對數的概念教學(xué)設計(精選6篇)
作為一位杰出的教職工,通常會(huì )被要求編寫(xiě)教學(xué)設計,教學(xué)設計是實(shí)現教學(xué)目標的計劃性和決策性活動(dòng)。寫(xiě)教學(xué)設計需要注意哪些格式呢?下面是小編為大家整理的對數的概念教學(xué)設計(精選6篇),歡迎閱讀與收藏。
對數的概念教學(xué)設計1
一、內容與解析
(一)內容:對數函數的性質(zhì)
。ǘ┙馕觯罕竟澱n要學(xué)的內容是對數函數的性質(zhì)及簡(jiǎn)單應用,其核心(或關(guān)鍵)是對數函數的性質(zhì),理解它關(guān)鍵就是要利用對數函數的圖象.學(xué)生已經(jīng)掌握了對數函數的圖象特點(diǎn),本節課的內容就是在此基礎上的發(fā)展.由于它是構造復雜函數的基本元素之一,所以對數函數的性質(zhì)是本單元的重要內容之一.的重點(diǎn)是掌握對數函數的性質(zhì),解決重點(diǎn)的關(guān)鍵是利用對數函數的圖象,通過(guò)數形結合的思想進(jìn)行歸納總結。
二、目標及解析
(一)教學(xué)目標:
1.掌握對數函數的性質(zhì)并能簡(jiǎn)單應用
(二)解析:
(1)就是指根據對數函數的兩類(lèi)圖象總結并理解對數函數的定義域、值域、單調性、奇偶性、函數值的分布特征等性質(zhì),并能將這些性質(zhì)應用到簡(jiǎn)單的問(wèn)題中。
三、問(wèn)題診斷分析
在本節課的教學(xué)中,學(xué)生可能遇到的問(wèn)題是底數a對對數函數圖象和性質(zhì)的影響,產(chǎn)生這一問(wèn)題的原因是學(xué)生對參量認識不到位,往往將參量等同于自變量.要解決這一問(wèn)題,就是要將參量的取值多元化,最好應用幾何畫(huà)板的快捷性處理這類(lèi)問(wèn)題,其中關(guān)鍵是應用好幾何畫(huà)板.
四、教學(xué)支持條件分析
在本節課()的教學(xué)中,準備使用(),因為使用(),有利于().
五、教學(xué)過(guò)程
問(wèn)題1.先畫(huà)出下列函數的簡(jiǎn)圖,再根據圖象歸納總結對數函數 的相關(guān)性質(zhì)。
設計意圖:
師生活動(dòng)(小問(wèn)題):
1.這些對數函數的解析式有什么共同特征?
2.通過(guò)這些函數的圖象請從值域、單調性、奇偶性方面進(jìn)行總結函數的性質(zhì)。
3.通過(guò)這些函數圖象請從函數值的分布角度總結相關(guān)性質(zhì)
4.通過(guò)這些函數圖象請總結:當自變量取一個(gè)值時(shí),函數值隨底數有什么樣的變化規律?
