成人免费看黄网站无遮挡,caowo999,se94se欧美综合色,a级精品九九九大片免费看,欧美首页,波多野结衣一二三级,日韩亚洲欧美综合

高中數學(xué)教案

時(shí)間:2022-12-29 11:38:10 數學(xué)教案 我要投稿
  • 相關(guān)推薦

高中數學(xué)教案【熱】

  作為一名優(yōu)秀的教育工作者,總歸要編寫(xiě)教案,借助教案可以更好地組織教學(xué)活動(dòng)。怎樣寫(xiě)教案才更能起到其作用呢?以下是小編幫大家整理的高中數學(xué)教案,歡迎閱讀,希望大家能夠喜歡。

高中數學(xué)教案【熱】

高中數學(xué)教案1

  教學(xué)目標:

  1。理解并掌握瞬時(shí)速度的定義;

  2。會(huì )運用瞬時(shí)速度的定義求物體在某一時(shí)刻的瞬時(shí)速度和瞬時(shí)加速度;

  3。理解瞬時(shí)速度的實(shí)際背景,培養學(xué)生解決實(shí)際問(wèn)題的能力。

  教學(xué)重點(diǎn):

  會(huì )運用瞬時(shí)速度的定義求物體在某一時(shí)刻的瞬時(shí)速度和瞬時(shí)加速度。

  教學(xué)難點(diǎn):

  理解瞬時(shí)速度和瞬時(shí)加速度的定義。

  教學(xué)過(guò)程:

  一、問(wèn)題情境

  1。問(wèn)題情境。

  平均速度:物體的運動(dòng)位移與所用時(shí)間的比稱(chēng)為平均速度。

  問(wèn)題一平均速度反映物體在某一段時(shí)間段內運動(dòng)的快慢程度。那么如何刻畫(huà)物體在某一時(shí)刻運動(dòng)的快慢程度?

  問(wèn)題二跳水運動(dòng)員從10m高跳臺騰空到入水的過(guò)程中,不同時(shí)刻的速度是不同的。假設t秒后運動(dòng)員相對于水面的高度為h(t)=-4.9t2+6.5t+10,試確定t=2s時(shí)運動(dòng)員的速度.

  2。探究活動(dòng):

  (1)計算運動(dòng)員在2s到2.1s(t∈)內的平均速度。

  (2)計算運動(dòng)員在2s到(2+?t)s(t∈)內的平均速度。

  (3)如何計算運動(dòng)員在更短時(shí)間內的平均速度。

  探究結論:

  時(shí)間區間

  t

  平均速度

  0.1

  -13.59

  0.01

  -13.149

  0.001

  -13.1049

  0.0001

  -13.10049

  0.00001

  -13.100049

  0.000001

  -13.1000049

  當?t?0時(shí),?-13.1,

  該常數可作為運動(dòng)員在2s時(shí)的瞬時(shí)速度。

  即t=2s時(shí),高度對于時(shí)間的瞬時(shí)變化率。

  二、建構數學(xué)

  1。平均速度。

  設物體作直線(xiàn)運動(dòng)所經(jīng)過(guò)的路程為,以為起始時(shí)刻,物體在?t時(shí)間內的平均速度為。

  可作為物體在時(shí)刻的速度的近似值,?t越小,近似的程度就越好。所以當?t?0時(shí),極限就是物體在時(shí)刻的瞬時(shí)速度。

  三、數學(xué)運用

  例1物體作自由落體運動(dòng),運動(dòng)方程為,其中位移單位是m,時(shí)

  間單位是s,,求:

 。1)物體在時(shí)間區間s上的平均速度;

 。2)物體在時(shí)間區間上的平均速度;

 。3)物體在t=2s時(shí)的瞬時(shí)速度。

  分析

  解

 。1)將?t=0.1代入上式,得:=2.05g=20.5m/s。

 。2)將?t=0.01代入上式,得:=2.005g=20.05m/s。

 。3)當?t?0,2+?t?2,從而平均速度的極限為:

  例2設一輛轎車(chē)在公路上作直線(xiàn)運動(dòng),假設時(shí)的速度為,

  求當時(shí)轎車(chē)的瞬時(shí)加速度。

  解

  ∴當?t無(wú)限趨于0時(shí),無(wú)限趨于,即=。

  練習

  課本P12—1,2。

  四、回顧小結

  問(wèn)題1本節課你學(xué)到了什么?

  1理解瞬時(shí)速度和瞬時(shí)加速度的定義;

  2實(shí)際應用問(wèn)題中瞬時(shí)速度和瞬時(shí)加速度的求解;

  問(wèn)題2解決瞬時(shí)速度和瞬時(shí)加速度問(wèn)題需要注意什么?

  注意當?t?0時(shí),瞬時(shí)速度和瞬時(shí)加速度的極限值。

  問(wèn)題3本節課體現了哪些數學(xué)思想方法?

  2極限的思想方法。

  3特殊到一般、從具體到抽象的推理方法。

  五、課外作業(yè)

高中數學(xué)教案2

  教學(xué)目標

  知識與技能目標:

  本節的中心任務(wù)是研究導數的幾何意義及其應用,概念的形成分為三個(gè)層次:

  (1)通過(guò)復習舊知“求導數的兩個(gè)步驟”以及“平均變化率與割線(xiàn)斜率的關(guān)系”,解決了平均變化率的幾何意義后,明確探究導數的幾何意義可以依據導數概念的形成尋求解決問(wèn)題的途徑。

  (2)從圓中割線(xiàn)和切線(xiàn)的變化聯(lián)系,推廣到一般曲線(xiàn)中用割線(xiàn)逼近的方法直觀(guān)定義切線(xiàn)。

  (3)依據割線(xiàn)與切線(xiàn)的變化聯(lián)系,數形結合探究函數導數的幾何意義教案在導數的幾何意義教案處的導數導數的幾何意義教案的幾何意義,使學(xué)生認識到導數導數的幾何意義教案就是函數導數的幾何意義教案的圖象在導數的幾何意義教案處的切線(xiàn)的斜率。即:

  導數的幾何意義教案=曲線(xiàn)在導數的幾何意義教案處切線(xiàn)的斜率k

  在此基礎上,通過(guò)例題和練習使學(xué)生學(xué)會(huì )利用導數的幾何意義解釋實(shí)際生活問(wèn)題,加深對導數內涵的理解。在學(xué)習過(guò)程中感受逼近的思想方法,了解“以直代曲”的數學(xué)思想方法。

  過(guò)程與方法目標:

  (1)學(xué)生通過(guò)觀(guān)察感知、動(dòng)手探究,培養學(xué)生的動(dòng)手和感知發(fā)現的能力。

  (2)學(xué)生通過(guò)對圓的切線(xiàn)和割線(xiàn)聯(lián)系的認識,再類(lèi)比探索一般曲線(xiàn)的情況,完善對切線(xiàn)的認知,感受逼近的思想,體會(huì )相切是種局部性質(zhì)的本質(zhì),有助于數學(xué)思維能力的提高。

  (3)結合分層的探究問(wèn)題和分層練習,期望各種層次的學(xué)生都可以憑借自己的能力盡力走在教師的前面,獨立解決問(wèn)題和發(fā)現新知、應用新知。

  情感、態(tài)度、價(jià)值觀(guān):

  (1)通過(guò)在探究過(guò)程中滲透逼近和以直代曲思想,使學(xué)生了解近似與精確間的辨證關(guān)系;通過(guò)有限來(lái)認識無(wú)限,體驗數學(xué)中轉化思想的意義和價(jià)值;

  (2)在教學(xué)中向他們提供充分的從事數學(xué)活動(dòng)的機會(huì ),如:探究活動(dòng),讓學(xué)生自主探究新知,例題則采用練在講之前,講在關(guān)鍵處。在活動(dòng)中激發(fā)學(xué)生的學(xué)習潛能,促進(jìn)他們真正理解和掌握基本的數學(xué)知識技能、數學(xué)思想方法,獲得廣泛的數學(xué)活動(dòng)經(jīng)驗,提高綜合能力,學(xué)會(huì )學(xué)習,進(jìn)一步在意志力、自信心、理性精神等情感與態(tài)度方面得到良好的發(fā)展。

  教學(xué)重點(diǎn)與難點(diǎn)

  重點(diǎn):理解和掌握切線(xiàn)的新定義、導數的幾何意義及應用于解決實(shí)際問(wèn)題,體會(huì )數形結合、以直代曲的思想方法。

  難點(diǎn):發(fā)現、理解及應用導數的幾何意義。

  教學(xué)過(guò)程

  一、復習提問(wèn)

  1.導數的定義是什么?求導數的三個(gè)步驟是什么?求函數y=x2在x=2處的導數.

  定義:函數在導數的幾何意義教案處的導數導數的幾何意義教案就是函數在該點(diǎn)處的瞬時(shí)變化率。

  求導數的步驟:

  第一步:求平均變化率導數的幾何意義教案;

  第二步:求瞬時(shí)變化率導數的幾何意義教案.

  (即導數的幾何意義教案,平均變化率趨近于的確定常數就是該點(diǎn)導數)

  2.觀(guān)察函數導數的幾何意義教案的圖象,平均變化率導數的幾何意義教案在圖形中表示什么?

  生:平均變化率表示的是割線(xiàn)PQ的斜率.導數的幾何意義教案

  師:這就是平均變化率(導數的幾何意義教案)的幾何意義,

  3.瞬時(shí)變化率(導數的幾何意義教案)在圖中又表示什么呢?

  如圖2-1,設曲線(xiàn)C是函數y=f(x)的圖象,點(diǎn)P(x0,y0)是曲線(xiàn)C上一點(diǎn).點(diǎn)Q(x0+Δx,y0+Δy)是曲線(xiàn)C上與點(diǎn)P鄰近的任一點(diǎn),作割線(xiàn)PQ,當點(diǎn)Q沿著(zhù)曲線(xiàn)C無(wú)限地趨近于點(diǎn)P,割線(xiàn)PQ便無(wú)限地趨近于某一極限位置PT,我們就把極限位置上的直線(xiàn)PT,叫做曲線(xiàn)C在點(diǎn)P處的切線(xiàn).

  導數的幾何意義教案

  追問(wèn):怎樣確定曲線(xiàn)C在點(diǎn)P的切線(xiàn)呢?因為P是給定的,根據平面解析幾何中直線(xiàn)的點(diǎn)斜式方程的知識,只要求出切線(xiàn)的斜率就夠了.設割線(xiàn)PQ的傾斜角為導數的幾何意義教案,切線(xiàn)PT的傾斜角為導數的幾何意義教案,易知割線(xiàn)PQ的斜率為導數的幾何意義教案。既然割線(xiàn)PQ的極限位置上的直線(xiàn)PT是切線(xiàn),所以割線(xiàn)PQ斜率的極限就是切線(xiàn)PT的斜率導數的幾何意義教案,即導數的幾何意義教案。

  由導數的定義知導數的幾何意義教案導數的幾何意義教案。

  導數的幾何意義教案

  由上式可知:曲線(xiàn)f(x)在點(diǎn)(x0,f(x0))處的切線(xiàn)的斜率就是y=f(x)在點(diǎn)x0處的導數f'(x0).今天我們就來(lái)探究導數的幾何意義。

  C類(lèi)學(xué)生回答第1題,A,B類(lèi)學(xué)生回答第2題在學(xué)生回答基礎上教師重點(diǎn)講評第3題,然后逐步引入導數的幾何意義.

  二、新課

  1、導數的幾何意義:

  函數y=f(x)在點(diǎn)x0處的導數f'(x0)的幾何意義,就是曲線(xiàn)y=f(x)在點(diǎn)(x0,f(x0))處切線(xiàn)的斜率.

  即:導數的幾何意義教案

  口答練習:

  (1)如果函數y=f(x)在已知點(diǎn)x0處的導數分別為下列情況f'(x0)=1,f'(x0)=1,f'(x0)=-1,f'(x0)=2.試求函數圖像在對應點(diǎn)的切線(xiàn)的傾斜角,并說(shuō)明切線(xiàn)各有什么特征。

  (C層學(xué)生做)

  (2)已知函數y=f(x)的圖象(如圖2-2),分別為以下三種情況的直線(xiàn),通過(guò)觀(guān)察確定函數在各點(diǎn)的導數.(A、B層學(xué)生做)

  導數的幾何意義教案

  2、如何用導數研究函數的增減?

  小結:附近:瞬時(shí),增減:變化率,即研究函數在該點(diǎn)處的瞬時(shí)變化率,也就是導數。導數的正負即對應函數的增減。作出該點(diǎn)處的切線(xiàn),可由切線(xiàn)的升降趨勢,得切線(xiàn)斜率的正負即導數的正負,就可以判斷函數的增減性,體會(huì )導數是研究函數增減、變化快慢的有效工具。

  同時(shí),結合以直代曲的思想,在某點(diǎn)附近的切線(xiàn)的變化情況與曲線(xiàn)的變化情況一樣,也可以判斷函數的增減性。都反應了導數是研究函數增減、變化快慢的有效工具。

  例1函數導數的幾何意義教案上有一點(diǎn)導數的幾何意義教案,求該點(diǎn)處的導數導數的幾何意義教案,并由此解釋函數的增減情況。

  導數的幾何意義教案

  函數在定義域上任意點(diǎn)處的瞬時(shí)變化率都是3,函數在定義域內單調遞增。(此時(shí)任意點(diǎn)處的切線(xiàn)就是直線(xiàn)本身,斜率就是變化率)

  3、利用導數求曲線(xiàn)y=f(x)在點(diǎn)(x0,f(x0))處的切線(xiàn)方程.

