成人免费看黄网站无遮挡,caowo999,se94se欧美综合色,a级精品九九九大片免费看,欧美首页,波多野结衣一二三级,日韩亚洲欧美综合

《三角形的內角和》教學(xué)設計

時(shí)間:2022-07-11 19:14:51 教學(xué)設計 我要投稿

《三角形的內角和》教學(xué)設計(精選20篇)

  作為一位杰出的教職工,總歸要編寫(xiě)教學(xué)設計,借助教學(xué)設計可以讓教學(xué)工作更加有效地進(jìn)行。那么問(wèn)題來(lái)了,教學(xué)設計應該怎么寫(xiě)?下面是小編收集整理的《三角形的內角和》教學(xué)設計,希望能夠幫助到大家。

《三角形的內角和》教學(xué)設計(精選20篇)

  《三角形的內角和》教學(xué)設計 篇1

  一、說(shuō)教材

  北師版八年級下冊第六章《證明一》,是在前面對幾何結論已經(jīng)有了一定的直觀(guān)認識的基礎上編排的,而前幾冊對有關(guān)幾何結論都曾進(jìn)行過(guò)簡(jiǎn)單的說(shuō)理,本章內容則嚴格給出這些結論的證明,并要求學(xué)生掌握證明的一般步驟及書(shū)寫(xiě)表達格式!度切蝺冉呛投ɡ淼淖C明》則是對前幾節證明的自然延續。此外,它的證明中引入了輔助線(xiàn),這些都為后繼學(xué)習奠定了基礎。

  二、說(shuō)目標

  1、知識目標:掌握“三角形內角和定理的證明”及其簡(jiǎn)單的應用。

  2、能力目標培養學(xué)生的數學(xué)語(yǔ)言表達、邏輯推理、問(wèn)題思考、組內及組間交流、動(dòng)手實(shí)踐等能力。

  3、情感、態(tài)度、價(jià)值觀(guān):

  在良好的師生關(guān)系下,建立輕松的學(xué)習氛圍,使學(xué)生體會(huì )獲得知識的成就感及與他人合作的樂(lè )趣,以增強其數學(xué)學(xué)習的自信心。

  4、教學(xué)重點(diǎn)、難點(diǎn)

  重點(diǎn):三角形的內角和定理的證明及其簡(jiǎn)單應用。

  難點(diǎn):三角形的內角和定理的證明方法的討論。

  三、說(shuō)學(xué)校及學(xué)生現實(shí)情況

  我校是藍田縣一所普通初中,四面非山即嶺,距藍田縣城四十里之遙。但由于國家對西部教育的大力支持,學(xué)校有遠程多媒體網(wǎng)絡(luò )教室,為師生提供了良好的學(xué)習硬件環(huán)境。我校學(xué)生幾乎全部來(lái)自本鎮農村,而我所教授的八年級四班學(xué)生,大多家庭貧苦,所以學(xué)習認真踏實(shí),有強烈的求知欲;此外,善于鉆研是他們的特點(diǎn),并且,有較強的合作交流意識。

  四、說(shuō)教法

  根據本節課教學(xué)內容特點(diǎn),我采用啟發(fā)、引導、探索相結合的教學(xué)方法,使學(xué)生充分發(fā)揮學(xué)習主動(dòng)性、創(chuàng )造性。

  五、說(shuō)教學(xué)設計

  〈一〉、創(chuàng )設情景,直入主題

  一堂新課的引入是教師與學(xué)生活動(dòng)的開(kāi)始,而一個(gè)成功的引入,可使學(xué)生破除畏難心理,對知識在短時(shí)間內產(chǎn)生濃厚的興趣,接下來(lái)的教學(xué)活動(dòng)就變得順理成章。我的具體做法是:簡(jiǎn)單回憶舊知識,“證明的一般步驟是什么?”學(xué)生輕松做答,我肯定之后緊接著(zhù)說(shuō):“本節課就是用證明的方法學(xué)習一個(gè)熟悉的結論!是什么呢?請看大屏幕!”。盡量使問(wèn)題簡(jiǎn)單化,這樣更利于學(xué)生投入新課。

  〈二〉、交流對話(huà),引導探索

  1、巧妙提問(wèn),合理引導

  證明思想的引入時(shí),問(wèn):同學(xué)們,七年級時(shí)如何得到此結論?(留一定時(shí)間讓他們討論、交流、達成共識)學(xué)生回答后,我及時(shí)肯定并鼓勵后拋出問(wèn)題:他們的共同之處是什么?學(xué)生容易回答:湊成一平角。我說(shuō):很好!那你們用這樣的思想能證明這個(gè)命題是個(gè)真命題嗎?趕快試試吧!這樣,既引導了證明的方向,又激發(fā)了學(xué)生的學(xué)習興趣。接下來(lái)學(xué)生做題,我巡視。同時(shí)讓一學(xué)生板演。

  2、恰當示范,培養學(xué)生正確的書(shū)寫(xiě)能力

  在學(xué)生做完之后,我與他們一道分析板演同學(xué)證明是否合理,并利用多媒體給出正確書(shū)寫(xiě)方法。

  3、一題多解,放手讓學(xué)生走進(jìn)自主學(xué)習空間

  正因為學(xué)生的預習,所以他們證明的方法有所局限,這時(shí),我拋出問(wèn)題:再想想,還有其他方法嗎?將課堂時(shí)間又交還他們,將其思維推向高潮。學(xué)生思考,繼而熱烈討論,此時(shí),我又走到學(xué)生中去,對有困難的學(xué)生多加關(guān)注和指導,不放棄任何一個(gè),同時(shí),借此機會(huì )增進(jìn)教師與學(xué)困生之間的情誼,為繼續學(xué)習奠定基礎。最后,請有新方法的同學(xué)敘述其思想方法,我用大屏幕展示不同做法的合情推理過(guò)程。

  4、展示歸納,合理演繹

  利用多媒體展示三角形內角和定理的幾種表達形式,以促其學(xué)以致用。

  5、反饋練習

  用隨堂練習來(lái)鞏固學(xué)生所學(xué)新知,另一方面進(jìn)一步提高學(xué)生的書(shū)寫(xiě)能力。同時(shí),在他們作完之后,多媒體展示正確寫(xiě)法,加強教學(xué)效果。

  〈三〉、課堂小結

  1 采用讓學(xué)生感性的談?wù)J識,談收獲。設計問(wèn)題:

  2(1)、本節課我們學(xué)了什么知識?

 。2)、你有什么收獲?

  目的是發(fā)揮學(xué)生主體意識,培養其語(yǔ)言概括能力。

  六、說(shuō)教學(xué)反思

  本節課主要是以嚴謹的邏輯證明方法,驗證三角形內角和等于180度。讓學(xué)生充分體會(huì )有理有據的推理才是可靠的。而證明思想、書(shū)寫(xiě)的培養,是本節課的重點(diǎn)。自主學(xué)習、合作交流是新課程理念,也是我本節課的設計意圖。從學(xué)生課堂表現可以看出,教學(xué)效果良好。而學(xué)生的一些出乎意料的做法讓我倍感驚喜!把學(xué)生還給課堂,把課堂還給學(xué)生,也是我一貫的做法。

  《三角形的內角和》教學(xué)設計 篇2

  教學(xué)要求

  1、通過(guò)動(dòng)手操作,使學(xué)生理解并掌握三角形的內角和是180°的結論。

  2、能運用三角形的內角和是180°這一規律,求三角形中未知角的度數。

  3、培養學(xué)生動(dòng)手動(dòng)腦及分析推理能力。

  教學(xué)重點(diǎn)

  三角形的內角和是180°的規律。

  教學(xué)難點(diǎn)

  使學(xué)生理解三角形的內角和是180°這一規律。

  教學(xué)用具

  每個(gè)學(xué)生準備銳角三角形、直角三角形、鈍角三角形紙片各一張,量角器。

  教學(xué)過(guò)程:

  一、出示預習提綱

  1、三角形按角的不同可以分成哪幾類(lèi)?

  2、一個(gè)平角是多少度?1個(gè)平角等于幾個(gè)直角?

  3、如圖,已知∠1=35°,∠2=75°,求∠3的度數。

  二、展示匯報交流

  1、投影出示一組三角形:(銳角三角形、鈍角三角形、直角三角形)。三角形有幾個(gè)角?老師指出:三角形的這三個(gè)角,就叫做三角形的三個(gè)內角。(板書(shū):內角)

  2、三角形三個(gè)內角的度數和叫做三角形的內角和。(板書(shū)課題:三角形的內角和)今天我們一起來(lái)研究三角形的內角和有什么規律。

  3、以小組為單位先畫(huà)4個(gè)不同類(lèi)型的三角形,利用手中的工具分別計算三角形三個(gè)內角的和各是多少度?

  4、指名學(xué)生匯報各組度量和計算的結果。你有什么發(fā)現?

  5、大家算出的三角形的內角和都接近180°,那么,三角形的內角和與180°究竟是怎樣的關(guān)系呢?就讓我們一起來(lái)動(dòng)手實(shí)驗研究,我們一定能弄清這個(gè)問(wèn)題的。

  6、剛才我們計算三角形的內角和都是先測量每個(gè)角的度數再相加的。在量每個(gè)內角度數時(shí)只要有一點(diǎn)誤差,內角和就有誤差了。我們能不能換一種方法,減少度量的次數呢?

  提示學(xué)生,可以把三個(gè)內角拼成一個(gè)角,就只需測量一次了。

  7、請拿出桌上的直角三角形紙片,想一想,怎樣折可以把三個(gè)角拼在一起,試一試。

  8、三個(gè)角拼在一起組成了一個(gè)什么角?我們可以得出什么結論?(直角三角形的內角和是180°)

  9、拿一個(gè)銳角三角形紙片試試看,折的方法一樣。再拿鈍角三角形折折看,你發(fā)現了什么?(直角三角形和鈍角三角形的內角和也是180°)

  10、那么,我們能不能說(shuō)所有三角形的內角和都是180°呢?為什么?(能,因為這三種三角形就包括了所有三角形)11。老師板書(shū)結論:三角形的內角和是180°。

  12、一個(gè)三角形中如果知道了兩個(gè)內角的度數,你能求出另一個(gè)角是多少度嗎?怎樣求?

  13、出示教材85頁(yè)做一做。讓學(xué)生試做。

  14、指名匯報怎樣列式計算的。兩種方法均可。

  ∠2=180°—140°—25°=15°

  ∠2=180°(140°+25°)=15°

  課后反思:

  對于三角形的內角和,學(xué)生并不陌生,在平時(shí)的做題中已經(jīng)涉及到了?墒菍W(xué)生并不知道如何去驗證,所以本節課,重點(diǎn)讓孩子們經(jīng)歷體驗,感悟圖形。從而收獲了經(jīng)驗。特別是動(dòng)手操作將三角形拼成一個(gè)直角時(shí),有的孩子將角剪得非常小,很不好拼,在此進(jìn)行了重點(diǎn)的提示。

  《三角形的內角和》教學(xué)設計 篇3

  教學(xué)目標:

  1、通過(guò)量、剪、拼、擺等直觀(guān)操作的方法,讓學(xué)生探索并發(fā)現三角形內角和等于180度。

  2、在活動(dòng)交流中培養學(xué)生合作學(xué)習的意識和能力,讓學(xué)生經(jīng)歷猜測探索總結的數學(xué)學(xué)習過(guò)程,在實(shí)驗活動(dòng)中體驗探索的過(guò)程和方法。

  3、通過(guò)運用三角形內角和的性質(zhì)解決一些簡(jiǎn)單的問(wèn)題,使學(xué)生體會(huì )數學(xué)與現實(shí)生活的聯(lián)系,體會(huì )到數學(xué)的價(jià)值,增加學(xué)生學(xué)數學(xué)的信心和興趣。

  教學(xué)重點(diǎn):

  探索發(fā)現三角形內角和等于180并能應用。

  教學(xué)難點(diǎn):

  三角形內角和是180的探索和驗證。

  教學(xué)過(guò)程:

  一、創(chuàng )設情境,提出問(wèn)題

  師:大家喜歡猜謎語(yǔ)嗎?

  生:喜歡。

  師:下面請大家猜一個(gè)謎語(yǔ)(大屏幕出示形狀似座山,穩定性能堅。三竿首尾連,學(xué)問(wèn)不簡(jiǎn)單。

 。ù蛞粠缀螆D形))

  生:三角形。

  師:三角形中都有哪些學(xué)問(wèn)?

  生:三角形有三條邊,三個(gè)角,具有穩定性。

  生:三角形按角分,可以分成銳角三角形、直角三角形、鈍角三角形。

  生:三角形按邊分,可以分成等腰三角形,不等邊三角形,其中等腰三角形又包含了兩條邊相等的三角形和等邊三角形。

  生:一個(gè)三角形中最多只能有一個(gè)直角,最多只能有一個(gè)鈍角,最少有兩個(gè)銳角。

  生:三角形的內有和是180。

  生:(一臉疑惑)

  師:(板書(shū):三角形的內角和是180),你有什么疑惑? 生:什么是內角?

  生:每個(gè)三角形的內角和都是180嗎?

 。ǜ鶕䦟W(xué)生的問(wèn)題,在三角形的內角和是180后面加上一個(gè)?)

  二、自主探索,實(shí)踐驗證

  1、理解內角 師:什么是內角?

  生:我認為三角形的內角就是指三角形的三個(gè)角。

  師:三角形的每個(gè)角都是三角形的內角,每個(gè)三角形都有三個(gè)內角。

  2、理解內角和。

  師:那三角形的內角和又是指什么?

  生:我認為三角形的內角和就是把三角形的三個(gè)內角的度數加起來(lái)的和。

  師:為了方便,我們將三角形的每個(gè)內角編上序號1、2、3、我們叫它1、2、3,這三個(gè)角的度數和,就是這個(gè)三角形的內角和。

  3、實(shí)踐驗證

  師:每個(gè)三角形的內角和都是180嗎?用什么方法來(lái)驗證呢?

  生:量一量每個(gè)角的度數,然后加起來(lái)看看是不是180。

  師:請大家拿出課前準備的三角形,親自量一量,算一算。(學(xué)生動(dòng)手量一量)

  師:誰(shuí)愿意把你的勞動(dòng)成果和大家分享一下?

  生:我量的這個(gè)三角形的三個(gè)內角的度數分別是60、60、60,加起來(lái)一共是180。

  師:這位同學(xué)量的是一個(gè)銳角三角形,并且是比較特殊的三角形等邊三角形。

  生:我量這個(gè)三角形的三個(gè)內角的度數分別是45、45、90,加起來(lái)一共是180。

  師:這是我們三角尺中的一個(gè),也比較特殊,是一個(gè)等腰直角三角形。

  生:我量的是三角尺中的另一個(gè),三個(gè)內角的度數分別是60、30、90,加起來(lái)一共是180 生:我量的是鈍角三角形,三個(gè)內角的度數分別是85、60、38,加起來(lái)一共是183。

  師:你發(fā)現了什么?

  生:有的三角形的內角和是180,而有的三角形的內角和卻不是180。

  師:看來(lái)三角形的內角和不一定是180。

  生:老師,測量會(huì )有誤差,量出來(lái)的不是很精確,那么求出來(lái)的結果也不夠精確。雖然不都是三個(gè)內角加起來(lái)不都是180,但都接近180。

  生:都接近180就能說(shuō)一定是180嗎?

  師:科學(xué)來(lái)不得半點(diǎn)虛假,看來(lái)這個(gè)是不能讓大家信服的。那還可以用什么方法來(lái)驗證呢?下面請同學(xué)們小組合作,發(fā)揮小組成員的智慧,充分利用大家的學(xué)具進(jìn)行驗證,比一比哪些組的方法富有新意,開(kāi)始!