問(wèn)題2.先畫(huà)出下列函數的簡(jiǎn)圖,根據圖象歸納總結對數函數 的相關(guān)性質(zhì)。
問(wèn)題3.根據問(wèn)題1、2填寫(xiě)下表
圖象特征函數性質(zhì)
a>10<a<1a>10<a<1
向y軸正負方向無(wú)限延伸函數的值域為R+
圖象關(guān)于原點(diǎn)和y軸不對稱(chēng)非奇非偶函數
函數圖象都在y軸右側函數的定義域為R
函數圖象都過(guò)定點(diǎn)(1,0)
自左向右,圖象逐漸上升自左向右,圖象逐漸下降增函數減函數
在第一象限內的圖象縱坐標都大于0,橫坐標大于1在第一象限內的圖象縱坐標都大于0,橫標大于0小于1
在第四象限內的圖象縱坐標都小于0,橫標大于0小于1在第四象限內的圖象縱坐標都小于0,橫標大于1
[設計意圖]發(fā)現性質(zhì)、弄清性質(zhì)的來(lái)龍去脈,是為了更好揭示對數函數的本質(zhì)屬性,傳統教學(xué)往往讓學(xué)生在解題中領(lǐng)悟。為了扭轉這種方式,我先引導學(xué)生回顧指數函數的性質(zhì),再利用類(lèi)比的思想,小組合作的形式通過(guò)圖象主動(dòng)探索出對數函數的性質(zhì)。教學(xué)實(shí)踐表明:當學(xué)生對對數函數的圖象已有感性認識后,得到這些性質(zhì)必然水到渠成
例1.比較下列各組數中兩個(gè)值的大。
(1) log 23.4 , log 28.5 (2)log 0.31.8 , log 0.32.7
。3)log a5.1 , log a5.9 ( a>0 , 且a≠1 )
變式訓練:1. 比較下列各題中兩個(gè)值的大小:
、 log106 log108 ⑵ log0.56 log0.54
、 log0.10.5 log0.10. 6 ⑷ log1.50.6 log1.50.4
2.已知下列不等式,比較正數m,n 的大。
(1) log 3 m < log 3 n (2) log 0.3 m > log 0.3 n
(3) log a m < loga n (0 log a n (a>1)
例2.(1)若 且 ,求 的取值范圍
。2)已知 ,求 的取值范圍;
對數的概念教學(xué)設計2
教學(xué)目標:
1、理解對數的概念,能夠進(jìn)行對數式與指數式的互化;
2、滲透應用意識,培養歸納思維能力和邏輯推理能力,提高數學(xué)發(fā)現能力。
教學(xué)重點(diǎn):
對數的概念
教學(xué)過(guò)程:
一、問(wèn)題情境:
1、(1)莊子:一尺之棰,日取其半,萬(wàn)世不竭、①取5次,還有多長(cháng)?②取多少次,還有0、125尺?
。2)假設2002年我國國民生產(chǎn)總值為a億元,如果每年平均增長(cháng)8%,那么經(jīng)過(guò)多少年國民生產(chǎn)總值是2002年的2倍?
抽象出:1、=?,=0、125x=?2、=2x=?
2、問(wèn)題:已知底數和冪的值,如何求指數?你能看得出來(lái)嗎?
二、學(xué)生活動(dòng):
1、討論問(wèn)題,探究求法、
2、概括內容,總結對數概念、
3、研究指數與對數的關(guān)系、
三、建構數學(xué):
1)引導學(xué)生自己總結并給出對數的概念、
2)介紹對數的表示方法,底數、真數的含義、
3)指數式與對數式的關(guān)系、
4)常用對數與自然對數、
探究:
、咆摂蹬c零沒(méi)有對數、
、,、
、菍岛愕仁剑ń滩腜58練習6)
、;②、
、葍煞N對數:
、俪S脤担;
、谧匀粚担、
。5)底數的取值范圍為;真數的取值范圍為、
四、數學(xué)運用:
1、例題:
例1、(教材P57例1)將下列指數式改寫(xiě)成對數式:
。1)=16;(2)=;(3)=20;(4)=0、45、
例2、(教材P57例2)將下列對數式改寫(xiě)成指數式:
。1);(2)3=—2;(3);(4)(補充)ln10=2、303
例3、(教材P57例3)求下列各式的值:
、;⑵;⑶(補充)、
2、練習:
P58(練習)1,2,3,4,5、
五、回顧小結:
本節課學(xué)習了以下內容:
、艑档亩x;
、浦笖凳脚c對數式互換;
、乔髮凳降闹担ɡ糜嬎闫髑髮抵担、
六、課外作業(yè):P63習題1,2,3,4、
對數的概念教學(xué)設計3
1教學(xué)目標
1、理解對數的概念,了解對數與指數的關(guān)系;掌握對數式與指數式的互化;理解對數的性質(zhì),掌握以上知識并形成技能。