  例2求曲線(xiàn)y=x2在點(diǎn)M(2,4)處的切線(xiàn)方程.

  解:導數的幾何意義教案

  ∴y'|x=2=2×2=4.

  ∴點(diǎn)M(2,4)處的切線(xiàn)方程為y-4=4(x-2),即4x-y-4=0.

  由上例可歸納出求切線(xiàn)方程的兩個(gè)步驟:

  (1)先求出函數y=f(x)在點(diǎn)x0處的導數f'(x0).

  (2)根據直線(xiàn)方程的點(diǎn)斜式,得切線(xiàn)方程為y-y0=f'(x0)(x-x0).

  提問(wèn):若在點(diǎn)(x0,f(x0))處切線(xiàn)PT的傾斜角為導數的幾何意義教案導數的幾何意義教案,求切線(xiàn)方程。(因為這時(shí)切線(xiàn)平行于y軸,而導數不存在,不能用上面方法求切線(xiàn)方程。根據切線(xiàn)定義可直接得切線(xiàn)方程導數的幾何意義教案)

  (先由C類(lèi)學(xué)生來(lái)回答,再由A,B補充.)

  例3已知曲線(xiàn)導數的幾何意義教案上一點(diǎn)導數的幾何意義教案,求:(1)過(guò)P點(diǎn)的切線(xiàn)的斜率;

  (2)過(guò)P點(diǎn)的切線(xiàn)的方程。

  解:(1)導數的幾何意義教案,

  導數的幾何意義教案

  y'|x=2=22=4. ∴在點(diǎn)P處的切線(xiàn)的斜率等于4.

  (2)在點(diǎn)P處的切線(xiàn)方程為導數的幾何意義教案即12x-3y-16=0.

  練習:求拋物線(xiàn)y=x2+2在點(diǎn)M(2,6)處的切線(xiàn)方程.

  (答案:y'=2x,y'|x=2=4切線(xiàn)方程為4x-y-2=0).

  B類(lèi)學(xué)生做題,A類(lèi)學(xué)生糾錯。

  三、小結

  1.導數的幾何意義.(C組學(xué)生回答)

  2.利用導數求曲線(xiàn)y=f(x)在點(diǎn)(x0,f(x0))處的切線(xiàn)方程的步驟.

  (B組學(xué)生回答)

  四、布置作業(yè)

  1.求拋物線(xiàn)導數的幾何意義教案在點(diǎn)(1,1)處的切線(xiàn)方程。

  2.求拋物線(xiàn)y=4x-x2在點(diǎn)A(4,0)和點(diǎn)B(2,4)處的切線(xiàn)的斜率,切線(xiàn)的方程.

  3.求曲線(xiàn)y=2x-x3在點(diǎn)(-1,-1)處的切線(xiàn)的傾斜角

  4.已知拋物線(xiàn)y=x2-4及直線(xiàn)y=x+2,求:(1)直線(xiàn)與拋物線(xiàn)交點(diǎn)的坐標; (2)拋物線(xiàn)在交點(diǎn)處的切線(xiàn)方程;

  (C組學(xué)生完成1,2題;B組學(xué)生完成1,2,3題;A組學(xué)生完成2,3,4題)

  教學(xué)反思:

  本節內容是在學(xué)習了“變化率問(wèn)題、導數的概念”等知識的基礎上,研究導數的幾何意義,由于新教材未設計極限,于是我盡量采用形象直觀(guān)的方式,讓學(xué)生通過(guò)動(dòng)手作圖,自我感受整個(gè)逼近的過(guò)程,讓學(xué)生更加深刻地體會(huì )導數的幾何意義及“以直代曲”的思想。

  本節課主要圍繞著(zhù)“利用函數圖象直觀(guān)理解導數的幾何意義”和“利用導數的幾何意義解釋實(shí)際問(wèn)題”兩個(gè)教學(xué)重心展開(kāi)。先回憶導數的實(shí)際意義、數值意義,由數到形,自然引出從圖形的角度研究導數的幾何意義;然后,類(lèi)比“平均變化率——瞬時(shí)變化率”的研究思路,運用逼近的思想定義了曲線(xiàn)上某點(diǎn)的切線(xiàn),再引導學(xué)生從數形結合的角度思考,獲得導數的幾何意義——“導數是曲線(xiàn)上某點(diǎn)處切線(xiàn)的斜率”。

  完成本節課第一階段的內容學(xué)習后,教師點(diǎn)明,利用導數的幾何意義,在研究實(shí)際問(wèn)題時(shí),某點(diǎn)附近的曲線(xiàn)可以用過(guò)此點(diǎn)的切線(xiàn)近似代替,即“以直代曲”,從而達到“以簡(jiǎn)單的對象刻畫(huà)復雜對象”的目的,并通過(guò)兩個(gè)例題的研究,讓學(xué)生從不同的角度完整地體驗導數與切線(xiàn)斜率的關(guān)系,并感受導數應用的廣泛性。本節課注重以學(xué)生為主體,每一個(gè)知識、每一個(gè)發(fā)現,總設法由學(xué)生自己得出,課堂上給予學(xué)生充足的思考時(shí)間和空間,讓學(xué)生在動(dòng)手操作、動(dòng)筆演算等活動(dòng)后,再組織討論,本教師只是在關(guān)鍵處加以引導。從學(xué)生的作業(yè)看來(lái),效果較好。

高中數學(xué)教案3

  教學(xué)目標:

  1.結合實(shí)際問(wèn)題情景,理解分層抽樣的必要性和重要性;

  2.學(xué)會(huì )用分層抽樣的方法從總體中抽取樣本;

  3.并對簡(jiǎn)單隨機抽樣、系統抽樣及分層抽樣方法進(jìn)行比較,揭示其相互關(guān)系.

  教學(xué)重點(diǎn):

  通過(guò)實(shí)例理解分層抽樣的方法.

  教學(xué)難點(diǎn):

  分層抽樣的步驟.

  教學(xué)過(guò)程:

  一、問(wèn)題情境

  1.復習簡(jiǎn)單隨機抽樣、系統抽樣的概念、特征以及適用范圍.

  2.實(shí)例:某校高一、高二和高三年級分別有學(xué)生名,為了了解全校學(xué)生的視力情況,從中抽取容量為的樣本,怎樣抽取較為合理?

  二、學(xué)生活動(dòng)

  能否用簡(jiǎn)單隨機抽樣或系統抽樣進(jìn)行抽樣,為什么?

  指出由于不同年級的學(xué)生視力狀況有一定的差異,用簡(jiǎn)單隨機抽樣或系統抽樣進(jìn)行抽樣不能準確反映客觀(guān)實(shí)際,在抽樣時(shí)不僅要使每個(gè)個(gè)體被抽到的機會(huì )相等,還要注意總體中個(gè)體的層次性.

  由于樣本的容量與總體的個(gè)體數的比為100∶2500=1∶25,

  所以在各年級抽取的個(gè)體數依次是,,,即40,32,28.

  三、建構數學(xué)

  1.分層抽樣:當已知總體由差異明顯的幾部分組成時(shí),為了使樣本更客觀(guān)地反映總體的情況,常將總體按不同的特點(diǎn)分成層次比較分明的幾部分,然后按各部分在總體中所占的比進(jìn)行抽樣,這種抽樣叫做分層抽樣,其中所分成的各部分叫“層”.

  說(shuō)明:①分層抽樣時(shí),由于各部分抽取的個(gè)體數與這一部分個(gè)體數的比等于樣本容量與總體的個(gè)體數的比,每一個(gè)個(gè)體被抽到的可能性都是相等的;

 、谟捎诜謱映闃映浞掷昧宋覀兯莆盏男畔,使樣本具有較好的代表性,而且在各層抽樣時(shí)可以根據具體情況采取不同的抽樣方法,所以分層抽樣在實(shí)踐中有著(zhù)非常廣泛的應用.

  2.三種抽樣方法對照表:

  類(lèi)別

  共同點(diǎn)

  各自特點(diǎn)

  相互聯(lián)系

  適用范圍

  簡(jiǎn)單隨機抽樣

  抽樣過(guò)程中每個(gè)個(gè)體被抽取的概率是相同的

  從總體中逐個(gè)抽取

  總體中的個(gè)體數較少

  系統抽樣

  將總體均分成幾個(gè)部分,按事先確定的規則在各部分抽取

  在第一部分抽樣時(shí)采用簡(jiǎn)單隨機抽樣

  總體中的個(gè)體數較多

  分層抽樣

  將總體分成幾層,分層進(jìn)行抽取

  各層抽樣時(shí)采用簡(jiǎn)單隨機抽樣或系統

  總體由差異明顯的幾部分組成

  3.分層抽樣的步驟:

 。1)分層:將總體按某種特征分成若干部分.

 。2)確定比例:計算各層的個(gè)體數與總體的個(gè)體數的比.

 。3)確定各層應抽取的樣本容量.

 。4)在每一層進(jìn)行抽樣(各層分別按簡(jiǎn)單隨機抽樣或系統抽樣的方法抽。,綜合每層抽樣,組成樣本.

  四、數學(xué)運用

  1.例題.

  例1(1)分層抽樣中,在每一層進(jìn)行抽樣可用_________________.

 。2)①教育局督學(xué)組到學(xué)校檢查工作,臨時(shí)在每個(gè)班各抽調2人參加座談;

 、谀嘲嗥谥锌荚囉15人在85分以上,40人在60-84分,1人不及格.現欲從中抽出8人研討進(jìn)一步改進(jìn)教和學(xué);

 、勰嘲嘣┚蹠(huì ),要產(chǎn)生兩名“幸運者”.

  對這三件事,合適的抽樣方法為()

  A.分層抽樣,分層抽樣,簡(jiǎn)單隨機抽樣

  B.系統抽樣,系統抽樣,簡(jiǎn)單隨機抽樣

  C.分層抽樣,簡(jiǎn)單隨機抽樣,簡(jiǎn)單隨機抽樣

  D.系統抽樣,分層抽樣,簡(jiǎn)單隨機抽樣

  例2某電視臺在因特網(wǎng)上就觀(guān)眾對某一節目的喜愛(ài)程度進(jìn)行調查,參加調查的總人數為12000人,其中持各種態(tài)度的人數如表中所示:

  很喜愛(ài)

  喜愛(ài)

  一般

  不喜愛(ài)

  2435

  4567

  3926

  1072

  電視臺為進(jìn)一步了解觀(guān)眾的具體想法和意見(jiàn),打算從中抽取60人進(jìn)行更為詳細的調查,應怎樣進(jìn)行抽樣?

  解:抽取人數與總的比是60∶12000=1∶200,

  則各層抽取的人數依次是12.175,22.835,19.63,5.36,

  取近似值得各層人數分別是12,23,20,5.

  然后在各層用簡(jiǎn)單隨機抽樣方法抽。

  答用分層抽樣的方法抽取,抽取“很喜愛(ài)”、“喜愛(ài)”、“一般”、“不喜愛(ài)”的人

  數分別為12,23,20,5.

  說(shuō)明:各層的抽取數之和應等于樣本容量,對于不能取整數的情況,取其近似值.

 。3)某學(xué)校有160名教職工,其中教師120名,行政人員16名,后勤人員24名.為了了解教職工對學(xué)校在校務(wù)公開(kāi)方面的某意見(jiàn),擬抽取一個(gè)容量為20的樣本.

  分析:(1)總體容量較小,用抽簽法或隨機數表法都很方便.

 。2)總體容量較大,用抽簽法或隨機數表法都比較麻煩,由于人員沒(méi)有明顯差異,且剛好32排,每排人數相同,可用系統抽樣.

 。3)由于學(xué)校各類(lèi)人員對這一問(wèn)題的看法可能差異較大,所以應采用分層抽樣方法.

  五、要點(diǎn)歸納與方法小結

  本節課學(xué)習了以下內容:

  1.分層抽樣的概念與特征;

  2.三種抽樣方法相互之間的區別與聯(lián)系.

高中數學(xué)教案4

  教學(xué)目標1.進(jìn)一步理解線(xiàn)性規劃的概念;會(huì )解簡(jiǎn)單的線(xiàn)性規劃問(wèn)題;

  2.在運用建模和數形結合等數學(xué)思想方法分析、解決問(wèn)題的過(guò)程中;提高解決問(wèn)題的能力;

  3.進(jìn)一步提高學(xué)生的合作意識和探究意識。

  教學(xué)重點(diǎn):線(xiàn)性規劃的概念及其解法

  教學(xué)難點(diǎn)

  代數問(wèn)題幾何化的過(guò)程

  教學(xué)方法:啟發(fā)探究式

  教學(xué)手段運用多媒體技術(shù)

  教學(xué)過(guò)程:1.實(shí)際問(wèn)題引入。

  問(wèn)題一:小王和小李合租了一輛小轎車(chē)外出旅游.小王駕車(chē)平均速度為每小時(shí)70公里,平均耗油量為每小時(shí)6公升;小李駕車(chē)平均速度為每小時(shí)50公里,平均耗油量為每小時(shí)4公升.現知道油箱內油量為60公升,兩人駕車(chē)時(shí)間累計不能超過(guò)12小時(shí).問(wèn)小王和小李分別駕車(chē)多少時(shí)間時(shí),行駛路程最遠?