 。▽W(xué)生在小組內進(jìn)行探索驗證。教師巡視,參與到學(xué)生的研究中)

  師:請每個(gè)小組選擇一個(gè)代言人,和大家分享一下你們的智慧。

  生:(邊展示邊交流)我們小組運用了折一折的方法,把三角形的三個(gè)內角都向內折,三個(gè)內角就拼成了一個(gè)平角,也就是180,所以我們小組得出三角形的內角和是180。

  師:你折的只是銳角三角形,只能證明銳角三角形的內角和是180,直角三角形,鈍角三角形是不是也是這樣的?

  生:我們小組也有折的直角三角形,鈍角三角形。

 。ㄆ渌某蓡T展示不同的三角形)

  師:看這個(gè)小組的同學(xué)想問(wèn)題多全面呀,不僅想到了用什么方法,還想到了用不同的三角形進(jìn)行驗證,老師實(shí)在是佩服你們組的智慧,讓我們把掌聲送給他們!

  師:哪個(gè)小組和他們的方法不一樣?

  生:我們小組把三角形的三個(gè)內角都撕了下來(lái),拼在了一起,正好拼成了一個(gè)平角,也就是180。我們也實(shí)驗了不同的三角形,三個(gè)內角都可以拼成平角,所以我們小組得出結論,三角形的內角和是180。

  師:這個(gè)小組的方法簡(jiǎn)便,易操作,很好。

  生:我們小組成員是這樣想的,一個(gè)長(cháng)方形有4個(gè)直角,每個(gè)直角90,那么長(cháng)方形的內角和就是360,每個(gè)長(cháng)方形都可以平均分成兩個(gè)直角三角形,每個(gè)直角三角形的內角和就是180。

  師:你們小組很聰明,從長(cháng)方形的內角和聯(lián)想到直角三角形的內角和是180,從不同的角度去思考問(wèn)題,謝謝你為我們提供了這么好的方法!

  4、小結

  師:剛才同學(xué)們用量、折、剪、拼、計算、推理等這么多巧妙的方法得出了無(wú)論是什么樣的三角形的內角和都是1800,你還有什么疑問(wèn)嗎?

  生:沒(méi)有。

  師:(去掉問(wèn)號)那就讓我們大聲地讀出來(lái)三角形的內角和是1800。

  三、鞏固應用,加深理解

  1、說(shuō)一說(shuō)每個(gè)三角形的內角和是多少度

  師:(出示一個(gè)大三角形)這個(gè)大三角形的內角和是多少度?

  生: 180

  師:(出示一個(gè)小三角形)這個(gè)小三角形的內角和是多少度?

  生:180

  師:(演示)把這兩個(gè)三角形拼在一起,拼成的大三角形的內角和是多少度?

  生:180

  師:為什么每個(gè)三角形的內角和是1800,而合起來(lái)還是180呢?另外那180去哪兒了?

  生:把兩個(gè)三角形拼成一個(gè)大三角形,兩個(gè)直角不再是大三角形的內角,所以少了180

  師:(演示)把一個(gè)大三角形分成兩個(gè)三角形,每個(gè)三角形的內角和是多少度?

  生:180

  2、求下面各角的度數

  師:如果老師告訴你一個(gè)三角形的兩個(gè)角的度數,你能說(shuō)出第三個(gè)角的度數嗎?

 。ǔ觯

  生:三角形內角和是180,在第一個(gè)三角形中,用180-75-28,A=77

  生:用180-90-35,C =55。

  生:第二個(gè)三角形是直角三角形,B是直角,也可以直接用90-35=55。

  生:第三個(gè)三角形中,用180-20-45,B=115。

  3、一個(gè)等腰三角形的風(fēng)箏,它的一個(gè)底角是70,它的頂角是多少度?

  生:等腰三角形的兩個(gè)底角相等,所以用180-70-70

  4、師:三角形的內角和在我們的生活中應用很廣泛,老師給大家帶來(lái)一個(gè)在建筑中應用的例子。

  在設計這座大橋時(shí),如果設計師將斜拉的鋼索與橋柱形成的夾角設計成了56,建筑師在造橋時(shí)怎樣才能確定鋼索與橋柱是否形成了這個(gè)角度?

  生:用量角器量一量

  師:量哪個(gè)角?量一量斜拉的鋼索與橋柱形成的夾角嗎?

  生:橋面與橋柱形成一個(gè)直角,是90,斜拉的鋼索與橋柱形成的夾角是56,那么用180-90-56=34,就是斜拉的鋼索與橋面的夾角,所以只要讓斜拉的鋼索與橋面的夾角是34,那么斜拉的鋼索與橋柱形成的夾角就是56

  師:你真是個(gè)善于觀(guān)察、善于思考的孩子,努力學(xué)習,將來(lái)一定會(huì )成為一名優(yōu)秀的建筑師。

  四、回顧總結,拓展延伸

  師:40分鐘很快就過(guò)去了,你愿意把自己的收獲與大家共同分享嗎?

  生:我知道了三角形的內角和是180。

  生:無(wú)論是大三角形,還是小三角形,無(wú)論是銳角三角形,還是鈍角三角形,還是銳角三角形,內角和都是180。

  生:把一個(gè)大三角形分成兩個(gè)小三角形,每個(gè)三角形的內角和還是180,把兩個(gè)小三角形拼成一個(gè)大三角形,大三角形的內角和還是180。

  生:我可以用撕、拼、折等方法來(lái)驗證三角形的內角和是180。

  師:這個(gè)同學(xué)不僅學(xué)會(huì )了知識,而且學(xué)會(huì )了方法,我們只有學(xué)會(huì )了方法,才能更好地去探究更多的知識。

  師:那你現在知道為什么一個(gè)三角形內只能有一個(gè)直角或一個(gè)鈍角嗎?

  生:兩個(gè)直角的度數之和是180,再加上一個(gè)角,三個(gè)角的度數之和超過(guò)了180,所以一個(gè)三角形中最多只能有一個(gè)直角。

  生:兩個(gè)鈍角的度數之和就超過(guò)了180,再加上一個(gè)角,就更大了,所以一個(gè)三角形中最多只能有一個(gè)鈍角。

  師:我們學(xué)習知識,必須知其然并知其所以然。

  師:三角形中還有許許多多的學(xué)問(wèn),讓我們在以后的學(xué)習中繼續去研究。

  《三角形的內角和》教學(xué)設計 篇4

  【教學(xué)內容】

  《人教版九年義務(wù)教育教科書(shū) 數學(xué)》四年級下冊《三角形的內角和》

  【教學(xué)目標】

  1、使學(xué)生知道三角形的內角和是180 ,并能運用三角形的內角和是180 解決生活中常見(jiàn)的問(wèn)題。

  2、讓學(xué)生經(jīng)歷量一量、折一折、拼一拼等動(dòng)手操作的過(guò)程。通過(guò)觀(guān)察、 判斷、 交流和推理探索用多種方法證明三角形的內角和是180 。

  3、培養學(xué)生自主學(xué)習、互動(dòng)交流、合作探究的能力和習慣,培養學(xué)習數學(xué)的興趣,感受學(xué)習數學(xué)的樂(lè )趣。

  【教學(xué)重點(diǎn)】

  使學(xué)生知道三角形的內角和是180 ,并能運用它解決生活中常見(jiàn)的問(wèn)題。

  【教學(xué)難點(diǎn)】

  通過(guò)多種方法驗證三角形的內角和是180 。

  【教學(xué)準備】

  課件。四組教學(xué)用三角板。鉛筆。大帆布兜子。固體膠。剪刀?曜尤舾。

  【教學(xué)過(guò)程】

  一、激趣導入,提煉學(xué)習方法

  1、課程開(kāi)始,教師耳朵上別著(zhù)一根鉛筆,肩背大帆布兜子,里面裝著(zhù)一個(gè)量角器和幾把缺了直角的三角板,手拿一張不規則的白紙,以一位老木匠的身份出現在學(xué)生面前。激發(fā)學(xué)生的好奇心。然后自述:“你們好,我是一個(gè)有三十多年工作經(jīng)驗的老木匠了。我收了三個(gè)徒弟,他們已經(jīng)從師學(xué)藝三年了,今天我想讓他們下山掙錢(qián),可又不放心,想出幾道題考驗考驗他們,又不知我的題合不合適,大家想不想先當一會(huì )我的徒弟試試這幾道題呢?”

  2、繼續以老木匠的身份說(shuō):前幾天我造了一架柁,徒弟們能不能用我手中的工具驗證一下橫木和立柱是不是成直角的。

  3、選擇工具,總結方法。

  讓選擇不同工具的同學(xué)用自己的方法驗證。教師隨機板書(shū):量一量、拼一拼、折一折。

  師:你們真是愛(ài)動(dòng)腦筋的好徒弟,那么請聽(tīng)好師傅的第二個(gè)問(wèn)題。

  4、導入新課。

  圖中有很多三角形,不論什么樣的三角形都有三個(gè)角,這三個(gè)角就叫做三角形的內角,徒弟們能不能用學(xué)過(guò)的方法或者你喜歡的方法求一求三角形三個(gè)內角的和是多少?(板書(shū)課題:三角形的內角和)

  二、動(dòng)手操作,探索交流新知

  1、分組活動(dòng),探索新知

  根據學(xué)生的選擇把學(xué)生分成三組,分別采用量一量、折一折和拼一拼的方法探索新知。

  量一量組同學(xué)發(fā)給以下幾種學(xué)具:

  折一折組同學(xué)發(fā)給上面的三角形一組。

  拼一拼組同學(xué)發(fā)給上面的三角形一組、剪刀一把還有下面這樣的白紙一張。

  在學(xué)生探索的過(guò)程中教師要走近學(xué)生,與他們共同交流探討,在學(xué)生有困難的時(shí)候要適當給予引導。

  2、多方互動(dòng),交流新知

  師:請我的大徒弟(量一量組)的同學(xué)先來(lái)匯報你們的研究成果。

  (1)首先要求學(xué)生說(shuō)一說(shuō)你們小組是怎樣進(jìn)行探究的。

  (2)說(shuō)出你們組的探究結果怎樣。(在此過(guò)程中教師不能急于糾正學(xué)生不正確的結論,因為這是知識的形成過(guò)程。)

  (3)請學(xué)生說(shuō)說(shuō)通過(guò)探究活動(dòng)你們組得出的結論是什么。

  師:大徒弟就是大徒弟,匯報的真不錯。二徒弟(折一折組)你們有沒(méi)有更好的辦法呢?

  引導這一組從探究的過(guò)程和結論與同學(xué)、老師交流。

  師:別看小徒弟(拼一拼組)這么小,方法可能是最好的?靵(lái)把你們的方法給大家匯報匯報。

  同樣引導這一組從探究的過(guò)程和結論與同學(xué)、老師交流。

  3、思想碰撞,夯實(shí)新知

  師:三個(gè)徒弟你們能說(shuō)說(shuō)誰(shuí)的方法最好嗎?

  學(xué)生都會(huì )說(shuō)自己的方法最好,再讓其他同學(xué)發(fā)表自己的意見(jiàn),此時(shí)生生之間,師生之間交流。(教師要引導學(xué)生說(shuō)出量一量的方法可能由于量的不夠準確,所以結果可能比180 大一些,或小一些。而其他兩種方法沒(méi)有改變角的大小,所以他們的是正確的。)

  師:不論你量的怎樣認真都會(huì )有不準確的地方,這就叫誤差。而其他兩組同學(xué)的方法更準確。三角形的內角和就是180 。(板書(shū):三角形的內角和是180 )

  四、走進(jìn)生活,提升運用能力

  1、出示課前那架柁標出它的頂角是120 ,求它的一個(gè)底角是多少度?

  2、給你三根木條,能做出一個(gè)有兩個(gè)直角的三角形嗎?

  五、總結

  師:徒弟們你們經(jīng)過(guò)三年的苦學(xué),終于學(xué)有所成了。今天,能說(shuō)說(shuō)你們在我這里都學(xué)到了什么手藝嗎?

  六、拓展新知,課外延伸

  師:俗話(huà)說(shuō)“活到老,學(xué)到老!蹦銈兿律胶筮要繼續探索,所以我要把我畢生都沒(méi)有完成的任務(wù)交給你們去研究。

  大屏幕出示:

  能用你今天學(xué)過(guò)的知識和方法探索一下四邊形的內角和是多少度嗎?

  《三角形的內角和》教學(xué)設計 篇5

  教學(xué)目標:

  1、掌握三角形內角和是180°,并能應用這一規律解決一些實(shí)際問(wèn)題。

  2、讓學(xué)生經(jīng)歷“猜想、動(dòng)手操作、直觀(guān)感知、探索、歸納、應用”等知識形成的過(guò)程,掌握“轉化”的數學(xué)思想方法,培養學(xué)生動(dòng)手實(shí)踐能力,發(fā)展學(xué)生的空間思維能力。

  3、在活動(dòng)中,讓學(xué)生體驗主動(dòng)探究數學(xué)規律的樂(lè )趣,體驗數學(xué)的價(jià)值,激發(fā)學(xué)生學(xué)習數學(xué)的熱情,同時(shí)使學(xué)生養成獨立思考的好習慣。

  教學(xué)重點(diǎn):

  讓學(xué)生經(jīng)歷“三角形內角和是180度”這一知識的形成、發(fā)展和應用的全過(guò)程。

  教學(xué)難點(diǎn):

  三角形內角和的探索與驗證。

  教學(xué)準備:

  量角器各種類(lèi)型的三角形(硬的紙板)三角板

  教學(xué)過(guò)程:

  一、設疑激趣,導入新課

  師:今天老師給大家帶來(lái)了一位朋友(課件)出示三角形,

  師:對于三角形你有哪些認識與了解。

  生:三角形有銳角三角形、直角三角形、鈍角三角形

  生:由三條線(xiàn)段圍成的平面圖形叫三角形。

  師:介紹內角、內角和

  三角形中每?jì)蓷l邊組成的角叫做三角形的內角。

  師:三角形有幾個(gè)內角。

  生:三個(gè)。

  師:這三個(gè)角的和,就叫做三角形的內角和。你知道三角形內角和是多少度?

  生1:我通過(guò)直角三角板知道的

  生2:我通過(guò)長(cháng)方形中四個(gè)角都是直角,是360度,三角形是長(cháng)方形的一半,所以是180度

  生3:我預習了,三角形內角和就是180度)

  師:是不是向他們說(shuō)的一樣,所有的三角形內角和都是180度呢?

  二、自主探索,進(jìn)行驗證

  師:你打算怎樣驗證呢?

  生1用量角器量出每個(gè)角的度數,再加一加看看是不是180度生2:把三角形撕下來(lái)

  師:怎么撕?象這樣撕?jiǎn)?(作亂撕狀),能說(shuō)的詳細些具體些嗎?生2:(補充),把三個(gè)角撕下來(lái),拼在一起,看能不能拼成一個(gè)平角

  生3:把三個(gè)角順次畫(huà)下來(lái)也可以

  生4:拼一拼的方法

  師:好!同學(xué)們想出了這么多辦法,下面就用你喜歡的方法驗證師:CAI多媒體課件展示操作要求:

  合作探究:

  1、每四人一組,每組至少選兩個(gè)三角形,用你喜歡的方法驗證

  2、看那個(gè)小組驗證的方法新、方法多

  師:在巡視,并進(jìn)行個(gè)別操作指導

  三、交流探索的方法和結果

  孩子們探索的方法可能有三個(gè):

  生1:一是用量角器量各個(gè)角,然后再算出三角形中三個(gè)角的度數和,用這種方法求的結果可能是180度也可能比180度小一些,也可能比180度大一些。

  生2:二是用轉化法,把三角形中三個(gè)角剪下來(lái),拼在一起成為一個(gè)平角,由此得出三角形中三個(gè)角的和是180度。

  生3:三是折一折,把三個(gè)角折在一起,折在一起成為一個(gè)平角,由此得出三角形中三個(gè)角的和是180度。

  四、歸納總結,體驗成功

  師:孩子們,三角形中三個(gè)角的度數和到底是多少度呢?

