- 高中數學(xué)教案 推薦度:
- 高中數學(xué)教案教學(xué)設計 推薦度:
- 相關(guān)推薦
高中數學(xué)教案(通用17篇)
作為一位兢兢業(yè)業(yè)的人民教師,就難以避免地要準備教案,借助教案可以有效提升自己的教學(xué)能力。那么寫(xiě)教案需要注意哪些問(wèn)題呢?下面是小編收集整理的高中數學(xué)教案,歡迎大家借鑒與參考,希望對大家有所幫助。

高中數學(xué)教案 1
一、教學(xué)目標
(1)了解含有“或”、“且”、“非”復合命題的概念及其構成形式;
(2)理解邏輯聯(lián)結詞“或”“且”“非”的含義;
(3)能用邏輯聯(lián)結詞和簡(jiǎn)單命題構成不同形式的復合命題;
(4)能識別復合命題中所用的邏輯聯(lián)結詞及其聯(lián)結的簡(jiǎn)單命題;
(5)會(huì )用真值表判斷相應的復合命題的真假;
(6)在知識學(xué)習的基礎上,培養學(xué)生簡(jiǎn)單推理的技能。
二、教學(xué)重點(diǎn)難點(diǎn):
重點(diǎn)是判斷復合命題真假的方法;難點(diǎn)是對“或”的含義的理解。
三、教學(xué)過(guò)程
1.新課導入
在當今社會(huì )中,人們從事任何工作、學(xué)習,都離不開(kāi)邏輯。具有一定邏輯知識是構成一個(gè)公民的文化素質(zhì)的重要方面。數學(xué)的特點(diǎn)是邏輯性強,特別是進(jìn)入高中以后,所學(xué)的教學(xué)比初中更強調邏輯性。如果不學(xué)習一定的邏輯知識,將會(huì )在我們學(xué)習的過(guò)程中不知不覺(jué)地經(jīng)常犯邏輯性的錯誤。其實(shí),同學(xué)們在初中已經(jīng)開(kāi)始接觸一些簡(jiǎn)易邏輯的'知識。
初一平面幾何中曾學(xué)過(guò)命題,請同學(xué)們舉一個(gè)命題的例子。(板書(shū):命題。)
(從初中接觸過(guò)的“命題”入手,提出問(wèn)題,進(jìn)而學(xué)習邏輯的有關(guān)知識。)
(同學(xué)議論結果,答案是肯定的)
教師提問(wèn):什么是命題?
(學(xué)生進(jìn)行回憶、思考。)
概念總結:對一件事情作出了判斷的語(yǔ)句叫做命題。
(教師肯定了同學(xué)的回答,并作板書(shū)。)
由于判斷有正確與錯誤之分,所以命題有真假之分,命題(1)、(2)是真命題,而(3)是假命題。
(教師利用投影片,和學(xué)生討論以下問(wèn)題。)
例1 判斷以下各語(yǔ)句是不是命題,若是,判斷其真假:
命題一定要對一件事情作出判斷,(3)、(4)沒(méi)有對一件事情作出判斷,所以它們不是命題。
初中所學(xué)的命題概念涉及邏輯知識,我們今天開(kāi)始要在初中學(xué)習的基礎上,介紹簡(jiǎn)易邏輯的知識。
2.講授新課
大家看課本(人教版,試驗修訂本,第一冊(上))從第25頁(yè)至26頁(yè)例1前,并歸納一下這段內容主要講了哪些問(wèn)題?
(片刻后請同學(xué)舉手回答,一共講了四個(gè)問(wèn)題。師生一道歸納如下。)
(1)什么叫做命題?
可以判斷真假的語(yǔ)句叫做命題。
判斷一個(gè)語(yǔ)句是不是命題,關(guān)鍵看這語(yǔ)句有沒(méi)有對一件事情作出了判斷,疑問(wèn)句、祈使句都不是命題。有些語(yǔ)句中含有變量,如 中含有變量 ,在不給定變量的值之前,我們無(wú)法確定這語(yǔ)句的真假(這種含有變量的語(yǔ)句叫做“開(kāi)語(yǔ)句”).
(2)介紹邏輯聯(lián)結詞“或”、“且”、“非”。
“或”、“且”、“非”這些詞叫做邏輯聯(lián)結詞。邏輯聯(lián)結詞除這三種形式外,還有“若…則…”和“當且僅當”兩種形式。
對“或”的理解,可聯(lián)想到集合中“并集”的概念。 中的“或”,它是指“ ”、“ ”中至少一個(gè)是成立的,即 且 ;也可以 且 ;也可以 且 .這與生活中“或”的含義不同,例如“你去或我去”,理解上是排斥你我都去這種可能。
對“且”的理解,可聯(lián)想到集合中“交集”的概念。 中的“且”,是指“ ”、“ 這兩個(gè)條件都要滿(mǎn)足的意思。
對“非”的理解,可聯(lián)想到集合中的“補集”概念,若命題 對應于集合 ,則命題非 就對應著(zhù)集合 在全集 中的補集 .
命題可分為簡(jiǎn)單命題和復合命題。
不含邏輯聯(lián)結詞的命題叫做簡(jiǎn)單命題。簡(jiǎn)單命題是不含其他命題作為其組成部分(在結構上不能再分解成其他命題)的命題。
由簡(jiǎn)單命題和邏輯聯(lián)結詞構成的命題叫做復合命題,如“6是自然數且是偶數”就是由簡(jiǎn)單命題“6是自然數”和“6是偶數”由邏輯聯(lián)結詞“且”構成的復合命題。
(4)命題的表示:用 , , , ,……來(lái)表示。
(教師根據學(xué)生回答的情況作補充和強調,特別是對復合命題的概念作出分析和展開(kāi)。)
我們接觸的復合命題一般有“ 或 ”、“ 且 ”、“非 ”、“若 則 ”等形式。
給出一個(gè)含有“或”、“且”、“非”的復合命題,應能說(shuō)出構成它的簡(jiǎn)單命題和弄清它所用的邏輯聯(lián)結詞;應能根據所給出的兩個(gè)簡(jiǎn)單命題,寫(xiě)出含有邏輯聯(lián)結詞“或”、“且”、“非”的復合命題。
對于給出“若 則 ”形式的復合命題,應能找到條件 和結論 .
在判斷一個(gè)命題是簡(jiǎn)單命題還是復合命題時(shí),不能只從字面上來(lái)看有沒(méi)有“或”、“且”、“非”。例如命題“等腰三角形的頂角平分線(xiàn)、底邊上的高、底邊上的中線(xiàn)互相重合”,此命題字面上無(wú)“且”;命題“5的倍數的末位數字不是0就是5”的字面上無(wú)“或”,但它們都是復合命題。
3.鞏固新課
例2 判斷下列命題,哪些是簡(jiǎn)單命題,哪些是復合命題。如果是復合命題,指出它的構成形式以及構成它的簡(jiǎn)單命題。
(1) ;
(2)0.5非整數;
(3)內錯角相等,兩直線(xiàn)平行;
(4)菱形的對角線(xiàn)互相垂直且平分;
(5)平行線(xiàn)不相交;
(6)若 ,則 .
(讓學(xué)生有充分的時(shí)間進(jìn)行辨析。教材中對“若…則…”不作要求,教師可以根據學(xué)生的情況作些補充。)
例3 寫(xiě)出下表中各給定語(yǔ)的否定語(yǔ)(用課件打出來(lái)).
若給定語(yǔ)為
等于
大于
是
都是
至多有一個(gè)
至少有一個(gè)
至多有個(gè)
其否定語(yǔ)分別為
分析:“等于”的否定語(yǔ)是“不等于”;
“大于”的否定語(yǔ)是“小于或者等于”;
“是”的否定語(yǔ)是“不是”;
“都是”的否定語(yǔ)是“不都是”;
“至多有一個(gè)”的否定語(yǔ)是“至少有兩個(gè)”;
“至少有一個(gè)”的否定語(yǔ)是“一個(gè)都沒(méi)有”;
“至多有 個(gè)”的否定語(yǔ)是“至少有 個(gè)”。
(如果時(shí)間寬裕,可讓學(xué)生討論后得出結論。)
置疑:“或”、“且”的否定是什么?(視學(xué)生的情況、課堂時(shí)間作適當的辨析與展開(kāi)。)
4.課堂練習:第26頁(yè)練習1
5.課外作業(yè):第29頁(yè)習題1.6
高中數學(xué)教案 2
教學(xué)目標:
1.理解流程圖的選擇結構這種基本邏輯結構.
2.能識別和理解簡(jiǎn)單的框圖的功能.
3. 能運用三種基本邏輯結構設計流程圖以解決簡(jiǎn)單的問(wèn)題.
教學(xué)方法:
1. 通過(guò)模仿、操作、探索,經(jīng)歷設計流程圖表達求解問(wèn)題的過(guò)程,加深對流程圖的感知.
2. 在具體問(wèn)題的解決過(guò)程中,掌握基本的流程圖的畫(huà)法和流程圖的.三種基本邏輯結構.
教學(xué)過(guò)程:
一、問(wèn)題情境
1.情境:
某鐵路客運部門(mén)規定甲、乙兩地之間旅客托運行李的費用為
其中(單位:)為行李的重量.
試給出計算費用(單位:元)的一個(gè)算法,并畫(huà)出流程圖.
二、學(xué)生活動(dòng)
學(xué)生討論,教師引導學(xué)生進(jìn)行表達.
解 算法為:
輸入行李的重量;
如果,那么,
否則;
輸出行李的重量和運費.
上述算法可以用流程圖表示為:
教師邊講解邊畫(huà)出第10頁(yè)圖1-2-6.
在上述計費過(guò)程中,第二步進(jìn)行了判斷.
三、建構數學(xué)
1.選擇結構的概念:
先根據條件作出判斷,再決定執行哪一種操作的結構稱(chēng)為選擇結構.
虛線(xiàn)框內是一個(gè)選擇結構,它包含一個(gè)判斷框,當條件成立(或稱(chēng)條件為“真”)時(shí)執行,否則執行.
2.說(shuō)明:
。1)有些問(wèn)題需要按給定的條件進(jìn)行分析、比較和判斷,并按判斷的不同情況進(jìn)行不同的操作,這類(lèi)問(wèn)題的實(shí)現就要用到選擇結構的設計;
。2)選擇結構也稱(chēng)為分支結構或選取結構,它要先根據指定的條件進(jìn)行判斷,再由判斷的結果決定執行兩條分支路徑中的某一條;
。3)在上圖的選擇結構中,只能執行和之一,不可能既執行,又執行,但或兩個(gè)框中可以有一個(gè)是空的,即不執行任何操作;
。4)流程圖圖框的形狀要規范,判斷框必須畫(huà)成菱形,它有一個(gè)進(jìn)入點(diǎn)和兩個(gè)退出點(diǎn).
3.思考:教材第7頁(yè)圖所示的算法中,哪一步進(jìn)行了判斷?