  2.探究和討論下列問(wèn)題。

  (1)實(shí)際問(wèn)題轉化為一個(gè)怎樣的數學(xué)問(wèn)題?

  (2)滿(mǎn)足不等式組①的條件的點(diǎn)構成的區域如何表示?

  (3)關(guān)于x、y的一個(gè)表達式z=70x+50y的幾何意義是什么?

  (4)z的幾何意義是什么?

  (5)z的最大值如何確定?

  讓學(xué)生達成以下共識:小王駕車(chē)時(shí)間x和小李駕車(chē)時(shí)間y受到時(shí)間(12小時(shí))和油量(60公升)的限制,即

  x+y≤12

  6x+4y≤60 ①

  x≥0

  y≥0

  行駛路程可以表示成關(guān)于x、y的一個(gè)表達式:z=70x+50y 由數形結合可知:經(jīng)過(guò)點(diǎn)B(6,6)的直線(xiàn)所對應的z最大.

  則zmax=6×70+6×50=720

  結論:小王和小李分別駕車(chē)6小時(shí)時(shí),行駛路程最遠為720公里.

  解題反思:

  問(wèn)題解決過(guò)程中體現了那些重要的數學(xué)思想?

  3.線(xiàn)性規劃的有關(guān)概念。

  什么是“線(xiàn)性規劃問(wèn)題”?涉及約束條件、線(xiàn)性約束條件、目標函數、線(xiàn)性目標函數、可行解、可行域和最優(yōu)解等概念.

  4.進(jìn)一步探究線(xiàn)性規劃問(wèn)題的解。

  問(wèn)題二:若小王和小李駕車(chē)平均速度為每小時(shí)60公里和40公里,其它條件不變,問(wèn)小王和小李分別駕車(chē)多少時(shí)間時(shí),行駛路程最遠?

  要求:請你寫(xiě)出約束條件、目標函數,作出可行域,求出最優(yōu)解。

  問(wèn)題三:如果把不等式組①中的兩個(gè)“≤”改為“≥”,是否存在最優(yōu)解?

  5.小結。

  (1)數學(xué)知識;(2)數學(xué)思想。

  6.作業(yè)。

  (1)閱讀教材:P.60-63;

  (2)課后練習:教材P.65-2,3;

  (3)在自己生活中尋找一個(gè)簡(jiǎn)單的線(xiàn)性規劃問(wèn)題,寫(xiě)出約束條件,確定目標函數,作出可行域,并求出最優(yōu)解。

  《一個(gè)數列的研究》教學(xué)設計

  教學(xué)目標:

  1.進(jìn)一步理解和掌握數列的有關(guān)概念和性質(zhì);

  2.在對一個(gè)數列的探究過(guò)程中,提高提出問(wèn)題、分析問(wèn)題和解決問(wèn)題的能力;

  3.進(jìn)一步提高問(wèn)題探究意識、知識應用意識和同伴合作意識。

  教學(xué)重點(diǎn):

  問(wèn)題的提出與解決

  教學(xué)難點(diǎn):

  如何進(jìn)行問(wèn)題的探究

  教學(xué)方法:

  啟發(fā)探究式

  教學(xué)過(guò)程:

  問(wèn)題:已知{an}是首項為1,公比為 的無(wú)窮等比數列。對于數列{an},提出你的問(wèn)題,并進(jìn)行研究,你能得到一些什么樣的結論?

  研究方向提示:

  1.數列{an}是一個(gè)等比數列,可以從等比數列角度來(lái)進(jìn)行研究;

  2.研究所給數列的項之間的關(guān)系;

  3.研究所給數列的子數列;

  4.研究所給數列能構造的新數列;

  5.數列是一種特殊的函數,可以從函數性質(zhì)角度來(lái)進(jìn)行研究;

  6.研究所給數列與其它知識的聯(lián)系(組合數、復數、圖形、實(shí)際意義等)。

  針對學(xué)生的研究情況,對所提問(wèn)題進(jìn)行歸類(lèi),選擇部分類(lèi)型問(wèn)題共同進(jìn)行研究、分析與解決。

  課堂小結:

  1.研究一個(gè)數列可以從哪些方面提出問(wèn)題并進(jìn)行研究?

  2.你最喜歡哪位同學(xué)的研究?為什么?

  課后思考題: 1.將{an}推廣為一般的無(wú)窮等比數列:1,q,q2,…,qn-1,… ,上述一些研究結論會(huì )有什么變化?

  2.若將{an}改為等差數列:1,1+d,2+d,…,1+(n-1)d,… ,是否可以進(jìn)行類(lèi)比研究?

  開(kāi)展研究性學(xué)習,培養問(wèn)題解決能力

  一、對“研究性學(xué)習”和“問(wèn)題解決”的認識 研究性學(xué)習是一種與接受性學(xué)習相對應的學(xué)習方式,泛指學(xué)生主動(dòng)探究問(wèn)題的學(xué)習。研究性學(xué)習也可以說(shuō)是一種學(xué)習活動(dòng):學(xué)生在教師指導下,在自己的學(xué)習生活和社會(huì )生活中選擇課題,以類(lèi)似科學(xué)研究的方式去主動(dòng)地獲取知識、應用知識、解決問(wèn)題。

  “問(wèn)題解決”(problem solving)是美國數學(xué)教育界在二十世紀八十年代的主要口號,即認為應當以“問(wèn)題解決”作為學(xué)校數學(xué)教育的中心。

  問(wèn)題解決能力是一種重要的數學(xué)能力,其核心是“創(chuàng )新精神”與“實(shí)踐能力”。在數學(xué)教學(xué)活動(dòng)中開(kāi)展研究性學(xué)習是培養問(wèn)題解決能力的主要途徑。

  二、“問(wèn)題解決”課堂教學(xué)模式的建構與實(shí)踐 以研究性學(xué)習活動(dòng)為載體,以培養問(wèn)題解決能力為核心的課堂教學(xué)模式(以下簡(jiǎn)稱(chēng)為“問(wèn)題解決”課堂教學(xué)模式)試圖通過(guò)問(wèn)題情境創(chuàng )設,激發(fā)學(xué)生的求知欲,以獨立思考和交流討論的形式,發(fā)現、分析并解決問(wèn)題,培養處理信息、獲取新知、應用知識的能力,提高合作意識、探究意識和創(chuàng )新意識。

 。ㄒ唬╆P(guān)于“問(wèn)題解決”課堂教學(xué)模式

  通過(guò)實(shí)施“問(wèn)題解決”課堂教學(xué)模式,希望能夠達到以下的功能目標:學(xué)習發(fā)現問(wèn)題的方法,開(kāi)掘創(chuàng )造性思維潛力,培養主動(dòng)參與、團結協(xié)作精神,增進(jìn)師生、同伴之間的情感交流,形成自覺(jué)運用數學(xué)基礎知識、基本技能和數學(xué)思想方法分析問(wèn)題、解決問(wèn)題的能力和意識。

 。ǘ⿺祵W(xué)學(xué)科中的問(wèn)題解決能力的培養目標

  數學(xué)問(wèn)題解決能力培養的目標可以有不同層次的要求:會(huì )審題,會(huì )建模,會(huì )轉化,會(huì )歸類(lèi),會(huì )反思,會(huì )編題。

 。ㄈ皢(wèn)題解決”課堂教學(xué)模式的教學(xué)流程

 。ㄋ模皢(wèn)題解決”課堂教學(xué)評價(jià)標準

  1. 教學(xué)目標的確定;

  2. 教學(xué)方法的選擇;

  3. 問(wèn)題的選擇;

  4. 師生主體意識的體現;

  5.教學(xué)策略的運用。

 。ㄎ澹┝私鈱W(xué)生的數學(xué)問(wèn)題解決能力的途徑

 。╅_(kāi)展研究性學(xué)習活動(dòng)對教師的能力要求

高中數學(xué)教案5

  教學(xué)準備

  1.教學(xué)目標

  1、知識與技能:

  函數是描述客觀(guān)世界變化規律的重要數學(xué)模型.高中階段不僅把函數看成變量之間的依

  賴(lài)關(guān)系,同時(shí)還用集合與對應的語(yǔ)言刻畫(huà)函數,高中階段更注重函數模型化的思想與意識.

  2、過(guò)程與方法:

 。1)通過(guò)實(shí)例,進(jìn)一步體會(huì )函數是描述變量之間的依賴(lài)關(guān)系的重要數學(xué)模型,在此基礎上學(xué)習用集合與對應的語(yǔ)言來(lái)刻畫(huà)函數,體會(huì )對應關(guān)系在刻畫(huà)函數概念中的作用;

 。2)了解構成函數的要素;

 。3)會(huì )求一些簡(jiǎn)單函數的定義域和值域;

 。4)能夠正確使用“區間”的符號表示函數的定義域;

  3、情感態(tài)度與價(jià)值觀(guān),使學(xué)生感受到學(xué)習函數的必要性和重要性,激發(fā)學(xué)習的積極性.

  教學(xué)重點(diǎn)/難點(diǎn)

  重點(diǎn):理解函數的模型化思想,用集合與對應的語(yǔ)言來(lái)刻畫(huà)函數;

  難點(diǎn):符號“y=f(x)”的含義,函數定義域和值域的區間表示;

  教學(xué)用具

  多媒體

  4.標簽

  函數及其表示

  教學(xué)過(guò)程

 。ㄒ唬﹦(chuàng )設情景,揭示課題

  1、復習初中所學(xué)函數的概念,強調函數的模型化思想;

  2、閱讀課本引例,體會(huì )函數是描述客觀(guān)事物變化規律的數學(xué)模型的思想:

 。1)炮彈的射高與時(shí)間的變化關(guān)系問(wèn)題;

 。2)南極臭氧空洞面積與時(shí)間的變化關(guān)系問(wèn)題;

 。3)“八五”計劃以來(lái)我國城鎮居民的恩格爾系數與時(shí)間的變化關(guān)系問(wèn)題.

  3、分析、歸納以上三個(gè)實(shí)例,它們有什么共同點(diǎn);

  4、引導學(xué)生應用集合與對應的語(yǔ)言描述各個(gè)實(shí)例中兩個(gè)變量間的依賴(lài)關(guān)系;

  5、根據初中所學(xué)函數的概念,判斷各個(gè)實(shí)例中的兩個(gè)變量間的關(guān)系是否是函數關(guān)系.

 。ǘ┭刑叫轮

  1、函數的有關(guān)概念

 。1)函數的概念:

  設A、B是非空的數集,如果按照某個(gè)確定的對應關(guān)系f,使對于集合A中的任意一個(gè)數x,在集合B中都有唯一確定的數f(x)和它對應,那么就稱(chēng)f:A→B為從集合A到集合B的一個(gè)函數(function).

  記作:y=f(x),x∈A.

  其中,x叫做自變量,x的取值范圍A叫做函數的定義域(domain);與x的值相對應的y值叫做函數值,函數值的集合{f(x)|x∈A}叫做函數的值域(range).

  注意:

 、佟皔=f(x)”是函數符號,可以用任意的字母表示,如“y=g(x)”;

 、诤瘮捣枴皔=f(x)”中的f(x)表示與x對應的函數值,一個(gè)數,而不是f乘x.

 。2)構成函數的三要素是什么?

  定義域、對應關(guān)系和值域

 。3)區間的概念

 、賲^間的分類(lèi):開(kāi)區間、閉區間、半開(kāi)半閉區間;

 、跓o(wú)窮區間;

 、蹍^間的數軸表示.

 。4)初中學(xué)過(guò)哪些函數?它們的定義域、值域、對應法則分別是什么?

  通過(guò)三個(gè)已知的函數:y=ax+b(a≠0)

  y=ax2+bx+c(a≠0)

  y=(k≠0)比較描述性定義和集合,與對應語(yǔ)言刻畫(huà)的定義,談?wù)勼w會(huì ).

  師:歸納總結

 。ㄈ┵|(zhì)疑答辯,排難解惑,發(fā)展思維。

  1、如何求函數的定義域

  例1:已知函數f(x)=+

 。1)求函數的定義域;

 。2)求f(-3),f()的值;

 。3)當a>0時(shí),求f(a),f(a-1)的值.

  分析:函數的定義域通常由問(wèn)題的實(shí)際背景確定,如前所述的三個(gè)實(shí)例.如果只給出解析式y=f(x),而沒(méi)有指明它的定義域,那么函數的定義域就是指能使這個(gè)式子有意義的實(shí)數的集合,函數的定義域、值域要寫(xiě)成集合或區間的形式.

  例2、設一個(gè)矩形周長(cháng)為80,其中一邊長(cháng)為x,求它的面積關(guān)于x的函數的解析式,并寫(xiě)出定義域.

  分析:由題意知,另一邊長(cháng)為x,且邊長(cháng)x為正數,所以0<x<40.

  所以s==(40-x)x(0<x<40)

  引導學(xué)生小結幾類(lèi)函數的定義域:

 。1)如果f(x)是整式,那么函數的定義域是實(shí)數集R.

  2)如果f(x)是分式,那么函數的定義域是使分母不等于零的實(shí)數的集合.

 。3)如果f(x)是二次根式,那么函數的定義域是使根號內的式子大于或等于零的實(shí)數的集合.