  生:180度。

  五、拓展應用

  1、基礎練習

  2、等邊三角形、等腰三角形、直角三角形

  六、課堂小結

  談一談自己的學(xué)習收獲。

  《三角形的內角和》教學(xué)設計 篇6

  教學(xué)目標:

  1、教會(huì )學(xué)生主動(dòng)探究新識的方法,學(xué)會(huì )運用轉化遷移數學(xué)思想。

  2、學(xué)生通過(guò)量、剪、拼、擺、分割等驗證三角形內角和方法的比較,主動(dòng)掌握三角形內角和是1800,并運用所學(xué)知識解決簡(jiǎn)單的實(shí)際問(wèn)題,發(fā)展學(xué)生的觀(guān)察、歸納、概括能力和初步的空間想象力。

  教學(xué)重點(diǎn):

  理解并掌握三角形的內角和是180°。

  教學(xué)難點(diǎn):

  驗證所有三角形的內角之和都是180°。

  教具準備:

  多媒體課件。

  學(xué)具準備:

  量角器、正方形、剪刀、各類(lèi)三角形(包括直角三角形、銳角三角形、鈍角三角形)

  教學(xué)過(guò)程:

  一、導入

  師:知道今天我們學(xué)習什么內容嗎?我們先來(lái)解讀一下課題,三角形,你手中有么?舉起來(lái)我看看,你拿的什么三角形?你呢?師:三角形按角分類(lèi),可分為直角三角形、鈍角三角形和銳角三角形。

  師:什么是內角?你能把你手中三角形的三個(gè)內角用角1、角2、角3標出來(lái)嗎?

  師:還有一個(gè)關(guān)鍵字“和”,什么是三角形的內角和?

  師:你認為三角形的內角和是多少度?你呢?都知道?是多少度?看來(lái)都知道了,就不用再學(xué)了吧?你還想學(xué)什么?

  師:看來(lái)我們不僅要知道三角形的內角和是180度,還要親自證明一下為什么是180度。這才真了不起呢。能證明嗎?你想怎么證明阿?

  生:量一量的方法。

  師:光量就知道了?還要算一算。

  師:這種方法可行嗎?下面咱就來(lái)試試,請同學(xué)們4人一組,分工合作,先測量?jì)冉,再計算求和。小組長(cháng)把計算的過(guò)程記錄下來(lái)。開(kāi)始吧。

  驗證:量角、求和

  小組匯報

  生一:我們組量的是銳角三角形,三個(gè)角分別是50度、60度、70度,銳角三角形的內角和是180度。

  生二:我們組量的是直角三角形,三個(gè)角分別是90度、35度、55度,直角三角形的內角和是180度。

  生三:我們組量的是鈍角三角形,三個(gè)角分別是120度、40度、20度,鈍角三角形的內角和是180度。

  師:從剛才的交流中,你發(fā)現了什么?

  生:不管是銳角三角形、直角三角形,還是鈍角三角形,內角和都是180度。

  師:下面同學(xué)測量得出180度的請你舉手,有沒(méi)有不是180度的?為什么有不同的答案呢?反思一下。我們在測量的時(shí)候容易出現誤差,得出的結論就難以讓人信服?磥(lái)似乎用量的方法還不能充分證明。(劃問(wèn)號)

  師:還敢接受更大挑戰嗎?把量角器和你的工具都收起來(lái),只借助這張三角形紙片證明出三角形的內角和是180度,你有辦法嗎?或許下面的同學(xué)還有別的方法,下面就請同學(xué)們互相交流交流,動(dòng)手試一試吧!

  師:這種方法怎么樣?(鼓掌)老師感到非常的驚喜,你看他們沒(méi)有破壞三角形,就這樣輕輕的一折,就解決了問(wèn)題,真是很巧妙。

  師:你們小組每個(gè)同學(xué)都動(dòng)腦筋了,謝謝你們。

  師:還有那個(gè)小組用的這種方法?你們也非常的聰明。還有別的方法嗎?

  師:其實(shí)大家能用3種方法證明已經(jīng)很不簡(jiǎn)單了,現在我們就能很自信的說(shuō)三角形的內角和是180度。(擦別的)

  師:其實(shí)對我來(lái)說(shuō)重要的不是知識的結論,讓老師感動(dòng)的是你們那種渴望求知,敢于探索的精神。更讓老師高興的是你們積極思考所得出的創(chuàng )造性的方法,F在我們再來(lái)一塊回顧一下。

  師:這幾種方法都足以說(shuō)明三角形的內角和是180度。(結論)

  師:剛才同學(xué)們發(fā)揮自己的聰明才智,想了很多方法來(lái)證明。王老師也有一種方法能證明。老師這里有一個(gè)活動(dòng)角,借助課本的一邊就構成了一個(gè)三角形,請你睜大眼睛仔細觀(guān)察,你發(fā)現了什么?

  請你再仔細觀(guān)察,你發(fā)現了什么?其實(shí)兩個(gè)底角減少的度數,正是頂角增大的度數。如果我繼續按下去你覺(jué)得會(huì )怎樣?我們來(lái)看看是不是這樣,三角形呢??jì)蓚(gè)底角呢?剛才三角形的動(dòng)態(tài)過(guò)程是不是也能證明三角形的內角和是180度?

  師:看來(lái)只要大家肯動(dòng)腦筋,面對同一問(wèn)題就會(huì )有不同的解決方法。

  師:現在我們知道了“三角形的內角和是180度”,能不能用這個(gè)知識來(lái)解決一些問(wèn)題?

  生:能。

  二、遷移和應用

 。ㄒ唬c(diǎn)將臺:

  下面哪三個(gè)角是同一個(gè)三角形的內角?

 。1)30 °、60 °、45 °、90 °

 。2)52 °、46 °、54 °、80 °

 。3)45 °、46 °、90 °、45 °

 。ǘ┪視(huì )算

  1、已知∠1,∠2,∠3是三角形的三個(gè)內角。

 。1)∠1=38° ∠2=49°求∠3

 。2)∠2=65° ∠3=73° 求∠1

  2、已知∠1和∠2是直角三角形中的兩個(gè)銳角

 。1)∠1=50°求∠2

 。2)∠2=48°求∠1

  3、已知等腰三角形的一個(gè)底角是70°,它的頂角是多少度?

 。ㄈ。變變變!

 。1)一個(gè)三角形中, ∠1 、∠2、∠3。

 。2)如果把∠3剪掉,變成了幾邊形?它的內角和變成多少度呢?

 。3)如果再把∠2剪掉,剩下圖形的內角和是多少度呢?

  三、全課小結

  師:通過(guò)一節課的探索,你有什么收獲?

  生答(略)

  我的幾點(diǎn)認識:

  結合《三角形的內角和》這節課,我對空間與圖形這一部分內容,簡(jiǎn)單的談一下自己的認識。

  空間與圖形這一部分內容,可以用這幾個(gè)字來(lái)概括:難理解,難受,難掌握。在本節課的教學(xué)中,三角形的內角和概念比較抽象,學(xué)生比較難理解。尤其是讓學(xué)生探究三角形的內角和是180度,對學(xué)生來(lái)說(shuō)更是難上加難。如果光憑在頭腦中想,不動(dòng)手實(shí)踐,對于三角形的內角和,學(xué)生也只能機械記憶是180度。那如何更好的讓學(xué)生掌握和接受呢?針對這些特點(diǎn)我采用了一下幾點(diǎn)做法:

  1、根據學(xué)生的知識特點(diǎn)和生活經(jīng)驗,在原有基礎上創(chuàng )造性的使用教材。

  在教學(xué)本節課的內容時(shí),學(xué)生在自己的日常生活或大部分都已經(jīng)知道三角形的內角和是180。因材在這樣的情況下,我創(chuàng )造性的使用教材。不是讓學(xué)生通過(guò)自己動(dòng)手操作之后才發(fā)現三角形的內角和是180,而是直接把問(wèn)題拋給學(xué)生,你們知道三角形的內角和是多少度嗎?

  你們怎么知道的?能自己證明么?這樣學(xué)生從被動(dòng)學(xué)習者的角色,

  立刻轉入主動(dòng)學(xué)習者的角色之中。這樣既能使學(xué)生很好的掌握知識,又能使學(xué)生激發(fā)興趣,提高積極性。

  2、讓學(xué)生在小組交流中進(jìn)行思維的碰撞,在動(dòng)手操作的實(shí)踐過(guò)程中得到知識情感價(jià)值的升華。

  在探究的過(guò)程中,我們采用了小組合作學(xué)習方式,這樣既能給學(xué)生提供交流的空間,又能在短時(shí)間內有效學(xué)習。學(xué)生先交流方法,商定出可行的辦法和方略,然后合作進(jìn)行實(shí)踐。學(xué)生會(huì )為了一個(gè)問(wèn)題爭的面紅耳赤,在這個(gè)過(guò)程中我們驚喜的看到生在交流和動(dòng)手操作過(guò)程中得到了提高。通過(guò)自己的實(shí)踐證明,學(xué)生發(fā)現三角形的內角和的確是180度。

  總之,在教學(xué)空間與圖形的內容時(shí),一定要讓學(xué)生看到“圖形",讓學(xué)生想象"空間”。

  《三角形的內角和》教學(xué)設計 篇7

  教學(xué)內容

  人教版小學(xué)數學(xué)第八冊第五單元第85頁(yè)例5

  任務(wù)分析

  教材分析: 《三角形的內角和》是義務(wù)教育課程標準實(shí)驗教科書(shū)(數學(xué))四年級下冊第五單元《三角形》中的一個(gè)教學(xué)內容。這部分內容是在學(xué)生學(xué)習了角的度量,角的分類(lèi),三角形的認識,三角形的分類(lèi)的基上進(jìn)行教學(xué)的。它是三角形的一個(gè)重要性質(zhì),有助于學(xué)生理解三角形的三個(gè)內角之間的關(guān)系,也是進(jìn)一步學(xué)習的基礎。教材通過(guò)實(shí)際操作,引導學(xué)生用實(shí)驗的方法探索并歸納出這一規律,即任意一個(gè)三角形,它的內角和都是180度。教材在編寫(xiě)上也深刻的體現出了讓學(xué)生探究的特點(diǎn),通過(guò)動(dòng)手操作探究發(fā)現三角形內角和為180度。教學(xué)內容的核心思想體現在讓學(xué)生經(jīng)歷猜想—驗證—結論的過(guò)程,來(lái)認識和體驗三角形內角和的特點(diǎn)。

  學(xué)情分析:通過(guò)前面的'學(xué)習,學(xué)生已經(jīng)掌握了三角形的一些基礎知識,會(huì )用工具量角、畫(huà)角,具備了探索三角形內角和的知識與基礎技能。在四年級上冊《角的度量》的學(xué)習中,學(xué)生有接觸到兩把三角尺的內角和是180°;并在相關(guān)的補充習題和數學(xué)練習冊的練習中,也有要求測量任意三角形的三個(gè)內角的度數并求出它們的和的練習,很多學(xué)生已經(jīng)知道了三角形的內角和是180°。但是要真正理解和掌握需要進(jìn)行驗證,因此,學(xué)生在這節課上的主要任務(wù)是通過(guò)實(shí)驗操作驗證三角形的內角和是180°。

  教學(xué)目標

  1、通過(guò)實(shí)驗、操作、推理歸納出三角形內角和是180°。

  2、能運用三角形的內角和是180°這一規律,求三角形未知角的度數并運用解決實(shí)際生活問(wèn)題。

  3、通過(guò)拼擺,感受數學(xué)的轉化思想。

  教學(xué)重點(diǎn)

  探究發(fā)現和驗證“三角形的內角和180度”。

  教學(xué)難點(diǎn)

  驗證三角形的內角和是180度。

  教學(xué)準備

  多媒體課件,銳角三角形、直角三角形、鈍角三角形,剪刀,量角器等。

  教學(xué)過(guò)程

  一、復習舊知,學(xué)習鋪墊

  1、一個(gè)平角是多少度?等于幾個(gè)直角?

  2、如下圖,已經(jīng)∠ 1=35°,∠2=78°,求∠3是多少度?

  二、探究新知,理解規律

  1、說(shuō)明三角形的三個(gè)內角和

  說(shuō)出手中三角形的類(lèi)型(銳角三角形,直角三角形,鈍角三角形)并說(shuō)出三角形有幾個(gè)角?

  師(指出):三角形的這三個(gè)角叫做三角形的三個(gè)內角,這三個(gè)內角的度數和叫做三角形的內角和。

  板書(shū)課題:“三角形的內角和”。

  揭示課題:今天我們一起來(lái)探究三角形的內角和有什么規律。

  2、探究三角形的內角和規律

  探究1:量一量,算一算

  以小組為單位,用量角器計算出三種三角形的內角和各是多少度?

  生討論匯報,并引導學(xué)生發(fā)現:三角形的內角和接近180°。

  師:三角形的內角和接近180°,那它到底與180° 有怎樣的關(guān)系呢?

  學(xué)生預設:有學(xué)生可能會(huì )說(shuō)出三角形的內角和就是180°,這時(shí)老師可以提問(wèn),為什么就是180°?我們要進(jìn)行驗證,你有什么辦法呢?

  探究2:擺一擺,拼一拼

  引導:我們剛剛每個(gè)三角形都量了三次角,每一次度量都有誤差,所以量出來(lái)的內角和有誤差。能不能換一種方法減少度量的次數,減少誤差呢?

  生可能很難想到,可以提示學(xué)生:把三個(gè)內角拼成一個(gè)角就只要量一次角。讓我們一起動(dòng)手做一做

  如圖:

 。1)

  銳角的三個(gè)內角拼成了一個(gè)平角,引導學(xué)生說(shuō)出:銳角三角形的內角和是180°、

 。2)

  讓學(xué)生小組合作用同樣的方法,發(fā)現:直角三角形的內角和也是180°、

 。3)

  讓學(xué)生獨立用同樣的方法,發(fā)現:鈍角三角形的內角和也是180°、

  引導學(xué)生歸納:三角形的內角和是180°。

  是不是所有的三角形的內角和都是180°呢? (是,因為這三類(lèi)三角形包括了所有三角形。)

  板書(shū):三角形的內角和是180°

  三、鞏固練習,應用規律

  1、在一個(gè)三角形中,∠1=140°,∠3=25°,你能求出∠2的度數嗎?

  學(xué)生獨立完成,并說(shuō)出原因:因為三角形的內角和是180°,也就是∠1+∠2+∠3=180°,借助圖像

  ∠2 =180°-∠1-∠3 或 ∠2 =180°-(∠1+∠3)

  = 180°-140°-25° =180°-(140°+25°)

  =40°-25° =180°-165°

  =15° =15°

  2、一個(gè)等腰三角形的頂角是80°,它的兩個(gè)底角各是多少度?

  學(xué)生分析:因為等腰三角形的兩個(gè)底角相等,又因為三角形的內角和是180°,所以

 。180°-80°)÷2

  =100°÷2

  =50°

  四、拓展練習,深化規律

  1、求出下面各角的度數。

 。1) (2)

  2、判斷

 。1)三角形任意兩個(gè)內角的和大于第三個(gè)角。( )

 。2)銳角三角形任意兩個(gè)內角的和大于直角。( )

 。3)有一個(gè)角是60°的等腰三角形不一定是等邊三角形。( )

  3、下面是兩塊三角形的玻璃打碎后留下的殘片,你知道它們原來(lái)各是什么三角形嗎?

 。 ) ( )

  五、課堂小結,分享提升

  1、談?wù)勥@節課你有什么收獲?

