- 相關(guān)推薦
初中數學(xué)勾股定理教案
作為一位不辭辛勞的人民教師,就有可能用到教案,借助教案可以更好地組織教學(xué)活動(dòng)。我們應該怎么寫(xiě)教案呢?下面是小編為大家整理的初中數學(xué)勾股定理教案,希望對大家有所幫助。

初中數學(xué)勾股定理教案1
教學(xué) 目標:
(1)理解通分的意義,理解最簡(jiǎn)公分母的意義;
(2)掌握分式的通分法則,能熟練掌握通分運算。
教學(xué) 重點(diǎn):
分式通分的理解和掌握。
教學(xué) 難點(diǎn):
分式通分中最簡(jiǎn)公分母的確定。
教學(xué) 工具:
投影儀
教學(xué) 方法:
啟發(fā)式、討論式
教學(xué) 過(guò)程 :
。ㄒ唬┮
。1)如何計算:
由此讓學(xué)生復習分數通分的意義、通分的根據、通分的法則以及最簡(jiǎn)公分母的概念。
。2)如何計算:
。3)何計算:
引導學(xué)生思考,猜想如何求解?
(二)新課
1、類(lèi)比分數的通分得到分式的通分:
把幾個(gè)異分母的分式分別化成與原來(lái)的分式相等的同分母的分式,叫做分式的 通分 .
注意:通分保證
。1)各分式與原分式相等;
。2)各分式分母相等。
2.通分的依據:分式的基本性質(zhì).
3.通分的關(guān)鍵:確定幾個(gè)分式的最簡(jiǎn)公分母.
通常取各分母的所有因式的最高次冪的積作最簡(jiǎn)公分母,這樣的公分母叫做 最簡(jiǎn)公分母 .
根據分式通分和最簡(jiǎn)公分母的定義,將分式xx ,xx,xx 通分:
最簡(jiǎn)公分母為:xx ,然后根據分式的基本性質(zhì),分別對原來(lái)的各分式的分子和分母乘一個(gè)適當的整式,使各分式的分母都化為xx。通分如下:
通過(guò)本例使學(xué)生對于分式的通分大致過(guò)程和思路有所了解。讓學(xué)生歸納通分的思路過(guò)程。
例1 通分:
。1)xx,xx,xx ;
分析:讓學(xué)生找分式的公分母,可設問(wèn)“分母的系數各不相同如何解決?”,依據分數的通分找最小公倍數。
解:∵ 最簡(jiǎn)公分母是12xy 2
小結:各分母的系數都是整數時(shí),通常取它們的系數的最小公倍數作為最簡(jiǎn)公分母的系數.
解:∵最簡(jiǎn)公分母是10a 2 b 2 c 2
由學(xué)生歸納最簡(jiǎn)公分母的思路。
分式通分中求最簡(jiǎn)公分母概括為:
。1)取各分母系數的最小公倍數;
。2)凡出現的字母為底的冪的因式都要;
。3)相同字母的冪的因式取指數最大的。
取這些因式的'積就是最簡(jiǎn)公分母。
初中數學(xué)勾股定理教案2
一、內容和內容解析
1。內容
應用勾股定理及勾股定理的逆定理解決實(shí)際問(wèn)題。
2。內容解析
運用勾股定理的逆定理可以從三角形邊的數量關(guān)系來(lái)識別三角形的形狀,它是用代數方法來(lái)研究幾何圖形,也是向學(xué)生滲透“數形結合”這一數學(xué)思想方法的很好素材。綜合運用勾股定理及其逆定理能幫助我們解決實(shí)際問(wèn)題。
基于以上分析,可以確定本課的教學(xué)重點(diǎn)是靈活運用勾股定理的逆定理解決實(shí)際問(wèn)題。
二、目標和目標解析
1。目標
。1)靈活應用勾股定理及逆定理解決實(shí)際問(wèn)題。
。2)進(jìn)一步加深性質(zhì)定理與判定定理之間關(guān)系的認識。
2。目標解析
達成目標(1)的標志是學(xué)生通過(guò)合作、討論、動(dòng)手實(shí)踐等方式,在應用題中建立數學(xué)模型,準確畫(huà)出幾何圖形,再熟練運用勾股定理逆定理判斷三角形狀及求邊長(cháng)、面積、角度等;
目標(2)能先用勾股定理的逆定理判斷一個(gè)三角形是直角三角形,再用勾股定理及直角三角形的性質(zhì)進(jìn)行有關(guān)的計算和證明。
三、教學(xué)問(wèn)題診斷分析
對于大部分學(xué)生將實(shí)際問(wèn)題抽象成數學(xué)模型并進(jìn)行解析與應用,有一定的困難,所以在教學(xué)時(shí)應該注意啟發(fā)引導學(xué)生從實(shí)際生活中所遇到的問(wèn)題出發(fā),鼓勵學(xué)生以勾股定理及逆定理的知識為載體建立數學(xué)模型,利用數學(xué)模型去解決實(shí)際問(wèn)題。
本課的教學(xué)難點(diǎn)是靈活運用勾股定理及逆定理解決實(shí)際問(wèn)題。
四、教學(xué)過(guò)程設計
1。復習反思,引出課題
問(wèn)題1 通過(guò)前面的學(xué)習,我們對勾股定理及其逆定理的知識有一定的了解,請說(shuō)出勾股定理及其逆定理的內容。
師生活動(dòng):學(xué)生回答勾股定理的內容“如果直角三角形的兩條直角邊長(cháng)分別為,斜邊長(cháng)為,那么;勾股定理的逆定理“如果三角形的三邊長(cháng)滿(mǎn)足,那么這個(gè)三角形是直角三角形。
追問(wèn):你能用勾股定理及逆定理解決哪些問(wèn)題?