 。4)如果f(x)是由幾個(gè)部分的數學(xué)式子構成的,那么函數定義域是使各部分式子都有意義的實(shí)數集合.(即求各集合的交集)

 。5)滿(mǎn)足實(shí)際問(wèn)題有意義.

  鞏固練習:課本P19第1

  2、如何判斷兩個(gè)函數是否為同一函數

  例3、下列函數中哪個(gè)與函數y=x相等?

  分析:

  1構成函數三個(gè)要素是定義域、對應關(guān)系和值域.由于值域是由定義域和對應關(guān)系決定的,所以,如果兩個(gè)函數的定義域和對應關(guān)系完全一致,即稱(chēng)這兩個(gè)函數相等(或為同一函數)

  2兩個(gè)函數相等當且僅當它們的定義域和對應關(guān)系完全一致,而與表示自變量和函數值的字母無(wú)關(guān)。

  解:

  課本P18例2

 。ㄋ模w納小結

 、購木唧w實(shí)例引入了函數的概念,用集合與對應的語(yǔ)言描述了函數的定義及其相關(guān)概念;②初步介紹了求函數定義域和判斷同一函數的基本方法,同時(shí)引出了區間的概念.

 。ㄎ澹┰O置問(wèn)題,留下懸念

  1、課本P24習題1.2(A組)第1—7題(B組)第1題

  2、舉出生活中函數的例子(三個(gè)以上),并用集合與對應的語(yǔ)言來(lái)描述函數,同時(shí)說(shuō)出函數的定義域、值域和對應關(guān)系.

  課堂小結

高中數學(xué)教案6

  1.課題

  填寫(xiě)課題名稱(chēng)(高中代數類(lèi)課題)

  2.教學(xué)目標

  (1)知識與技能:

  通過(guò)本節課的學(xué)習,掌握......知識,提高學(xué)生解決實(shí)際問(wèn)題的能力;

  (2)過(guò)程與方法:

  通過(guò)......(討論、發(fā)現、探究),提高......(分析、歸納、比較和概括)的能力;

  (3)情感態(tài)度與價(jià)值觀(guān):

  通過(guò)本節課的學(xué)習,增強學(xué)生的學(xué)習興趣,將數學(xué)應用到實(shí)際生活中,增加學(xué)生數學(xué)學(xué)習的樂(lè )趣。

  3.教學(xué)重難點(diǎn)

  (1)教學(xué)重點(diǎn):本節課的知識重點(diǎn)

  (2)教學(xué)難點(diǎn):易錯點(diǎn)、難以理解的知識點(diǎn)

  4.教學(xué)方法(一般從中選擇3個(gè)就可以了)

  (1)討論法

  (2)情景教學(xué)法

  (3)問(wèn)答法

  (4)發(fā)現法

  (5)講授法

  5.教學(xué)過(guò)程

  (1)導入

  簡(jiǎn)單敘述導入課題的方式和方法(例:復習、類(lèi)比、情境導出本節課的課題)

  (2)新授課程(一般分為三個(gè)小步驟)

 、俸(jiǎn)單講解本節課基礎知識點(diǎn)(例:奇函數的定義)。

 、跉w納總結該課題中的重點(diǎn)知識內容,尤其對該注意的一些情況設置易錯點(diǎn),進(jìn)行強調?梢栽O計分組討論環(huán)節(分組判斷幾組函數圖像是否為奇函數,并歸納奇函數圖像的特點(diǎn)。設置定義域不關(guān)于原點(diǎn)對稱(chēng)的函數是否為奇函數的易錯點(diǎn))。

 、弁卣寡由,將所學(xué)知識拓展延伸到實(shí)際題目中,去解決實(shí)際生活中的問(wèn)題。

 。ㄔ谛率谡n里面一定要表下出講課的大體流程,但是不必太過(guò)詳細。)

  (3)課堂小結

  教師提問(wèn),學(xué)生回答本節課的收獲。

  (4)作業(yè)提高

  布置作業(yè)(盡量與實(shí)際生活相聯(lián)系,有所創(chuàng )新)。

  6.教學(xué)板書(shū)

  2.高中數學(xué)教案格式

  一.課題(說(shuō)明本課名稱(chēng))

  二.教學(xué)目的(或稱(chēng)教學(xué)要求,或稱(chēng)教學(xué)目標,說(shuō)明本課所要完成的教學(xué)任務(wù))

  三.課型(說(shuō)明屬新授課,還是復習課)

  四.課時(shí)(說(shuō)明屬第幾課時(shí))

  五.教學(xué)重點(diǎn)(說(shuō)明本課所必須解決的關(guān)鍵性問(wèn)題)

  六.教學(xué)難點(diǎn)(說(shuō)明本課的學(xué)習時(shí)易產(chǎn)生困難和障礙的知識傳授與能力培養點(diǎn))

  七.教學(xué)方法要根據學(xué)生實(shí)際,注重引導自學(xué),注重啟發(fā)思維

  八.教學(xué)過(guò)程(或稱(chēng)課堂結構,說(shuō)明教學(xué)進(jìn)行的內容、方法步驟)

  九.作業(yè)處理(說(shuō)明如何布置書(shū)面或口頭作業(yè))

  十.板書(shū)設計(說(shuō)明上課時(shí)準備寫(xiě)在黑板上的內容)

  十一.教具(或稱(chēng)教具準備,說(shuō)明輔助教學(xué)手段使用的工具)

  十二.教學(xué)反思:(教者對該堂課教后的感受及學(xué)生的收獲、改進(jìn)方法)

  3.高中數學(xué)教案范文

  【教學(xué)目標】

  1.知識與技能

  (1)理解等差數列的定義,會(huì )應用定義判斷一個(gè)數列是否是等差數列:

  (2)賬務(wù)等差數列的通項公式及其推導過(guò)程:

  (3)會(huì )應用等差數列通項公式解決簡(jiǎn)單問(wèn)題。

  2.過(guò)程與方法

  在定義的理解和通項公式的推導、應用過(guò)程中,培養學(xué)生的觀(guān)察、分析、歸納能力和嚴密的邏輯思維的能力,體驗從特殊到一般,一般到特殊的認知規律,提高熟悉猜想和歸納的能力,滲透函數與方程的思想。

  3.情感、態(tài)度與價(jià)值觀(guān)

  通過(guò)教師指導下學(xué)生的自主學(xué)習、相互交流和探索活動(dòng),培養學(xué)生主動(dòng)探索、用于發(fā)現的求知精神,激發(fā)學(xué)生的學(xué)習興趣,讓學(xué)生感受到成功的喜悅。在解決問(wèn)題的過(guò)程中,使學(xué)生養成細心觀(guān)察、認真分析、善于總結的良好習慣。

  【教學(xué)重點(diǎn)】

 、俚炔顢盗械母拍;

 、诘炔顢盗械耐椆

  【教學(xué)難點(diǎn)】

 、倮斫獾炔顢盗小暗炔睢钡奶攸c(diǎn)及通項公式的含義;

 、诘炔顢盗械耐椆降耐茖н^(guò)程.

  【學(xué)情分析】

  我所教學(xué)的學(xué)生是我校高一(7)班的學(xué)生(平行班學(xué)生),經(jīng)過(guò)一年的高中數學(xué)學(xué)習,大部分學(xué)生知識經(jīng)驗已較為豐富,他們的智力發(fā)展已到了形式運演階段,具備了較強的抽象思維能力和演繹推理能力,但也有一部分學(xué)生的基礎較弱,學(xué)習數學(xué)的興趣還不是很濃,所以我在授課時(shí)注重從具體的生活實(shí)例出發(fā),注重引導、啟發(fā)、研究和探討以符合這類(lèi)學(xué)生的心理發(fā)展特點(diǎn),從而促進(jìn)思維能力的進(jìn)一步發(fā)展。

  【設計思路】

  1、教法

 、賳l(fā)引導法:這種方法有利于學(xué)生對知識進(jìn)行主動(dòng)建構;有利于突出重點(diǎn),突破難點(diǎn);有利于調動(dòng)學(xué)生的主動(dòng)性和積極性,發(fā)揮其創(chuàng )造性.

 、诜纸M討論法:有利于學(xué)生進(jìn)行交流,及時(shí)發(fā)現問(wèn)題,解決問(wèn)題,調動(dòng)學(xué)生的積極性.

 、壑v練結合法:可以及時(shí)鞏固所學(xué)內容,抓住重點(diǎn),突破難點(diǎn).

  2、學(xué)法

  引導學(xué)生首先從三個(gè)現實(shí)問(wèn)題(數數問(wèn)題、水庫水位問(wèn)題、儲蓄問(wèn)題)概括出數組特點(diǎn)并抽象出等差數列的概念;接著(zhù)就等差數列概念的特點(diǎn),推導出等差數列的通項公式;可以對各種能力的同學(xué)引導認識多元的推導思維方法.

  【教學(xué)過(guò)程】

  一、創(chuàng )設情境,引入新課

  1、從0開(kāi)始,將5的倍數按從小到大的順序排列,得到的數列是什么?

  2、水庫管理人員為了保證優(yōu)質(zhì)魚(yú)類(lèi)有良好的生活環(huán)境,用定期放水清庫的辦法清理水庫中的雜魚(yú).如果一個(gè)水庫的水位為18m,自然放水每天水位降低2.5m,最低降至5m.那么從開(kāi)始放水算起,到可以進(jìn)行清理工作的那天,水庫每天的水位(單位:m)組成一個(gè)什么數列?

  3、我國現行儲蓄制度規定銀行支付存款利息的方式為單利,即不把利息加入本息計算下一期的利息.按照單利計算本利和的公式是:本利和=本金×(1+利率×存期).按活期存入10000元錢(qián),年利率是0.72%,那么按照單利,5年內各年末的本利和(單位:元)組成一個(gè)什么數列?

  教師:以上三個(gè)問(wèn)題中的數蘊涵著(zhù)三列數.

  學(xué)生:

 、0,5,10,15,20,25,….

 、18,15.5,13,10.5,8,5.5.

 、10072,10144,10216,10288,10360.

  (設置意圖:從實(shí)例引入,實(shí)質(zhì)是給出了等差數列的現實(shí)背景,目的是讓學(xué)生感受到等差數列是現實(shí)生活中大量存在的數學(xué)模型.通過(guò)分析,由特殊到一般,激發(fā)學(xué)生學(xué)習探究知識的自主性,培養學(xué)生的歸納能力.

  二、觀(guān)察歸納,形成定義

 、0,5,10,15,20,25,….

 、18,15.5,13,10.5,8,5.5.

 、10072,10144,10216,10288,10360.

  思考1上述數列有什么共同特點(diǎn)?

  思考2根據上數列的共同特點(diǎn),你能給出等差數列的一般定義嗎?

  思考3你能將上述的文字語(yǔ)言轉換成數學(xué)符號語(yǔ)言嗎?

  教師:引導學(xué)生思考這三列數具有的共同特征,然后讓學(xué)生抓住數列的特征,歸納得出等差數列概念.

  學(xué)生:分組討論,可能會(huì )有不同的答案:前數和后數的差符合一定規律;這些數都是按照一定順序排列的…只要合理教師就要給予肯定.

  教師引導歸納出:等差數列的定義;另外,教師引導學(xué)生從數學(xué)符號角度理解等差數列的定義.

  (設計意圖:通過(guò)對一定數量感性材料的觀(guān)察、分析,提煉出感性材料的本質(zhì)屬性;使學(xué)生體會(huì )到等差數列的規律和共同特點(diǎn);一開(kāi)始抓。骸皬牡诙椘,每一項與它的前一項的差為同一常數”,落實(shí)對等差數列概念的準確表達.)

  三、舉一反三,鞏固定義

  1、判定下列數列是否為等差數列?若是,指出公差d.

  (1)1,1,1,1,1;

  (2)1,0,1,0,1;

  (3)2,1,0,-1,-2;

  (4)4,7,10,13,16.

  教師出示題目,學(xué)生思考回答.教師訂正并強調求公差應注意的問(wèn)題.

  注意:公差d是每一項(第2項起)與它的前一項的差,防止把被減數與減數弄顛倒,而且公差可以是正數,負數,也可以為0.

  (設計意圖:強化學(xué)生對等差數列“等差”特征的理解和應用).

  2、思考4:設數列{an}的通項公式為an=3n+1,該數列是等差數列嗎?為什么?

  (設計意圖:強化等差數列的證明定義法)

  四、利用定義,導出通項

  1、已知等差數列:8,5,2,…,求第200項?

  2、已知一個(gè)等差數列{an}的首項是a1,公差是d,如何求出它的任意項an呢?

  教師出示問(wèn)題,放手讓學(xué)生探究,然后選擇列式具有代表性的上去板演或投影展示.根據學(xué)生在課堂上的具體情況進(jìn)行具體評價(jià)、引導,總結推導方法,體會(huì )歸納思想以及累加求通項的方法;讓學(xué)生初步嘗試處理數列問(wèn)題的常用方法.

  (設計意圖:引導學(xué)生觀(guān)察、歸納、猜想,培養學(xué)生合理的推理能力.學(xué)生在分組合作探究過(guò)程中,可能會(huì )找到多種不同的解決辦法,教師要逐一點(diǎn)評,并及時(shí)肯定、贊揚學(xué)生善于動(dòng)腦、勇于創(chuàng )新的品質(zhì),激發(fā)學(xué)生的創(chuàng )造意識.鼓勵學(xué)生自主解答,培養學(xué)生運算能力)

  五、應用通項,解決問(wèn)題

  1、判斷100是不是等差數列2,9,16,…的項?如果是,是第幾項?