高中數學(xué)教案 3
教學(xué)目標:
1.進(jìn)一步理解線(xiàn)性規劃的概念;會(huì )解簡(jiǎn)單的線(xiàn)性規劃問(wèn)題;
2.在運用建模和數形結合等數學(xué)思想方法分析、解決問(wèn)題的過(guò)程中;提高解決問(wèn)題的能力;
3.進(jìn)一步提高學(xué)生的合作意識和探究意識。
教學(xué)重點(diǎn):
線(xiàn)性規劃的.概念及其解法
教學(xué)難點(diǎn):
代數問(wèn)題幾何化的過(guò)程
教學(xué)方法:
啟發(fā)探究式
教學(xué)手段:
運用多媒體技術(shù)
教學(xué)過(guò)程:
1.實(shí)際問(wèn)題引入。
問(wèn)題一:小王和小李合租了一輛小轎車(chē)外出旅游.小王駕車(chē)平均速度為每小時(shí)70公里,平均耗油量為每小時(shí)6公升;小李駕車(chē)平均速度為每小時(shí)50公里,平均耗油量為每小時(shí)4公升.現知道油箱內油量為60公升,兩人駕車(chē)時(shí)間累計不能超過(guò)12小時(shí).問(wèn)小王和小李分別駕車(chē)多少時(shí)間時(shí),行駛路程最遠?
2.探究和討論下列問(wèn)題。
(1)實(shí)際問(wèn)題轉化為一個(gè)怎樣的數學(xué)問(wèn)題?
(2)滿(mǎn)足不等式組①的條件的點(diǎn)構成的區域如何表示?
(3)關(guān)于x、y的一個(gè)表達式z=70x+50y的幾何意義是什么?
(4)z的幾何意義是什么?
(5)z的最大值如何確定?
讓學(xué)生達成以下共識:小王駕車(chē)時(shí)間x和小李駕車(chē)時(shí)間y受到時(shí)間(12小時(shí))和油量(60公升)的限制,即
x+y≤12
6x+4y≤60 ①
x≥0
y≥0
行駛路程可以表示成關(guān)于x、y的一個(gè)表達式:z=70x+50y 由數形結合可知:經(jīng)過(guò)點(diǎn)B(6,6)的直線(xiàn)所對應的z最大.
則zmax=6×70+6×50=720
結論:小王和小李分別駕車(chē)6小時(shí)時(shí),行駛路程最遠為720公里.
解題反思:
問(wèn)題解決過(guò)程中體現了那些重要的數學(xué)思想?
3.線(xiàn)性規劃的有關(guān)概念。
什么是“線(xiàn)性規劃問(wèn)題”?涉及約束條件、線(xiàn)性約束條件、目標函數、線(xiàn)性目標函數、可行解、可行域和最優(yōu)解等概念.
4.進(jìn)一步探究線(xiàn)性規劃問(wèn)題的解。
問(wèn)題二:若小王和小李駕車(chē)平均速度為每小時(shí)60公里和40公里,其它條件不變,問(wèn)小王和小李分別駕車(chē)多少時(shí)間時(shí),行駛路程最遠?
要求:請你寫(xiě)出約束條件、目標函數,作出可行域,求出最優(yōu)解。
問(wèn)題三:如果把不等式組①中的兩個(gè)“≤”改為“≥”,是否存在最優(yōu)解?
5.小結。
(1)數學(xué)知識;(2)數學(xué)思想。
6.作業(yè)。
(1)閱讀教材:P.60-63;
(2)課后練習:教材P.65-2,3;
(3)在自己生活中尋找一個(gè)簡(jiǎn)單的線(xiàn)性規劃問(wèn)題,寫(xiě)出約束條件,確定目標函數,作出可行域,并求出最優(yōu)解。
高中數學(xué)教案 4
教學(xué)目標:
1.進(jìn)一步理解和掌握數列的有關(guān)概念和性質(zhì);
2.在對一個(gè)數列的探究過(guò)程中,提高提出問(wèn)題、分析問(wèn)題和解決問(wèn)題的能力;
3.進(jìn)一步提高問(wèn)題探究意識、知識應用意識和同伴合作意識。
教學(xué)重點(diǎn):
問(wèn)題的提出與解決
教學(xué)難點(diǎn):
如何進(jìn)行問(wèn)題的探究
教學(xué)方法:
啟發(fā)探究式
教學(xué)過(guò)程:
問(wèn)題:已知{an}是首項為1,公比為 的無(wú)窮等比數列。對于數列{an},提出你的問(wèn)題,并進(jìn)行研究,你能得到一些什么樣的結論?
研究方向提示:
1.數列{an}是一個(gè)等比數列,可以從等比數列角度來(lái)進(jìn)行研究;
2.研究所給數列的項之間的關(guān)系;
3.研究所給數列的子數列;
4.研究所給數列能構造的新數列;
5.數列是一種特殊的函數,可以從函數性質(zhì)角度來(lái)進(jìn)行研究;
6.研究所給數列與其它知識的聯(lián)系(組合數、復數、圖形、實(shí)際意義等)。
針對學(xué)生的研究情況,對所提問(wèn)題進(jìn)行歸類(lèi),選擇部分類(lèi)型問(wèn)題共同進(jìn)行研究、分析與解決。
課堂小結:
1.研究一個(gè)數列可以從哪些方面提出問(wèn)題并進(jìn)行研究?
2.你最喜歡哪位同學(xué)的研究?為什么?
課后思考題:
1.將{an}推廣為一般的無(wú)窮等比數列:1,q,q2,…,qn-1,… ,上述一些研究結論會(huì )有什么變化?
2.若將{an}改為等差數列:1,1+d,2+d,…,1+(n-1)d,… ,是否可以進(jìn)行類(lèi)比研究?
開(kāi)展研究性學(xué)習,培養問(wèn)題解決能力
一、對“研究性學(xué)習”和“問(wèn)題解決”的認識 研究性學(xué)習是一種與接受性學(xué)習相對應的學(xué)習方式,泛指學(xué)生主動(dòng)探究問(wèn)題的學(xué)習。研究性學(xué)習也可以說(shuō)是一種學(xué)習活動(dòng):學(xué)生在教師指導下,在自己的學(xué)習生活和社會(huì )生活中選擇課題,以類(lèi)似科學(xué)研究的方式去主動(dòng)地獲取知識、應用知識、解決問(wèn)題。
“問(wèn)題解決”(problem solving)是美國數學(xué)教育界在二十世紀八十年代的主要口號,即認為應當以“問(wèn)題解決”作為學(xué)校數學(xué)教育的中心。
問(wèn)題解決能力是一種重要的數學(xué)能力,其核心是“創(chuàng )新精神”與“實(shí)踐能力”。在數學(xué)教學(xué)活動(dòng)中開(kāi)展研究性學(xué)習是培養問(wèn)題解決能力的主要途徑。
二、“問(wèn)題解決”課堂教學(xué)模式的建構與實(shí)踐 以研究性學(xué)習活動(dòng)為載體,以培養問(wèn)題解決能力為核心的`課堂教學(xué)模式(以下簡(jiǎn)稱(chēng)為“問(wèn)題解決”課堂教學(xué)模式)試圖通過(guò)問(wèn)題情境創(chuàng )設,激發(fā)學(xué)生的求知欲,以獨立思考和交流討論的形式,發(fā)現、分析并解決問(wèn)題,培養處理信息、獲取新知、應用知識的能力,提高合作意識、探究意識和創(chuàng )新意識。
。ㄒ唬╆P(guān)于“問(wèn)題解決”課堂教學(xué)模式
通過(guò)實(shí)施“問(wèn)題解決”課堂教學(xué)模式,希望能夠達到以下的功能目標:學(xué)習發(fā)現問(wèn)題的方法,開(kāi)掘創(chuàng )造性思維潛力,培養主動(dòng)參與、團結協(xié)作精神,增進(jìn)師生、同伴之間的情感交流,形成自覺(jué)運用數學(xué)基礎知識、基本技能和數學(xué)思想方法分析問(wèn)題、解決問(wèn)題的能力和意識。
。ǘ⿺祵W(xué)學(xué)科中的問(wèn)題解決能力的培養目標
數學(xué)問(wèn)題解決能力培養的目標可以有不同層次的要求:會(huì )審題,會(huì )建模,會(huì )轉化,會(huì )歸類(lèi),會(huì )反思,會(huì )編題。
。ㄈ皢(wèn)題解決”課堂教學(xué)模式的教學(xué)流程
。ㄋ模皢(wèn)題解決”課堂教學(xué)評價(jià)標準
1. 教學(xué)目標的確定;
2. 教學(xué)方法的選擇;
3. 問(wèn)題的選擇;
4. 師生主體意識的體現;
5.教學(xué)策略的運用。
。ㄎ澹┝私鈱W(xué)生的數學(xué)問(wèn)題解決能力的途徑
。╅_(kāi)展研究性學(xué)習活動(dòng)對教師的能力要求
高中數學(xué)教案 5
教學(xué)目標
。1)了解用坐標法研究幾何問(wèn)題的方法,了解解析幾何的基本問(wèn)題。
。2)理解曲線(xiàn)的方程、方程的曲線(xiàn)的概念,能根據曲線(xiàn)的已知條件求出曲線(xiàn)的方程,了解兩條曲線(xiàn)交點(diǎn)的概念。
。3)通過(guò)曲線(xiàn)方程概念的教學(xué),培養學(xué)生數與形相互聯(lián)系、對立統一的辯證唯物主義觀(guān)點(diǎn)。
。4)通過(guò)求曲線(xiàn)方程的教學(xué),培養學(xué)生的轉化能力和全面分析問(wèn)題的能力,幫助學(xué)生理解解析幾何的思想方法。
。5)進(jìn)一步理解數形結合的思想方法。
教材分析
。1)知識結構
曲線(xiàn)與方程是在初中軌跡概念和本章直線(xiàn)方程概念之后的解析幾何的基本概念,在充分討論曲線(xiàn)方程概念后,介紹了坐標法和解析幾何的'思想,以及解析幾何的基本問(wèn)題,即由曲線(xiàn)的已知條件,求曲線(xiàn)方程;通過(guò)方程,研究曲線(xiàn)的性質(zhì)。曲線(xiàn)方程的概念和求曲線(xiàn)方程的問(wèn)題又有內在的邏輯順序。前者回答什么是曲線(xiàn)方程,后者解決如何求出曲線(xiàn)方程。至于用曲線(xiàn)方程研究曲線(xiàn)性質(zhì)則更在其后,本節不予研究。因此,本節涉及曲線(xiàn)方程概念和求曲線(xiàn)方程兩大基本問(wèn)題。
。2)重點(diǎn)、難點(diǎn)分析
、俦竟潈热萁虒W(xué)的重點(diǎn)是使學(xué)生理解曲線(xiàn)方程概念和掌握求曲線(xiàn)方程方法,以及領(lǐng)悟坐標法和解析幾何的思想。
、诒竟澋碾y點(diǎn)是曲線(xiàn)方程的概念和求曲線(xiàn)方程的方法。
教法建議
。1)曲線(xiàn)方程的概念是解析幾何的核心概念,也是基礎概念,教學(xué)中應從直線(xiàn)方程概念和軌跡概念入手,通過(guò)簡(jiǎn)單的實(shí)例引出曲線(xiàn)的點(diǎn)集與方程的解集之間的對應關(guān)系,說(shuō)明曲線(xiàn)與方程的對應關(guān)系。曲線(xiàn)與方程對應關(guān)系的基礎是點(diǎn)與坐標的對應關(guān)系。注意強調曲線(xiàn)方程的完備性和純粹性。
。2)可以結合已經(jīng)學(xué)過(guò)的直線(xiàn)方程的知識幫助學(xué)生領(lǐng)會(huì )坐標法和解析幾何的思想,學(xué)習解析幾何的意義和要解決的問(wèn)題,為學(xué)習求曲線(xiàn)的方程做好邏輯上的和心理上的準備。
。3)無(wú)論是判斷、證明,還是求解曲線(xiàn)的方程,都要緊扣曲線(xiàn)方程的概念,即始終以是否滿(mǎn)足概念中的兩條為準則。
。4)從集合與對應的觀(guān)點(diǎn)可以看得更清楚:設x表示曲線(xiàn) 上適合某種條件的點(diǎn) 的集合;表示二元方程的解對應的點(diǎn)的坐標的集合。
。5)在學(xué)習求曲線(xiàn)方程的方法時(shí),應從具體實(shí)例出發(fā),引導學(xué)生從曲線(xiàn)的幾何條件,一步步地、自然而然地過(guò)渡到代數方程(曲線(xiàn)的方程),這個(gè)過(guò)渡是一個(gè)從幾何向代數不斷轉化的過(guò)程,在這個(gè)過(guò)程中提醒學(xué)生注意轉化是否為等價(jià)的,這將決定第五步如何做。同時(shí)教師不要生硬地給出或總結出求解步驟,應在充分分析實(shí)例的基礎上讓學(xué)生自然地獲得。教學(xué)中對課本例2的解法分析很重要。
這五個(gè)步驟的實(shí)質(zhì)是將產(chǎn)生曲線(xiàn)的幾何條件逐步轉化為代數方程,即文字語(yǔ)言中的幾何條件 數學(xué)符號語(yǔ)言中的等式 數學(xué)符號語(yǔ)言中含動(dòng)點(diǎn)坐標 , 的代數方程 簡(jiǎn)化了的代數方程。由此可見(jiàn),曲線(xiàn)方程就是產(chǎn)生曲線(xiàn)的幾何條件的一種表現形式,這個(gè)形式的特點(diǎn)是“含動(dòng)點(diǎn)坐標的代數方程!