2、通過(guò)事例使學(xué)生認識對數的模型,體會(huì )引入對數的必要性;通過(guò)師生觀(guān)察分析得出對數的概念及對數式與指數式的互化。
3、通過(guò)學(xué)生分組探究進(jìn)行活動(dòng),掌握對數的重要性質(zhì)。通過(guò)做練習,使學(xué)生感受到理論與實(shí)踐的統一。
4、培養學(xué)生的類(lèi)比、分析、歸納能力,嚴謹的思維品質(zhì)以及在學(xué)習過(guò)程中培養學(xué)生探究的意識。
2學(xué)情分析
現階段大部分學(xué)生學(xué)習的自主性較差,主動(dòng)性不夠,學(xué)習有依賴(lài)性,且學(xué)習的信心不足,對數學(xué)存在或多或少的恐懼感。通過(guò)對指數與指數冪的運算的學(xué)習,學(xué)生已多次體會(huì )了對立統一、相互聯(lián)系、相互轉化的思想,并且探究能力、邏輯思維能力得到了一定的鍛煉。因此,學(xué)生已具備了探索發(fā)現研究對數定義的認識基礎,故應通過(guò)指導,教會(huì )學(xué)生獨立思考、大膽探索和靈活運用類(lèi)比、轉化、歸納等數學(xué)思想的學(xué)習方法。
3重點(diǎn)難點(diǎn)
重點(diǎn) :
。1)對數的概念;
。2)對數式與指數式的相互轉化。
難點(diǎn) :
。1)對數概念的理解;
。2)對數性質(zhì)的理解。
4教學(xué)過(guò)程
4.1第一學(xué)時(shí)
教學(xué)活動(dòng) 活動(dòng)1【導入】創(chuàng )設情境 引入新課
引例(3分鐘)
1、一尺之棰,日取其半,萬(wàn)世不竭。
。1)取5次,還有多長(cháng)?
。2)取多少次,還有0.125尺?
分析:
(1)為同學(xué)們熟悉的指數函數的模型,易得
(2)可設取x次,則有
抽象出:
2、xx年我國GPD為a億元,如果每年平均增長(cháng)8%,那么經(jīng)過(guò)多少年GPD是xx年的2倍?
分析:設經(jīng)過(guò)x年,則有
抽象出:
對數的概念教學(xué)設計4
教學(xué)目標
1. 在指數函數及反函數概念的基礎上,使學(xué)生掌握對數函數的概念,能正確描繪對數函數的圖像,掌握對數函數的性質(zhì),并初步應用性質(zhì)解決簡(jiǎn)單問(wèn)題.
2. 通過(guò)對數函數的學(xué)習,樹(shù)立相互聯(lián)系,相互轉化的觀(guān)點(diǎn),滲透數形結合,分類(lèi)討論的思想.
3. 通過(guò)對數函數有關(guān)性質(zhì)的研究,培養學(xué)生觀(guān)察,分析,歸納的思維能力,調動(dòng)學(xué)生學(xué)習的積極性.
教學(xué)重點(diǎn),難點(diǎn)
重點(diǎn)是理解對數函數的定義,掌握圖像和性質(zhì).
難點(diǎn)是由對數函數與指數函數互為反函數的關(guān)系,利用指數函數圖像和性質(zhì)得到對數函數的圖像和性質(zhì).
教學(xué)方法
啟發(fā)研討式
教學(xué)用具
投影儀
教學(xué)過(guò)程
一. 引入新課
今天我們一起再來(lái)研究一種常見(jiàn)函數.前面的幾種函數都是以形式定義的方式給出的,今天我們將從反函數的角度介紹新的函數.
反函數的實(shí)質(zhì)是研究?jì)蓚(gè)函數的關(guān)系,所以自然我們應從大家熟悉的函數出發(fā),再研究其反函數.這個(gè)熟悉的函數就是指數函數.
提問(wèn):什么是指數函數?指數函數存在反函數嗎?
由學(xué)生說(shuō)出 是指數函數,它是存在反函數的.并由一個(gè)學(xué)生口答求反函數的過(guò)程:
由 得 .又 的值域為 ,
所求反函數為 .
那么我們今天就是研究指數函數的反函數-----對數函數.
二.對數函數的圖像與性質(zhì) (板書(shū))
1. 作圖方法
提問(wèn)學(xué)生打算用什么方法來(lái)畫(huà)函數圖像?學(xué)生應能想到利用互為反函數的兩個(gè)函數圖像之間的關(guān)系,利用圖像變換法畫(huà)圖.同時(shí)教師也應指出用列表描點(diǎn)法也是可以的,讓學(xué)生從中選出一種,最終確定用圖像變換法畫(huà)圖.