師生活動(dòng):學(xué)生通過(guò)思考舉手回答,教師板書(shū)課題。
【設計意圖】通過(guò)復習勾股定理及其逆定理來(lái)引入本課時(shí)的學(xué)習任務(wù)——應用勾股定理及逆定理解決有關(guān)實(shí)際問(wèn)題。
2。 點(diǎn)擊范例,以練促思
問(wèn)題2 某港口位于東西方向的海岸線(xiàn)上!斑h航”號、“海天”號輪船同時(shí)離開(kāi)港口,各自沿一固定方向航行,“遠航”號每小時(shí)航行16海里,“海天”號每小時(shí)航行12海里。它們離開(kāi)港口一個(gè)半小時(shí)后相距30海里。如果知道“遠航”號沿東北方向航行,能知道“海天”號沿哪個(gè)方向航行嗎?
師生活動(dòng):學(xué)生讀題,理解題意,弄清楚已知條件和需解決的問(wèn)題,教師通過(guò)梯次性問(wèn)題的展示,適時(shí)點(diǎn)撥,學(xué)生嘗試畫(huà)圖、估測、交流中分化難點(diǎn)完成解答。
追問(wèn)1:請同學(xué)們認真審題,弄清已知是什么?解決的問(wèn)題是什么?
師生活動(dòng):學(xué)生通過(guò)思考舉手回答,教師在黑板上列出:已知兩種船的航速,它們的航行時(shí)間以及相距的路程, “遠航”號的航向——東北方向;解決的問(wèn)題是“海天”號的航向。
追問(wèn)2:你能根據題意畫(huà)出圖形嗎?
師生活動(dòng):學(xué)生嘗試畫(huà)圖,教師在黑板上或多媒體中畫(huà)出示意圖。
追問(wèn)3:在所畫(huà)的圖中哪個(gè)角可以表示“海天”號的航向?圖中知道哪個(gè)角的度數?
師生活動(dòng):學(xué)生小組討論交流回答問(wèn)題“海天”號的航向只要能確定∠QPR的大小即可。組內討論解答,小組代表展示解答過(guò)程,教師適時(shí)點(diǎn)評,多媒體展示規范解答過(guò)程。
解:根據題意,
因為
,即
,所以
由“遠航”號沿東北方向航行可知
。因此
,即“海天”號沿西北方向航行。
課堂練習1。 課本33頁(yè)練習第3題。
課堂練習2。 在
港有甲、乙兩艘漁船,若甲船沿北偏東
方向以每小時(shí)8海里速度前進(jìn),乙船沿南偏東某方向以每小時(shí)15海里速度前進(jìn),1小時(shí)后甲船到達
島,乙船到達
島,且
島與
島相距17海里,你能知道乙船沿哪個(gè)方向航行嗎?
【設計意圖】學(xué)生在規范化的解答過(guò)程及練習中,提升對勾股定理逆定理的認識以及實(shí)際應用的能力。
3。 補充訓練,鞏固新知
問(wèn)題3 實(shí)驗中學(xué)有一塊四邊形的空地
若每平方米草皮需要200元,問(wèn)學(xué)校需要投入多少資金購買(mǎi)草皮?