  2、課后思考題

  三角形的內角和是180°,那長(cháng)方形、正方形的內角和呢?(根據三角形的內角和是180°求,參考課本88頁(yè)第12題,完成89頁(yè)16題)

  《三角形的內角和》教學(xué)設計 篇8

  【教學(xué)目標】

  1、學(xué)生動(dòng)手操作,通過(guò)量、剪、拼、折的方法,探索并發(fā)現“三角形內角和等于180度”的規律。

  2、在探究過(guò)程中,經(jīng)歷知識產(chǎn)生、發(fā)展和變化的過(guò)程,通過(guò)交流、比較,培養策略意識和初步的空間思維能力。

  3、體驗探究的過(guò)程和方法,感受思維提升的過(guò)程,激發(fā)求知欲和探索興趣。

  【教學(xué)重點(diǎn)】

  探究發(fā)現和驗證“三角形的內角和180度”這一規律的過(guò)程,并歸納總結出規律。

  【教學(xué)難點(diǎn)】

  對不同探究方法的指導和學(xué)生對規律的靈活應用。

  【教具準備】

  課件、表格、學(xué)生準備不同類(lèi)型的三角形各一個(gè),量角器。

  【教學(xué)過(guò)程】

  一、激趣引入。

  1、猜謎語(yǔ)

  師:同學(xué)們喜歡猜謎語(yǔ)嗎?

  生:喜歡。

  師:那么,下面老師給大家出個(gè)謎語(yǔ)。請聽(tīng)謎面:

  形狀似座山,穩定性能堅,三竿首尾連,學(xué)問(wèn)不簡(jiǎn)單。(打一圖形)大家一起說(shuō)是什么?

  生:三角形

  2、介紹三角形按角的分類(lèi)

  師:真聰明!!板書(shū)“三角形”!那么,三角形按角分可以分為鈍角三角形、直角三角形和銳角三角形這幾類(lèi)

  師分別出示卡片貼于黑板。

  3、激發(fā)學(xué)生探知心里

  師:大家會(huì )不會(huì )畫(huà)三角形啊?

  生:會(huì )

  師:下面請你拿出筆在本子上畫(huà)出一個(gè)三角形,但是我有個(gè)要求:畫(huà)出一個(gè)有兩個(gè)直角的三角形。試一試吧!

  生:試著(zhù)畫(huà)

  師:畫(huà)出來(lái)沒(méi)有?

  生:沒(méi)有

  師:畫(huà)不出來(lái)了,是嗎?

  生:是

  師:有兩個(gè)直角的三角形為什么畫(huà)不出來(lái)呢?這就是三角形中角的奧秘!這節課我們就來(lái)學(xué)習有關(guān)三角形角的知識“三角形內角和”(板書(shū)課題)

  二、探究新知。

  1、認識三角形的內角

  看看這三個(gè)字,說(shuō)說(shuō)看,什么是三角形的內角?

  生:就是三角形里面的角。

  師:三角形有幾個(gè)內角啊?

  生:3個(gè)。

  師:那么為了研究的時(shí)候比較方便,我們把這三個(gè)內角標上角1角2角3,請同學(xué)們也拿出桌子上三角形標出(教師標出)

  師:你知道什么是三角形“內角和”嗎?

  生:三角形里面的角加起來(lái)的度數。

  2、研究特殊三角形的內角和

  師:分別拿出一個(gè)直角三角板,請同學(xué)們看看這屬于什么三角形,說(shuō)出每個(gè)角的度數,那這個(gè)三角形的內角和是多少度?

  生:算一算:90°+60°+30°=180° 90°+45°+45°=180°

  師:180°也是我們學(xué)習過(guò)的什么角?

  生:平角

  師:從剛才兩個(gè)三角形的內角和的計算中,你發(fā)現了什么?

  3、研究一般三角形的內角和

  師:猜一猜,其它三角形的內角和是多少度呢?

  生:

  4、操作、驗證

  師:同學(xué)們猜的結果各不相同,那怎么辦呀?你能想個(gè)辦法驗證一下嗎?

  要求:

  (1)每4人為一個(gè)小組。

  (2)每個(gè)小組都有不同類(lèi)型的三角形,每種類(lèi)型都需要驗證,先討論一下,怎樣才能較快的完成任務(wù)?

  (3)驗證的方法不只一種,同學(xué)們要多動(dòng)動(dòng)腦子。

  師:好,開(kāi)始活動(dòng)!

  師:巡視指導

  師:好!請一組匯報測量結果。

  生:通過(guò)測量我們發(fā)現每個(gè)三角形的三個(gè)內角和都在180度左右。

  師:其實(shí)三角形的內角和就是180度,只是因為我們在測量時(shí)存在了一些誤差,所以測量出的結果不準確。

  生:我是用撕的方法,把直角三角形三個(gè)內角撕下來(lái),拼在一起,拼成一個(gè)平角,是180度。

  師:好!非常好!

  師:有其它同學(xué)操作銳角三角形和鈍角三角形的嗎?誰(shuí)愿意到前面來(lái)展示一下?生:展示銳角三角形(撕拼)

  生:展示折一折我是用折的方法把銳角三角形三個(gè)角折在一起,組成一個(gè)平角,是180°。

  師:老師也做了一個(gè)實(shí)驗看一看是不是和大家得到結果一樣呢?(多媒體展示)

  現在老師問(wèn)同學(xué)們,三角形的內角和是多少?

  生:180度。

  師:通過(guò)驗證:我們知道了無(wú)論是銳角三角形,直角三角形還是鈍角三角形,它們的內角和都是180°。板書(shū):三角形內角和等于180度,F在讓我們用自豪的、肯定的語(yǔ)氣讀出我們的發(fā)現:“三角形的內角和是180°”。

  三、解決疑問(wèn)

  師:好!請同學(xué)們回憶一下,剛才課前老師讓同學(xué)們畫(huà)出有兩個(gè)直角的三角形畫(huà)出來(lái)了嗎?

  生:沒(méi)有

  師:那你能用這節課的知識解釋一下為什么畫(huà)不出來(lái)嗎?

  生:兩個(gè)直角是180度,沒(méi)有第三個(gè)角了。

  師:如果想畫(huà)出有兩個(gè)角是鈍角的三角形你能畫(huà)出來(lái)嗎?

  生:大于180度,也畫(huà)不出第三個(gè)角。師:所以,生活中不存在這樣的三角形。

  師:學(xué)會(huì )了知識,我們就要懂得去運用。

  四、鞏固提高。

  1、填空。

  (1)三角形的內角和是()度。

  (2)一個(gè)三角形的兩個(gè)內角分別是80°和75°,它的另一個(gè)角是()。

  2、求下面各角的度數。

  (1)∠1=27° ∠2=53° ∠3=()這是一個(gè)()三角形。

  (2)∠1=70° ∠2=50° ∠3=()這是一個(gè)()三角形。

  3、判斷每組中的三個(gè)角是不是同一個(gè)三角形中的三個(gè)內角。

  (1)80° 95° 5°( )

  (2)60° 70° 90°( )

  (3)30° 40° 50°( )

  4、紅領(lǐng)巾是一個(gè)等腰三角形,求底角的度數。(多媒體出示)

  對學(xué)生進(jìn)行思品教育。

  5、思考延伸。

  根據三角形內角和是180度,算一算四邊形和八邊形的內角和是多少?

  6、游戲:幫角找朋友每組卡片中,哪三個(gè)角可以組成三角形?)每組卡片中,哪三個(gè)角可以組成三角形?)60°90°45°30°⑴60°、90°、45°、30°54°46°52°

  《三角形的內角和》教學(xué)設計 篇9

  學(xué)情分析:

  學(xué)生已經(jīng)掌握了角的概念、角的分類(lèi)和角的度量等知識。在本課之前,學(xué)生又掌握了三角形的穩定性研究了三角形的分類(lèi)。這些都為進(jìn)一步研究三角形內角和作了知識儲備和心理準備,為本課內容的教學(xué)作了鋪墊。三角形的內角和是三角形的一個(gè)重要性質(zhì)。它有助于理解三角形的三個(gè)內角之間的關(guān)系,是進(jìn)一步學(xué)習、研究幾何問(wèn)題的基礎。

  教學(xué)目標:

  1、知識與技能:通過(guò)操作活動(dòng)探索發(fā)現和驗證“三角形的內角和是180度”的規律。

  2、過(guò)程與方法:通過(guò)量一量、剪一剪、拼一拼,培養學(xué)生的合作能力、動(dòng)手實(shí)踐能力,并運用新知識解決問(wèn)題的能力。

  3、情感態(tài)度:使學(xué)生體驗數學(xué)學(xué)習成功的喜悅,激發(fā)學(xué)生主動(dòng)學(xué)習數學(xué)的興趣。

  教學(xué)重點(diǎn):

  探索發(fā)現和驗證三角形的內角和是180度。

  教學(xué)難點(diǎn):

  對不同探究方法的指導和學(xué)生對規律的靈活應用。

  教具準備:

  教師準備:多媒體課件、不同類(lèi)形大小不一的三角形若干個(gè)、記錄表

  學(xué)生準備:量角器、直尺、剪刀

  教學(xué)過(guò)程:

  一、激趣導入

  多媒體展示三角形

  出示謎語(yǔ):形狀似座山,穩定性能堅

  三竿首尾連,學(xué)問(wèn)不簡(jiǎn)單(打一圖形名稱(chēng))

 。A設:三角形)

  師:誰(shuí)能介紹介紹三角形?

 。ㄉ1:三角形有三條邊、三個(gè)頂點(diǎn)、三個(gè)角。

  生2:三角形按角分類(lèi),分為鈍角三角形、銳角三角形、直角三角形。)

  師:你喜歡哪種三角形?(鈍角三角形、銳角三角形、直角三角形)

  師:同學(xué)們會(huì )畫(huà)三角形嗎?請你在練習本上畫(huà)一個(gè)你喜歡的三角形。

  師:鈍角、直角、銳角三角形三兄弟吵起來(lái)了?我們快去看一看。

  師:今天我們就來(lái)研究一下三角形的內角和。

  二、學(xué)習目標

  1、通過(guò)動(dòng)手操作,使學(xué)生理解并掌握三角形內角和是180度的結論。

  2、能運用三角形的內角和是180度這一規律,求三角形中未知角的度數。

  3、培養動(dòng)手動(dòng)腦及分析推理能力。

  三、自主學(xué)習(展示量角法)

  1、理解三角形的內角、內角和

 。1)板書(shū)展示三角形

  師:要想知道什么是三角形的內角和,我們得先知道什么是三角形的內角?(三角形里面的三個(gè)角都是三角形的內角。)

  師:你能過(guò)來(lái)指指嗎?同意嗎??jì)冉怯袔讉(gè)?

  師:為了研究方便,我們把三角形的三個(gè)內角分別標上∠1、∠2、∠3。

  師:你能像老師一樣把你的三角形標上∠1、∠2、∠3嗎?

 。2)三角形的內角和

  師:什么是三角形的內角和?

 。ㄈ切稳齻(gè)角的度數的和,就是三角形的內角和,即:∠1+∠2+∠3)

  師:就是把∠1+∠2+∠3加起來(lái)。

  師:根據我們以前的經(jīng)驗,我們怎么知道∠1、∠2、∠3的度數呢?(預設:用量角器量)

  師:請同學(xué)們拿出量角器,量一量你畫(huà)的三角形的三個(gè)內角,并算出他們的和。(4分鐘)

  學(xué)生測量(1分40)匯報結果(5人)。

  教師填寫(xiě)測量匯報單。

  師:觀(guān)察匯報的結果,你有什么發(fā)現?(所有三角形內角和度數不一樣、三角形內角和都在180度左右)

  四、合作探究

  師:這是同學(xué)們親自測量發(fā)現的,沒(méi)有得到統一的結果,這個(gè)辦法不能使人信服,有沒(méi)有別的方法驗證?老師給每個(gè)小組都提供了很多個(gè)三角形,現在請你們以小組為單位,拿出三角形來(lái)研究研究三角形的內角和到底是多少度。?(8分鐘)(剪拼法)

  1、操作驗證探索三角形內角和的規律(6分鐘)

 。1)操作驗證:小組合作

  拿出裝有學(xué)具的信封[信封里面有老師為學(xué)生事先準備的各種類(lèi)型的三角形若干個(gè)(小組之間的三角形大小都不同)];拿出自備的直尺?剪刀

 。ɡ蠋熞o學(xué)生充裕的時(shí)間,保證學(xué)生能真正地試驗,操作和探索,通過(guò)量一量、折一折、拼一拼、畫(huà)一畫(huà)等方式去探究問(wèn)題。)

  2、學(xué)生匯報

 。1)轉化法:

  生:兩個(gè)同樣的直角三角形可以拼成一個(gè)長(cháng)方形,長(cháng)方形每個(gè)直角都是90度,內角和就是360度,所以三角形的內角和就是360度的一半180度。

  師:他們用長(cháng)方形的內角和來(lái)研究今天所學(xué)的知識,得到三角形的內角和是180度。

 。2)折拼法

  生:把三角形三個(gè)內角分別向下邊折疊,拼成了一個(gè)平角,平角是180度,所以三角形的內角和是180度。

  師:他們是用折拼法驗證三角形的內角和是180度(動(dòng)手能力真強)

 。3)剪拼法

  生:把三角形三個(gè)內角撕下來(lái),拼成一個(gè)平角,平角是180,所以三角形的內角和是180度。(師:提問(wèn)怎樣能很快的找到三個(gè)角?把他們做上標記。)

  標記上之后再拼一拼,可見(jiàn)標記的方法很科學(xué)。(20分鐘)

  3、教師演示

  師:我們再來(lái)感受一下怎么驗證三角形的內角和的?

  師:這是什么三角形?把他折一折。

  師:這是什么三角形?我們也可以把他折一折。你有什么發(fā)現?(折完以后都有一個(gè)平角,平角是180度,所以三角形的內角和是180度)

  師分別通過(guò)剪拼法驗證直角三角形、鈍角三角形、銳角三角形內角和。

  師:注意觀(guān)察。

  師:演示完畢有什么發(fā)現?(預設這些三角形剪接后都拼成了平角)平角是180度,所以三角形的內角和是180度。

  師:剛剛我們研究了什么三角形。他們的內角和都是180度,那我們研究的這些三角形能不能代表所有的三角形,能。(因為三角形按角分類(lèi)只能分成這三種。)(22分鐘)

  4、演示任意一個(gè)三角形的內角和都是180度。

  出示一些三角形,讓學(xué)生指出內角和。

  師:你有什么發(fā)現?(無(wú)論是什么樣的三角形他的內角和都是180度,與三角形的形狀大小沒(méi)有關(guān)系。)(板書(shū)三角形的內角和是180度。)

  師:那我們再看看剛剛匯報的結果。為什么之前測量的時(shí)候并沒(méi)有得到這樣得到結果呢?(測量的不夠精確,存在誤差)

  師:如果測量?jì)x器再精密一些,測量的更準確一些都可以得到三角形內角和是180度,F在確定這個(gè)結論了嗎?(25分鐘)

  師:除了這節課大家想到的方法,還有很多方法也能證明三角形的內角和是180°到初中我們還有更嚴密的方法證明三角形的內角和是180°。早在300多年前就有一位法國著(zhù)名的科學(xué)家帕斯卡,他在12歲時(shí)就驗證了任何三角形的內角和都是180°

  師:你們能用今天的發(fā)現做一些練習嗎?

  五、測評反饋

  1、判斷。

 。1)直角三角形的兩個(gè)銳角的和是90°。

 。2)一個(gè)等腰三角形的底角可能是鈍角。

 。3)三角形的內角和都是180°,與三角形的大小無(wú)關(guān)。

  4、剪一剪。

  把一個(gè)三角形紙板沿直線(xiàn)剪一刀,剩下的紙板的內角和是多少度?

  六、課后作業(yè)

  69頁(yè)第1題、第3題。

  七、板書(shū)設計

  《三角形的內角和》教學(xué)設計 篇10

  教學(xué)內容:

  教材第67頁(yè)例6、“做一做”及教材第69頁(yè)練習十六第1~3題。

  教學(xué)目標:

  1、通過(guò)動(dòng)手操作,使學(xué)生理解并掌握三角形的內角和是180°的結論。

  2、能運用三角形的內角和是180°這一結論,求三角形中未知角的度數。

  3、培養學(xué)生動(dòng)手動(dòng)腦及分析推理能力。

  重點(diǎn)難點(diǎn):

  掌握三角形的內角和是180°。

  教學(xué)準備:

  三角形卡片、量角器、直尺。

  導學(xué)過(guò)程

  一、復習

  1、什么是平角?平角是多少度?