。6)求曲線(xiàn)方程的問(wèn)題是解析幾何中一個(gè)基本的問(wèn)題和長(cháng)期的任務(wù),不是一下子就徹底解決的,求解的方法是在不斷的學(xué)習中掌握的,教學(xué)中要把握好“度”。
高中數學(xué)教案 6
教學(xué)目的:
掌握圓的標準方程,并能解決與之有關(guān)的問(wèn)題
教學(xué)重點(diǎn):
圓的.標準方程及有關(guān)運用
教學(xué)難點(diǎn):
標準方程的靈活運用
教學(xué)過(guò)程:
一、導入新課,探究標準方程
二、掌握知識,鞏固練習
練習:
、闭f(shuō)出下列圓的方程
、艌A心(3,-2)半徑為5
、茍A心(0,3)半徑為3
、仓赋鱿铝袌A的圓心和半徑
、牛▁-2)2+(y+3)2=3
、苮2+y2=2
、莤2+y2-6x+4y+12=0
、撑袛3x-4y-10=0和x2+y2=4的位置關(guān)系
、磮A心為(1,3),并與3x-4y-7=0相切,求這個(gè)圓的方程
三、引伸提高,講解例題
例1、圓心在y=-2x上,過(guò)p(2,-1)且與x-y=1相切求圓的方程(突出待定系數的數學(xué)方法)
練習:1、某圓過(guò)(-2,1)、(2,3),圓心在x軸上,求其方程。
2、某圓過(guò)A(-10,0)、B(10,0)、C(0,4),求圓的方程。
例2:某圓拱橋的跨度為20米,拱高為4米,在建造時(shí)每隔4米加一個(gè)支柱支撐,求A2P2的長(cháng)度。
例3、點(diǎn)M(x0,y0)在x2+y2=r2上,求過(guò)M的圓的切線(xiàn)方程(一題多解,訓練思維)
四、小結練習P771,2,3,4
五、作業(yè)P811,2,3,4
高中數學(xué)教案 7
一、學(xué)習目標
(1)通過(guò)實(shí)例體會(huì )分布的意義與作用; (2)在表示樣本數據的過(guò)程中,學(xué)會(huì )列頻率分布表,畫(huà)頻率分布直方圖,頻率折線(xiàn)圖; (3)通過(guò)實(shí)例體會(huì )頻率分布直方圖,頻率折線(xiàn)圖,莖葉圖的各自特點(diǎn),從而恰當的選擇上述方法分析樣本的分布,準確的作出總體估計。
二、學(xué)習重點(diǎn)難點(diǎn)
能通過(guò)樣本的頻率分布估計總體的分布。
三、學(xué)習過(guò)程
(一)復習引入
(1 )統計的核心問(wèn)題是什么?
(2 )隨機抽樣的幾種常用方法有哪些?
(3)通過(guò)抽樣方法收集數據的目的是什么?
(二)自學(xué)提綱
1.我們學(xué)習了哪些統計圖?不同的統計圖適合描述什么樣的數據?
2.如何列頻率分布表?
3.如何畫(huà)頻率分布直方圖?基本步驟是什么?
4.頻率分布直方圖的縱坐標是什么?
5.頻率分布直方圖中小長(cháng)方形的面積表示什么?
6.頻率分布直方圖中小長(cháng)方形的面積之和是多少?
(三)課前自測
1.從一堆蘋(píng)果中任取了20只,并得到了它們的質(zhì)量(單位:g)數據分布表如下:
分組 [90,100) [100,110) [110,120) [120,130) [130,140) [140,150) 頻數 1 2 3 10 1 則這堆蘋(píng)果中,質(zhì)量不小于120g的蘋(píng)果數約占蘋(píng)果總數的xxx%. 2.關(guān)于頻率分布直方圖,下列說(shuō)法正確的是( ) a.直方圖的高表示該組上的個(gè)體在樣本中出現的頻率 b.直方圖的高表示取某數的頻率 c.直方圖的.高表示該組上的樣本中出現的頻率與組距的比值 d.直方圖的高表示該組上的個(gè)體在樣本中出現的頻數與組距的比值 3.已知樣本:10,8,6,13,8,10,12,11,7,8,9,11,9,12,9,10,11,11,12,那么頻率為0.2的范圍是( ) a、5.5-7.5 b、7.5-9.5 c、9.5-11.5 d、11.5-13.5 (四)探究教學(xué) 典例:城市缺水問(wèn)題(自學(xué)教材65頁(yè)~68頁(yè))
問(wèn)題1.你認為為了較為合理地確定出這個(gè)標準,需要做哪些工作? 2.如何分析數據?根據這些數據你能得出用水量其他信息嗎? 知識整理: 1.頻率分布的概念: 頻率分布: 頻數: 頻率:
2.畫(huà)頻率分布直方圖的步驟:
(1).求極差:
(2).決定組距與組數
組距:
組數:
(3).將數據分組
(4).列頻率分布表
(5).畫(huà)頻率分布直方圖 問(wèn)題: .
1.月平均用水量在2.5—3之間的頻率是多少?
2.月均用水量最多的在哪個(gè)區間?
3.月均用水量小于4.5 的頻率是多少?
4.小長(cháng)方形的面積=?
5.小長(cháng)方形的面積總和=?
6.如果希望85%以上居民不超出標準,如何制定標準?
7.直方圖有那些優(yōu)點(diǎn)和缺點(diǎn)?
例題講解: 例1有一個(gè)容量為50的樣本數據的分組的頻數如下: [12.5, 15.5) 3 [15.5, 18.5) 8 [18.5, 21.5) 9 [21.5, 24.5) 11 [24.5, 27.5) 10 [27.5, 30.5) 5 [30.5, 33.5) 4
(1)列出樣本的頻率分布表;
(2)畫(huà)出頻率分布直方圖;
(3)根據頻率分布直方圖估計,數據落在[15.5, 24.5)的百分比是多少?
(4)數據小于21.5的百分比是多少?
3.頻率分布折線(xiàn)圖、總體密度曲線(xiàn) 問(wèn)題1:如何得到頻率分布折線(xiàn)圖 ? 頻率分布折線(xiàn)圖的概念:
問(wèn)題2:在城市缺水問(wèn)題中將樣本容量為100,增至1000,其頻率分布直方圖的情況會(huì )有什么變化?假如增至10000呢?
總體密度曲線(xiàn)的概念:
注:用樣本分布直方圖去估計相應的總體分布時(shí),一般樣本容量越大,頻率分布直方圖就會(huì )無(wú)限接近總體密度曲線(xiàn),就越精確地反映了總體的分布規律,即越精確地反映了總體在各個(gè)范圍內1.總體分布指的是總體取值的頻率分布規律,由于總體分布不易知道,因此我們往往用樣本的頻率分布去估計總體的分布。
4. 莖葉圖 莖葉圖的概念: 莖葉圖的特征:
小結:.總體的分布分兩種情況:當總體中的個(gè)體取值很少時(shí),用莖葉圖估計總體的分布;當總體中的個(gè)體取值較多時(shí),將樣本數據恰當分組,用各組的頻率分布描述總體的分布,方法是用頻率分布表或頻率分布直方圖。
高中數學(xué)教案 8
一、教學(xué)目標
【知識與技能】
掌握三角函數的單調性以及三角函數值的取值范圍。
【過(guò)程與方法】
經(jīng)歷三角函數的單調性的探索過(guò)程,提升邏輯推理能力。
【情感態(tài)度價(jià)值觀(guān)】
在猜想計算的過(guò)程中,提高學(xué)習數學(xué)的興趣。
二、教學(xué)重難點(diǎn)
【教學(xué)重點(diǎn)】
三角函數的'單調性以及三角函數值的取值范圍。
【教學(xué)難點(diǎn)】
探究三角函數的單調性以及三角函數值的取值范圍過(guò)程。
三、教學(xué)過(guò)程
。ㄒ唬┮胄抡n
提出問(wèn)題:如何研究三角函數的單調性
。ㄋ模┬〗Y作業(yè)
提問(wèn):今天學(xué)習了什么?
引導學(xué)生回顧:基本不等式以及推導證明過(guò)程。
課后作業(yè):
思考如何用三角函數單調性比較三角函數值的大小。
高中數學(xué)教案 9
【教學(xué)目標】
1.知識與技能
(1)理解等差數列的定義,會(huì )應用定義判斷一個(gè)數列是否是等差數列:
(2)賬務(wù)等差數列的通項公式及其推導過(guò)程:
(3)會(huì )應用等差數列通項公式解決簡(jiǎn)單問(wèn)題。
2.過(guò)程與方法
在定義的理解和通項公式的推導、應用過(guò)程中,培養學(xué)生的觀(guān)察、分析、歸納能力和嚴密的邏輯思維的能力,體驗從特殊到一般,一般到特殊的認知規律,提高熟悉猜想和歸納的能力,滲透函數與方程的思想。
3.情感、態(tài)度與價(jià)值觀(guān)
通過(guò)教師指導下學(xué)生的自主學(xué)習、相互交流和探索活動(dòng),培養學(xué)生主動(dòng)探索、用于發(fā)現的求知精神,激發(fā)學(xué)生的學(xué)習興趣,讓學(xué)生感受到成功的喜悅。在解決問(wèn)題的過(guò)程中,使學(xué)生養成細心觀(guān)察、認真分析、善于總結的良好習慣。
【教學(xué)重點(diǎn)】
、俚炔顢盗械母拍;
、诘炔顢盗械耐椆
【教學(xué)難點(diǎn)】
、倮斫獾炔顢盗小暗炔睢钡奶攸c(diǎn)及通項公式的含義;
、诘炔顢盗械耐椆降耐茖н^(guò)程.
