內容,是本書(shū)的重點(diǎn)內容之一,也是歷年高考、會(huì )考的必考內容,是在學(xué)完求曲線(xiàn)方程的基礎上,進(jìn)一步研究橢圓的特性,以完成對圓錐曲線(xiàn)的全面研究,為今后的學(xué)習打好基礎,因此本節內容具有承前啟后的作用。

  2. 教學(xué)目標:

  根據《教學(xué)大綱》,《考試說(shuō)明》的要求,并根據教材的具體內容和學(xué)生的實(shí)際情況,確定本節課的教學(xué)目標:

 。1)知識目標:掌握橢圓的定義和標準方程,以及它們的應用。

 。2)能力目標:

 。╝)培養學(xué)生靈活應用知識的能力。

 。╞) 培養學(xué)生全面分析問(wèn)題和解決問(wèn)題的能力。

 。╟)培養學(xué)生快速準確的運算能力。

 。3)德育目標:培養學(xué)生數形結合思想,類(lèi)比、分類(lèi)討論的思想以及確立從感性到理性認識的辯證唯物主義觀(guān)點(diǎn)。

  3. 重點(diǎn)、難點(diǎn)和關(guān)鍵點(diǎn):

  因為橢圓的定義和標準方程是解決與橢圓有關(guān)問(wèn)題的重要依據,也是研究雙曲線(xiàn)和拋物線(xiàn)的基礎,因此,它是本節教材的重點(diǎn);由于學(xué)生推理歸納能力較低,在推導橢圓的標準方程時(shí)涉及到根式的兩次平方,并且運算也較繁,因此它是本節課的難點(diǎn);坐標系建立的好壞直接影響標準方程的推導和化簡(jiǎn),因此建立一個(gè)適當的直角坐標系是本節的關(guān)鍵。

  二、 說(shuō)教材處理

  為了完成本節課的教學(xué)目標,突出重點(diǎn)、分散難點(diǎn)、根據教材的內容和學(xué)生的實(shí)際情況,對教材做以下的處理:

  1.學(xué)生狀況分析及對策:

  2.教材內容的組織和安排:

  本節教材的處理上按照人們認識事物的規律,遵循由淺入深,循序漸進(jìn),層層深入的原則組織和安排如下:

 。1)復習提問(wèn)(2)引入新課(3)新課講解(4)反饋練習(5)歸納總結(6)布置作業(yè)

  三、 說(shuō)教法和學(xué)法

  1.為了充分調動(dòng)學(xué)生學(xué)習的積極性,是學(xué)生變被動(dòng)學(xué)習為主動(dòng)而愉快的學(xué)習,引導學(xué)生自己動(dòng)手,讓學(xué)生的思維活動(dòng)在教師的引導下層層展開(kāi)。請學(xué)生參與課堂。加強方程推導的指導,是傳授知識與培養能力有機的溶為一體,為此,本節課采用“引導教學(xué)法”。

  2.利用電腦所畫(huà)圖形的動(dòng)態(tài)演示總結規律。同時(shí)利用電腦的動(dòng)態(tài)演示激發(fā)學(xué)生的學(xué)習興趣。

  四、 教學(xué)過(guò)程

  教學(xué)環(huán)節

  3.設a(-2,0),b(2,0),三角形abp周長(cháng)為10,動(dòng)點(diǎn)p軌跡方程。

  例1屬基礎,主要反饋學(xué)生掌握基本知識的程度。

  例2可強化基本技能訓練和基本知識的靈活運用。

  小結

  為使學(xué)生對本節內容有一個(gè)完整深刻的認識,教師引導學(xué)生從以下幾個(gè)方面進(jìn)行小結。

  1.橢圓的定義和標準方程及其應用。

  2.橢圓標準方程中a,b,c諸關(guān)系。

  3.求橢圓方程常用方法和基本思路。

  通過(guò)小結形成知識體系,加深對本節知識的理解培養學(xué)生的歸納總結能力,增強學(xué)生學(xué)好圓錐曲線(xiàn)的信心。

  布置作業(yè)

 。1) 77頁(yè)——78頁(yè) 1,2,3,79頁(yè) 11

 。2) 預習下節內容

  鞏固本節所學(xué)概念,強化基本技能訓練,培養學(xué)生良好的學(xué)習習慣和品質(zhì),發(fā)現和彌補教學(xué)中的遺漏和不足。

【高中數學(xué)《橢圓的標準方程》說(shuō)課稿】相關(guān)文章:

《橢圓的標準方程》的說(shuō)課稿07-20

高中數學(xué)說(shuō)課稿《橢圓的標準方程》04-19

《橢圓標準方程》高中數學(xué)說(shuō)課稿08-24

《橢圓及其標準方程》的說(shuō)課稿02-17

《橢圓的標準方程的求法》說(shuō)課稿07-12

《橢圓及其標準方程》說(shuō)課稿01-23

《橢圓及其標準方程》說(shuō)課稿07-03

《橢圓及其標準方程》說(shuō)課稿12-17

高中數學(xué)《橢圓及其標準方程》說(shuō)課稿范文11-05

《橢圓及其標準方程》的說(shuō)課稿范文12-15