  2、在等差數列{an}中,已知a5=10,a12=31,求a1,d和an.

  3、求等差數列3,7,11,…的第4項和第10項

  教師:給出問(wèn)題,讓學(xué)生自己操練,教師巡視學(xué)生答題情況.

  學(xué)生:教師叫學(xué)生代表總結此類(lèi)題型的解題思路,教師補充:已知等差數列的首項和公差就可以求出其通項公式

  (設計意圖:主要是熟悉公式,使學(xué)生從中體會(huì )公式與方程之間的聯(lián)系.初步認識“基本量法”求解等差數列問(wèn)題.)

  六、反饋練習:教材13頁(yè)練習1

  七、歸納總結:

  1、一個(gè)定義:

  等差數列的定義及定義表達式

  2、一個(gè)公式:

  等差數列的通項公式

  3、二個(gè)應用:

  定義和通項公式的應用

  教師:讓學(xué)生思考整理,找幾個(gè)代表發(fā)言,最后教師給出補充

  (設計意圖:引導學(xué)生去聯(lián)想本節課所涉及到的各個(gè)方面,溝通它們之間的聯(lián)系,使學(xué)生能在新的高度上去重新認識和掌握基本概念,并靈活運用基本概念.)

  【設計反思】

  本設計從生活中的數列模型導入,有助于發(fā)揮學(xué)生學(xué)習的主動(dòng)性,增強學(xué)生學(xué)習數列的興趣.在探索的過(guò)程中,學(xué)生通過(guò)分析、觀(guān)察,歸納出等差數列定義,然后由定義導出通項公式,強化了由具體到抽象,由特殊到一般的思維過(guò)程,有助于提高學(xué)生分析問(wèn)題和解決問(wèn)題的能力.本節課教學(xué)采用啟發(fā)方法,以教師提出問(wèn)題、學(xué)生探討解決問(wèn)題為途徑,以相互補充展開(kāi)教學(xué),總結科學(xué)合理的知識體系,形成師生之間的良性互動(dòng),提高課堂教學(xué)效率.

高中數學(xué)教案7

  教學(xué)目標:

  1.了解反函數的概念,弄清原函數與反函數的定義域和值域的關(guān)系.

  2.會(huì )求一些簡(jiǎn)單函數的反函數.

  3.在嘗試、探索求反函數的過(guò)程中,深化對概念的認識,總結出求反函數的一般步驟,加深對函數與方程、數形結合以及由特殊到一般等數學(xué)思想方法的認識.

  4.進(jìn)一步完善學(xué)生思維的深刻性,培養學(xué)生的逆向思維能力,用辯證的觀(guān)點(diǎn)分析問(wèn)題,培養抽象、概括的能力.

  教學(xué)重點(diǎn):求反函數的方法.

  教學(xué)難點(diǎn):反函數的概念.

  教學(xué)過(guò)程

  教學(xué)活動(dòng)

  設計意圖一、創(chuàng )設情境,引入新課

  1.復習提問(wèn)

 、俸瘮档母拍

 、趛=f(x)中各變量的意義

  2.同學(xué)們在物理課學(xué)過(guò)勻速直線(xiàn)運動(dòng)的位移和時(shí)間的函數關(guān)系,即S=vt和t=(其中速度v是常量),在S=vt 中位移S是時(shí)間t的函數;在t=中,時(shí)間t是位移S的函數.在這種情況下,我們說(shuō)t=是函數S=vt的反函數.什么是反函數,如何求反函數,就是本節課學(xué)習的內容.

  3.板書(shū)課題

  由實(shí)際問(wèn)題引入新課,激發(fā)了學(xué)生學(xué)習興趣,展示了教學(xué)目標.這樣既可以撥去"反函數"這一概念的神秘面紗,也可使學(xué)生知道學(xué)習這一概念的必要性.

  二、實(shí)例分析,組織探究

  1.問(wèn)題組一:

  (用投影給出函數與;與()的圖象)

  (1)這兩組函數的圖像有什么關(guān)系?這兩組函數有什么關(guān)系?(生答:與的圖像關(guān)于直線(xiàn)y=x對稱(chēng);與()的圖象也關(guān)于直線(xiàn)y=x對稱(chēng).是求一個(gè)數立方的運算,而是求一個(gè)數立方根的運算,它們互為逆運算.同樣,與()也互為逆運算.)

  (2)由,已知y能否求x?

  (3)是否是一個(gè)函數?它與有何關(guān)系?

  (4)與有何聯(lián)系?

  2.問(wèn)題組二:

  (1)函數y=2x 1(x是自變量)與函數x=2y 1(y是自變量)是否是同一函數?

  (2)函數(x是自變量)與函數x=2y 1(y是自變量)是否是同一函數?

  (3)函數 ()的定義域與函數()的值域有什么關(guān)系?

  3.滲透反函數的概念.

  (教師點(diǎn)明這樣的函數即互為反函數,然后師生共同探究其特點(diǎn))

  從學(xué)生熟知的函數出發(fā),抽象出反函數的概念,符合學(xué)生的認知特點(diǎn),有利于培養學(xué)生抽象、概括的能力.

  通過(guò)這兩組問(wèn)題,為反函數概念的引出做了鋪墊,利用舊知,引出新識,在"最近發(fā)展區"設計問(wèn)題,使學(xué)生對反函數有一個(gè)直觀(guān)的粗略印象,為進(jìn)一步抽象反函數的概念奠定基礎.

  三、師生互動(dòng),歸納定義

  1.(根據上述實(shí)例,教師與學(xué)生共同歸納出反函數的定義)

  函數y=f(x)(x∈A) 中,設它的值域為 C.我們根據這個(gè)函數中x,y的關(guān)系,用 y 把 x 表示出來(lái),得到 x = j (y) .如果對于y在C中的任何一個(gè)值,通過(guò)x = j (y),x在A(yíng)中都有的值和它對應,那么, x = j (y)就表示y是自變量,x是自變量 y 的函數.這樣的函數 x = j (y)(y ∈C)叫做函數y=f(x)(x∈A)的反函數.記作: .考慮到"用 x表示自變量, y表示函數"的習慣,將中的x與y對調寫(xiě)成.

  2.引導分析:

  1)反函數也是函數;

  2)對應法則為互逆運算;

  3)定義中的"如果"意味著(zhù)對于一個(gè)任意的函數y=f(x)來(lái)說(shuō)不一定有反函數;

  4)函數y=f(x)的定義域、值域分別是函數x=f(y)的值域、定義域;

  5)函數y=f(x)與x=f(y)互為反函數;

  6)要理解好符號f;

  7)交換變量x、y的原因.

  3.兩次轉換x、y的對應關(guān)系

  (原函數中的自變量x與反函數中的函數值y 是等價(jià)的,原函數中的函數值y與反函數中的自變量x是等價(jià)的)

  4.函數與其反函數的關(guān)系

  函數y=f(x)

  函數

  定義域

  A

  C

  值 域

  C

  A

  四、應用解題,總結步驟

  1.(投影例題)

  【例1】求下列函數的反函數

  (1)y=3x-1 (2)y=x 1

  【例2】求函數的反函數.

  (教師板書(shū)例題過(guò)程后,由學(xué)生總結求反函數步驟.)

  2.總結求函數反函數的步驟:

  1° 由y=f(x)反解出x=f(y).

  2° 把x=f(y)中 x與y互換得.

  3° 寫(xiě)出反函數的定義域.

  (簡(jiǎn)記為:反解、互換、寫(xiě)出反函數的定義域)【例3】(1)有沒(méi)有反函數?

  (2)的反函數是________.

  (3)(x<0)的反函數是__________.

  在上述探究的基礎上,揭示反函數的定義,學(xué)生有針對性地體會(huì )定義的特點(diǎn),進(jìn)而對定義有更深刻的認識,與自己的預設產(chǎn)生矛盾沖突,體會(huì )反函數.在剖析定義的過(guò)程中,讓學(xué)生體會(huì )函數與方程、一般到特殊的數學(xué)思想,并對數學(xué)的符號語(yǔ)言有更好的把握.

  通過(guò)動(dòng)畫(huà)演示,表格對照,使學(xué)生對反函數定義從感性認識上升到理性認識,從而消化理解.

  通過(guò)對具體例題的講解分析,在解題的步驟上和方法上為學(xué)生起示范作用,并及時(shí)歸納總結,培養學(xué)生分析、思考的習慣,以及歸納總結的能力.

  題目的設計遵循了從了解到理解,從掌握到應用的不同層次要求,由淺入深,循序漸進(jìn).并體現了對定義的反思理解.學(xué)生思考練習,師生共同分析糾正.

  五、鞏固強化,評價(jià)反饋

  1.已知函數 y=f(x)存在反函數,求它的反函數 y =f( x)

  (1)y=-2x 3(xR) (2)y=-(xR,且x)

  ( 3 ) y=(xR,且x)

  2.已知函數f(x)=(xR,且x)存在反函數,求f(7)的值.

  五、反思小結,再度設疑

  本節課主要研究了反函數的定義,以及反函數的求解步驟.互為反函數的兩個(gè)函數的圖象到底有什么特點(diǎn)呢?為什么具有這樣的特點(diǎn)呢?我們將在下節研究.

  (讓學(xué)生談一下本節課的學(xué)習體會(huì ),教師適時(shí)點(diǎn)撥)

  進(jìn)一步強化反函數的概念,并能正確求出反函數.反饋學(xué)生對知識的掌握情況,評價(jià)學(xué)生對學(xué)習目標的落實(shí)程度.具體實(shí)踐中可采取同學(xué)板演、分組競賽等多種形式調動(dòng)學(xué)生的積極性."問(wèn)題是數學(xué)的心臟"學(xué)生帶著(zhù)問(wèn)題走進(jìn)課堂又帶著(zhù)新的問(wèn)題走出課堂.

  六、作業(yè)

  習題2.4第1題,第2題

  進(jìn)一步鞏固所學(xué)的知識.

  教學(xué)設計說(shuō)明

  "問(wèn)題是數學(xué)的心臟".一個(gè)概念的形成是螺旋式上升的,一般要經(jīng)過(guò)具體到抽象,感性到理性的過(guò)程.本節教案通過(guò)一個(gè)物理學(xué)中的具體實(shí)例引入反函數,進(jìn)而又通過(guò)若干函數的圖象進(jìn)一步加以誘導剖析,最終形成概念.

  反函數的概念是教學(xué)中的難點(diǎn),原因是其本身較為抽象,經(jīng)過(guò)兩次代換,又采用了抽象的符號.由于沒(méi)有一一映射,逆映射等概念的支撐,使學(xué)生難以從本質(zhì)上去把握反函數的概念.為此,我們大膽地使用教材,把互為反函數的兩個(gè)函數的圖象關(guān)系預先揭示,進(jìn)而探究原因,尋找規律,程序是從問(wèn)題出發(fā),研究性質(zhì),進(jìn)而得出概念,這正是數學(xué)研究的順序,符合學(xué)生認知規律,有助于概念的建立與形成.另外,對概念的剖析以及習題的配備也很精當,通過(guò)不同層次的問(wèn)題,滿(mǎn)足學(xué)生多層次需要,起到評價(jià)反饋的作用.通過(guò)對函數與方程的分析,互逆探索,動(dòng)畫(huà)演示,表格對照、學(xué)生討論等多種形式的教學(xué)環(huán)節,充分調動(dòng)了學(xué)生的探求欲,在探究與剖析的過(guò)程中,完善學(xué)生思維的深刻性,培養學(xué)生的逆向思維.使學(xué)生自然成為學(xué)習的主人。

高中數學(xué)教案8

  1.教學(xué)目標

  (1)知識目標: 1.在平面直角坐標系中,探索并掌握圓的標準方程;

  2.會(huì )由圓的方程寫(xiě)出圓的半徑和圓心,能根據條件寫(xiě)出圓的方程.

  (2)能力目標: 1.進(jìn)一步培養學(xué)生用解析法研究幾何問(wèn)題的能力;

  2.使學(xué)生加深對數形結合思想和待定系數法的理解;

  3.增強學(xué)生用數學(xué)的意識.

  (3)情感目標:培養學(xué)生主動(dòng)探究知識、合作交流的意識,在體驗數學(xué)美的過(guò)程中激發(fā)學(xué)生的學(xué)習興趣.

  2.教學(xué)重點(diǎn).難點(diǎn)

  (1)教學(xué)重點(diǎn):圓的標準方程的求法及其應用.

  (2)教學(xué)難點(diǎn):會(huì )根據不同的已知條件,利用待定系數法求圓的標準方程以及選擇恰

  當的坐標系解決與圓有關(guān)的實(shí)際問(wèn)題.

  3.教學(xué)過(guò)程

  (一)創(chuàng )設情境(啟迪思維)

  問(wèn)題一:已知隧道的截面是半徑為4m的半圓,車(chē)輛只能在道路中心線(xiàn)一側行駛,一輛寬為2.7m,高為3m的貨車(chē)能不能駛入這個(gè)隧道?