【學(xué)情分析】
我所教學(xué)的學(xué)生是我校高一(7)班的學(xué)生(平行班學(xué)生),經(jīng)過(guò)一年的高中數學(xué)學(xué)習,大部分學(xué)生知識經(jīng)驗已較為豐富,他們的智力發(fā)展已到了形式運演階段,具備了較強的抽象思維能力和演繹推理能力,但也有一部分學(xué)生的基礎較弱,學(xué)習數學(xué)的興趣還不是很濃,所以我在授課時(shí)注重從具體的生活實(shí)例出發(fā),注重引導、啟發(fā)、研究和探討以符合這類(lèi)學(xué)生的'心理發(fā)展特點(diǎn),從而促進(jìn)思維能力的進(jìn)一步發(fā)展。
【設計思路】
1、教法
、賳l(fā)引導法:這種方法有利于學(xué)生對知識進(jìn)行主動(dòng)建構;有利于突出重點(diǎn),突破難點(diǎn);有利于調動(dòng)學(xué)生的主動(dòng)性和積極性,發(fā)揮其創(chuàng )造性.
、诜纸M討論法:有利于學(xué)生進(jìn)行交流,及時(shí)發(fā)現問(wèn)題,解決問(wèn)題,調動(dòng)學(xué)生的積極性.
、壑v練結合法:可以及時(shí)鞏固所學(xué)內容,抓住重點(diǎn),突破難點(diǎn).
2、學(xué)法
引導學(xué)生首先從三個(gè)現實(shí)問(wèn)題(數數問(wèn)題、水庫水位問(wèn)題、儲蓄問(wèn)題)概括出數組特點(diǎn)并抽象出等差數列的概念;接著(zhù)就等差數列概念的特點(diǎn),推導出等差數列的通項公式;可以對各種能力的同學(xué)引導認識多元的推導思維方法.
【教學(xué)過(guò)程】
一、創(chuàng )設情境,引入新課
1、從0開(kāi)始,將5的倍數按從小到大的順序排列,得到的數列是什么?
2、水庫管理人員為了保證優(yōu)質(zhì)魚(yú)類(lèi)有良好的生活環(huán)境,用定期放水清庫的辦法清理水庫中的雜魚(yú).如果一個(gè)水庫的水位為18m,自然放水每天水位降低2.5m,最低降至5m.那么從開(kāi)始放水算起,到可以進(jìn)行清理工作的那天,水庫每天的水位(單位:m)組成一個(gè)什么數列?
3、我國現行儲蓄制度規定銀行支付存款利息的方式為單利,即不把利息加入本息計算下一期的利息.按照單利計算本利和的公式是:本利和=本金×(1+利率×存期).按活期存入10000元錢(qián),年利率是0.72%,那么按照單利,5年內各年末的本利和(單位:元)組成一個(gè)什么數列?
教師:以上三個(gè)問(wèn)題中的數蘊涵著(zhù)三列數.
學(xué)生:
、0,5,10,15,20,25,….
、18,15.5,13,10.5,8,5.5.
、10072,10144,10216,10288,10360.
(設置意圖:從實(shí)例引入,實(shí)質(zhì)是給出了等差數列的現實(shí)背景,目的是讓學(xué)生感受到等差數列是現實(shí)生活中大量存在的數學(xué)模型.通過(guò)分析,由特殊到一般,激發(fā)學(xué)生學(xué)習探究知識的自主性,培養學(xué)生的歸納能力.
二、觀(guān)察歸納,形成定義
、0,5,10,15,20,25,….
、18,15.5,13,10.5,8,5.5.
、10072,10144,10216,10288,10360.
思考1上述數列有什么共同特點(diǎn)?
思考2根據上數列的共同特點(diǎn),你能給出等差數列的一般定義嗎?
思考3你能將上述的文字語(yǔ)言轉換成數學(xué)符號語(yǔ)言嗎?
教師:引導學(xué)生思考這三列數具有的共同特征,然后讓學(xué)生抓住數列的特征,歸納得出等差數列概念.
學(xué)生:分組討論,可能會(huì )有不同的答案:前數和后數的差符合一定規律;這些數都是按照一定順序排列的…只要合理教師就要給予肯定.
教師引導歸納出:等差數列的定義;另外,教師引導學(xué)生從數學(xué)符號角度理解等差數列的定義.
(設計意圖:通過(guò)對一定數量感性材料的觀(guān)察、分析,提煉出感性材料的本質(zhì)屬性;使學(xué)生體會(huì )到等差數列的規律和共同特點(diǎn);一開(kāi)始抓。骸皬牡诙椘,每一項與它的前一項的差為同一常數”,落實(shí)對等差數列概念的準確表達.)
三、舉一反三,鞏固定義
1、判定下列數列是否為等差數列?若是,指出公差d.
(1)1,1,1,1,1;
(2)1,0,1,0,1;
(3)2,1,0,-1,-2;
(4)4,7,10,13,16.
教師出示題目,學(xué)生思考回答.教師訂正并強調求公差應注意的問(wèn)題.
注意:公差d是每一項(第2項起)與它的前一項的差,防止把被減數與減數弄顛倒,而且公差可以是正數,負數,也可以為0.
(設計意圖:強化學(xué)生對等差數列“等差”特征的理解和應用).
2、思考4:設數列{an}的通項公式為an=3n+1,該數列是等差數列嗎?為什么?
(設計意圖:強化等差數列的證明定義法)
四、利用定義,導出通項
1、已知等差數列:8,5,2,…,求第200項?
2、已知一個(gè)等差數列{an}的首項是a1,公差是d,如何求出它的任意項an呢?
教師出示問(wèn)題,放手讓學(xué)生探究,然后選擇列式具有代表性的上去板演或投影展示.根據學(xué)生在課堂上的具體情況進(jìn)行具體評價(jià)、引導,總結推導方法,體會(huì )歸納思想以及累加求通項的方法;讓學(xué)生初步嘗試處理數列問(wèn)題的常用方法.
(設計意圖:引導學(xué)生觀(guān)察、歸納、猜想,培養學(xué)生合理的推理能力.學(xué)生在分組合作探究過(guò)程中,可能會(huì )找到多種不同的解決辦法,教師要逐一點(diǎn)評,并及時(shí)肯定、贊揚學(xué)生善于動(dòng)腦、勇于創(chuàng )新的品質(zhì),激發(fā)學(xué)生的創(chuàng )造意識.鼓勵學(xué)生自主解答,培養學(xué)生運算能力)
五、應用通項,解決問(wèn)題
1、判斷100是不是等差數列2,9,16,…的項?如果是,是第幾項?
2、在等差數列{an}中,已知a5=10,a12=31,求a1,d和an.
3、求等差數列3,7,11,…的第4項和第10項
教師:給出問(wèn)題,讓學(xué)生自己操練,教師巡視學(xué)生答題情況.
學(xué)生:教師叫學(xué)生代表總結此類(lèi)題型的解題思路,教師補充:已知等差數列的首項和公差就可以求出其通項公式
(設計意圖:主要是熟悉公式,使學(xué)生從中體會(huì )公式與方程之間的聯(lián)系.初步認識“基本量法”求解等差數列問(wèn)題.)
六、反饋練習:教材13頁(yè)練習1
七、歸納總結:
1、一個(gè)定義:
等差數列的定義及定義表達式
2、一個(gè)公式:
等差數列的通項公式
3、二個(gè)應用:
定義和通項公式的應用
教師:讓學(xué)生思考整理,找幾個(gè)代表發(fā)言,最后教師給出補充
(設計意圖:引導學(xué)生去聯(lián)想本節課所涉及到的各個(gè)方面,溝通它們之間的聯(lián)系,使學(xué)生能在新的高度上去重新認識和掌握基本概念,并靈活運用基本概念.)
【設計反思】
本設計從生活中的數列模型導入,有助于發(fā)揮學(xué)生學(xué)習的主動(dòng)性,增強學(xué)生學(xué)習數列的興趣.在探索的過(guò)程中,學(xué)生通過(guò)分析、觀(guān)察,歸納出等差數列定義,然后由定義導出通項公式,強化了由具體到抽象,由特殊到一般的思維過(guò)程,有助于提高學(xué)生分析問(wèn)題和解決問(wèn)題的能力.本節課教學(xué)采用啟發(fā)方法,以教師提出問(wèn)題、學(xué)生探討解決問(wèn)題為途徑,以相互補充展開(kāi)教學(xué),總結科學(xué)合理的知識體系,形成師生之間的良性互動(dòng),提高課堂教學(xué)效率.
高中數學(xué)教案 10
教學(xué)目標:
1.結合實(shí)際問(wèn)題情景,理解分層抽樣的必要性和重要性;
2.學(xué)會(huì )用分層抽樣的方法從總體中抽取樣本;
3.并對簡(jiǎn)單隨機抽樣、系統抽樣及分層抽樣方法進(jìn)行比較,揭示其相互關(guān)系.
教學(xué)重點(diǎn):
通過(guò)實(shí)例理解分層抽樣的方法.
教學(xué)難點(diǎn):
分層抽樣的步驟.
教學(xué)過(guò)程:
一、問(wèn)題情境
1.復習簡(jiǎn)單隨機抽樣、系統抽樣的概念、特征以及適用范圍.
2.實(shí)例:某校高一、高二和高三年級分別有學(xué)生名,為了了解全校學(xué)生的視力情況,從中抽取容量為的樣本,怎樣抽取較為合理?
二、學(xué)生活動(dòng)
能否用簡(jiǎn)單隨機抽樣或系統抽樣進(jìn)行抽樣,為什么?
指出由于不同年級的學(xué)生視力狀況有一定的差異,用簡(jiǎn)單隨機抽樣或系統抽樣進(jìn)行抽樣不能準確反映客觀(guān)實(shí)際,在抽樣時(shí)不僅要使每個(gè)個(gè)體被抽到的機會(huì )相等,還要注意總體中個(gè)體的層次性.
由于樣本的容量與總體的個(gè)體數的.比為100∶2500=1∶25,
所以在各年級抽取的個(gè)體數依次是,即40,32,28.
三、建構數學(xué)
1.分層抽樣:當已知總體由差異明顯的幾部分組成時(shí),為了使樣本更客觀(guān)地反映總體的情況,常將總體按不同的特點(diǎn)分成層次比較分明的幾部分,然后按各部分在總體中所占的比進(jìn)行抽樣,這種抽樣叫做分層抽樣,其中所分成的各部分叫“層”.