師生活動(dòng):先由學(xué)生獨立思考。若學(xué)生有想法,則由學(xué)生先說(shuō)思路,然后教師追問(wèn):你是怎么想到的?對學(xué)生思路中的合理成分進(jìn)行總結;若學(xué)生沒(méi)有思路,教師可引導學(xué)生分析:從所要求的結果出發(fā)是要知道四邊形的面積,而四邊形被它的一條對角線(xiàn)分成兩個(gè)三角形,求出兩個(gè)三角形的面積和即可。啟發(fā)學(xué)生形成思路,最后由學(xué)生演板完成。
【設計意圖】引導學(xué)生利用輔助線(xiàn)解決問(wèn)題,進(jìn)一步養成利用勾股定理的逆定理解決實(shí)際問(wèn)題的意識。
4。 反思小結,觀(guān)點(diǎn)提煉
教師引導學(xué)生參照下面兩個(gè)方面,回顧本節課所學(xué)的主要內容,進(jìn)行相互交流:
。1)知識總結:勾股定理以及逆定理的實(shí)際應用;
。2)方法歸納:數學(xué)建模的思想。
【設計意圖】通過(guò)小結,梳理本節課所學(xué)內容,總結方法,體會(huì )思想。
5。布置作業(yè)
教科書(shū)34頁(yè)習題17。2第3題,第4題,第5題,第6題。
五、目標檢測設計
1。小明在學(xué)校運動(dòng)會(huì )上負責聯(lián)絡(luò ),他先從檢錄處走了75米到達起點(diǎn),又從起點(diǎn)向東走了100米到達終點(diǎn),最后從終點(diǎn)走了125米,回到檢錄處,則他開(kāi)始走的方向是(假設小明走的每段都是直線(xiàn)) ( )
A。南北 B。東西 C。東北 D。西北
【設計意圖】考查運用勾股定理的逆定理解決實(shí)際生活問(wèn)題。
2。甲、乙兩船同時(shí)從
港出發(fā),甲船沿北偏東
的方向,以每小時(shí)9海里的速度向
島駛去,乙船沿另一個(gè)方向,以每小時(shí)12海里的速度向
島駛去,3小時(shí)后兩船同時(shí)到達了目的地。如果兩船航行的速度不變,且
兩島相距45海里,那么乙船航行的方向是南偏東多少度?
【設計意圖】考查建立數學(xué)模型,準確畫(huà)出幾何圖形,運用勾股定理的逆定理解決實(shí)際生活問(wèn)題。
3。如圖是一塊四邊形的菜地,已知
求這塊菜地的面積。
【設計意圖】考查利用勾股定理及逆定理將不規則圖形轉化為直角三角形,巧妙地求解。
初中數學(xué)勾股定理教案3
一、教學(xué)目標
【知識與技能】
理解并掌握勾股定理的逆定理,會(huì )應用定理判定直角三角形;理解勾股定理與勾股定理逆定理的區別與聯(lián)系;理解原命題和逆命題的概念,知道二者的關(guān)系及二者真假性的關(guān)系。
【過(guò)程與方法】
經(jīng)歷得出猜想、推理證明的過(guò)程,提升自主探究、分析問(wèn)題、解決問(wèn)題的能力。
【情感、態(tài)度與價(jià)值觀(guān)】
體會(huì )事物之間的聯(lián)系,感受幾何的魅力。
二、教學(xué)重難點(diǎn)
【重點(diǎn)】勾股定理的逆定理及其證明。
【難點(diǎn)】勾股定理的逆定理的證明。
三、教學(xué)過(guò)程
(一)導入新課
復習勾股定理,分清其題設和結論。
提問(wèn)學(xué)生畫(huà)直角三角形的方法(可用尺類(lèi)工具),然后要求不能用繩子以外的工具。
出示古埃及人利用等長(cháng)的3、4、5個(gè)繩結間距畫(huà)直角三角形的方法,以其中蘊含何道理為切入點(diǎn)引出課題。
(二)講解新知
請學(xué)生思考3,4,5之間的關(guān)系,結合勾股定理的學(xué)習經(jīng)驗明確
出示數據2.5cm,6cm,6.5cm,請學(xué)生計算驗證數據滿(mǎn)足上述平方和關(guān)系,并畫(huà)出相應邊長(cháng)的三角形檢驗是否為直角三角形。
學(xué)生活動(dòng):同桌兩人一組,將三邊換成其他滿(mǎn)足上述平方和關(guān)系的數據,如4cm,7.5cm,8.5cm,畫(huà)出相應邊長(cháng)的三角形檢驗是否為直角三角形。
【初中數學(xué)勾股定理教案】相關(guān)文章:
數學(xué)勾股定理教案11-02
初中數學(xué)《勾股定理》教案模板(精選9篇)06-17
初中勾股定理教案03-29