由于指數函數的圖像按 和 分成兩種不同的類(lèi)型,故對數函數的圖像也應以1為分界線(xiàn)分成兩種情況 和 ,并分別以 和 為例畫(huà)圖.
具體操作時(shí),要求學(xué)生做到:
(1) 指數函數 和 的圖像要盡量準確(關(guān)鍵點(diǎn)的位置,圖像的變化趨勢等).
(2) 畫(huà)出直線(xiàn) .
(3) 的圖像在翻折時(shí)先將特殊點(diǎn) 對稱(chēng)點(diǎn) 找到,變化趨勢由靠近 軸對稱(chēng)為逐漸靠近 軸,而 的圖像在翻折時(shí)可提示學(xué)生分兩段翻折,在 左側的先翻,然后再翻在 右側的部分.
學(xué)生在筆記本完成具體操作,教師在學(xué)生完成后將關(guān)鍵步驟在黑板上演示一遍,畫(huà)出和 的圖像.(此時(shí)同底的指數函數和對數函數畫(huà)在同一坐標系內)如圖:
2. 草圖.
教師畫(huà)完圖后再利用投影儀將 和 的圖像畫(huà)在同一坐標系內,如圖:
然后提出讓學(xué)生根據圖像說(shuō)出對數函數的性質(zhì)(要求從幾何與代數兩個(gè)角度說(shuō)明)
3. 性質(zhì)
(1) 定義域:
(2) 值域:
由以上兩條可說(shuō)明圖像位于 軸的右側.
(3) 截距:令 得 ,即在 軸上的截距為1,與 軸無(wú)交點(diǎn)即以 軸為漸近線(xiàn).
(4) 奇偶性:既不是奇函數也不是偶函數,即它不關(guān)于原點(diǎn)對稱(chēng),也不關(guān)于 軸對稱(chēng).
(5) 單調性:與 有關(guān).當 時(shí),在 上是增函數.即圖像是上升的
當 時(shí),在 上是減函數,即圖像是下降的.
之后可以追問(wèn)學(xué)生有沒(méi)有最大值和最小值,當得到否定答案時(shí),可以再問(wèn)能否看待何時(shí)函數值為正?學(xué)生看著(zhù)圖可以答出應有兩種情況:
當 時(shí),有 ;當 時(shí),有 .
學(xué)生回答后教師可指導學(xué)生巧記這個(gè)結論的方法:當底數與真數在1的同側時(shí)函數值為正,當底數與真數在1的兩側時(shí),函數值為負,并把它當作第(6)條性質(zhì)板書(shū)記下來(lái).
最后教師在總結時(shí),強調記住性質(zhì)的關(guān)鍵在于要腦中有圖.且應將其性質(zhì)與指數函數的性質(zhì)對比記憶.(特別強調它們單調性的一致性)
對圖像和性質(zhì)有了一定的了解后,一起來(lái)看看它們的應用.
三.鞏固練習
練習:若 ,求 的取值范圍.
四.小結
五.作業(yè) 略
對數的概念教學(xué)設計5
教學(xué)目標:
1.進(jìn)一步理解對數函數的性質(zhì),能運用對數函數的相關(guān)性質(zhì)解決對數型函數的常見(jiàn)問(wèn)題.
2.培養學(xué)生數形結合的思想,以及分析推理的'能力.
教學(xué)重點(diǎn):
對數函數性質(zhì)的應用.
教學(xué)難點(diǎn):
對數函數的性質(zhì)向對數型函數的演變延伸.
教學(xué)過(guò)程:
一、問(wèn)題情境
1.復習對數函數的性質(zhì).
2.回答下列問(wèn)題.
(1)函數y=log2x的值域是 ;
(2)函數y=log2x(x≥1)的值域是 ;
(3)函數y=log2x(0
3.情境問(wèn)題.
函數y=log2(x2+2x+2)的定義域和值域分別如何求呢?
二、學(xué)生活動(dòng)
探究完成情境問(wèn)題.
三、數學(xué)運用
例1 求函數y=log2(x2+2x+2)的定義域和值域.
練習:
(1)已知函數y=log2x的值域是[-2,3],則x的范圍是________________.
(2)函數 ,x(0,8]的值域是 .
(3)函數y=log (x2-6x+17)的值域 .