說(shuō)明:
、俜謱映闃訒r(shí),由于各部分抽取的個(gè)體數與這一部分個(gè)體數的比等于樣本容量與總體的個(gè)體數的比,每一個(gè)個(gè)體被抽到的可能性都是相等的;
、谟捎诜謱映闃映浞掷昧宋覀兯莆盏男畔,使樣本具有較好的代表性,而且在各層抽樣時(shí)可以根據具體情況采取不同的抽樣方法,所以分層抽樣在實(shí)踐中有著(zhù)非常廣泛的應用.
2.三種抽樣方法對照表:
類(lèi)別
共同點(diǎn)
各自特點(diǎn)
相互聯(lián)系
適用范圍
簡(jiǎn)單隨機抽樣
抽樣過(guò)程中每個(gè)個(gè)體被抽取的概率是相同的
從總體中逐個(gè)抽取
總體中的個(gè)體數較少
系統抽樣
將總體均分成幾個(gè)部分,按事先確定的規則在各部分抽取
在第一部分抽樣時(shí)采用簡(jiǎn)單隨機抽樣
總體中的個(gè)體數較多
分層抽樣
將總體分成幾層,分層進(jìn)行抽取
各層抽樣時(shí)采用簡(jiǎn)單隨機抽樣或系統
總體由差異明顯的幾部分組成
3.分層抽樣的步驟:
。1)分層:將總體按某種特征分成若干部分.
。2)確定比例:計算各層的個(gè)體數與總體的個(gè)體數的比.
。3)確定各層應抽取的樣本容量.
。4)在每一層進(jìn)行抽樣(各層分別按簡(jiǎn)單隨機抽樣或系統抽樣的方法抽。,綜合每層抽樣,組成樣本.
四、數學(xué)運用
1.例題.
例1(1)分層抽樣中,在每一層進(jìn)行抽樣可用_________________.
。2)①教育局督學(xué)組到學(xué)校檢查工作,臨時(shí)在每個(gè)班各抽調2人參加座談;
、谀嘲嗥谥锌荚囉15人在85分以上,40人在60-84分,1人不及格.現欲從中抽出8人研討進(jìn)一步改進(jìn)教和學(xué);
、勰嘲嘣┚蹠(huì ),要產(chǎn)生兩名“幸運者”.
對這三件事,合適的抽樣方法為()
A.分層抽樣,分層抽樣,簡(jiǎn)單隨機抽樣
B.系統抽樣,系統抽樣,簡(jiǎn)單隨機抽樣
C.分層抽樣,簡(jiǎn)單隨機抽樣,簡(jiǎn)單隨機抽樣
D.系統抽樣,分層抽樣,簡(jiǎn)單隨機抽樣
例2某電視臺在因特網(wǎng)上就觀(guān)眾對某一節目的喜愛(ài)程度進(jìn)行調查,參加調查的總人數為12000人,其中持各種態(tài)度的人數如表中所示:
很喜愛(ài)
喜愛(ài)
一般
不喜愛(ài)
2435
4567
3926
1072
電視臺為進(jìn)一步了解觀(guān)眾的具體想法和意見(jiàn),打算從中抽取60人進(jìn)行更為詳細的調查,應怎樣進(jìn)行抽樣?
解:抽取人數與總的比是60∶12000=1∶200,
則各層抽取的人數依次是12.175,22.835,19.63,5.36,
取近似值得各層人數分別是12,23,20,5.
然后在各層用簡(jiǎn)單隨機抽樣方法抽。
答用分層抽樣的方法抽取,抽取“很喜愛(ài)”、“喜愛(ài)”、“一般”、“不喜愛(ài)”的人
數分別為12,23,20,5.
說(shuō)明:各層的抽取數之和應等于樣本容量,對于不能取整數的情況,取其近似值.
。3)某學(xué)校有160名教職工,其中教師120名,行政人員16名,后勤人員24名.為了了解教職工對學(xué)校在校務(wù)公開(kāi)方面的某意見(jiàn),擬抽取一個(gè)容量為20的樣本.
分析:(1)總體容量較小,用抽簽法或隨機數表法都很方便.
。2)總體容量較大,用抽簽法或隨機數表法都比較麻煩,由于人員沒(méi)有明顯差異,且剛好32排,每排人數相同,可用系統抽樣.
。3)由于學(xué)校各類(lèi)人員對這一問(wèn)題的看法可能差異較大,所以應采用分層抽樣方法.
五、要點(diǎn)歸納與方法小結
本節課學(xué)習了以下內容:
1.分層抽樣的概念與特征;
2.三種抽樣方法相互之間的區別與聯(lián)系.
高中數學(xué)教案 11
課題:
等比數列的概念
教學(xué)目標
1、通過(guò)教學(xué)使學(xué)生理解等比數列的概念,推導并掌握通項公式、
2、使學(xué)生進(jìn)一步體會(huì )類(lèi)比、歸納的思想,培養學(xué)生的觀(guān)察、概括能力、
3、培養學(xué)生勤于思考,實(shí)事求是的精神,及嚴謹的科學(xué)態(tài)度、
教學(xué)重點(diǎn),難點(diǎn)
重點(diǎn)、難點(diǎn)是等比數列的定義的歸納及通項公式的推導、
教學(xué)用具
投影儀,多媒體軟件,電腦、
教學(xué)方法
討論、談話(huà)法、
教學(xué)過(guò)程
一、提出問(wèn)題
給出以下幾組數列,將它們分類(lèi),說(shuō)出分類(lèi)標準、(幻燈片)
、佟2,1,4,7,10,13,16,19,…
、8,16,32,64,128,256,…
、1,1,1,1,1,1,1,…
、243,81,27,9,3,1,…
、31,29,27,25,23,21,19,…
、1,—1,1,—1,1,—1,1,—1,…
、1,—10,100,—1000,10000,—100000,…
、0,0,0,0,0,0,0,…
由學(xué)生發(fā)表意見(jiàn)(可能按項與項之間的關(guān)系分為遞增數列、遞減數列、常數數列、擺動(dòng)數列,也可能分為等差、等比兩類(lèi)),統一一種分法,其中②③④⑥⑦為有共同性質(zhì)的一類(lèi)數列(學(xué)生看不出③的情況也無(wú)妨,得出定義后再考察③是否為等比數列)、
二、講解新課
請學(xué)生說(shuō)出數列②③④⑥⑦的共同特性,教師指出實(shí)際生活中也有許多類(lèi)似的例子,如變形蟲(chóng)分裂問(wèn)題、假設每經(jīng)過(guò)一個(gè)單位時(shí)間每個(gè)變形蟲(chóng)都分裂為兩個(gè)變形蟲(chóng),再假設開(kāi)始有一個(gè)變形蟲(chóng),經(jīng)過(guò)一個(gè)單位時(shí)間它分裂為兩個(gè)變形蟲(chóng),經(jīng)過(guò)兩個(gè)單位時(shí)間就有了四個(gè)變形蟲(chóng),…,一直進(jìn)行下去,記錄下每個(gè)單位時(shí)間的變形蟲(chóng)個(gè)數得到了一列數
這個(gè)數列也具有前面的幾個(gè)數列的共同特性,這是我們將要研究的另一類(lèi)數列——等比數列、(這里播放變形蟲(chóng)分裂的多媒體軟件的第一步)
等比數列(板書(shū))
1、等比數列的定義(板書(shū))
根據等比數列與等差數列的名字的區別與聯(lián)系,嘗試給等比數列下定義、學(xué)生一般回答可能不夠完美,多數情況下,有了等差數列的基礎是可以由學(xué)生概括出來(lái)的教師寫(xiě)出等比數列的定義,標注出重點(diǎn)詞語(yǔ)、
請學(xué)生指出等比數列②③④⑥⑦各自的公比,并思考有無(wú)數列既是等差數列又是等比數列、學(xué)生通過(guò)觀(guān)察可以發(fā)現③是這樣的數列,教師再追問(wèn),還有沒(méi)有其他的例子,讓學(xué)生再舉兩例、而后請學(xué)生概括這類(lèi)數列的一般形式,學(xué)生可能說(shuō)形如的數列都滿(mǎn)足既是等差又是等比數列,讓學(xué)生討論后得出結論:當時(shí),數列既是等差又是等比數列,當時(shí),它只是等差數列,而不是等比數列、教師追問(wèn)理由,引出對等比數列的認識:
2、對定義的認識(板書(shū))
。1)等比數列的首項不為0;
。2)等比數列的每一項都不為0,即
問(wèn)題:一個(gè)數列各項均不為0是這個(gè)數列為等比數列的什么條件?