  2、計算角的度數。

  3、回憶三角形的相關(guān)知識。(出示直角三角形、銳角三角形、鈍角三角形)

  二、新知

 。ㄔO計意圖:讓學(xué)生經(jīng)歷質(zhì)疑驗證結論這樣的思維過(guò)程,真正整體感知三角形內角和的知識,真正驗證了“實(shí)踐出真知” 的道理,這樣的教學(xué),將三角形內角和置于平面圖形內角和的大背景中,拓展了三角形內角和的數學(xué)知識背景,滲透數學(xué)知識之間的聯(lián)系,有效地避免了新知識的“橫空出現”。同時(shí),培養學(xué)生的綜合素養)

  1、讀學(xué)卡的學(xué)習目標、任務(wù)目標,做到心里有數。

  2、揭題:課件演示什么是三角形的內角和。

  3、猜想:三角形的內角和是多少度。

  4、驗證:

 。1)初證:用一副三角板說(shuō)明直角三角形的內角和是180°。

 。2)質(zhì)疑:三角板是特殊的直角三角形,不具有普遍性,不能代表所有三角形。

 。3)再證:請按學(xué)卡提示,拿出學(xué)具,選擇自己喜歡的方式驗證三角形的內角和 是180°(師巡視)

 。4)匯報結論(清楚明白的給小組加優(yōu)秀10分)

  5、結論:修改板書(shū),把“?”去掉,寫(xiě)“是”。

  6、追問(wèn):把兩塊三角板拼在一起,拼成的大三角形的內角和是多少?說(shuō)明三角形無(wú)論大小它的內角和都是180°(課件演示)

  7、看微課感知“偉大的發(fā)現”(設計意圖:讓學(xué)生感受自己所做的和帕斯卡發(fā)現三角形內角和是180°的過(guò)程是一樣的,從而培養孩子的自信心和創(chuàng )造力。)

  三、知識運用(課件出示練習題,生解答)

  1、填空

 。1)一個(gè)三角形,它的兩個(gè)內角度數之和是110 ,第三個(gè)內角是( )、

 。2)一個(gè)直角三角形的一個(gè)銳角是50,則另一個(gè)銳角是( )。

 。3)等邊三角形的3個(gè)內角都是( )。

 。4)一個(gè)等腰三角形,它的一個(gè)底角是50,那么它的頂角是( )。

 。5)一個(gè)等腰三角形的頂角是60,這個(gè)三角形也是( )三角形。

  2、判斷

 。1)一個(gè)三角形中最多有兩個(gè)直角。 ( )

 。2)銳角三角形任意兩個(gè)內角的和大于90。 ( )

 。3)有一個(gè)角是60的等腰三角形不一定是等邊三角形。 ( )

 。4)三角形任意兩個(gè)內角的和都大于第三個(gè)內角。 ( )

 。5)直角三角形中的兩個(gè)銳角的和等于90。 ( )

  四、拓展探究

  根據所學(xué)的知識,你能想辦法求出四邊形、五邊形的內角和嗎?

  1、小組討論。

  2、匯報結果。

  3、課件提示幫助理解。

  五、自我評價(jià)根據學(xué)卡要求給自己評出“優(yōu)”“良好”“合格”。

  六、談?wù)勛约罕竟澱n的收獲。

  教學(xué)反思

  今天我講了《三角形內角和》這部分內容,學(xué)生其實(shí)通過(guò)不同途徑已經(jīng)知道三角形內角和是180°,是不是說(shuō)這節課的重難點(diǎn)就已經(jīng)突破了,只要學(xué)生能應用知識解決問(wèn)題就算是達到這節課的教學(xué)目標了呢?我想應該好好思考教材背后要傳遞的東西。

  任何規律的發(fā)現都要經(jīng)過(guò)一個(gè)猜測、驗證的過(guò)程,不經(jīng)歷這個(gè)探究的過(guò)程,學(xué)生對于這一內容的認識就不深刻,聰明的孩子還會(huì )懷疑三角形內角和是180°嗎?。因此這個(gè)結論必須由實(shí)踐操作得出結論。所以最終我把本課定為一個(gè)實(shí)踐探究課。

  如何開(kāi)篇點(diǎn)題,是我這次要解決的第一個(gè)問(wèn)題。怎樣才能讓學(xué)生由已知順利轉向對未知的探求,怎樣直接轉向研究三個(gè)角的“和”的問(wèn)題呢?因此我只設計了三個(gè)簡(jiǎn)單的問(wèn)題然學(xué)生快速進(jìn)入主題。

  如何驗證內角和是180°,是我一直比較糾結的環(huán)節。由于小學(xué)生的知識背景有限,無(wú)法利用證明給予嚴格的驗證。只能通過(guò)動(dòng)手操作、空間想象來(lái)讓孩子體會(huì ),這些都有“實(shí)驗”的特點(diǎn),那么就都會(huì )有誤差,其實(shí)都無(wú)法嚴格的證明。但是這節課我們除了要尊重知識的嚴謹還應該尊重孩子的認知。如果通過(guò)剪拼、折疊、想象后,還有的孩子認為三角形內角和是180°值得懷疑的話(huà),這無(wú)非也是件好事,說(shuō)明孩子體會(huì )到了這些方法的不嚴謹,同時(shí)對知識有一種尊重,對自己的操作結果充滿(mǎn)自信,否則拼個(gè)差不多也可以簡(jiǎn)單的認同了內角和是180°。

  本節課的練習的設置也是努力做到有梯度、有趣味、有拓展。從開(kāi)始的搶答內角和體會(huì )三角形內角和跟大小無(wú)關(guān)、跟形狀無(wú)關(guān),到已知兩個(gè)角的度數求第三個(gè)角,這些都是鞏固。之后的,求拼接兩個(gè)完全一樣的直角三角形后,得到的圖形的內角和是多少度,求被剪開(kāi)的三角形,形成的新圖形的內角和是多少度,這些都是對三角形內角和的一次拓展。讓學(xué)生的認知發(fā)生沖突,提出挑戰。

  給學(xué)生一個(gè)平臺,她會(huì )給你一片精彩。通過(guò)動(dòng)手操作來(lái)驗證內角和是否是180°,學(xué)生最容易出現的就是把3個(gè)角剪下來(lái)拼一拼,個(gè)別人可能會(huì )想到折的方法。而這節課上有個(gè)小姑娘研究的是直角三角形,她的折法很巧妙,將兩個(gè)銳角折過(guò)來(lái),剛好拼成一個(gè)直角,這個(gè)直角和原來(lái)三角形已有的直角就重疊在了一起,兩個(gè)直角就180°。雖然我知道這樣的方法,但是通過(guò)試講,孩子們沒(méi)有這樣的表現,我就沒(méi)有奢求什么。但是今天的課堂太豐富多元了。這樣的方法都出現了讓我覺(jué)得特別值得肯定。為什么會(huì )這樣呢?我想還是因為我給了他們足夠的時(shí)間去思考。當有了空間,孩子才會(huì )施展他們的才華。這是我的一大收獲。

  前邊驗證時(shí)間過(guò)多,到練習時(shí)間就有些少,特別是求四邊形和六邊形內角和時(shí),給的時(shí)間過(guò)短,學(xué)生沒(méi)有充分思維。

  總而言之,這次的公開(kāi)課,給了我一次學(xué)習和鍛煉的機會(huì )。在教案設計時(shí),該怎么樣把每一個(gè)環(huán)節落實(shí)到位,怎么樣說(shuō)好每一句話(huà),預設好每一個(gè)環(huán)節,在教研中聽(tīng)取各位教師的點(diǎn)評,讓我有了茅塞頓開(kāi)的感覺(jué)。在此,我衷心感謝數學(xué)團隊教師對我中肯的評價(jià),感謝他們對我的直言不諱,無(wú)私奉獻自己的想法,讓我在教學(xué)中,能夠在一個(gè)輕松和諧的教學(xué)氛圍中與學(xué)生共同去探討,去發(fā)現,去學(xué)習。

  《三角形的內角和》教學(xué)設計 篇11

  一、教材分析

  “三角形內角和”的度數推理是三角形中的一個(gè)重要環(huán)節,也是“空間與圖形”領(lǐng)域中的重要內容之一,為學(xué)生進(jìn)一步理解三角形三個(gè)角、三條邊之間的關(guān)系打下基礎。本節課首先讓學(xué)生對三角形的特點(diǎn)進(jìn)行復習,隨后教材中創(chuàng )設了一個(gè)有趣的動(dòng)態(tài)情境,導入了新課,激發(fā)學(xué)生的興趣,明確“內角和”的含義,然后引導學(xué)生探索三角形內角和等于多少度,可以采用不同的方法驗證,教學(xué)中安排了3個(gè)活動(dòng),通過(guò)這3個(gè)活動(dòng)體驗“三角形內角和”的性質(zhì)和性質(zhì)的探索過(guò)程。

  二、學(xué)情分析

  有的學(xué)生可能從各種渠道已經(jīng)對“三角形內角和是180°”有所了解,所以本課的重點(diǎn)是通過(guò)數學(xué)活動(dòng)體驗,理解為什么三角形的內角和是180°,使學(xué)生對這個(gè)知識的掌握更深刻。經(jīng)過(guò)不斷的課改實(shí)驗,孩子們已經(jīng)有了一定的自主探究、合作交流的能力。他們喜歡在實(shí)踐中感悟,在實(shí)踐中發(fā)表自己的見(jiàn)解,對數學(xué)產(chǎn)生了濃厚的興趣。

  1、知識方面:學(xué)生已經(jīng)掌握了三角形的概念、分類(lèi),熟悉了鈍角、直角、銳角、平角這些角的知識。

  2、能力方面:已具備了初步的動(dòng)手操作能力和探究能力,并且能夠進(jìn)行簡(jiǎn)單的計算機操作。

  三、教學(xué)方法

  滲透猜想——驗證——結論——應用——拓展

  教學(xué)目標:

  1、通過(guò)直觀(guān)操作的方法,探索并發(fā)現三角形三個(gè)內角和等于180度,在實(shí)踐活動(dòng)中,體驗探索的過(guò)程和方法

  2、能應用三角形內角和的性質(zhì)解決一些簡(jiǎn)單的問(wèn)題。

  教學(xué)重點(diǎn):

  經(jīng)歷三角形的內角和是180°這一知識的形成、發(fā)展和應用的全過(guò)程,會(huì )應用三角形的內角和解決實(shí)際問(wèn)題;

  教學(xué)難點(diǎn):

  是探索和驗證性質(zhì)的過(guò)程。

  四、教具學(xué)具

  三角板、量角器、剪刀、白紙

  五、教學(xué)過(guò)程

  (一)、激趣導入,揭示課題

  1、師:同學(xué)們,猜猜它是誰(shuí)?

  形狀似座山,穩定性能堅,三竿首尾連,學(xué)問(wèn)不簡(jiǎn)單(打一幾何圖形)三角形(板書(shū))我們已經(jīng)認識了什么是三角形,誰(shuí)能說(shuō)出三角形有什么特點(diǎn)?生回答。(互相補充) (課件演示三條線(xiàn)段圍成三角形的過(guò)程)

  三條線(xiàn)段圍成三角形后,在三角形內形成了三個(gè)角,(課件分別閃爍三個(gè)角及它的弧線(xiàn)),我們把三角形里面的這三個(gè)角分別叫做三角形的內角。

  2、現在,我們來(lái)玩一個(gè)跟三角形的角有關(guān)的游戲。只要大家說(shuō)出三角形任意兩個(gè)角的度數,老師就能猜出第三個(gè)角,你們相信嗎?

  要求每個(gè)4人小組拿出本組預先準備的學(xué)具袋。(內含四個(gè)不同的三角形,包括直角、銳角和鈍角三角形至少各一個(gè),且要求大小不一。)

  3、活動(dòng)——量一量:每人任意拿出一個(gè)自己帶來(lái)的三角形,用量角器量出三角形中三個(gè)角的度數,并寫(xiě)在三角形中。(獨立完成,非小組合作。)

  然后分別請幾個(gè)學(xué)生報出不同三角形的兩個(gè)角的度數,教師當即說(shuō)出第三個(gè)角的度數。(事先向學(xué)生說(shuō)明誤差僅為3、4度左右。)

  你們知道老師是怎么猜出來(lái)的嗎?

  到底它們之間有什么樣的秘密呢?我們今天這節課就要來(lái)揭開(kāi)這個(gè)秘密。

  (二)、動(dòng)手操作,探究新知

  1、探究特殊三角形的內角和

  拿出兩個(gè)三角板,問(wèn):它們是什么三角形?(直角三角形)

  請大家拿出自己的兩個(gè)三角尺,在小組內說(shuō)說(shuō)每一個(gè)三角尺上三個(gè)角的度數,并求出這兩個(gè)直角三角形的內角和。從剛才兩個(gè)三角形內角和的計算中,你們發(fā)現了什么?

  (這兩個(gè)三角形的內角和都是180°)。這兩個(gè)三角形都是直角三角形,并且是特殊的三角形。

  【設計意圖】三角板是學(xué)生非常熟悉的學(xué)習用具,度數也是非常清楚,通過(guò)計算學(xué)生熟悉的三角板內角和來(lái)驗證這個(gè)結論,學(xué)生也容易接受。

  2、探究一般三角形內角和

  (1)猜一猜。

  猜一猜其它三角形的內角和是多少度呢?(可能是180°)

  (2)操作、驗證一般三角形內角和是180°。

  所有三角形的內角和究竟是不是180°,你能用什么辦法來(lái)證明?(可以先量出每個(gè)內角的度數,再加起來(lái)。)

  那就請小組共同計算吧!將學(xué)生采用分組的方法分成銳角三角形組、直角三角形組、鈍角三角形組、等腰三角形組,各組在白紙上任意畫(huà)三角形,并量出每個(gè)內角的度數,計算三角形內角和。由組長(cháng)統計記錄員記錄各組的內角和情況。

  (3)小組匯報結果。

  請各小組匯報探究結果。提問(wèn):你們發(fā)現了什么?

  小結:通過(guò)測量計算我們發(fā)現每個(gè)三角形的三個(gè)內角和都在180°左右。

  【設計意圖】學(xué)生任意畫(huà)的三角形,有大的、有小的,有各種類(lèi)型的,不論是什么樣的三角形,學(xué)生都親自動(dòng)手動(dòng)筆算出內角和。這個(gè)探索過(guò)程簡(jiǎn)單學(xué)生又容易接受。

  3、操作驗證

  (1)動(dòng)手操作,驗證猜測。

  沒(méi)有得到統一的結果。這個(gè)辦法不能使人很信服,怎么辦?還有其它辦法嗎?請同學(xué)們動(dòng)腦筋想一想,能通過(guò)動(dòng)手操作來(lái)驗證嗎?(先小組討論,再匯報方法)

  (2)學(xué)生操作,教師巡視指導。

  (3)全班交流匯報驗證方法、結果。

  學(xué)生放在投影儀上展示給大家看。(剪拼、撕拼、折拼)

  我們可以得出一個(gè)怎樣的結論?(三角形的內角和是180°)

  引導學(xué)生通過(guò)剪拼、撕拼和折拼的方法發(fā)現:各類(lèi)三角形的三個(gè)內角都可以拼成一個(gè)平角,證實(shí)三角形內角和確實(shí)是180°,測量計算有誤差。

  【設計意圖】學(xué)生通過(guò)親自動(dòng)手操作,將三角形的三個(gè)內角剪拼成一個(gè)平角,形象、直觀(guān)地說(shuō)明了“三角形內角和是180度”這個(gè)結論。

  5、辨析概念,透徹理解。

  (出示一個(gè)大三角形)它的內角和是多少度?

  (出示一個(gè)很小的三角形)它的內角和是多少度?

