北師大版《勾股定理》優(yōu)秀說(shuō)課稿
作為一名教師,常常要寫(xiě)一份優(yōu)秀的說(shuō)課稿,說(shuō)課稿有助于提高教師理論素養和駕馭教材的能力。如何把說(shuō)課稿做到重點(diǎn)突出呢?下面是小編整理的北師大版《勾股定理》優(yōu)秀說(shuō)課稿,歡迎大家分享。
《勾股定理》說(shuō)課稿1
一、說(shuō)教材
勾股定理是學(xué)生在已經(jīng)掌握了直角三角形的有關(guān)性質(zhì)的基礎上進(jìn)行學(xué)習的,它是直角三角形的一條非常重要的性質(zhì),是幾何中最重要的定理之一,它揭示了一個(gè)三角形三條邊之間的數量關(guān)系,它可以解決直角三角形中的計算問(wèn)題,是解直角三角形的主要根據之一,在實(shí)際生活中用途很大。教材在編寫(xiě)時(shí)注意培養學(xué)生的動(dòng)手操作能力和分析問(wèn)題的能力,通過(guò)實(shí)際分析、拼圖等活動(dòng),使學(xué)生獲得較為直觀(guān)的印象;通過(guò)聯(lián)系和比較,理解勾股定理,以利于正確的進(jìn)行運用。
據此,制定教學(xué)目標如下:
1、理解并掌握勾股定理及其證明。
2、能夠靈活地運用勾股定理及其計算。
3、培養學(xué)生觀(guān)察、比較、分析、推理的能力。
4、通過(guò)介紹中國古代勾股方面的成就,激發(fā)學(xué)生熱愛(ài)祖國與熱愛(ài)祖國悠久文化的思想感情,培養他們的民族自豪感和鉆研精神。
教學(xué)重點(diǎn):勾股定理的證明和應用。
教學(xué)難點(diǎn):勾股定理的證明。
二、說(shuō)教法和學(xué)法
教法和學(xué)法是體現在整個(gè)教學(xué)過(guò)程中的,本課的教法和學(xué)法體現如下特點(diǎn):
1、以自學(xué)輔導為主,充分發(fā)揮教師的主導作用,運用各種手段激發(fā)學(xué)生學(xué)習欲望和興趣,組織學(xué)生活動(dòng),讓同學(xué)們主動(dòng)參與學(xué)習全過(guò)程。
2、切實(shí)體現學(xué)生的主體地位,讓學(xué)生通過(guò)觀(guān)察、分析、討論、操作、歸納,理解定理,提高學(xué)生動(dòng)手操作能力,以及分析問(wèn)題和解決問(wèn)題的能力。
3、通過(guò)演示實(shí)物,引導學(xué)生觀(guān)察、操作、分析、證明,使學(xué)生得到獲得新知的成功感受,從而激發(fā)學(xué)生鉆研新知的欲望。
三、教學(xué)程序
本節內容的教學(xué)主要體現在學(xué)生動(dòng)手、動(dòng)腦方面,根據學(xué)生的認知規律和學(xué)習心理,教學(xué)程序設計如下:
。ㄒ唬﹦(chuàng )設情境以古引新
1、由故事引入,3000多年前有個(gè)叫商高的人對周公說(shuō),把一根直尺折成直角,兩端連接得到一個(gè)直角三角形,如果勾是3,股是4,那么弦等于5。這樣引起學(xué)生學(xué)習興趣,激發(fā)學(xué)生求知欲。
2、是不是所有的直角三角形都有這個(gè)性質(zhì)呢?教師要善于激疑,使學(xué)生進(jìn)入樂(lè )學(xué)狀態(tài)。
3、板書(shū)課題,出示學(xué)習目標。
。ǘ┏醪礁兄斫饨滩
教師指導學(xué)生自學(xué)教材,通過(guò)自學(xué)感悟理解新知,體現了學(xué)生的自主學(xué)習意識,鍛煉學(xué)生主動(dòng)探究知識,養成良好的自學(xué)習慣。
。ㄈ┵|(zhì)疑解難討論歸納
1、教師設疑或學(xué)生提疑。如:如何證明勾股定理?學(xué)生通過(guò)自學(xué),中等以上的學(xué)生基本掌握,這時(shí)能激發(fā)同學(xué)們的表現欲。
2、教師引導學(xué)生按照要求進(jìn)行拼圖,觀(guān)察并分析;
。1)這兩個(gè)圖形有什么特點(diǎn)?
。2)你能寫(xiě)出這兩個(gè)圖形的面積嗎?
。3)如何運用勾股定理?是否還有其他形式?