。3)公比不為0、
用數學(xué)式子表示等比數列的定義、
是等比數列
、、在這個(gè)式子的.寫(xiě)法上可能會(huì )有一些爭議,如寫(xiě)成
,可讓學(xué)生研究行不行,好不好;接下來(lái)再問(wèn),能否改寫(xiě)為
是等比數列?為什么不能?式子給出了數列第項與第
項的數量關(guān)系,但能否確定一個(gè)等比數列?(不能)確定一個(gè)等比數列需要幾個(gè)條件?當給定了首項及公比后,如何求任意一項的值?所以要研究通項公式、
3、等比數列的通項公式(板書(shū))
問(wèn)題:用和表示第項
、俨煌耆珰w納法
、诏B乘法,…,這個(gè)式子相乘得,所以(板書(shū))
。1)等比數列的通項公式得出通項公式后,讓學(xué)生思考如何認識通項公式、(板書(shū))
。2)對公式的認識
由學(xué)生來(lái)說(shuō),最后歸結:
、俸瘮涤^(guān)點(diǎn);
、诜匠趟枷耄ㄒ蛟诘炔顢盗兄幸延姓J識,此處再復習鞏固而已)
這里強調方程思想解決問(wèn)題、方程中有四個(gè)量,知三求一,這是公式最簡(jiǎn)單的應用,請學(xué)生舉例(應能編出四類(lèi)問(wèn)題)、解題格式是什么?(不僅要會(huì )解題,還要注意規范表述的訓練)
如果增加一個(gè)條件,就多知道了一個(gè)量,這是公式的更高層次的應用,下節課再研究、同學(xué)可以試著(zhù)編幾道題。
三、小結
1、本節課研究了等比數列的概念,得到了通項公式;
2、注意在研究?jì)热菖c方法上要與等差數列相類(lèi)比;
3、用方程的思想認識通項公式,并加以應用。
探究活動(dòng)
將一張很大的薄紙對折,對折30次后(如果可能的話(huà))有多厚?不妨假設這張紙的厚度為0、01毫米。
參考答案:
30次后,厚度為,這個(gè)厚度超過(guò)了世界最高的山峰——珠穆朗瑪峰的高度。如果紙再薄一些,比如紙厚0、001毫米,對折34次就超過(guò)珠穆朗瑪峰的高度了、還記得國王的承諾嗎?第31個(gè)格子中的米已經(jīng)是1073741824粒了,后邊的格子中的米就更多了,最后一個(gè)格子中的米應是粒,用計算器算一下吧(對數算也行)。
高中數學(xué)教案 12
教學(xué)目的:
掌握圓的標準方程,并能解決與之有關(guān)的問(wèn)題
教學(xué)重點(diǎn):
圓的標準方程及有關(guān)運用
教學(xué)難點(diǎn):
標準方程的靈活運用
教學(xué)過(guò)程:
一、導入新課,探究標準方程
二、掌握知識,鞏固練習
練習:⒈說(shuō)出下列圓的方程
、艌A心(3,-2)半徑為5⑵圓心(0,3)半徑為3
、仓赋鱿铝袌A的`圓心和半徑
、牛▁-2)2+(y+3)2=3
、苮2+y2=2
、莤2+y2-6x+4y+12=0
、撑袛3x-4y-10=0和x2+y2=4的位置關(guān)系
、磮A心為(1,3),并與3x-4y-7=0相切,求這個(gè)圓的方程
三、引伸提高,講解例題
例1、圓心在y=-2x上,過(guò)p(2,-1)且與x-y=1相切求圓的方程(突出待定系數的數學(xué)方法)
練習:1、某圓過(guò)(-2,1)、(2,3),圓心在x軸上,求其方程。
2、某圓過(guò)A(-10,0)、B(10,0)、C(0,4),求圓的方程。
例2:某圓拱橋的跨度為20米,拱高為4米,在建造時(shí)每隔4米加一個(gè)支柱支撐,求A2P2的長(cháng)度。
例3、點(diǎn)M(x0,y0)在x2+y2=r2上,求過(guò)M的圓的切線(xiàn)方程(一題多解,訓練思維)
四、小結練習P771,2,3,4
五、作業(yè)P811,2,3,4
高中數學(xué)教案 13
教學(xué)目標:
(1)理解子集、真子集、補集、兩個(gè)集合相等概念;
(2)了解全集、空集的意義。
(3)掌握有關(guān)子集、全集、補集的符號及表示方法,會(huì )用它們正確表示一些簡(jiǎn)單的集合,培養學(xué)生的符號表示的能力;
(4)會(huì )求已知集合的子集、真子集,會(huì )求全集中子集在全集中的補集;
(5)能判斷兩集合間的包含、相等關(guān)系,并會(huì )用符號及圖形(文氏圖)準確地表示出來(lái),培養學(xué)生的數學(xué)結合的數學(xué)思想;
(6)培養學(xué)生用集合的觀(guān)點(diǎn)分析問(wèn)題、解決問(wèn)題的能力。
教學(xué)重點(diǎn):
子集、補集的概念
教學(xué)難點(diǎn):
弄清元素與子集、屬于與包含之間的區別
教學(xué)用具:
幻燈機
教學(xué)過(guò)程設計
(一)導入新課
上節課我們學(xué)習了集合、元素、集合中元素的三性、元素與集合的關(guān)系等知識。
【提出問(wèn)題】(投影打出)
已知xx,xx,xx,問(wèn):
1、哪些集合表示方法是列舉法。
2、哪些集合表示方法是描述法。
3、將集M、集從集P用圖示法表示。
4、分別說(shuō)出各集合中的元素。
5、將每個(gè)集合中的元素與該集合的關(guān)系用符號表示出來(lái)、將集N中元素3與集M的關(guān)系用符號表示出來(lái)。
6、集M中元素與集N有何關(guān)系、集M中元素與集P有何關(guān)系。
【找學(xué)生回答】
1、集合M和集合N;(口答)
2、集合P;(口答)
3、(筆練結合板演)
4、集M中元素有-1,1;集N中元素有-1,1,3;集P中元素有-1,1、(口答)
5、xx,xx,xx,xx,xx,xx,xx,xx(筆練結合板演)
6、集M中任何元素都是集N的元素、集M中任何元素都是集P的元素、(口答)
【引入】在上面見(jiàn)到的集M與集N;集M與集P通過(guò)元素建立了某種關(guān)系,而具有這種關(guān)系的兩個(gè)集合在今后學(xué)習中會(huì )經(jīng)常出現,本節將研究有關(guān)兩個(gè)集合間關(guān)系的問(wèn)題、
(二)新授知識
1、子集
(1)子集定義:一般地,對于兩個(gè)集合A與B,如果集合A的任何一個(gè)元素都是集合B的元素,我們就說(shuō)集合A包含于集合B,或集合B包含集合A。
記作:xx讀作:A包含于B或B包含A
當集合A不包含于集合B,或集合B不包含集合A時(shí),則記作:AxxB或BxxA、
性質(zhì):①xx(任何一個(gè)集合是它本身的子集)
、趚x(空集是任何集合的子集)
【置疑】能否把子集說(shuō)成是由原來(lái)集合中的部分元素組成的集合?
【解疑】不能把A是B的子集解釋成A是由B中部分元素所組成的集合。
因為B的子集也包括它本身,而這個(gè)子集是由B的全體元素組成的空集也是B的子集,而這個(gè)集合中并不含有B中的元素、由此也可看到,把A是B的子集解釋成A是由B的部分元素組成的集合是不確切的`。
(2)集合相等:一般地,對于兩個(gè)集合A與B,如果集合A的任何一個(gè)元素都是集合B的元素,同時(shí)集合B的任何一個(gè)元素都是集合A的元素,我們就說(shuō)集合A等于集合B,記作A=B。
例:xx,可見(jiàn),集合x(chóng)x,是指A、B的所有元素完全相同。
(3)真子集:對于兩個(gè)集合A與B,如果xx,并且xx,我們就說(shuō)集合A是集合B的真子集,記作:xx(或xx),讀作A真包含于B或B真包含A。
【思考】能否這樣定義真子集:“如果A是B的子集,并且B中至少有一個(gè)元素不屬于A(yíng),那么集合A叫做集合B的真子集!
集合B同它的真子集A之間的關(guān)系,可用文氏圖表示,其中兩個(gè)圓的內部分別表示集合A,B。
【提問(wèn)】
(1)xx寫(xiě)出數集N,Z,Q,R的包含關(guān)系,并用文氏圖表示。
(2)xx判斷下列寫(xiě)法是否正確
、賦xAxx②xxAxx③xx④AxxA
性質(zhì):
(1)空集是任何非空集合的真子集。若xxAxx,且A≠xx,則xxA;
(2)如果xx,xx,則xx。
例1xx寫(xiě)出集合x(chóng)x的所有子集,并指出其中哪些是它的真子集、
解:集合x(chóng)x的所有的子集是xx,xx,xx,xx,其中xx,xx,xx是xx的真子集。
【注意】(1)子集與真子集符號的方向。
(2)易混符號
、佟皒x”與“xx”:元素與集合之間是屬于關(guān)系;集合與集合之間是包含關(guān)系。如xxR,{1}xx{1,2,3}
、趝0}與xx:{0}是含有一個(gè)元素0的集合,xx是不含任何元素的集合。
如:xx{0}。不能寫(xiě)成xx={0},xx∈{0}
高中數學(xué)教案 14
教學(xué)目標:
。1)了解坐標法和解析幾何的意義,了解解析幾何的基本問(wèn)題。
。2)進(jìn)一步理解曲線(xiàn)的方程和方程的曲線(xiàn)。
。3)初步掌握求曲線(xiàn)方程的方法。
。4)通過(guò)本節內容的教學(xué),培養學(xué)生分析問(wèn)題和轉化的能力。
教學(xué)重點(diǎn)、難點(diǎn):
求曲線(xiàn)的方程。
教學(xué)用具:
計算機。
教學(xué)方法:
啟發(fā)引導法,討論法。
教學(xué)過(guò)程:
【引入】
1、提問(wèn):什么是曲線(xiàn)的方程和方程的曲線(xiàn)。
學(xué)生思考并回答。教師強調。
2、坐標法和解析幾何的意義、基本問(wèn)題。
對于一個(gè)幾何問(wèn)題,在建立坐標系的基礎上,用坐標表示點(diǎn);用方程表示曲線(xiàn),通過(guò)研究方程的性質(zhì)間接地來(lái)研究曲線(xiàn)的性質(zhì),這一研究幾何問(wèn)題的方法稱(chēng)為坐標法,這門(mén)科學(xué)稱(chēng)為解析幾何。解析幾何的兩大基本問(wèn)題就是:
。1)根據已知條件,求出表示平面曲線(xiàn)的方程。
。2)通過(guò)方程,研究平面曲線(xiàn)的性質(zhì)。
事實(shí)上,在前邊所學(xué)的直線(xiàn)方程的理論中也有這樣兩個(gè)基本問(wèn)題。而且要先研究如何求出曲線(xiàn)方程,再研究如何用方程研究曲線(xiàn)。本節課就初步研究曲線(xiàn)方程的求法。
【問(wèn)題】
如何根據已知條件,求出曲線(xiàn)的方程。
【實(shí)例分析】
例1:設、兩點(diǎn)的坐標是、(3,7),求線(xiàn)段的垂直平分線(xiàn)的方程。
首先由學(xué)生分析:根據直線(xiàn)方程的知識,運用點(diǎn)斜式即可解決。
解法一:易求線(xiàn)段的中點(diǎn)坐標為(1,3),
由斜率關(guān)系可求得l的斜率為
于是有
即l的方程為
、俜治、引導:上述問(wèn)題是我們早就學(xué)過(guò)的,用點(diǎn)斜式就可解決?墒,你們是否想過(guò)①恰好就是所求的嗎?或者說(shuō)①就是直線(xiàn)的.方程?根據是什么,有證明嗎?