  一塊三角尺的內角和180°,兩塊同樣的三角尺拼成的一個(gè)大三角形的內角和又是多少呢?(學(xué)生有的答360°,有的180°、)

  把大三角形平均分成兩份。每個(gè)小三角形的內角和是多少度?(生有的答90°,有的180° )這兩道題都有兩種答案,到底哪個(gè)對?為什么?(學(xué)生個(gè)個(gè)臉上露出疑問(wèn)。)

  大家可以在小組內用三角尺拼一拼,也可以畫(huà)一畫(huà),互相討論。

  學(xué)生發(fā)現:三角形不論位置、大小、形狀如何,它的內角和總是180°

  (三)小結

  剛才同學(xué)們用很多方法證明了無(wú)論是什么樣的三角形內角和都是180°,現在讓我們用自豪的、肯定的語(yǔ)氣讀出我們的發(fā)現:“三角形的內角和是180°”。

  (四)、鞏固練習,拓展應用

  下面,我們就根據三角形內角和的知識來(lái)解決一些相關(guān)的數學(xué)問(wèn)題。(課件)

  1、求三角形中一個(gè)未知角的度數。

  在三角形中,已知∠1=85°,∠2=65°,求∠3。

  2、判斷

  (1)一個(gè)三角形的三個(gè)內角度數是:90°、75°、25°。( )

  (2)一個(gè)三角形至少有兩個(gè)角是銳角。 ( )

  (3)鈍角三角形的內角和比銳角三角形的內角和大。 ( )

  (4)直角三角形的兩個(gè)銳角和等于90°。 ( )

  3、解決生活實(shí)際問(wèn)題。

  (1)爸爸給小紅買(mǎi)了一個(gè)等腰三角形的風(fēng)箏,它的一個(gè)底角是70°,它的頂角是多少度?

  (2)交通警示牌“讓”為等邊三角形,求其中一個(gè)角的度數。

  4、拓展練習。

  利用三角形內角和是180°,求出下面四邊形、六邊形的內角和?(課件)

  小組的同學(xué)討論一下,看誰(shuí)能找到方法。

  六、課堂總結

  通過(guò)這節課的學(xué)習,你有哪些收獲?

  《三角形的內角和》教學(xué)設計 篇12

  教學(xué)內容:

  人教版小學(xué)數學(xué)第八冊第85頁(yè)例5及”做一做”

  教學(xué)目標:

  1、讓學(xué)生親自動(dòng)手,通過(guò)量、剪、拼等活動(dòng)發(fā)現、證實(shí)三角形內角和是180°,并會(huì )應用這一知識解決生活中簡(jiǎn)單的實(shí)際問(wèn)題。

  2、讓學(xué)生在動(dòng)手獲取知識的過(guò)程中,培養學(xué)生的創(chuàng )新意識、探索精神和實(shí)踐能力。并通過(guò)動(dòng)手操作把三角形內角和轉化為平角的探究活動(dòng),向學(xué)生滲透“轉化”數學(xué)思想

  3、在探索中體驗發(fā)現的樂(lè )趣,增強學(xué)好數學(xué)的信心、

  教學(xué)重點(diǎn)

  讓學(xué)生經(jīng)歷“三角形內角和是180°”這一知識的形成、發(fā)展和應用的全過(guò)程。

  教學(xué)難點(diǎn) :

  驗證所有三角形的內角之和都是180°

  教具準備:

  多媒體課件。

  學(xué)具準備:

  量角器、正方形、剪刀、各類(lèi)三角形(包括直角三角形、銳角三角形、鈍角三角形)

  教學(xué)過(guò)程:

  一、 設疑引思

  1、 分小組分別量出直角三角形、銳角三角形、鈍角三角形的三個(gè)內角的度數、

  2、 每小組請一位同學(xué)說(shuō)出自已量的三角形中兩個(gè)角的度數老師迅速”猜出”第三個(gè)角的度數、

  3、 設問(wèn):老師為什么能很快”猜” 出第三個(gè)角的度數呢?

  三角形還有許多奧妙,等待我們去探索、<導入新課,板書(shū)課題>

  二、 探索交流,獲取新知

  1、 量一量:每個(gè)學(xué)生將自已剛才量出的三角形的內角和的度數相加,初步得出”三角形的內角和是180°”的結論、

  2、 折一折:將正方形紙沿對角線(xiàn)對折,使之變成兩個(gè)完全重合的三角形,發(fā)現:一個(gè)三角形的內角和就是正方形4個(gè)角內角和的一半,也就是360的一半,即180度, 初步驗證”三角形的內角和是180°”的結論、

  3、 拼一拼:學(xué)生先動(dòng)手剪拼所準備的三角形,進(jìn)一步驗證得出”三角形的內角和是180°”的結論、

  4、 師利用課件演示將一個(gè)三角形的三個(gè)角拼成一個(gè)平角的過(guò)程、

  5、 驗證:FLASH演示三種三角形割補過(guò)程

  發(fā)現1: 通過(guò)把直角三角形割補后,內角∠2,∠3 組成了一個(gè)()角,等于()度,∠1等于90度。所以直角三角形的內角和等于( )度。

  發(fā)現2:通過(guò)把鈍角、銳角三角形割補后,三角組成了一個(gè)( )角,而( )角等于( )度。所以銳角三角形和鈍角三角形的內角和都是180度。

  6、 小結:剛才能過(guò)量一量折一折拼一拼,你發(fā)現了什么?

  生說(shuō),師板書(shū):三角形的內角和———180°

  三、 應用練習,拓展提高

  1、書(shū)例5后”做一做”

  思考:為什么不能畫(huà)出一個(gè)有兩個(gè)直角的三角形?(兩個(gè)鈍角、一個(gè)直角和一個(gè)鈍角的三角形?)

  2、下面哪三個(gè)角會(huì )在同一個(gè)三角形中。

 。1)30、60、45、90

 。2)52、46、54、80

 。3)61、38、44、98

  3、走向生活:

 。1)那天,老師去買(mǎi)了一塊三角形的玻璃,我拿著(zhù)玻璃,剛到校門(mén),一不小心,碰在門(mén)上了,摔成這幾塊(撕),哎,只有再去買(mǎi)一塊,但尺寸我記不得了,該怎么辦,你們能不能幫老師想想辦法?我憑哪塊碎片能再去配一塊和原來(lái)一樣的三角形玻璃嗎?

 。ńY合學(xué)生回答進(jìn)行演示:延長(cháng)兩條邊,交于一點(diǎn),形成原來(lái)的三角形。所以:兩個(gè)角確定了,三角形玻璃形狀和大小也就確定了。)

  四 、作業(yè):作業(yè)本

  五 、全課總結

  總結:今天這節課我們研究了三角形的內角和,你們學(xué)到了哪些知識,有什么收獲?

  板書(shū)設計:三角形的內角和

  三角形的內角和———180°

  《三角形的內角和》教學(xué)設計 篇13

  一、本節課在新一輪課程改革下的設計理念:

  數學(xué)是人與人之間精神層面上進(jìn)行的交往。課堂教學(xué)中的交往主要是教師與學(xué)生、學(xué)生與學(xué)生之間的交往。它需要運用“對話(huà)式”的學(xué)習方式,采取多種教學(xué)策略,使學(xué)生在合作、探索、交流中發(fā)展能力。新課程中對學(xué)生的情感、體驗、價(jià)值觀(guān),以及獲取知識的渠道都有悖于傳統的教學(xué)模式,這正是教師在新課程中尋找新的教學(xué)方式的著(zhù)眼點(diǎn)。應該說(shuō),新的教學(xué)方式將伴隨著(zhù)教師對新課程的逐漸透視而形成新的路徑。要破除原有教學(xué)活動(dòng)的框架,建立適應師生相互交流的教學(xué)活動(dòng)體系;滿(mǎn)足學(xué)生的心理需求,實(shí)現教者與學(xué)者感情上的融洽和情感上的共鳴;給學(xué)生體驗成功的機會(huì ),把“要我學(xué)”變成“我要學(xué)”。我認為教師角色的轉變一定會(huì )促進(jìn)學(xué)生的發(fā)展、促進(jìn)教育的長(cháng)足發(fā)展,在未來(lái)的教學(xué)過(guò)程里,教師要做的是:幫助學(xué)生決定適當的學(xué)習目標,并確認和協(xié)調達到目標的途徑;指導學(xué)生形成良好的學(xué)習習慣,掌握學(xué)習策略;創(chuàng )造豐富的教學(xué)情境,培養學(xué)生的學(xué)習興趣,充分調動(dòng)學(xué)生的學(xué)習積極性;為學(xué)生提供各種便利,為學(xué)生的學(xué)習服務(wù);建立一個(gè)接納的、支持性的、寬容的課堂氣氛;作為學(xué)習的參與者,與學(xué)生分享自己的感情和想法;和學(xué)生一道尋找真理,能夠承認自己的過(guò)失和錯誤。教學(xué)情境的營(yíng)造是教師走進(jìn)新課程中所面臨的挑戰,適應新一輪基礎教育課程改革的教學(xué)情境不是文本中的約定,也不是現成的拿來(lái)就能用的,需要我們在教學(xué)活動(dòng)的全過(guò)程中去探索、研究、發(fā)現、形成。

  二、教材分析與處理:

  三角形的內角和定理揭示了組成三角形的三個(gè)角的數量關(guān)系,此外,它的證明中引入了輔助線(xiàn),這些都為后繼學(xué)習奠定了基礎,三角形的內角和定理也是幾何問(wèn)題代數化的體現。

  三、學(xué)生分析

  處于這個(gè)年齡階段的學(xué)生有能力自己動(dòng)手,在自己的視野范圍內因地制宜地收集、編制、改造適合自身使用,貼近生活實(shí)際的數學(xué)建模問(wèn)題,他們樂(lè )于嘗試、探索、思考、交流與合作,具有分析、歸納、總結的能力,他們渴望體驗成功感和自豪感。因而老師有必要給學(xué)生充分的自由和空間,同時(shí)注意問(wèn)題的開(kāi)放性與可擴展性。

  四、教學(xué)目標:

  1、知識目標:在情境教學(xué)中,通過(guò)探索與交流,逐步發(fā)現“三角形內角和定理”,使學(xué)生親身經(jīng)歷知識的發(fā)生過(guò)程,并能進(jìn)行簡(jiǎn)單應用。能夠探索具體問(wèn)題中的數量關(guān)系和變化規律,體會(huì )方程的思想。通過(guò)開(kāi)放式命題,嘗試從不同角度尋求解決問(wèn)題的方法。教學(xué)中,通過(guò)有效措施讓學(xué)生在對解決問(wèn)題過(guò)程的反思中,獲得解決問(wèn)題的經(jīng)驗,進(jìn)行富有個(gè)性的學(xué)習。

  2、能力目標:通過(guò)拼圖實(shí)踐、問(wèn)題思考、合作探索、組內及組間交流,培養學(xué)生的的邏輯推理、大膽猜想、動(dòng)手實(shí)踐等能力。

  3、德育目標:通過(guò)添置輔助線(xiàn)教學(xué),滲透美的思想和方法教育。

  4、情感、態(tài)度、價(jià)值觀(guān):在良好的師生關(guān)系下,建立輕松的學(xué)習氛圍,使學(xué)生樂(lè )于學(xué)數學(xué),遇到困難不避讓?zhuān)跀祵W(xué)活動(dòng)中獲得成功的體驗,增強自信心,在合作學(xué)習中增強集體責任感。

  五、重難點(diǎn)的確立:

  1、重點(diǎn):三角形的內角和定理探究與證明。

  2、難點(diǎn):三角形的內角和定理的證明方法(添加輔助線(xiàn))的討論

  六、教法、學(xué)法和教學(xué)手段:

  采用“問(wèn)題情境-建立模型-解釋、應用與拓展”的模式展開(kāi)教學(xué)。

  采用對話(huà)式、嘗試教學(xué)、問(wèn)題教學(xué)、分層教學(xué)等多種教學(xué)方法,以達到教學(xué)目的。

  教學(xué)過(guò)程設計:

  一、創(chuàng )設情境,懸念引入

  一堂新課的引入是老師與學(xué)生交往活動(dòng)的開(kāi)始,是學(xué)生學(xué)習新知識的心理鋪墊,是拉近師生之間的距離,破除疑難心理、乏味心理的關(guān)鍵。一個(gè)成功的引入,是讓學(xué)生感覺(jué)到他熟知的生活,可使學(xué)生迅速投入到課堂中來(lái),對知識在最短的時(shí)間內產(chǎn)生極大的興趣和求知欲,接下來(lái)教學(xué)活動(dòng)將成為他們樂(lè )此不疲的快事了。

  具體做法:拋出問(wèn)題:“學(xué)校后勤部折疊長(cháng)梯(電腦顯示圖形)打開(kāi)時(shí)頂端的角是多少度呢?一名學(xué)生測出了兩個(gè)梯腿與地面的成角后,立即說(shuō)出了答案,你知道其中的道理嗎?”待學(xué)生思考片刻后,我因勢利導,指出學(xué)習了本節課你便能夠回答這個(gè)問(wèn)題了。從而引入新課。

  二、探索新知

  1、動(dòng)手實(shí)踐,嘗試發(fā)現:要求學(xué)生將事先準備好的三角形紙板按線(xiàn)剪開(kāi),然后用剪下的∠A、∠B與完整的三角形紙板中的∠C拼圖,使三者頂點(diǎn)重合,問(wèn)能發(fā)現怎樣的現象?有的學(xué)生會(huì )發(fā)現,三者拼成一個(gè)平角。此時(shí)讓學(xué)生互相觀(guān)察拼圖,驗證結果。從觀(guān)察交流中,互學(xué)方法,達到生生互動(dòng)。待交流充分,分小組張貼所拼圖形,教師點(diǎn)評,總結分類(lèi),將所拼圖形分為∠A、∠B分別在∠C同側和兩側兩種情況。對有合作精神的小組給與表?yè)P。

  (將拼圖展示在黑板上)

  2、嘗試猜想:教師提問(wèn),從活動(dòng)中你有怎樣的發(fā)現?采取組內交流的方式,產(chǎn)生思維碰撞。此時(shí)我走到學(xué)生中去,對有困難的小組給與適當的引導。之后由學(xué)生匯報組內的發(fā)現。即三角形三個(gè)內角的和等于180度。

  3、證明猜想:先幫助學(xué)生回憶命題證明的基本步驟,然后讓學(xué)生獨立完成畫(huà)圖、寫(xiě)出已知、求證的步驟,其他同學(xué)補充完善。下面讓學(xué)生對照剛才的動(dòng)手實(shí)踐,分小組探求證明方法。此環(huán)節應留給學(xué)生充分的思考、討論、發(fā)現、體驗的時(shí)間,讓學(xué)生在交流中互取所長(cháng),合作探索,找到證明的切入點(diǎn),體驗成功。對有困難的學(xué)生要多加關(guān)注和指導,不放棄任何一個(gè)學(xué)生,借此增進(jìn)教師與學(xué)有困難學(xué)生之間的關(guān)系,為繼續學(xué)習奠定基礎。合作探究后,匯報證明方法,注意規范證明格式。此處自然的引入輔助線(xiàn)的概念。但要說(shuō)明,添加輔助線(xiàn)不是盲目的,而是為了證明某一結論,需要引用某個(gè)定義、公理、定理,但原圖形不具備直接使用它們的條件,這時(shí)就需要添輔助線(xiàn)創(chuàng )造條件,以達到證明的目的。

  4、學(xué)以致用,反饋練習

  (1)在△ABC中,已知∠A=80°,能否知∠B+∠C的度數?

  解:∵∠A+∠B+∠C=180°(三角形內角和定理)

  ∴∠B+∠C=100°在△ABC中,

  (2)已知:∠A=80°,∠B=52°,則∠C=?

  解:∵∠A+∠B+∠C=180°(三角形內角和定理)

  又∵∠A=80°∠B=52°(已知)

  ∴∠C=48°

  (3)在△ABC中,已知∠A=80°,∠B-∠C=40°,則∠C=?

  (4)已知∠A+∠B=100°,∠C=2∠A,能否求出∠A、∠B、∠C的度數?

  (5)在△ABC中,已知∠A:∠B:∠C=1:3:5,能否求出∠A、∠B、∠C的度數?