  [引導] 畫(huà)圖建系

  [學(xué)生活動(dòng)]:嘗試寫(xiě)出曲線(xiàn)的方程(對求曲線(xiàn)的方程的步驟及圓的定義進(jìn)行提示性復習)

  解:以某一截面半圓的圓心為坐標原點(diǎn),半圓的直徑ab所在直線(xiàn)為x軸,建立直角坐標系,則半圓的方程為x2 y2=16(y≥0)

  將x=2.7代入,得 .

  即在離隧道中心線(xiàn)2.7m處,隧道的高度低于貨車(chē)的高度,因此貨車(chē)不能駛入這個(gè)隧道。

  (二)深入探究(獲得新知)

  問(wèn)題二:1.根據問(wèn)題一的探究能不能得到圓心在原點(diǎn),半徑為 的圓的方程?

  答:x2 y2=r2

  2.如果圓心在 ,半徑為 時(shí)又如何呢?

  [學(xué)生活動(dòng)] 探究圓的方程。

  [教師預設] 方法一:坐標法

  如圖,設m(x,y)是圓上任意一點(diǎn),根據定義點(diǎn)m到圓心c的距離等于r,所以圓c就是集合p={m||mc|=r}

  由兩點(diǎn)間的距離公式,點(diǎn)m適合的條件可表示為 ①

  把①式兩邊平方,得(x―a)2 (y―b)2=r2

  方法二:圖形變換法

  方法三:向量平移法

  (三)應用舉例(鞏固提高)

  i.直接應用(內化新知)

  問(wèn)題三:1.寫(xiě)出下列各圓的方程(課本p77練習1)

  (1)圓心在原點(diǎn),半徑為3;

  (2)圓心在 ,半徑為 ;

  (3)經(jīng)過(guò)點(diǎn) ,圓心在點(diǎn) .

  2.根據圓的方程寫(xiě)出圓心和半徑

  (1) ; (2) .

  ii.靈活應用(提升能力)

  問(wèn)題四:1.求以 為圓心,并且和直線(xiàn) 相切的圓的方程.

  [教師引導]由問(wèn)題三知:圓心與半徑可以確定圓.

  2.已知圓的方程為 ,求過(guò)圓上一點(diǎn) 的切線(xiàn)方程.

  [學(xué)生活動(dòng)]探究方法

  [教師預設]

  方法一:待定系數法(利用幾何關(guān)系求斜率-垂直)

  方法二:待定系數法(利用代數關(guān)系求斜率-聯(lián)立方程)

  方法三:軌跡法(利用勾股定理列關(guān)系式) [多媒體課件演示]

  方法四:軌跡法(利用向量垂直列關(guān)系式)

  3.你能歸納出具有一般性的結論嗎?

  已知圓的方程是 ,經(jīng)過(guò)圓上一點(diǎn) 的切線(xiàn)的方程是: .

  iii.實(shí)際應用(回歸自然)

  問(wèn)題五:如圖是某圓拱橋的一孔圓拱的示意圖,該圓拱跨度ab=20m,拱高op=4m,在建造時(shí)每隔4m需用一個(gè)支柱支撐,求支柱 的長(cháng)度(精確到0.01m).

  [多媒體課件演示創(chuàng )設實(shí)際問(wèn)題情境]

  (四)反饋訓練(形成方法)

  問(wèn)題六:1.求以c(-1,-5)為圓心,并且和y軸相切的圓的方程.

  2.已知點(diǎn)a(-4,-5),b(6,-1),求以ab為直徑的圓的方程.

  3.求圓x2 y2=13過(guò)點(diǎn)(-2,3)的切線(xiàn)方程.

  4.已知圓的方程為 ,求過(guò)點(diǎn) 的切線(xiàn)方程.

高中數學(xué)教案9

  1. 你能遵守學(xué)校的規章制度,按時(shí)上學(xué),按時(shí)完成作業(yè),書(shū)寫(xiě)比較端正,課堂上你也坐得比較端正。如果在學(xué)習上能夠更加主動(dòng)一些,尋找適合自己的學(xué)習

  2. 你尊敬老師、團結同學(xué)、熱愛(ài)勞動(dòng)、關(guān)心集體,所以大家都喜歡你。能?chē)栏褡袷貙W(xué)校的各項規章制度。學(xué)習不夠刻苦,有畏難情緒。學(xué)習方法有待改進(jìn),掌握知識不夠牢固,思維能力要進(jìn)一步培養和提高。學(xué)習成績(jì)比上學(xué)期有一定的進(jìn)步。平時(shí)能積極參加體育鍛煉和有益的文娛活動(dòng)。今后如果能注意分配好學(xué)習時(shí)間,各科全面發(fā)展,均衡提高,相信一定會(huì )成為一名更加出色的'學(xué)生。

  3. 你性格活潑開(kāi)朗,總是帶著(zhù)甜甜的笑容,你能與同學(xué)友愛(ài)相處,待人有禮,能虛心接受老師的教導。大多數的時(shí)候你都能遵守紀律,偶爾會(huì )犯一些小錯誤。有時(shí)上課不夠留心,還有些小動(dòng)作,你能想辦法控制自己?jiǎn)?一開(kāi)學(xué)老師就發(fā)現你的作業(yè)干凈又整齊,你的字清秀又漂亮。但學(xué)習成績(jì)不容樂(lè )觀(guān),需努力提高學(xué)習成績(jì)。希望能從根本上認識到自己的不足,在課堂上能認真聽(tīng)講,開(kāi)動(dòng)腦筋,遇到問(wèn)題敢于請教。

  4. 你熱情大方,為人豪爽,身上透露出女生少有的霸氣,作為班干部,你會(huì )提醒同學(xué)們及時(shí)安靜,對學(xué)習態(tài)度端正,及時(shí)完成作業(yè),但是少了點(diǎn)耐心,試著(zhù)把心沉下來(lái),上課集中注意力,跟著(zhù)老師的思路走,一步一個(gè)腳印,一定能走出你自己絢麗的人生!

  5. 學(xué)習態(tài)度端正,效率高,合理分配時(shí)間,學(xué)習生活兩不誤,善良熱情,熱愛(ài)生活,樂(lè )于助人,與周?chē)瑢W(xué)相處關(guān)系融洽。能?chē)栏褡袷貙W(xué)校的各項規章制度。上課能專(zhuān)心聽(tīng)講,認真做好筆記,課后能按時(shí)完成作業(yè)。記憶力好,自學(xué)能力較強。希望你能更主動(dòng)地學(xué)習,多思,多問(wèn),多練,大膽向老師和同學(xué)請教,注意采用科學(xué)的學(xué)習方法,提高學(xué)習效率,一定能取得滿(mǎn)意的成績(jì)!

  6. 作為本班的班長(cháng),你對待班級工作能夠認真負責,積極配合老師和班委工作,集體榮譽(yù)感很強,人際關(guān)系很好,待人真誠,熱心幫助人,老師十分欣賞你的善良和聰明,希望在以后能夠積極發(fā)揮自己的所長(cháng),帶領(lǐng)全班不僅在班級管理上有進(jìn)步,而且能在學(xué)習上也能成為全班的領(lǐng)頭雁,在下學(xué)期能取得更大的進(jìn)步!

  7. 身為班委的你,對工作認真負責,以身作則,性格和善,與同學(xué)關(guān)系融洽,積極參加各項活動(dòng),不太張揚的你顯得穩重和踏實(shí),在學(xué)習上,你認真聽(tīng)課,及時(shí)完成各科作業(yè),但是我總覺(jué)得你的學(xué)習還不夠主動(dòng),沒(méi)有形成自己的一套方法,若從被動(dòng)的學(xué)習中解脫出來(lái),應該穩定在班級前五名啊!加油!

  8. 你是個(gè)懂禮貌明事理的孩子,你能?chē)栏褡袷匕嗉壖o律,熱愛(ài)集體,對待學(xué)習態(tài)度端正,上課能夠專(zhuān)心聽(tīng)講,課下能夠認真完成作業(yè)。你的學(xué)習方法有待改進(jìn),若能做到學(xué)習時(shí)心無(wú)旁騖就好了,掌握知識也不夠牢固,思維能力要進(jìn)一步培養和提高。只要有恒心,有毅力,老師相信你會(huì )在各方面取得長(cháng)足進(jìn)步!

  9. 你為人熱情大方,能和同學(xué)友好相處。你為人正直誠懇,尊敬老師,關(guān)心班集體,待人有禮,能認真聽(tīng)從老師的教導,自覺(jué)遵守學(xué)校的各項規章制度,抵制各種不良思想。有集體榮譽(yù)感,樂(lè )于為集體做事。學(xué)習刻苦,成績(jì)有所提高。上課能專(zhuān)心聽(tīng)講,思維活躍,積極回答問(wèn)題,積極思考,認真做好筆記。今后如果能注意分配好學(xué)習時(shí)間,各科全面發(fā)展,均衡提高,相信一定會(huì )成為一名更加出色的學(xué)生。

  10. 記得和你說(shuō)過(guò),你是個(gè)太聰明的孩子,你反應敏捷,活潑靈動(dòng)。但是做學(xué)問(wèn)是需要靜下心來(lái)老老實(shí)實(shí)去鉆研的,容不得賣(mài)弄小聰明和半點(diǎn)頑皮話(huà)。要知道,學(xué)如逆水行舟,不進(jìn)則退;心似平原野馬,易放難收!望你下學(xué)期重新抖擻精神早日進(jìn)入狀態(tài),不辜負關(guān)愛(ài)你的人對你的殷殷期盼。

高中數學(xué)教案10

  一、教學(xué)目標

  【知識與技能】

  在掌握圓的標準方程的基礎上,理解記憶圓的一般方程的代數特征,由圓的一般方程確定圓的圓心半徑,掌握方程x+y+Dx+Ey+F=0表示圓的條件。

  【過(guò)程與方法】

  通過(guò)對方程x+y+Dx+Ey+F=0表示圓的的條件的探究,學(xué)生探索發(fā)現及分析解決問(wèn)題的實(shí)際能力得到提高。

  【情感態(tài)度與價(jià)值觀(guān)】

  滲透數形結合、化歸與轉化等數學(xué)思想方法,提高學(xué)生的整體素質(zhì),激勵學(xué)生創(chuàng )新,勇于探索。

  二、教學(xué)重難點(diǎn)

  【重點(diǎn)】

  掌握圓的一般方程,以及用待定系數法求圓的一般方程。

  【難點(diǎn)】

  二元二次方程與圓的一般方程及標準圓方程的關(guān)系。

  三、教學(xué)過(guò)程

 。ㄒ唬⿵土暸f知,引出課題

  1、復習圓的標準方程,圓心、半徑。

  2、提問(wèn)1:已知圓心為(1,—2)、半徑為2的圓的方程是什么?

高中數學(xué)教案11

  教學(xué)目標:

  1、理解并掌握曲線(xiàn)在某一點(diǎn)處的切線(xiàn)的概念;

  2、理解并掌握曲線(xiàn)在一點(diǎn)處的切線(xiàn)的斜率的定義以及切線(xiàn)方程的求法;

  3、理解切線(xiàn)概念實(shí)際背景,培養學(xué)生解決實(shí)際問(wèn)題的能力和培養學(xué)生轉化

  問(wèn)題的能力及數形結合思想。

  教學(xué)重點(diǎn):

  理解并掌握曲線(xiàn)在一點(diǎn)處的切線(xiàn)的斜率的定義以及切線(xiàn)方程的求法。

  教學(xué)難點(diǎn):

  用“無(wú)限逼近”、“局部以直代曲”的思想理解某一點(diǎn)處切線(xiàn)的斜率。

  教學(xué)過(guò)程:

  一、問(wèn)題情境

  1、問(wèn)題情境。

  如何精確地刻畫(huà)曲線(xiàn)上某一點(diǎn)處的變化趨勢呢?

  如果將點(diǎn)P附近的曲線(xiàn)放大,那么就會(huì )發(fā)現,曲線(xiàn)在點(diǎn)P附近看上去有點(diǎn)像是直線(xiàn)。

  如果將點(diǎn)P附近的曲線(xiàn)再放大,那么就會(huì )發(fā)現,曲線(xiàn)在點(diǎn)P附近看上去幾乎成了直線(xiàn)。事實(shí)上,如果繼續放大,那么曲線(xiàn)在點(diǎn)P附近將逼近一條確定的直線(xiàn),該直線(xiàn)是經(jīng)過(guò)點(diǎn)P的所有直線(xiàn)中最逼近曲線(xiàn)的一條直線(xiàn)。

  因此,在點(diǎn)P附近我們可以用這條直線(xiàn)來(lái)代替曲線(xiàn),也就是說(shuō),點(diǎn)P附近,曲線(xiàn)可以看出直線(xiàn)(即在很小的范圍內以直代曲)。

  2、探究活動(dòng)。

  如圖所示,直線(xiàn)l1,l2為經(jīng)過(guò)曲線(xiàn)上一點(diǎn)P的兩條直線(xiàn),

 。1)試判斷哪一條直線(xiàn)在點(diǎn)P附近更加逼近曲線(xiàn);

 。2)在點(diǎn)P附近能作出一條比l1,l2更加逼近曲線(xiàn)的直線(xiàn)l3嗎?

 。3)在點(diǎn)P附近能作出一條比l1,l2,l3更加逼近曲線(xiàn)的直線(xiàn)嗎?