這時(shí)教師組織學(xué)生分組討論,調動(dòng)全體學(xué)生的積極性,達到人人參與的效果,接著(zhù)全班交流。先有某一組代表發(fā)言,說(shuō)明本組對問(wèn)題的理解程度,其他各組作評價(jià)和補充。教師及時(shí)進(jìn)行富有啟發(fā)性的點(diǎn)撥,最后,師生共同歸納,形成一致意見(jiàn),最終解決疑難。
。ㄋ模╈柟叹毩晱娀岣
1、出示練習,學(xué)生分組解答,并由學(xué)生總結解題規律。課堂教學(xué)中動(dòng)靜結合,以免引起學(xué)生的疲勞。
2、出示例1學(xué)生試解,師生共同評價(jià),以加深對例題的理解與運用。針對例題再次出現鞏固練習,進(jìn)一步提高學(xué)生運用知識的能力,對練習中出現的情況可采取互評、互議的形式,在互評互議中出現的具有代表性的問(wèn)題,教師可以采取全班討論的形式予以解決,以此突出教學(xué)重點(diǎn)。
。ㄎ澹w納總結練習反饋
引導同學(xué)們對知識要點(diǎn)進(jìn)行總結,梳理學(xué)習思路。分發(fā)自我反饋練習,同學(xué)們獨立完成。
本課意在創(chuàng )設愉悅和諧的樂(lè )學(xué)氣氛,優(yōu)化教學(xué)手段,借助電教手段提高課堂教學(xué)效率,建立平等、民主、和諧的師生關(guān)系。加強師生間的合作,營(yíng)造一種學(xué)生敢想、感說(shuō)、感問(wèn)的課堂氣氛,讓全體學(xué)生都能生動(dòng)活潑、積極主動(dòng)地教學(xué)活動(dòng),在學(xué)習中創(chuàng )新精神和實(shí)踐能力得到培養。
《勾股定理》說(shuō)課稿2
一、說(shuō)教材
“勾股定理的逆定理”一節?是在上節“勾股定理”之后繼續學(xué)習的一個(gè)直角三角形的判斷定理,它是前面知識的繼續和深化。勾股定理的逆定理是初中幾何學(xué)習中的重要內容之一,是今后判斷某三角形是直角三角形的重要方法之一,在以后的解題中將有十分廣泛的應用,同時(shí)在應用中滲透了利用代數計算的方法證明幾何問(wèn)題的思想,為將來(lái)學(xué)習解析幾何埋下了伏筆,所以本節也是本章的重要內容之一。
二、說(shuō)學(xué)情
中學(xué)生心理學(xué)研究指出,初中階段是智力發(fā)展的關(guān)鍵年齡,學(xué)生邏輯思維從經(jīng)驗型逐步向理論型發(fā)展,觀(guān)察能力、記憶能力和想象能力也隨著(zhù)迅速發(fā)展。學(xué)生此前學(xué)習了三角形有關(guān)的知識,掌握了直角三角形的性質(zhì)和勾股定理,學(xué)生在此基礎上學(xué)習勾股定理的逆定理可以加深理解。
三、說(shuō)教學(xué)目標
根據數學(xué)課標的要求和教材的具體內容結合學(xué)生實(shí)際我確定了如下教學(xué)目標。
【知識與技能】
理解勾股定理的逆定理的證明方法并能證明勾股定理的逆定理。利用勾股定理的`逆定理判定一個(gè)三角形是不是直角三角形。
【過(guò)程與方法】
通過(guò)勾股定理的逆定理的證明,體會(huì )數與形結合方法在問(wèn)題解決中的作用,并能運用勾股定理的逆定理解決相關(guān)問(wèn)題。
【情感態(tài)度與價(jià)值觀(guān)】
通過(guò)一系列富有探究性的問(wèn)題,滲透與他人交流、合作的意識和探究精神。
四、說(shuō)教學(xué)重難點(diǎn)
重點(diǎn):勾股定理逆定理的應用;
難點(diǎn):探究勾股定理逆定理的證明過(guò)程。
五、說(shuō)教學(xué)方法
科學(xué)合理的教學(xué)方法能使教學(xué)效果事半功倍,達到教與學(xué)的和諧完美統一;诖,我準備采用的教法是講練結合法,小組討論法。
六、說(shuō)教學(xué)過(guò)程
(一)導入新課
在導入新課環(huán)節,我會(huì )采用溫故知新的導入方法,先讓學(xué)生回顧勾股定理有關(guān)知識,并引入本節課的課題——勾股定理逆定理。
【設計意圖】通過(guò)復習回顧能很好地將新舊知識聯(lián)系起來(lái),使學(xué)生形成對知識的系統的認識。并且由舊知開(kāi)始,能很好地幫助學(xué)生克服畏難情緒。
(二)探究新知
一開(kāi)課我就提出了與本節課關(guān)系密切、學(xué)生用現有的知識可探索卻又解決不好的問(wèn)題去提示本節課的探究宗旨,演示古代埃及人把一根長(cháng)繩打上等距離的13個(gè)結,然后便得到一個(gè)直角三角形這是為什么?這個(gè)問(wèn)題一出現,馬上激起學(xué)生已有知識與待研究知識的認識沖突,引起了學(xué)生的重視激發(fā)了學(xué)生的興趣,因而全身心地投入到學(xué)習中來(lái)創(chuàng )造了我要學(xué)的氣氛,同時(shí)也說(shuō)明了幾何知識來(lái)源于實(shí)踐不失時(shí)機地讓學(xué)生感到數學(xué)就在身邊。