  解:設∠A=x°,則∠B=3x°,∠C=5x°

  由三角形內角和定理得,x+3x+5x=180

  解得,x=20

  ∴∠A=20°∠B=60°∠C=100°

  (6)已知在△ABC中,∠C=∠ABC=2∠A,求(1)∠B的度數?(2)若BD是AC邊上的高,∠DBC的度數?

  第(6)題是書(shū)中例題的改用,此題由輔助線(xiàn)輔助課件打出,給學(xué)生以圖形由簡(jiǎn)單到繁的直觀(guān)演示。

  通過(guò)這組練習滲透把圖形簡(jiǎn)單化的思想,繼續滲透統一思想,用代數方法解決幾何問(wèn)題。

  5、鞏固提高,以生為本

  (1)如圖:B、C、D在一條直線(xiàn)上,∠ACD=105°,且∠A=∠ACB,則∠B=——度。

  (2)如圖AD是△ABC的角平分線(xiàn),且∠B=70°,∠C=25°,則∠ADB=——度,∠ADC=——度。

  本組練習是三角形內角和定理與平角定義及角平分線(xiàn)等知識的綜合應用、能較好的培養學(xué)生的分析問(wèn)題、解決問(wèn)題的能力,有助于獲得一些經(jīng)驗。

  6、思維拓展,開(kāi)放發(fā)散

  如圖,已知△PAD中,∠APD=120°,B、C為AD上的點(diǎn),△PBC為等邊三角形。試盡可能多地找出各幾何量之間的相互關(guān)系。

  本題旨在激發(fā)學(xué)生獨立思考和創(chuàng )新意識,培養創(chuàng )新精神和實(shí)踐能力,發(fā)展個(gè)性思維。

  三、歸納總結,同化順應

  1、學(xué)生談體會(huì )

  2、教師總結,出示本節知識要點(diǎn)

  3、教師點(diǎn)評,對學(xué)生在課堂上的積極合作,大膽思考給與肯定,提出希望。

  四、作業(yè):

  1、必做題:習題3、1第10、11、12題

  2、選做題:習題3、1第13、14題

  五、板書(shū)設計

  三角形內角和

  學(xué)生拼圖展示已知:求證:

  證明:開(kāi)放題:

  《三角形的內角和》教學(xué)設計 篇14

  一、教學(xué)目標

  1、知識與技能目標:通過(guò)量、剪、拼等活動(dòng)發(fā)現、證實(shí)三角形內角和是180°,并會(huì )應用這一知識解決生活中簡(jiǎn)單的實(shí)際問(wèn)題。

  2、過(guò)程與方法目標: 經(jīng)歷觀(guān)察、猜想、驗證的過(guò)程,提升自身動(dòng)手操作及推理、歸納總結的能力。

  3、情感態(tài)度價(jià)值觀(guān)目標: 在參與學(xué)習的過(guò)程中,感受數學(xué)的魅力,體驗成功的喜悅,激發(fā)學(xué)習數學(xué)的興趣。

  二、教學(xué)重難點(diǎn)

  重點(diǎn):掌握三角形內角和定理。

  難點(diǎn):理解三角形內角和定理推理的過(guò)程。

  三、教學(xué)過(guò)程

  尊敬的各位老師大家好,我是小學(xué)數學(xué)組2號考生,今天我試講的題目是三角形內角和,下面我將正式開(kāi)始我的試講。

  上課,同學(xué)們好,請坐。

  【導入】

  同學(xué)們,上課之前呢我們先來(lái)看一下大屏幕,老師給大家準備了幾張照片我們來(lái)看一下,在圖形的王國中,有一天,三角形家族里為“三角形內角和的大小”爆發(fā)了一場(chǎng)激烈的爭吵。鈍角三角形說(shuō)“我的鈍角大,我的內角和一定比你們的內角和大”。銳角三角形也不示弱“你雖然有一個(gè)鈍角,可是其它兩個(gè)角都很小,而我的三個(gè)角都不是很小,所以我的內角和比你大”。直角三角形說(shuō)“別爭了,我們的內角和是一樣大的,因為三角形的內角和是180°”。

  那同學(xué)們,大家同不同意它的說(shuō)法呀,老師看到同學(xué)們都很疑惑的樣子,沒(méi)關(guān)系,今天這位節課我們就一起來(lái)研究一下這個(gè)問(wèn)題,學(xué)習一下——三角形的內角和。

  【新授】

  活動(dòng)一:

  那同學(xué)們,接下來(lái)啊我們拿出尺字,畫(huà)出幾個(gè)三角形,然后測量并計算一下,三角形3個(gè)內角的和各是多少度呢?給大家三分鐘時(shí)間同桌之間相互交流一下這個(gè)問(wèn)題。

  老師看到同學(xué)們都安靜了下來(lái),第三排這位同學(xué),你來(lái)說(shuō)一說(shuō)你們兩個(gè)人的結論。哦,他說(shuō)呀他們發(fā)現他們兩人畫(huà)出的直角三角形內角和都是180度,你們的思路非常清晰,請坐!后邊同學(xué)有不同意見(jiàn),你來(lái)說(shuō),他說(shuō)呀他們兩人畫(huà)出的銳角三角形也是180度。也是正確的,請坐!

  活動(dòng)二:

  那同學(xué)們,是不是所有的三角形的內角和都是180°呢?如何進(jìn)行驗證呢?

  那接下來(lái)5分鐘我們前后排4個(gè)人一小組進(jìn)行討論,待會(huì )啊老師會(huì )找同學(xué)提問(wèn)。

  老師看到同學(xué)們都很迷茫,給大家一點(diǎn)小提示,我們可以用剪拼的形式來(lái)驗證一下。

  好時(shí)間到,哪位同學(xué)來(lái)告訴一下老師,你們的討論結果呢。你們小組討論的最激烈,你來(lái)告訴一下老師,他說(shuō)呀他們小組是將三種不同類(lèi)型的三角形的三個(gè)角剪下來(lái),再拼一拼,發(fā)現都拼成一個(gè)了平角,你們的方法非常獨特,請坐!那大家的方法和它們的方法是一樣的嗎?

  看來(lái)同學(xué)們的思路都非常的清晰,那同學(xué)們,由此我們就驗證得出了,三角形的內角和就是180度。

  觀(guān)察一下黑板上這些內容,以上就是本節課所要學(xué)習的三角形內角和。

  【鞏固練習】

  通過(guò)本節課的學(xué)習,相信大家對平行四邊形有了更深的了解。我們看向黑板,接下來(lái)給大家兩分鐘時(shí)間來(lái)做一下這道題鞏固一下,在△ABC中∠1=140°,∠2=25°,求出∠3的度數。課代表來(lái)黑板上板書(shū)一下。老師看到同學(xué)們筆都放下了,我們一起來(lái)看一下黑板上同學(xué)的答案,∠3=15°,同學(xué)們的答案和他的是一樣的嗎,看來(lái)同學(xué)們對本節課知識的掌握都已經(jīng)非常扎實(shí)了。

  【課堂小結】

  不知不覺(jué)本節課馬上就接近了尾聲,哪位同學(xué)來(lái)說(shuō)一下本節課你都有哪些收獲呢?(停頓2秒)第二排手舉得最高這位同學(xué)你來(lái)說(shuō)一下,哦,他說(shuō)啊,通過(guò)本節課的學(xué)習他掌握了三角形當中一個(gè)新的特點(diǎn),三角形的內角和是180度,總結的非常全面見(jiàn),請坐!

  【作業(yè)布置】

  接下來(lái)老師來(lái)給大家布置個(gè)小任務(wù),回家之后仔細觀(guān)察一下家中的物體,看一看那些物品是三角形的,動(dòng)手測量一下內角和,看一看是否滿(mǎn)足180度,下節課一起來(lái)交流討論一下,今天這節課就上到這里,同學(xué)們再見(jiàn)。

  《三角形的內角和》教學(xué)設計 篇15

  【設計理念】

  新課標重視讓學(xué)生經(jīng)歷數學(xué)知識的形成過(guò)程,要求教師創(chuàng )設有效的問(wèn)題情境激發(fā)學(xué)生的參與欲望,提供足夠的時(shí)間和空間讓學(xué)生經(jīng)歷觀(guān)察、猜測、驗證、交流反思等過(guò)程,使學(xué)生在動(dòng)手操作、合作交流等活動(dòng)中親身經(jīng)歷知識的形成過(guò)程。這樣,學(xué)生不僅可以掌握知識,而且可以積累探究數學(xué)問(wèn)題的活動(dòng)經(jīng)驗,發(fā)展空間觀(guān)念和推理能力。

  【教材內容】新人教版義務(wù)教育課程標準實(shí)驗教科書(shū)四年級下冊數學(xué)第67頁(yè)例6、“做一做”及練習十六的第1、2、3題。

  【教材分析】

  三角形的內角和是三角形的一個(gè)重要特征。本課是安排在三角形的概念及分類(lèi)之后教學(xué)的,它是學(xué)生以后學(xué)習多邊形的內角和及解決其它實(shí)際問(wèn)題的基礎。教材很重視知識的探索與發(fā)現,安排兩次實(shí)驗操作活動(dòng)。教材呈現教學(xué)內容時(shí),不但重視體現知識的形成過(guò)程,而且注意留給學(xué)生充分進(jìn)行自主探索和交流的空間和時(shí)間,為教師靈活組織教學(xué)提供了清晰的思路。概念的形成沒(méi)有直接給出結論,而是通過(guò)量、拼等活動(dòng),讓學(xué)生探索、實(shí)驗、交流、推理歸納出三角形的內角和是180°。

  【學(xué)情分析】

 。、在學(xué)習本課時(shí),學(xué)生已經(jīng)有了探索三角形內角和的知識基礎:知道直角和平角的度數,會(huì )用量角器度量角的度數;認識長(cháng)方形、正方形,知道他們的四個(gè)角都是直角;認識了三角形,知道了三角形按角分有銳角三角形、直角三角形和鈍角三角形;已經(jīng)知道了等腰三角形和正三角形。

 。、已經(jīng)有一部分學(xué)生知道了三角形內角和是180°,只是知其然而不知所以然。

  【教學(xué)目標】

  1通過(guò)“量、剪、拼”等活動(dòng)發(fā)現、驗證三角形的內角和是180°,并能運用這個(gè)知識解決一些簡(jiǎn)單的問(wèn)題。

  2、在觀(guān)察、猜想、操作、合作、分析交流等具體活動(dòng)中,提高動(dòng)手操作能力,積累基本的數學(xué)活動(dòng)經(jīng)驗,發(fā)展空間觀(guān)念和推理能力。

  3、在參與數學(xué)學(xué)習活動(dòng)的過(guò)程中,獲得成功的體驗,感受數學(xué)探究的嚴謹與樂(lè )趣。

  【教學(xué)重點(diǎn)】

  探索發(fā)現、驗證“三角形內角和是180°”,并運用這個(gè)知識解決實(shí)際問(wèn)題。

  【教學(xué)難點(diǎn)】驗證“三角形的內角和是180°”。

  【教(學(xué))具準備】

  多媒體課件; 銳角三角形、直角三角形、鈍角三角形紙片若干個(gè)各類(lèi)三角形(也包括等邊、等腰)、長(cháng)方形、正方形若干個(gè);每人一個(gè)量角器;一把剪刀;每人一副三角尺。

  【教學(xué)步驟】

  一、復習舊知 引出課題

  1、你已經(jīng)知道有關(guān)三角形的哪些知識?

  2、出示課題:三角形的內角和

  設計意圖:也自然導入新課。

  二、提出問(wèn)題 引發(fā)猜想

  1、提出問(wèn)題:看到這個(gè)課題,你有什么問(wèn)題想問(wèn)的?

  預設:(1)三角形的內角指的是哪些角? (2)三角形的內角和是什么意思?

 。3)三角形的內角一共是多少度?

  2、引發(fā)猜想

  猜一猜:三角形的內角和是多少度?你是怎么猜的?

  設計意圖:提出一個(gè)問(wèn)題比解決一個(gè)問(wèn)題更重要。課始在復習三角形已學(xué)知識后,引導學(xué)生提出有關(guān)三角形的新問(wèn)題,讓學(xué)生學(xué)習自己想研究的內容,無(wú)疑激發(fā)了學(xué)生的學(xué)習興趣,培養了學(xué)生的問(wèn)題意識。由于學(xué)生在平時(shí)使用三角板時(shí)已經(jīng)若隱若現地有了特殊的直角三角形的內角和是180度這一感覺(jué),因此本環(huán)節,要求學(xué)生猜一猜三角形的內角和是多少,并說(shuō)說(shuō)是怎么猜的,以激發(fā)學(xué)生已有知識經(jīng)驗,并體會(huì )到猜想要合理且有根據,同時(shí)也為推理驗證的引出作必要的鋪墊。

  三、操作驗證 形成結論

  1、交流驗證方法:

 。1)用什么方法證明三角形的內角和是180度呢?

  預設: ①量算法 ②剪拼法 ③折拼法等

 。2)三角形的個(gè)數有無(wú)數個(gè),驗證哪些三角形可以代表所有的三角形?我們的操作過(guò)程怎么分工才會(huì )做到省時(shí)又高效?

  2、動(dòng)手驗證

  3、全班匯報交流

  4、小結:剛才通過(guò)大家的動(dòng)手操作驗證了三角形的內角和是180 °度。但動(dòng)手操作會(huì )存在一定的誤差,我們的結論也可能存在偏差。

  5、方法拓展

  推理驗證:用直角三角形的內角和來(lái)證明其他三角形內角和是180 °的方法。

  6、形成結論:任意三角形的內角和是180 °。

  設計意圖:《標準》指出:“教師應激發(fā)學(xué)生的積極性,向學(xué)生提供充分從事數學(xué)活動(dòng)的機會(huì ),幫助他們在自主探索和合作交流的過(guò)程中真正理解和掌握基本的數學(xué)知識與技能、數學(xué)思想和方法,獲得廣泛的數學(xué)活動(dòng)經(jīng)驗!辈聹y后先獨立思考驗證的方法,再進(jìn)行全班交流,給學(xué)生充分的活動(dòng)時(shí)間和空間,讓學(xué)生動(dòng)手操作,使學(xué)生在量、剪、拼、折等一系列操作活動(dòng)中發(fā)現了三角形內角和是180°這個(gè)結論。在探索活動(dòng)前,交流如何使研究樣本具有代表性和全面性與如何分工做到操作省時(shí)高效這兩個(gè)問(wèn)題,培養學(xué)生嚴謹、科學(xué)正確的研究態(tài)度,讓學(xué)生在活動(dòng)中積累基本的數學(xué)活動(dòng)經(jīng)驗,為后續的學(xué)習提供了經(jīng)驗支撐。

  四、應用結論 解決問(wèn)題

  1、鞏固新知:想一想,算一算。

  2、解決問(wèn)題:等腰三角形風(fēng)箏的頂角是多少度?

  3、辨析訓練,完善結論。

  五、課堂總結,歸納研究方法

  今天這節課你學(xué)到了哪些知識?你是怎樣得到這些知識的?

  六、課后延伸:用今天所學(xué)的方法繼續研究四邊形的內角和。

  七、板書(shū)設計:

  三角形的內角和

  猜測: 三角形的內角和是180°?