  二、建構數學(xué)

  切線(xiàn)定義: 如圖,設Q為曲線(xiàn)C上不同于P的一點(diǎn),直線(xiàn)PQ稱(chēng)為曲線(xiàn)的割線(xiàn)。 隨著(zhù)點(diǎn)Q沿曲線(xiàn)C向點(diǎn)P運動(dòng),割線(xiàn)PQ在點(diǎn)P附近逼近曲線(xiàn)C,當點(diǎn)Q無(wú)限逼近點(diǎn)P時(shí),直線(xiàn)PQ最終就成為經(jīng)過(guò)點(diǎn)P處最逼近曲線(xiàn)的直線(xiàn)l,這條直線(xiàn)l也稱(chēng)為曲線(xiàn)在點(diǎn)P處的切線(xiàn)。這種方法叫割線(xiàn)逼近切線(xiàn)。

  思考:如上圖,P為已知曲線(xiàn)C上的一點(diǎn),如何求出點(diǎn)P處的切線(xiàn)方程?

  三、數學(xué)運用

  例1 試求在點(diǎn)(2,4)處的切線(xiàn)斜率。

  解法一 分析:設P(2,4),Q(xQ,f(xQ)),

  則割線(xiàn)PQ的斜率為:

  當Q沿曲線(xiàn)逼近點(diǎn)P時(shí),割線(xiàn)PQ逼近點(diǎn)P處的切線(xiàn),從而割線(xiàn)斜率逼近切線(xiàn)斜率;

  當Q點(diǎn)橫坐標無(wú)限趨近于P點(diǎn)橫坐標時(shí),即xQ無(wú)限趨近于2時(shí),kPQ無(wú)限趨近于常數4。

  從而曲線(xiàn)f(x)=x2在點(diǎn)(2,4)處的切線(xiàn)斜率為4。

  解法二 設P(2,4),Q(xQ,xQ2),則割線(xiàn)PQ的斜率為:

  當?x無(wú)限趨近于0時(shí),kPQ無(wú)限趨近于常數4,從而曲線(xiàn)f(x)=x2,在點(diǎn)(2,4)處的切線(xiàn)斜率為4。

  練習 試求在x=1處的切線(xiàn)斜率。

  解:設P(1,2),Q(1+Δx,(1+Δx)2+1),則割線(xiàn)PQ的斜率為:

  當?x無(wú)限趨近于0時(shí),kPQ無(wú)限趨近于常數2,從而曲線(xiàn)f(x)=x2+1在x=1處的切線(xiàn)斜率為2。

  小結 求曲線(xiàn)上一點(diǎn)處的切線(xiàn)斜率的一般步驟:

 。1)找到定點(diǎn)P的坐標,設出動(dòng)點(diǎn)Q的坐標;

 。2)求出割線(xiàn)PQ的斜率;

 。3)當時(shí),割線(xiàn)逼近切線(xiàn),那么割線(xiàn)斜率逼近切線(xiàn)斜率。

  思考 如上圖,P為已知曲線(xiàn)C上的一點(diǎn),如何求出點(diǎn)P處的切線(xiàn)方程?

  解 設

  所以,當無(wú)限趨近于0時(shí),無(wú)限趨近于點(diǎn)處的切線(xiàn)的斜率。

  變式訓練

  1。已知,求曲線(xiàn)在處的切線(xiàn)斜率和切線(xiàn)方程;

  2。已知,求曲線(xiàn)在處的切線(xiàn)斜率和切線(xiàn)方程;

  3。已知,求曲線(xiàn)在處的切線(xiàn)斜率和切線(xiàn)方程。

  課堂練習

  已知,求曲線(xiàn)在處的切線(xiàn)斜率和切線(xiàn)方程。

  四、回顧小結

  1、曲線(xiàn)上一點(diǎn)P處的切線(xiàn)是過(guò)點(diǎn)P的所有直線(xiàn)中最接近P點(diǎn)附近曲線(xiàn)的直線(xiàn),則P點(diǎn)處的變化趨勢可以由該點(diǎn)處的切線(xiàn)反映(局部以直代曲)。

  2、根據定義,利用割線(xiàn)逼近切線(xiàn)的方法, 可以求出曲線(xiàn)在一點(diǎn)處的切線(xiàn)斜率和方程。

  五、課外作業(yè)

高中數學(xué)教案12

  教學(xué)目標:

  1。了解反函數的概念,弄清原函數與反函數的定義域和值域的關(guān)系。

  2。會(huì )求一些簡(jiǎn)單函數的反函數。

  3。在嘗試、探索求反函數的過(guò)程中,深化對概念的認識,總結出求反函數的一般步驟,加深對函數與方程、數形結合以及由特殊到一般等數學(xué)思想方法的認識。

  4。進(jìn)一步完善學(xué)生思維的深刻性,培養學(xué)生的逆向思維能力,用辯證的觀(guān)點(diǎn)分析問(wèn)題,培養抽象、概括的能力。

  教學(xué)重點(diǎn):

  求反函數的方法。

  教學(xué)難點(diǎn):

  反函數的概念。

  教學(xué)過(guò)程:

  教學(xué)活動(dòng)

  設計意圖一、創(chuàng )設情境,引入新課

  1。復習提問(wèn)

 、俸瘮档母拍

 、趛=f(x)中各變量的意義

  2。同學(xué)們在物理課學(xué)過(guò)勻速直線(xiàn)運動(dòng)的位移和時(shí)間的函數關(guān)系,即S=vt和t=(其中速度v是常量),在S=vt 中位移S是時(shí)間t的函數;在t=中,時(shí)間t是位移S的函數。在這種情況下,我們說(shuō)t=是函數S=vt的反函數。什么是反函數,如何求反函數,就是本節課學(xué)習的內容。

  3。板書(shū)課題

  由實(shí)際問(wèn)題引入新課,激發(fā)了學(xué)生學(xué)習興趣,展示了教學(xué)目標。這樣既可以撥去"反函數"這一概念的神秘面紗,也可使學(xué)生知道學(xué)習這一概念的必要性。

  二、實(shí)例分析,組織探究

  1。問(wèn)題組一:

 。ㄓ猛队敖o出函數與;與()的圖象)

 。1)這兩組函數的圖像有什么關(guān)系?這兩組函數有什么關(guān)系?(生答:與的圖像關(guān)于直線(xiàn)y=x對稱(chēng);與()的圖象也關(guān)于直線(xiàn)y=x對稱(chēng)。是求一個(gè)數立方的運算,而是求一個(gè)數立方根的運算,它們互為逆運算。同樣,與()也互為逆運算。)

 。2)由,已知y能否求x?

 。3)是否是一個(gè)函數?它與有何關(guān)系?

 。4)與有何聯(lián)系?

  2。問(wèn)題組二:

 。1)函數y=2x 1(x是自變量)與函數x=2y 1(y是自變量)是否是同一函數?

 。2)函數(x是自變量)與函數x=2y 1(y是自變量)是否是同一函數?

 。3)函數 ()的定義域與函數()的值域有什么關(guān)系?

  3。滲透反函數的概念。

 。ń處燑c(diǎn)明這樣的函數即互為反函數,然后師生共同探究其特點(diǎn))

  從學(xué)生熟知的函數出發(fā),抽象出反函數的概念,符合學(xué)生的認知特點(diǎn),有利于培養學(xué)生抽象、概括的能力。

  通過(guò)這兩組問(wèn)題,為反函數概念的引出做了鋪墊,利用舊知,引出新識,在"最近發(fā)展區"設計問(wèn)題,使學(xué)生對反函數有一個(gè)直觀(guān)的粗略印象,為進(jìn)一步抽象反函數的概念奠定基礎。

  三、師生互動(dòng),歸納定義

  1。(根據上述實(shí)例,教師與學(xué)生共同歸納出反函數的定義)

  函數y=f(x)(x∈A) 中,設它的值域為 C。我們根據這個(gè)函數中x,y的關(guān)系,用 y 把 x 表示出來(lái),得到 x = j (y) 。如果對于y在C中的任何一個(gè)值,通過(guò)x = j (y),x在A(yíng)中都有的值和它對應,那么, x = j (y)就表示y是自變量,x是自變量 y 的函數。這樣的函數 x = j (y)(y ∈C)叫做函數y=f(x)(x∈A)的反函數。記作: ?紤]到"用 x表示自變量, y表示函數"的習慣,將中的x與y對調寫(xiě)成。

  2。引導分析:

  1)反函數也是函數;

  2)對應法則為互逆運算;

  3)定義中的"如果"意味著(zhù)對于一個(gè)任意的函數y=f(x)來(lái)說(shuō)不一定有反函數;

  4)函數y=f(x)的定義域、值域分別是函數x=f(y)的值域、定義域;

  5)函數y=f(x)與x=f(y)互為反函數;

  6)要理解好符號f;

  7)交換變量x、y的原因。

  3。兩次轉換x、y的對應關(guān)系

 。ㄔ瘮抵械淖宰兞縳與反函數中的函數值y 是等價(jià)的,原函數中的函數值y與反函數中的自變量x是等價(jià)的)

  4。函數與其反函數的關(guān)系

  函數y=f(x)

  函數

  定義域

  A

  C

  值 域

  C

  A

  四、應用解題,總結步驟

  1。(投影例題)

  【例1】求下列函數的反函數

 。1)y=3x—1 (2)y=x 1

  【例2】求函數的反函數。

 。ń處煱鍟(shū)例題過(guò)程后,由學(xué)生總結求反函數步驟。)

  2?偨Y求函數反函數的步驟:

  1° 由y=f(x)反解出x=f(y)。

  2° 把x=f(y)中 x與y互換得。

  3° 寫(xiě)出反函數的定義域。

 。ê(jiǎn)記為:反解、互換、寫(xiě)出反函數的定義域)【例3】(1)有沒(méi)有反函數?

 。2)的反函數是________。

 。3)(x<0)的反函數是__________。

  在上述探究的基礎上,揭示反函數的定義,學(xué)生有針對性地體會(huì )定義的特點(diǎn),進(jìn)而對定義有更深刻的認識,與自己的預設產(chǎn)生矛盾沖突,體會(huì )反函數。在剖析定義的過(guò)程中,讓學(xué)生體會(huì )函數與方程、一般到特殊的數學(xué)思想,并對數學(xué)的符號語(yǔ)言有更好的把握。

  通過(guò)動(dòng)畫(huà)演示,表格對照,使學(xué)生對反函數定義從感性認識上升到理性認識,從而消化理解。

  通過(guò)對具體例題的講解分析,在解題的步驟上和方法上為學(xué)生起示范作用,并及時(shí)歸納總結,培養學(xué)生分析、思考的習慣,以及歸納總結的能力。

  題目的設計遵循了從了解到理解,從掌握到應用的不同層次要求,由淺入深,循序漸進(jìn)。并體現了對定義的反思理解。學(xué)生思考練習,師生共同分析糾正。

  五、鞏固強化,評價(jià)反饋

  1。已知函數 y=f(x)存在反函數,求它的反函數 y =f( x)

 。1)y=—2x 3(xR) (2)y=—(xR,且x)

 。 3 ) y=(xR,且x)

  2。已知函數f(x)=(xR,且x)存在反函數,求f(7)的值。

  五、反思小結,再度設疑

  本節課主要研究了反函數的定義,以及反函數的求解步驟;榉春瘮档膬蓚(gè)函數的圖象到底有什么特點(diǎn)呢?為什么具有這樣的特點(diǎn)呢?我們將在下節研究。

 。ㄗ寣W(xué)生談一下本節課的學(xué)習體會(huì ),教師適時(shí)點(diǎn)撥)

  進(jìn)一步強化反函數的概念,并能正確求出反函數。反饋學(xué)生對知識的掌握情況,評價(jià)學(xué)生對學(xué)習目標的落實(shí)程度。具體實(shí)踐中可采取同學(xué)板演、分組競賽等多種形式調動(dòng)學(xué)生的積極性。"問(wèn)題是數學(xué)的心臟"學(xué)生帶著(zhù)問(wèn)題走進(jìn)課堂又帶著(zhù)新的問(wèn)題走出課堂。

  六、作業(yè)

  習題2。4 第1題,第2題

  進(jìn)一步鞏固所學(xué)的知識。

  教學(xué)設計說(shuō)明

  "問(wèn)題是數學(xué)的心臟"。一個(gè)概念的形成是螺旋式上升的,一般要經(jīng)過(guò)具體到抽象,感性到理性的過(guò)程。本節教案通過(guò)一個(gè)物理學(xué)中的具體實(shí)例引入反函數,進(jìn)而又通過(guò)若干函數的圖象進(jìn)一步加以誘導剖析,最終形成概念。

  反函數的概念是教學(xué)中的難點(diǎn),原因是其本身較為抽象,經(jīng)過(guò)兩次代換,又采用了抽象的符號。由于沒(méi)有一一映射,逆映射等概念的支撐,使學(xué)生難以從本質(zhì)上去把握反函數的概念。為此,我們大膽地使用教材,把互為反函數的兩個(gè)函數的圖象關(guān)系預先揭示,進(jìn)而探究原因,尋找規律,程序是從問(wèn)題出發(fā),研究性質(zhì),進(jìn)而得出概念,這正是數學(xué)研究的順序,符合學(xué)生認知規律,有助于概念的建立與形成。另外,對概念的剖析以及習題的配備也很精當,通過(guò)不同層次的問(wèn)題,滿(mǎn)足學(xué)生多層次需要,起到評價(jià)反饋的作用。通過(guò)對函數與方程的分析,互逆探索,動(dòng)畫(huà)演示,表格對照、學(xué)生討論等多種形式的教學(xué)環(huán)節,充分調動(dòng)了學(xué)生的探求欲,在探究與剖析的過(guò)程中,完善學(xué)生思維的深刻性,培養學(xué)生的逆向思維。使學(xué)生自然成為學(xué)習的主人。