因為幾何來(lái)源于現實(shí)生活,對初二學(xué)生來(lái)說(shuō)選擇適當的時(shí)機讓他們從個(gè)體實(shí)踐經(jīng)驗中開(kāi)始學(xué)習可以提高學(xué)習的主動(dòng)性和參與意識,所以勾股定理的逆定理不是由教師直接給出的,而是讓學(xué)生通過(guò)動(dòng)手折紙在具體的實(shí)踐中觀(guān)察滿(mǎn)足條件的三角形直觀(guān)感覺(jué)上是什么三角形,再用直角三角形插入去驗證猜想。
這樣設計是因為勾股定理逆定理的證明方法是學(xué)生第一次見(jiàn),它要求按照已知條件作一個(gè)直角三角形,根據學(xué)生的智能狀況學(xué)生是不容易想到的,為了突破這個(gè)難點(diǎn),我讓學(xué)生動(dòng)手裁出了一個(gè)兩直角邊與所折三角形兩條較小邊相等的直角三角形,通過(guò)操作驗證兩三角形全等,從而不僅顯示了符合條件的三角形是直角三角形,還孕育了輔助線(xiàn)的添法,為后面進(jìn)行邏輯推理論證提供了直觀(guān)的數學(xué)模型。
接下來(lái)就是利用這個(gè)數學(xué)模型,從理論上證明這個(gè)定理。從動(dòng)手操作到證明,學(xué)生自然地聯(lián)想到了全等三角形的性質(zhì),證明它與一個(gè)直角三角形全等順利作出了輔助直角三角形,整個(gè)證明過(guò)程自然無(wú)神秘感,實(shí)現了從生動(dòng)直觀(guān)向抽象思維的轉化,同時(shí)學(xué)生親身體會(huì )了動(dòng)手操作——觀(guān)察——猜測——探索——論證的全過(guò)程。這樣學(xué)生不是被動(dòng)接受勾股定理的逆定理?因而使學(xué)生感到自然、親切。學(xué)生的學(xué)習興趣和學(xué)習積極性有所提高,使學(xué)生確實(shí)在學(xué)習過(guò)程中享受到自我創(chuàng )造的快樂(lè )。
在同學(xué)們完成證明之后,可讓他們對照課本把證明過(guò)程嚴格的閱讀一遍充分發(fā)揮教科書(shū)的作用養成學(xué)生看書(shū)的習慣這也是在培養學(xué)生的自學(xué)能力。
(三)鞏固提高
本著(zhù)由淺入深的原則安排了三個(gè)題目。演示第一題比較簡(jiǎn)單(判斷下列三條線(xiàn)段組成的三角形是不是直角三角形,比如15、8、17;13、14、15等等)讓學(xué)生口答讓所有的學(xué)生都能完成。
第二題則進(jìn)了一層用字母代替了數字,繞了一個(gè)彎,既可以檢查本課知識又可以提高靈活運用以往知識的能力。
思維提高了課堂教學(xué)的效果和利用率。在變式訓練中我還采用講、說(shuō)、練結合的方法,教師通過(guò)觀(guān)察、提問(wèn)、巡視、談話(huà)等活動(dòng)、及時(shí)了解學(xué)生的學(xué)習過(guò)程,隨時(shí)反饋調節教法同時(shí)注意加強有針對性的個(gè)別指導把發(fā)展學(xué)生的思維和隨時(shí)把握學(xué)生的學(xué)習效果結合起來(lái)。
(四)小結作業(yè)
在小結環(huán)節,我會(huì )隨機詢(xún)問(wèn)學(xué)生勾股定理的逆定理是什么?如果判斷一個(gè)三角形是不是直角三角形,以及勾股定理的逆定理的應用需要注意點(diǎn)什么等問(wèn)題,先讓學(xué)生歸納本節知識和技能,然后教師作必要的補充,尤其是注意總結思想方法培養能力方面比如輔助線(xiàn)的添法。
設計意圖:這樣設計可以幫助學(xué)生以反思的形式回憶本節課所學(xué)的知識,加深對知識的印象,有利于學(xué)生良好的數學(xué)學(xué)習習慣的養成。
由于學(xué)生的思維素質(zhì)存在一定的差異,教學(xué)要貫徹“因材施教”的原則,為此我安排了兩組作業(yè)。第一組是基礎題,我會(huì )用ppt出示關(guān)于勾股定理的逆定理的計算題目,這樣有利于學(xué)生學(xué)習習慣的培養,以及提高他們學(xué)好數學(xué)的信心。第二組是開(kāi)放性題目,讓學(xué)生課后思考總結一下判定一個(gè)三角形是直角三角形的方法。
【北師大版《勾股定理》優(yōu)秀說(shuō)課稿】相關(guān)文章:
北師大版《合格率》說(shuō)課稿12-23
勾股定理說(shuō)課稿15篇02-04
《探索勾股定理》的說(shuō)課稿11-30
北師大版四數下冊《優(yōu)化》說(shuō)課稿11-30
勾股定理說(shuō)課稿范文7篇02-04
勾股定理的逆定理說(shuō)課稿12-04
華師大版八年級數學(xué) 勾股定理說(shuō)課稿11-08
勾股定理的逆定理說(shuō)課稿4篇12-04