(4)函數 的值域是_______________.
例2 判斷下列函數的奇偶性:
(1)f (x)=lg (2)f (x)=ln( -x)
例3 已知loga 0.75>1,試求實(shí)數a 取值范圍.
例4 已知函數y=loga(1-ax)(a>0,a≠1).
(1)求函數的定義域與值域;
(2)求函數的單調區間.
練習:
1.下列函數(1) y=x-1;(2) y=log2(x-1);(3) y= ;(4)y=lnx,其中值域為R的有 (請寫(xiě)出所有正確結論的序號).
2.函數y=lg( -1)的圖象關(guān)于 對稱(chēng).
3.已知函數 (a>0,a≠1)的圖象關(guān)于原點(diǎn)對稱(chēng),那么實(shí)數m= .
4.求函數 ,其中x [ ,9]的值域.
四、要點(diǎn)歸納與方法小結
(1)借助于對數函數的性質(zhì)研究對數型函數的定義域與值域;
(2)換元法;
(3)能畫(huà)出較復雜函數的圖象,根據圖象研究函數的性質(zhì)(數形結合).
五、作業(yè)
課本P70~71-4,5,10,11.
對數的概念教學(xué)設計6
教學(xué)目標:
(一)教學(xué)知識點(diǎn):1.對數函數的概念;2.對數函數的圖象和性質(zhì).
(二)能力訓練要求:1.理解對數函數的概念;2.掌握對數函數的圖象和性質(zhì).
(三)德育滲透目標:1.用聯(lián)系的觀(guān)點(diǎn)分析問(wèn)題;2.認識事物之間的互相轉化.
教學(xué)重點(diǎn):
對數函數的圖象和性質(zhì)
教學(xué)難點(diǎn):
對數函數與指數函數的關(guān)系
教學(xué)方法:
聯(lián)想、類(lèi)比、發(fā)現、探索
教學(xué)輔助:
多媒體
教學(xué)過(guò)程:
一、引入對數函數的概念
由學(xué)生的預習,可以直接回答“對數函數的概念”
由指數、對數的定義及指數函數的概念,我們進(jìn)行類(lèi)比,可否猜想有:
問(wèn)題:1.指數函數是否存在反函數?
2.求指數函數的反函數.
3.結論
所以函數與指數函數互為反函數.
這節課我們所要研究的便是指數函數的反函數——對數函數.
二、講授新課
1.對數函數的定義:
定義域:(0,+∞);值域:(-∞,+∞)
2.對數函數的圖象和性質(zhì):
因為對數函數與指數函數互為反函數.所以與圖象關(guān)于直線(xiàn)對稱(chēng).
因此,我們只要畫(huà)出和圖象關(guān)于直線(xiàn)對稱(chēng)的曲線(xiàn),就可以得到的圖象.
研究指數函數時(shí),我們分別研究了底數和兩種情形.
那么我們可以畫(huà)出與圖象關(guān)于直線(xiàn)對稱(chēng)的曲線(xiàn)得到的圖象.
還可以畫(huà)出與圖象關(guān)于直線(xiàn)對稱(chēng)的曲線(xiàn)得到的圖象.
請同學(xué)們作出與的草圖,并觀(guān)察它們具有一些什么特征?
對數函數的圖象與性質(zhì):
。1)定義域:
。2)值域:
。3)過(guò)定點(diǎn),即當時(shí),
。4)上的增函數
。4)上的減函數
3.練習:
(1)比較下列各組數中兩個(gè)值的大。
(2)解關(guān)于x的不等式:
思考:(1)比較大。
(2)解關(guān)于x的不等式:
三、小結
這節課我們主要介紹了指數函數的反函數——對數函數.并且研究了對數函數的圖象和性質(zhì).
四、課后作業(yè)
課本P85,習題2.8,1、3
【對數的概念教學(xué)設計(精選6篇)】相關(guān)文章:
《對數函數》課件設計05-08
《對數函數》教學(xué)反思04-19
對數的性質(zhì)10-12
對數的運算性質(zhì)10-12
結構抗震概念設計論文03-30
精選《觀(guān)潮》教學(xué)設計 教案教學(xué)設計11-15
離騷的精選教學(xué)設計12-19
對數的數學(xué)教案范文03-22