高中數學(xué)教案13

  一、教材分析:

  1、教材的地位與作用。

  本節資料是在學(xué)生學(xué)習了"事件的可能性的基礎上來(lái)學(xué)習如何預測不確定事件(隨機事件)發(fā)生的可能性的大小。"用概率預測隨機發(fā)生的可能性大小,在日常生活、自然、科技領(lǐng)域有著(zhù)廣泛的應用,學(xué)習本單元知識,無(wú)論是今后繼續深造(高中學(xué)習概率的乘法定理)還是參加社會(huì )實(shí)踐活動(dòng)都是十分必要的。概率的概念比較抽象,概率的定義學(xué)生較難理解。

  在教材的處理上,采取小單元教學(xué),本節課安排讓學(xué)生了解求隨機事件概率的兩種方法,目的是讓學(xué)生能夠比較系統地理解概率的意義及求概率的方法,為下面學(xué)習求比較復雜的情景的概率打下基礎。

  2、重點(diǎn)與難點(diǎn)。

  重點(diǎn):對概率意義的理解,經(jīng)過(guò)多次重復實(shí)驗,用頻率預測概率的方法,以及用列舉法求概率的方法。

  難點(diǎn):對概率意義的理解和用列舉法求概率過(guò)程中在各種可能性相同條件下某一事件可能發(fā)生的總數及總的結果數的分析。

  二、目的分析:

  知識與技能:掌握用頻率預測概率和用列舉法求概率方法。

  過(guò)程與方法:組織學(xué)生自主探究,合作交流,引導學(xué)生觀(guān)察試驗和統計的結果,進(jìn)而進(jìn)行分析、歸納、總結,了解并感受概率的定義的過(guò)程,引導學(xué)生從數學(xué)的視角觀(guān)察客觀(guān)世界,用數學(xué)的思維思考客觀(guān)世界,以數學(xué)的語(yǔ)言描述客觀(guān)世界。

  情感態(tài)度價(jià)值觀(guān):學(xué)生經(jīng)歷觀(guān)察、分析、歸納、確認等數學(xué)活動(dòng),感受數學(xué)活動(dòng)充滿(mǎn)了探索性與創(chuàng )造性,感受量變與質(zhì)變的對立統一規律,同時(shí)為概率的精準、新穎、獨特的思維方法所震撼,激發(fā)學(xué)生學(xué)習數學(xué)的熱情,增強對數學(xué)價(jià)值觀(guān)的認識。

  三、教法、學(xué)法分析:

  引導學(xué)生自主探究、合作交流、觀(guān)察分析、歸納總結,讓學(xué)生經(jīng)歷知識(概率定義計算公式)的產(chǎn)生和發(fā)展過(guò)程,讓學(xué)生在數學(xué)活動(dòng)中學(xué)習數學(xué)、掌握數學(xué),并能應用數學(xué)解決現實(shí)生活中的實(shí)際問(wèn)題,教師是學(xué)生學(xué)習的組織者、合作者和指導者,精心設計教學(xué)情境,有序組織學(xué)生活動(dòng),讓課堂充滿(mǎn)生機活力,體現"教"為"學(xué)"服務(wù)這一宗旨。

  四、教學(xué)過(guò)程分析:

  1、引導學(xué)生探究

  精心設計問(wèn)題一,學(xué)生經(jīng)過(guò)對問(wèn)題一的探究,一方面復習前面學(xué)過(guò)的"確定事件和不確定事件"的知識,為學(xué)好本節資料理清知識障礙,二是讓學(xué)生明確為什么要學(xué)習概率(如何預測隨機事件可能性發(fā)生大。。引導學(xué)生對問(wèn)題二的探究與觀(guān)察實(shí)驗數據,使學(xué)生了解概率這一重要概念的實(shí)際背景,感受并相信隨機事件的發(fā)生中存在著(zhù)統計規律性,感受數學(xué)規律的真實(shí)的發(fā)現過(guò)程。

  2、歸納概括

  學(xué)生從試驗中得到的統計數字及概率呈現穩定在某一數值附近這一規律,讓學(xué)生明確概率定義的由來(lái)。

  引導學(xué)生重新對問(wèn)題一和問(wèn)題二的探究,分析某事件發(fā)生的各種可能性在全部可能發(fā)生結果中所占比例,得到用列舉法求概率的公式,引導學(xué)生進(jìn)行理性思維,邏輯分析,既培養學(xué)生的分析問(wèn)題本事,又讓學(xué)生明確用列舉法求概率這一簡(jiǎn)便快捷方法的合理性。

  3、舉例應用

 、乓龑W(xué)生對教材書(shū)例題、問(wèn)題一、問(wèn)題二中問(wèn)題的進(jìn)一步分析與探究,讓學(xué)生掌握用列舉法求概率的方法。

 、埔龑W(xué)生對練習中的問(wèn)題思考與探究,鞏固對概率公式的應用及加深對概率意義的理解。

  4、深化發(fā)展

 、旁O置3個(gè)小題目,引導學(xué)生歸納、分析、總結,加深對知識與方法的理解,并學(xué)會(huì )靈活運用。

 、谱寣W(xué)生設計活動(dòng)資料,對知識進(jìn)行升華和拓展,引導學(xué)生創(chuàng )造性地運用知識思考問(wèn)題和解決問(wèn)題,從而培養學(xué)生的創(chuàng )新意識和創(chuàng )新本事。

高中數學(xué)教案14

  一、教學(xué)目標:

  掌握向量的概念、坐標表示、運算性質(zhì),做到融會(huì )貫通,能應用向量的有關(guān)性質(zhì)解決諸如平面幾何、解析幾何等的問(wèn)題。

  二、教學(xué)重點(diǎn):

  向量的性質(zhì)及相關(guān)知識的綜合應用。

  三、教學(xué)過(guò)程:

 。ㄒ唬┲饕R:

  1、掌握向量的概念、坐標表示、運算性質(zhì),做到融會(huì )貫通,能應用向量的有關(guān)性質(zhì)解決諸如平面幾何、解析幾何等的問(wèn)題。

 。ǘ├}分析:略

  四、小結:

  1、進(jìn)一步熟練有關(guān)向量的運算和證明;能運用解三角形的知識解決有關(guān)應用問(wèn)題,

  2、滲透數學(xué)建模的思想,切實(shí)培養分析和解決問(wèn)題的能力。

  五、作業(yè):

  略

高中數學(xué)教案15

  教學(xué)目標

  1.了解映射的概念,象與原象的概念,和一一映射的概念.

 。1)明確映射是特殊的對應即由集合 ,集合 和對應法則f三者構成的一個(gè)整體,知道映射的特殊之處在于必須是多對一和一對一的對應;

 。2)能準確使用數學(xué)符號表示映射, 把握映射與一一映射的區別;

 。3)會(huì )求給定映射的指定元素的象與原象,了解求象與原象的方法.

  2.在概念形成過(guò)程中,培養學(xué)生的觀(guān)察,比較和歸納的能力.

  3.通過(guò)映射概念的學(xué)習,逐步提高學(xué)生對知識的探究能力.

  教學(xué)建議

  教材分析

 。1)知識結構

  映射是一種特殊的對應,一一映射又是一種特殊的映射,而且函數也是特殊的映射,它們之間的關(guān)系可以通過(guò)下圖表示出來(lái),如圖:

  由此我們可從集合的包含關(guān)系中幫助我們把握相關(guān)概念間的區別與聯(lián)系.

 。2)重點(diǎn),難點(diǎn)分析

  本節的教學(xué)重點(diǎn)和難點(diǎn)是映射和一一映射概念的形成與認識.

 、儆成涞母拍钍潜容^抽象的概念,它是在初中所學(xué)對應的基礎上發(fā)展而來(lái).教學(xué)中應特別強調對應集合 B中的唯一這點(diǎn)要求的理解;

  映射是學(xué)生在初中所學(xué)的對應的基礎上學(xué)習的,對應本身就是由三部分構成的整體,包括集 合A和集合B及對應法則f,由于法則的不同,對應可分為一對一,多對一,一對多和多對多. 其中只有一對一和多對一的能構成映射,由此可以看到映射必是“對B中之唯一”,而只要是對應就必須保證讓A中之任一與B中元素相對應,所以滿(mǎn)足一對一和多對一的對應就能體現出“任一對唯一”.

 、诙灰挥成溆衷谟成涞幕A上增加新的要求,決定了它在學(xué)習中是比較困難的.

  教法建議

 。1)在映射概念引入時(shí),可先從學(xué)生熟悉的對應入手, 選擇一些具體的生活例子,然后再舉一些數學(xué)例子,分為一對多、多對一、多對一、一對一四種情況,讓學(xué)生認真觀(guān)察,比較,再引導學(xué)生發(fā)現其中一對一和多對一的對應是映射,逐步歸納概括出映射的基本特征,讓學(xué)生的認識從感性認識到理性認識.

 。2)在剛開(kāi)始學(xué)習映射時(shí),為了能讓學(xué)生看清映射的構成,可以選擇用圖形表示映射,在集合的選擇上可選擇能用列舉法表示的有限集,法則盡量用語(yǔ)言描述,這樣的表示方法讓學(xué)生可以比較直觀(guān)的認識映射,而后再選擇用抽象的數學(xué)符號表示映射,比如:

 。3)對于學(xué)生層次較高的學(xué)?梢栽诮o出定義后讓學(xué)生根據自己的理解舉出映射的例子,教師也給出一些映射的例子,讓學(xué)生從中發(fā)現映射的特點(diǎn),并用自己的語(yǔ)言描述出來(lái),最后教師加以概括,再從中引出一一映射概念;對于學(xué)生層次較低的學(xué)校,則可以由教師給出一些例子讓學(xué)生觀(guān)察,教師引導學(xué)生發(fā)現映射的特點(diǎn),一起概括.最后再讓學(xué)生舉例,并逐步增加要求向一一映射靠攏,引出一一映射概念.

 。4)關(guān)于求象和原象的問(wèn)題,應在計算的過(guò)程中總結方法,特別是求原象的方法是解方程或方程組,還可以通過(guò)方程組解的不同情況(有唯一解,無(wú)解或有無(wú)數解)加深對映射的認識.

 。5)在教學(xué)方法上可以采用啟發(fā),討論的形式,讓學(xué)生在實(shí)例中去觀(guān)察,比較,啟發(fā)學(xué)生尋找共性,共同討論映射的特點(diǎn),共同舉例,計算,最后進(jìn)行小結,教師要起到點(diǎn)撥和深化的作用.

  教學(xué)設計方案

  2.1映射

  教學(xué)目標(1)了解映射的概念,象與原象及一一映射的概念.

  (2)在概念形成過(guò)程中,培養學(xué)生的觀(guān)察,分析對比,歸納的能力.

  (3)通過(guò)映射概念的學(xué)習,逐步提高學(xué)生的探究能力.

  教學(xué)重點(diǎn)難點(diǎn)::映射概念的形成與認識.

  教學(xué)用具:實(shí)物投影儀

  教學(xué)方法:?jiǎn)l(fā)討論式

  教學(xué)過(guò)程:

  一、引入

  在初中,我們已經(jīng)初步探討了函數的定義并研究了幾類(lèi)簡(jiǎn)單的常見(jiàn)函數.在高中,將利用前面集合有關(guān)知識,利用映射的觀(guān)點(diǎn)給出函數的定義.那么映射是什么呢?這就是我們今天要詳細的概念.

  二、新課

  在前一章集合的初步知識中,我們學(xué)習了元素與集合及集合與集合之間的關(guān)系,而映射是重點(diǎn)研究?jì)蓚(gè)集合的元素與元素之間的對應關(guān)系.這要先從我們熟悉的對應說(shuō)起(用投影儀打出一些對應關(guān)系,共6個(gè))

  我們今天要研究的是一類(lèi)特殊的對應,特殊在什么地方呢?

  提問(wèn)1:在這些對應中有哪些是讓A中元素就對應B中唯一一個(gè)元素?

  讓學(xué)生仔細觀(guān)察后由學(xué)生回答,對有爭議的,或漏選,多選的可詳細說(shuō)明理由進(jìn)行討論.最后得出(1),(2),(5),(6)是符合條件的(用投影儀將這幾個(gè)集中在一起)

  提問(wèn)2:能用自己的語(yǔ)言描述一下這幾個(gè)對應的共性嗎?

  經(jīng)過(guò)師生共同推敲,將映射的定義引出.(主體內容由學(xué)生完成,教師做必要的補充)

【高中數學(xué)教案】相關(guān)文章:

高中數學(xué)教案07-11

高中數學(xué)教案12-29

高中數學(xué)教案07-20

高中數學(xué)教案模板11-18

高中數學(xué)教案范文07-20

【精】高中數學(xué)教案12-29

【熱】高中數學(xué)教案12-29

【薦】高中數學(xué)教案12-29

【熱門(mén)】高中數學(xué)教案12-29

高中數學(xué)教案【推薦】12-29