。ㄍㄟ^(guò)教師引導,是學(xué)生意識到這是以前沒(méi)有解決的問(wèn)題,應該證明,證明的依據就是定義中的兩條)。
證明:(1)曲線(xiàn)上的點(diǎn)的坐標都是這個(gè)方程的解。
設是線(xiàn)段的垂直平分線(xiàn)上任意一點(diǎn),則
即將上式兩邊平方,整理得
這說(shuō)明點(diǎn)的坐標是方程的解。
。2)以這個(gè)方程的解為坐標的點(diǎn)都是曲線(xiàn)上的點(diǎn)。
設點(diǎn)的坐標是方程①的任意一解,則
到、的距離分別為
所以,即點(diǎn)在直線(xiàn)上。
綜合(1)、(2),①是所求直線(xiàn)的方程。
至此,證明完畢;仡櫳鲜鰞热菸覀儠(huì )發(fā)現一個(gè)有趣的現象:在證明(1)曲線(xiàn)上的點(diǎn)的坐標都是這個(gè)方程的解中,設是線(xiàn)段的垂直平分線(xiàn)上任意一點(diǎn),最后得到式子,如果去掉腳標,這不就是所求方程嗎?可見(jiàn),這個(gè)證明過(guò)程就表明一種求解過(guò)程,下面試試看:
解法二:設是線(xiàn)段的垂直平分線(xiàn)上任意一點(diǎn),也就是點(diǎn)屬于集合
由兩點(diǎn)間的距離公式,點(diǎn)所適合的條件可表示為
將上式兩邊平方,整理得
果然成功,當然也不要忘了證明,即驗證兩條是否都滿(mǎn)足。顯然,求解過(guò)程就說(shuō)明第一條是正確的(從這一點(diǎn)看,解法二也比解法一優(yōu)越一些);至于第二條上邊已證。
這樣我們就有兩種求解方程的方法,而且解法二不借助直線(xiàn)方程的理論,又非常自然,還體現了曲線(xiàn)方程定義中點(diǎn)集與對應的思想。因此是個(gè)好方法。
讓我們用這個(gè)方法試解如下問(wèn)題:
例2:點(diǎn)與兩條互相垂直的直線(xiàn)的距離的積是常數求點(diǎn)的軌跡方程。
分析:這是一個(gè)純粹的幾何問(wèn)題,連坐標系都沒(méi)有。所以首先要建立坐標系,顯然用已知中兩條互相垂直的直線(xiàn)作坐標軸,建立直角坐標系。然后仿照例1中的解法進(jìn)行求解。
求解過(guò)程略。
【概括總結】通過(guò)學(xué)生討論,師生共同總結:
分析上面兩個(gè)例題的求解過(guò)程,我們總結一下求解曲線(xiàn)方程的大體步驟:
首先應有坐標系;其次設曲線(xiàn)上任意一點(diǎn);然后寫(xiě)出表示曲線(xiàn)的點(diǎn)集;再代入坐標;最后整理出方程,并證明或修正。說(shuō)得更準確一點(diǎn)就是:
。1)建立適當的坐標系,用有序實(shí)數對例如表示曲線(xiàn)上任意一點(diǎn)的坐標;
。2)寫(xiě)出適合條件的點(diǎn)的集合;
。3)用坐標表示條件,列出方程;
。4)化方程為最簡(jiǎn)形式;
。5)證明以化簡(jiǎn)后的方程的解為坐標的點(diǎn)都是曲線(xiàn)上的點(diǎn)。
一般情況下,求解過(guò)程已表明曲線(xiàn)上的點(diǎn)的坐標都是方程的解;如果求解過(guò)程中的轉化都是等價(jià)的,那么逆推回去就說(shuō)明以方程的解為坐標的點(diǎn)都是曲線(xiàn)上的點(diǎn)。所以,通常情況下證明可省略,不過(guò)特殊情況要說(shuō)明。
上述五個(gè)步驟可簡(jiǎn)記為:建系設點(diǎn);寫(xiě)出集合;列方程;化簡(jiǎn);修正。
下面再看一個(gè)問(wèn)題:
例3:已知一條曲線(xiàn)在軸的上方,它上面的每一點(diǎn)到點(diǎn)的距離減去它到軸的距離的差都是2,求這條曲線(xiàn)的方程。
【動(dòng)畫(huà)演示】用幾何畫(huà)板演示曲線(xiàn)生成的過(guò)程和形狀,在運動(dòng)變化的過(guò)程中尋找關(guān)系。
解:設點(diǎn)是曲線(xiàn)上任意一點(diǎn),軸,垂足是(如圖2),那么點(diǎn)屬于集合
由距離公式,點(diǎn)適合的條件可表示為
、
將①式移項后再兩邊平方,得
化簡(jiǎn)得
由題意,曲線(xiàn)在軸的上方,所以,雖然原點(diǎn)的坐標(0,0)是這個(gè)方程的解,但不屬于已知曲線(xiàn),所以曲線(xiàn)的方程應為,它是關(guān)于軸對稱(chēng)的拋物線(xiàn),但不包括拋物線(xiàn)的頂點(diǎn),如圖2中所示。
【練習鞏固】
題目:在正三角形內有一動(dòng)點(diǎn),已知到三個(gè)頂點(diǎn)的距離分別為、、,且有,求點(diǎn)軌跡方程。
分析、略解:首先應建立坐標系,以正三角形一邊所在的直線(xiàn)為一個(gè)坐標軸,這條邊的垂直平分線(xiàn)為另一個(gè)軸,建立直角坐標系比較簡(jiǎn)單,如圖3所示。設、的坐標為、,則的坐標為,的坐標為。
根據條件,代入坐標可得
化簡(jiǎn)得
、
由于題目中要求點(diǎn)在三角形內,所以,在結合①式可進(jìn)一步求出、的范圍,最后曲線(xiàn)方程可表示為
【小結】師生共同總結:
。1)解析幾何研究研究問(wèn)題的方法是什么?
。2)如何求曲線(xiàn)的方程?
。3)請對求解曲線(xiàn)方程的五個(gè)步驟進(jìn)行評價(jià)。各步驟的作用,哪步重要,哪步應注意什么?
【作業(yè)】課本第72頁(yè)練習1,2,3;
高中數學(xué)教案 15
教學(xué)目標:
1.進(jìn)一步熟練掌握比較法證明不等式;
2.了解作商比較法證明不等式;
3.提高學(xué)生解題時(shí)應變能力.
教學(xué)重點(diǎn):
比較法的應用
教學(xué)難點(diǎn):
常見(jiàn)解題技巧
教學(xué)方法啟發(fā)引導式
教學(xué)活動(dòng)
。ㄒ唬⿲胄抡n
。ń處熁顒(dòng))教師打出字幕(復習提問(wèn)),請三位同學(xué)回答問(wèn)題,教師點(diǎn)評.
。▽W(xué)生活動(dòng))思考問(wèn)題,回答.
。圩帜唬1.比較法證明不等式的步驟是怎樣的?
2.比較法證明不等式的步驟中,依據、手段、目的各是什么?
3.用比較法證明不等式的步驟中,最關(guān)鍵的是哪一步?學(xué)了哪些常用的變形方法?對式子的變形還有其它方法嗎?
[點(diǎn)評]用比較法證明不等式步驟中,關(guān)鍵是對差式的變形.在我們所學(xué)的知識中,對式子變形的常用方法除了配方、通分,還有因式分解.這節課我們將繼續學(xué)習比較法證明不等式,積累對差式變形的常用方法和比較法思想的應用.(板書(shū)課題)
設計意圖:復習鞏固已學(xué)知識,銜接新知識,引入本節課學(xué)習的內容.
。ǘ┬抡n講授
【嘗試探索,建立新知】
。ń處熁顒(dòng))提出問(wèn)題,引導學(xué)生研究解決問(wèn)題,并點(diǎn)評.
。▽W(xué)生活動(dòng))嘗試解決問(wèn)題.
[問(wèn)題]
1.化簡(jiǎn)
2.比較與()的大。
。▽W(xué)生解答問(wèn)題)
。埸c(diǎn)評]
、賳(wèn)題1,我們采用了因式分解的方法進(jìn)行簡(jiǎn)化.
、谕ㄟ^(guò)學(xué)習比較法證明不等式,我們不難發(fā)現,比較法的思想方法還可用來(lái)比較兩個(gè)式子的大。
設計意圖:?jiǎn)l(fā)學(xué)生研究問(wèn)題,建立新知,形成新的知識體系.
【例題示范,學(xué)會(huì )應用】
。ń處熁顒(dòng))教師打出字幕(例題),引導、啟發(fā)學(xué)生研究問(wèn)題,井點(diǎn)評解題過(guò)程.
。▽W(xué)生活動(dòng))分析,研究問(wèn)題.
。圩帜唬堇}3已知 a , b 是正數,且,求證
。鄯治觯菀李}目特點(diǎn),作差后重新組項,采用因式分解來(lái)變形.
證明:(見(jiàn)課本)
。埸c(diǎn)評]因式分解也是對差式變形的一種常用方法.此例將差式變形為幾個(gè)因式的積的形式,在確定符號中,表達過(guò)程較復雜,如何書(shū)寫(xiě)證明過(guò)程,例3給出了一個(gè)好的'示范.
。埸c(diǎn)評]解這道題在判斷符號時(shí)用了分類(lèi)討論,分類(lèi)討論是重要的數學(xué) 思想方法.要理解為什么分類(lèi),怎樣分類(lèi).分類(lèi)時(shí)要不重不漏.
。圩帜唬堇5甲、乙兩人同時(shí)同地沿同一條路線(xiàn)走到同一地點(diǎn).甲有一半時(shí)間以速度 m 行走,另一半時(shí)間以速度 n 行走;有一半路程乙以速度 m 行走,另一半路程以速度 n 行走,如果,問(wèn)甲、乙兩人誰(shuí)先到達指定地點(diǎn).
[分析]設從出發(fā)地點(diǎn)至指定地點(diǎn)的路程為,甲、乙兩人走完這段路程用的時(shí)間分別為,要回答題目中的問(wèn)題,只要比較、的大小就可以了.
解:(見(jiàn)課本)
。埸c(diǎn)評]此題是一個(gè)實(shí)際問(wèn)題,學(xué)習了如何利用比較法證明不等式的思想方法解決有關(guān)實(shí)際問(wèn)題.要培養自己學(xué)數學(xué),用數學(xué)的良好品質(zhì).
設計意圖:鞏固比較法證明不等式的方法,掌握因式分解的變形方法和分類(lèi)討論確定符號的方法.培養學(xué)生應用知識解決實(shí)際問(wèn)題的能力.
【課堂練習】
。ń處熁顒(dòng))教師打出字幕練習,要求學(xué)生獨立思考,完成練習;請甲、乙兩位學(xué)生板演;巡視學(xué)生的解題情況,對正確的給予肯定,對偏差及時(shí)糾正;點(diǎn)評練習中存在的問(wèn)題.
。▽W(xué)生活動(dòng))在筆記本上完成練習,甲、乙兩位同學(xué)板演.
。圩帜唬菥毩暎1.設,比較與的大。
2.已知,求證
設計意圖:掌握比較法證明不等式及思想方法的應用.靈活掌握因式分解法對差式的變形和分類(lèi)討論確定符號.反饋信息,調節課堂教學(xué).
【分析歸納、小結解法】
。ń處熁顒(dòng))分析歸納例題的解題過(guò)程,小結對差式變形、確定符號的常用方法和利用不等式解決實(shí)際問(wèn)題的解題步驟.
。▽W(xué)生活動(dòng))與教師一道小結,并記錄在筆記本上.
1.比較法不僅是證明不等式的一種基本、重要的方法,也是比較兩個(gè)式子大小的一種重要方法.
2.對差式變形的常用方法有:配方法,通分法,因式分解法等.
3.會(huì )用分類(lèi)討論的方法確定差式的符號.
4.利用不等式解決實(shí)際問(wèn)題的解題步驟:①類(lèi)比列方程解應用題的步驟.②分析題意,設未知數,找出數量關(guān)系(函數關(guān)系,相等關(guān)系或不等關(guān)系),③列出函數關(guān)系、等式或不等式,④求解,作答.
設計意圖:培養學(xué)生分析歸納問(wèn)題的能力,掌握用比較法證明不等式的知識體系.
。ㄈ┬〗Y
。ń處熁顒(dòng))教師小結本節課所學(xué)的知識及數學(xué) 思想與方法.
。▽W(xué)生活動(dòng))與教師一道小結,并記錄筆記.
本節課學(xué)習了對差式變形的一種常用方法因式分解法;對符號確定的分類(lèi)討論法;應用比較法的思想解決實(shí)際問(wèn)題.
通過(guò)學(xué)習比較法證明不等式,要明確比較法證明不等式的理論依據,理解轉化,使問(wèn)題簡(jiǎn)化是比較法證明不等式中所蘊含的重要數學(xué)思想,掌握求差后對差式變形以及判斷符號的重要方法,并在以后的學(xué)習中繼續積累方法,培養用數學(xué)知識解決實(shí)際問(wèn)題的能力.
設計意圖:培養學(xué)生對所學(xué)的知識進(jìn)行概括歸納的能力,鞏固所學(xué)的知識,領(lǐng)會(huì )化歸、類(lèi)比、分類(lèi)討論的重要數學(xué) 思想方法.
。ㄋ模┎贾米鳂I(yè)
1.課本作業(yè):P17 7、8。
2,思考題:已知,求證
3.研究性題:對于同樣的距離,船在流水中來(lái)回行駛一次的時(shí)間和船在靜水中來(lái)回行駛一次的時(shí)間是否相等?(假設船在流水中的速度和部在靜水中的速度保持不變)
設計意圖:思考題讓學(xué)生了解商值比較法,掌握分類(lèi)討論的思想.研究性題是使學(xué)生理論聯(lián)系實(shí)際,用數學(xué)解決實(shí)際問(wèn)題,提高應用數學(xué)的能力.
。ㄎ澹┱n后點(diǎn)評
1.教學(xué)評價(jià)、反饋調節措施的構想:本節課采用啟發(fā)引導,講練結合的授課方式,發(fā)揮教師主導作用,體現學(xué)生主體地位,通過(guò)啟發(fā)誘導學(xué)生深入思考問(wèn)題,解決問(wèn)題,反饋學(xué)習信息,調節教學(xué)活動(dòng).
2.教學(xué)措施的設計:由于對差式變形,確定符號是掌握比較法證明不等式的關(guān)鍵,本節課在上節課的基礎上繼續學(xué)習差式變形的方法和符號的確定,例3和例4分別使學(xué)生掌握因式分解變形和分類(lèi)討論確定符號,例5使學(xué)生對所學(xué)的知識會(huì )應用.例題設計目的在于突出重點(diǎn),突破難點(diǎn),學(xué)會(huì )應用
高中數學(xué)教案 16
一、教學(xué)目標
知識與技能:
理解任意角的概念(包括正角、負角、零角)與區間角的概念。
過(guò)程與方法:
會(huì )建立直角坐標系討論任意角,能判斷象限角,會(huì )書(shū)寫(xiě)終邊相同角的集合;掌握區間角的集合的書(shū)寫(xiě)。
情感態(tài)度與價(jià)值觀(guān):
1、提高學(xué)生的推理能力;
2、培養學(xué)生應用意識。
二、教學(xué)重點(diǎn)、難點(diǎn):
教學(xué)重點(diǎn):
任意角概念的理解;區間角的集合的書(shū)寫(xiě)。
教學(xué)難點(diǎn):
終邊相同角的集合的表示;區間角的集合的書(shū)寫(xiě)。
三、教學(xué)過(guò)程
。ㄒ唬⿲胄抡n
1、回顧角的定義
、俳堑牡谝环N定義是有公共端點(diǎn)的兩條射線(xiàn)組成的圖形叫做角。
、诮堑牡诙N定義是角可以看成平面內一條射線(xiàn)繞著(zhù)端點(diǎn)從一個(gè)位置旋轉到另一個(gè)位置所形成的'圖形。
。ǘ┙虒W(xué)新課
1、角的有關(guān)概念:
、俳堑亩x:
角可以看成平面內一條射線(xiàn)繞著(zhù)端點(diǎn)從一個(gè)位置旋轉到另一個(gè)位置所形成的圖形。
、诮堑拿Q(chēng):
注意:
、旁诓灰鸹煜那闆r下,“角α ”或“∠α ”可以簡(jiǎn)化成“α ”;
、屏憬堑慕K邊與始邊重合,如果α是零角α =0°;
、墙堑母拍罱(jīng)過(guò)推廣后,已包括正角、負角和零角。
、菥毩暎赫堈f(shuō)出角α、β、γ各是多少度?
2、象限角的概念:
、俣x:若將角頂點(diǎn)與原點(diǎn)重合,角的始邊與x軸的非負半軸重合,那么角的終邊(端點(diǎn)除外)在第幾象限,我們就說(shuō)這個(gè)角是第幾象限角。
例1、如圖⑴⑵中的角分別屬于第幾象限角?
高中數學(xué)教案 17
三維目標:
1、知識與技能:正確理解隨機抽樣的概念,掌握抽簽法、隨機數表法的一般步驟;
2、過(guò)程與方法:
(1)能夠從現實(shí)生活或其他學(xué)科中提出具有一定價(jià)值的統計問(wèn)題;
(2)在解決統計問(wèn)題的過(guò)程中,學(xué)會(huì )用簡(jiǎn)單隨機抽樣的方法從總體中抽取樣本。
3、情感態(tài)度與價(jià)值觀(guān):通過(guò)對現實(shí)生活和其他學(xué)科中統計問(wèn)題的提出,體會(huì )數學(xué)知識與現實(shí)世界及各學(xué)科知識之間的聯(lián)系,認識數學(xué)的重要性。
4、重點(diǎn)與難點(diǎn):正確理解簡(jiǎn)單隨機抽樣的概念,掌握抽簽法及隨機數法的步驟,并能靈活應用相關(guān)知識從總體中抽取樣本。
教學(xué)方法:
講練結合法
教學(xué)用具:
多媒體
課時(shí)安排:
1課時(shí)
教學(xué)過(guò)程:
一、問(wèn)題情境
假設你作為一名食品衛生工作人員,要對某食品店內的一批小包裝餅干進(jìn)行衛生達標檢驗,你準備怎樣做?顯然,你只能從中抽取一定數量的餅干作為檢驗的樣本。(為什么?)那么,應當怎樣獲取樣本呢?
二、探究新知
1、統計的有關(guān)概念:總體:在統計學(xué)中,所有考察對象的全體叫做總體、個(gè)體:每一個(gè)考察的對象叫做個(gè)體、樣本:從總體中抽取的一部分個(gè)體叫做總體的一個(gè)樣本、樣本容量:樣本中個(gè)體的數目叫做樣本的容量、統計的基本思想:用樣本去估計總體、
2、簡(jiǎn)單隨機抽樣的概念一般地,設一個(gè)總體含有N個(gè)個(gè)體,從中逐個(gè)不放回地抽取n個(gè)個(gè)體作為樣本(n≤N),如果每次抽取時(shí)總體內的各個(gè)個(gè)體被抽到的機會(huì )都相等,就把這種抽樣方法叫做簡(jiǎn)單隨機抽樣,這樣抽取的樣本,叫做簡(jiǎn)單隨機樣本。
下列抽樣的方式是否屬于簡(jiǎn)單隨機抽樣?為什么?
(1)從無(wú)限多個(gè)個(gè)體中抽取50個(gè)個(gè)體作為樣本。
(2)箱子里共有100個(gè)零件,從中選出10個(gè)零件進(jìn)行質(zhì)量檢驗,在抽樣操作中,從中任意取出一個(gè)零件進(jìn)行質(zhì)量檢驗后,再把它放回箱子。
(3)從8臺電腦中,不放回地隨機抽取2臺進(jìn)行質(zhì)量檢查(假設8臺電腦已編好號,對編號隨機抽取)
3、常用的簡(jiǎn)單隨機抽樣方法有:
(1)抽簽法的定義。一般地,抽簽法就是把總體中的N個(gè)個(gè)體編號,把號碼寫(xiě)在號簽上,將號簽放在一個(gè)容器中,攪拌均勻后,每次從中抽取一個(gè)號簽,連續抽取n次,就得到一個(gè)容量為n的樣本。
思考?你認為抽簽法有什么優(yōu)點(diǎn)和缺點(diǎn):當總體中的個(gè)體數很多時(shí),用抽簽法方便嗎?例1、若已知高一(6)班總共有57人,現要抽取8位同學(xué)出來(lái)做游戲,請設計一個(gè)抽取的方法,要使得每位同學(xué)被抽到的機會(huì )相等。
分析:可以把57位同學(xué)的學(xué)號分別寫(xiě)在大小,質(zhì)地都相同的紙片上,折疊或揉成小球,把紙片集中在一起并充分攪拌后,在從中個(gè)抽出8張紙片,再選出紙片上的學(xué)號對應的同學(xué)即可、基本步驟:第一步:將總體的所有N個(gè)個(gè)體從1至N編號;第二步:準備N(xiāo)個(gè)號簽分別標上這些編號,將號簽放在容器中攪拌均勻后每次抽取一個(gè)號簽,不放回地連續取n次;第三步:將取出的n個(gè)號簽上的號碼所對應的n個(gè)個(gè)體作為樣本。
(2)隨機數法的定義:利用隨機數表、隨機數骰子或計算機產(chǎn)生的隨機數進(jìn)行抽樣,叫隨機數表法,這里僅介紹隨機數表法。怎樣利用隨機數表產(chǎn)生樣本呢?下面通過(guò)例子來(lái)說(shuō)明,假設我們要考察某公司生產(chǎn)的500克袋裝牛奶的'質(zhì)量是否達標,現從800袋牛奶中抽取60袋進(jìn)行檢驗,利用隨機數表抽取樣本時(shí),可以按照下面的步驟進(jìn)行。第一步,先將800袋牛奶編號,可以編為000,001,799。
第二步,在隨機數表中任選一個(gè)數,例如選出第8行第7列的數7(為了便于說(shuō)明,下面摘取了附表1的第6行至第10行)。 16 22 77 94 39 49 54 43 54 82 17 37 93 23 78 84 42 17 53 31 57 24 55 06 88 77 04 74 47 67 63 01 63 78 59 16 95 55 67 19 98 10 50 71 75 33 21 12 34 29 78 64 56 07 82 52 42 07 44 38 57 60 86 32 44 09 47 27 96 54 49 17 46 09 62 87 35 20 96 43 84 26 34 91 64 21 76 33 50 25 83 92 12 06 76 12 86 73 58 07 44 39 52 38 79 15 51 00 13 42 99 66 02 79 54 90 52 84 77 27 08 02 73 43 28第三步,從選定的數7開(kāi)始向右讀(讀數的方向也可以是向左、向上、向下等),得到一個(gè)三位數785,由于785<799,說(shuō)明號碼785在總體內,將它取出;
繼續向右讀,得到916,由于916>799,將它去掉,按照這種方法繼續向右讀,又取出567,199,507,依次下去,直到樣本的60個(gè)號碼全部取出,這樣我們就得到一個(gè)容量為60的樣本。
三、課堂練習
四、課堂小結
1、簡(jiǎn)單隨機抽樣的概念一般地,設一個(gè)總體的個(gè)體數為N,如果通過(guò)逐個(gè)抽取的方法從中抽取一個(gè)樣本,且每次抽取時(shí)各個(gè)個(gè)體被抽到的概率相等,就稱(chēng)這樣的抽樣為簡(jiǎn)單隨機抽樣。
2、簡(jiǎn)單隨機抽樣的方法:抽簽法隨機數表法
五、課后作業(yè)
P57練習1、2
六、板書(shū)設計
1、統計的有關(guān)概念
2、簡(jiǎn)單隨機抽樣的概念
3、常用的簡(jiǎn)單隨機抽樣方法有:(1)抽簽法(2)隨機數表法
4、課堂練習
【高中數學(xué)教案】相關(guān)文章:
高中數學(xué)教案12-29
高中數學(xué)教案11-01
【薦】高中數學(xué)教案01-29
高中數學(xué)教案【熱門(mén)】02-04
【推薦】高中數學(xué)教案01-06
高中數學(xué)教案【熱】12-29
【精】高中數學(xué)教案12-29
【熱】高中數學(xué)教案12-29
【薦】高中數學(xué)教案12-29
高中數學(xué)教案【推薦】01-25