  驗證: 量 拼

  結論: 任意三角形的內角和是180°

  《三角形的內角和》教學(xué)設計 篇16

  設計思路

  本節課我先引導學(xué)生任意畫(huà)出不同類(lèi)型的三角形,用通過(guò)量一量、算一算,得出三角形的內角和是180°或接近180°(測量誤差),再引導學(xué)生通過(guò)剪拼的方法發(fā)現:各類(lèi)三角形的三個(gè)內角都可以拼成一個(gè)平角。再引導學(xué)生通過(guò)折角的方法也發(fā)現這個(gè)結論,由此獲得三角形的內角和是180°的結論。概念的形成沒(méi)有直接給出結論,而是通過(guò)量、算、拼、折等活動(dòng),讓學(xué)生探索、實(shí)驗、發(fā)現、推理歸納出三角形的內角和是180°。

  最后讓學(xué)生運用結論解決實(shí)際問(wèn)題,練習的安排上,注意練習層次性和趣味性,還設計了開(kāi)放性的練習,由一個(gè)同學(xué)出題,其它同學(xué)回答。先給出三角形兩個(gè)內角的度數,說(shuō)出另外一個(gè)內角,有唯一的答案。給出三角形一個(gè)內角,說(shuō)出其它兩個(gè)內角,答案不唯一,可以得出無(wú)數個(gè)答案。讓學(xué)生在游戲中拓展學(xué)生思維。

  教學(xué)目標

  1、讓學(xué)生親自動(dòng)手,通過(guò)量、剪、拼等活動(dòng)發(fā)現、證實(shí)三角形內角和是180°,并會(huì )應用這一知識解決生活中簡(jiǎn)單的實(shí)際問(wèn)題。

  2、讓學(xué)生在動(dòng)手獲取知識的過(guò)程中,培養學(xué)生的創(chuàng )新意識、探索精神和實(shí)踐能力。并通過(guò)動(dòng)手操作把三角形內角和轉化為平角的探究活動(dòng),向學(xué)生滲透“轉化”數學(xué)思想。

  3、使學(xué)生體驗成功的喜悅,激發(fā)學(xué)生主動(dòng)學(xué)習數學(xué)的興趣。

  教學(xué)重點(diǎn)

  讓學(xué)生經(jīng)歷“三角形內角和是180°”這一知識的形成、發(fā)展和應用的全過(guò)程。

  教學(xué)準備

  教具:多媒體課件、用彩色卡紙剪的相同的兩個(gè)直角三角形、一個(gè)鈍角三角形、一個(gè)銳角三角形。

  學(xué)具:三角形

  教學(xué)過(guò)程

  一、引入

 。ㄒ唬┱J識三角形的內角及三角形的內角和

  師:我們已經(jīng)學(xué)習了三角形的分類(lèi),誰(shuí)能說(shuō)說(shuō)老師手上的是什么三角形?

  師:今天我們來(lái)學(xué)習新的知識《三角形內角和》,誰(shuí)能說(shuō)說(shuō)哪些角是三角形的內角?(讓學(xué)生邊說(shuō)邊指出來(lái))

  師:那三角形的內角和又是什么意思?(把三角形三個(gè)內角的度數合起來(lái)就叫三角形的內角和。)

 。ǘ┰O疑,激發(fā)學(xué)生探究新知的心理

  師:請同學(xué)們幫老師畫(huà)一個(gè)三角形,能做到嗎?(激發(fā)學(xué)生主動(dòng)學(xué)習的心理)

  生:能。

  師:請聽(tīng)要求,畫(huà)一個(gè)有兩個(gè)內角是直角的三角形,開(kāi)始。(設置矛盾,使學(xué)生在矛盾中去發(fā)現問(wèn)題、探究問(wèn)題。)

  師:有誰(shuí)畫(huà)出來(lái)啦?

  生1:不能畫(huà)。

  生2:只能畫(huà)兩個(gè)直角。

  生3:……

  師:?jiǎn)?wèn)題出現在哪兒呢?這一定有什么奧秘?想不想知道?那就讓我們一起來(lái)研究吧!

 。ń沂久,巧妙引入新知的探究)

  二、動(dòng)手操作,探究三角形內角和

 。ㄒ唬┎乱徊。

  師:猜一猜三角形的內角和是多少度呢?同桌互相說(shuō)說(shuō)自己的看法。

  生1:180°。

  生2:不一定。

  ……

 。ǘ┎僮、驗證三角形內角和是180°。

  1、量一量三角形的內角

  動(dòng)手量一量自己手中的三角形的內角度數。

  師:所有三角形的內角和究竟是不是180°,你能用什么辦法來(lái)證明,使別人相信呢?

  生:可以先量出每個(gè)內角的度數,再加起來(lái)。

  師:哦,也就是測量計算,是嗎?

  學(xué)生匯報結果。

  師:請匯報自己測量的結果。

  生1:180°。

  生2:175°。

  生3:182°。

  ……

  2、拼一拼三角形的內角

  學(xué)生操作

  師:沒(méi)有得到統一的結果。這個(gè)辦法不能使人很信服,怎么辦?還有其它辦法嗎?

  生1:有。

  生2:用拼合的辦法,就是把三角形的三個(gè)內角放在一起,可以拼成一個(gè)平角。

  師:怎樣才能把三個(gè)內角放在一起呢?(學(xué)生操作)

  生:把它們剪下來(lái)放在一起。

  師:很好。

  匯報驗證結果。

  師:通過(guò)拼合我們得出什么結論?

  生1:銳角三角形的內角拼在一起是一個(gè)平角,所以銳角三角形的內角和是180°。

  生2:直角三角形的內角和也是180°。

  生3:鈍角三角形的內角和還是180°。

  課件演示驗證結果。

  師:請看屏幕,老師也來(lái)驗證一下,是不是跟你們得到的結果一樣?(播放課件)

  師:我們可以得出一個(gè)怎樣的結論?

  生:三角形的內角和是180°。

 。ń處煱鍟(shū):三角形的內角和是180°學(xué)生齊讀一遍。)

  師:為什么用測量計算的方法不能得到統一的結果呢?

  生1:量的不準。

  生2:有的量角器有誤差。

  師:對,這就是測量的誤差。

  3、折一折三角形的內角

  師:除了量、拼的方法,還有沒(méi)有別的方法可以驗證三角形的內角和是180°。

  如果學(xué)生說(shuō)不出來(lái),教師便提示或示范。

  學(xué)生操作

  4、小結:三角形的內角和是180°。

  三、解決疑問(wèn)。

  師:現在誰(shuí)能說(shuō)說(shuō)不能畫(huà)出有兩個(gè)直角的一個(gè)三角形的原因?(讓學(xué)生體驗成功的喜悅)

  生:因為三角形的內角和是180°,在一個(gè)三角形中如果有兩個(gè)直角,它的內角和就大于180°。

  師:在一個(gè)三角形中,有沒(méi)有可能有兩個(gè)鈍角呢?

  生:不可能。

  師:為什么?

  生:因為兩個(gè)銳角和已經(jīng)超過(guò)了180°。

  師:那有沒(méi)有可能有兩個(gè)銳角呢?

  生:有,在一個(gè)三角形中最少有兩個(gè)內角是銳角。

  四、應用三角形的內角和解決問(wèn)題。

  1、下面說(shuō)法是否正確。

  鈍角三角形的內角和一定大于銳角三角形的內角和。()

  在直角三角形中,兩個(gè)銳角的和等于90度。()

  在鈍角三角形中兩個(gè)銳角的和大于90度。()

 、芤粋(gè)三角形中不可能有兩個(gè)鈍角。()

 、萑切沃杏幸粋(gè)銳角是60度,那么這個(gè)三角形一定是個(gè)銳角三角形。()

  2、看圖求出未知角的度數。(知識的直接運用,數學(xué)信息很淺顯)

  3、游戲鞏固。

  由一個(gè)同學(xué)出題,其它同學(xué)回答。

 。1)給出三角形兩個(gè)內角,說(shuō)出另外一個(gè)內角(有唯一的答案)。

 。2)給出三角形一個(gè)內角,說(shuō)出其它兩個(gè)內角(答案不唯一,可以得出無(wú)數個(gè)答案)。

  4、根據所學(xué)的知識算出四邊形、正五邊形、正六邊形的內角和。

  五、全課總結。

  今天你學(xué)到了哪些知識?是怎樣獲取這些知識的?你感覺(jué)學(xué)得怎么樣?

  反思:

  在本節課的學(xué)習活動(dòng)過(guò)程中,先讓學(xué)生進(jìn)行測量、計算,但得不到統一的結果,再引導學(xué)生用把三個(gè)角拼在一起得到一個(gè)平角進(jìn)行驗證。這時(shí),有部分學(xué)生在拼湊的過(guò)程中出現了困難,花費的時(shí)間較長(cháng),在這里用課件再演示一遍正好解決了這個(gè)問(wèn)題。再引導學(xué)生用折三角形的方法也能驗證三角形的內角和是180°。練習設計也具有許多優(yōu)點(diǎn),注意到練習的梯度,并由淺入深,照顧到不同層次學(xué)生的需求,也很有趣味性。在整個(gè)教學(xué)設計中,本著(zhù)“學(xué)貴在思,思源于疑”的思想,不斷創(chuàng )設問(wèn)題情境,讓學(xué)生去實(shí)驗、去發(fā)現新知識的奧妙,從而讓學(xué)生在動(dòng)手操作、積極探索的活動(dòng)中掌握知識,積累數學(xué)活動(dòng)經(jīng)驗,發(fā)展空間觀(guān)念和推理能力。

  但因為是借班上課,對學(xué)生了解不多,學(xué)生前面的內容(三角形的特性和分類(lèi))還沒(méi)學(xué)好,所以有些練習學(xué)生就沒(méi)有預想的那么得心應手,如:知道等腰三角形的頂角求底角的題,學(xué)生掌握比較困難。

  《三角形的內角和》教學(xué)設計 篇17

  一、教學(xué)目標

  1、知識目標:通過(guò)測量、撕拼(剪拼)、折疊等方法,探索和發(fā)現三角形三個(gè)內角的度數和等于180°這一規律,并能實(shí)際應用。

  2、能力目標:培養學(xué)生主動(dòng)探索、動(dòng)手操作的能力。使學(xué)生養成良好的合作習慣。

  3、情感目標:讓學(xué)生體會(huì )幾何圖形內在的結構美。并充分體會(huì )到學(xué)習數學(xué)的快樂(lè )。

  二、教學(xué)過(guò)程

 。ㄒ唬﹦(chuàng )設情境,導入新課

  1、師:我們已經(jīng)認識了三角形,你知道哪些關(guān)于三角形的知識?

 。▽W(xué)生暢所欲言。)

  2、師:我們在討論三角形知識的時(shí)候,三角形中的三個(gè)好朋友卻吵了起來(lái),想知道是怎么回事嗎?讓我們一起去看看吧!

  師口述:一個(gè)大的直角三角形說(shuō):“我的個(gè)頭大,我的內角和一定比你們大!币粋(gè)鈍角三角形說(shuō):“我有一個(gè)鈍角,我的內角和才是最大的)一個(gè)小的銳角三角形很委屈的樣子說(shuō)“是這樣嗎?”,

  3、到底誰(shuí)說(shuō)的對呢?今天我們就來(lái)研究有關(guān)三角形內角和的知識。(板書(shū)課題:三角形內角和)

 。ǘ┳灾魈骄,發(fā)現規律

  1、認識什么是三角形的內角和。

  師:你知道什么是三角形的內角和嗎?

  通過(guò)學(xué)生討論,得出三角形的內角和就是三角形三個(gè)內角的度數和。

  2、探究三角形內角和的特點(diǎn)。

 、僮寣W(xué)生想一想、說(shuō)一說(shuō)怎樣才能知道三角形的內角和?

  學(xué)生會(huì )想到量一量每個(gè)三角形的內角,再相加的方法來(lái)得到三角形的內角和。(如果學(xué)生想到別的方法,只要合理的,教師就給予肯定,并鼓勵他們對自己想到的方法進(jìn)行)

 、谛〗M合作。

  通過(guò)小組合作后交流,匯報。(教師同時(shí)板書(shū)出幾個(gè)小組匯報的結果)讓學(xué)生們發(fā)現每個(gè)三角形的內角和都在180°左右。

  引導學(xué)生推測出三角形的內角和可能都是180°。

  3、驗證推測。

  讓學(xué)生動(dòng)腦筋想一想,怎樣才能驗證自己的推想是否正確,學(xué)生可能會(huì )想到用折拼或剪拼的方法來(lái)看一看三角形的三個(gè)角和起來(lái)是不是180°,也就是說(shuō)三角形的三個(gè)角能不能拼成一個(gè)平角。

 。ㄐ〗M合作驗證,教師參與其中。)

  4、全班交流,共同發(fā)現規律。

  當學(xué)生匯報用折拼或剪拼的方法的時(shí)候,指名學(xué)生上黑板展示結果。

  學(xué)生交流、師生共同總結出三角形的內角和等于180°。教師同時(shí)板書(shū)(三角形內角和等于180°。)

  5、師談話(huà):三個(gè)三角形討論的問(wèn)題現在能解決了嗎?你現在想對這三個(gè)三角形說(shuō)點(diǎn)什么嗎?(讓學(xué)生暢所欲言,對得出的三角形內角和是180°做系統的整理。)

 。ㄈ╈柟叹毩,拓展應用

  根據發(fā)現的三角形的新知識來(lái)解決問(wèn)題。

  1、完成“試一試”

  讓學(xué)生獨立完成后,集體交流。

  2、游戲:選度數,組三角形。

  請選出三個(gè)角的度數來(lái)組成一個(gè)三角形。

  150°10°15°18°20°32°

  35°50°52°54°56°58°

  130°70°72°75°60°

  學(xué)生回答的同時(shí),教師操作課件,把學(xué)生選擇的度數拖入方框內,通過(guò)電腦計算相加是否等于180°,來(lái)驗證學(xué)生的選擇是否正確。驗證學(xué)生選的對了以后,再讓學(xué)生判斷選擇的度數所組成的三角形按角的大小分類(lèi),屬于哪種三角形。并說(shuō)出理由。

  3、“想想做做”第1題

  生獨立完成,集體訂正,并說(shuō)說(shuō)解題方法。

  4、“想想做做”第2題

  提問(wèn):為什么兩個(gè)三角形拼成一個(gè)三角形后,內角和還是180度?

  5、“想想做做”第3題

  生動(dòng)手折折看,填空。

  提問(wèn):三角形的內角和與三角形的大小有關(guān)系嗎?三角形越大,內角和也越大嗎?

  6、“想想做做”第5題

  生獨立完成,說(shuō)說(shuō)不同的解題方法。

  7、“想想做做”第6題

  學(xué)生說(shuō)說(shuō)自己的想法。

  8、思考題

  教師拿一個(gè)大三角形,提問(wèn)學(xué)生內角和是多少?用剪刀剪成兩個(gè)三角形,提問(wèn)學(xué)生內角和是多少?為什么?再剪下一個(gè)小三角形,提問(wèn)學(xué)生內角和是多少?為什么?最后建成一個(gè)四邊形,提問(wèn)學(xué)生內角和是多少?你能推導

  出四邊形的內角和公式嗎?

 。ㄋ模┱n堂總結

  本節課我們學(xué)習了哪些內容?(生自由說(shuō)),同學(xué)們說(shuō)得真好,我們要勇于從事實(shí)中尋找規律,再將規律運用到實(shí)踐當中去。

  三教后反思:

  “三角形的內角和”是小學(xué)數學(xué)教材第八冊“認識圖形”這一單元中的一個(gè)內容。通過(guò)鉆研教材,研究學(xué)情和學(xué)法,與同組老師交流,我將本課的教學(xué)目標確定為:

  1、通過(guò)測量、撕拼、折疊等方法,探索和發(fā)現三角形三個(gè)內角的度數和等于180度。

  2、已知三角形兩個(gè)角的度數,會(huì )求出第三個(gè)角的度數。

  本節教學(xué)是在學(xué)生在學(xué)習“認識三角形”的基礎上進(jìn)行的,“三角形內角和等于180度”這一結論學(xué)生早知曉,但為什么三角形內角和會(huì )一樣?這也正是本節課要與學(xué)生共同研究的問(wèn)題。所以我將這節課教學(xué)的重難點(diǎn)設定為:通過(guò)動(dòng)手操作驗證三角形的內角和是180°。教學(xué)方法主要采用了實(shí)驗法和演示法。學(xué)生的折、拼、剪等實(shí)踐活動(dòng),讓學(xué)生找到了自己的驗證方法,使他們體驗了成功,也學(xué)會(huì )了學(xué)習。下面結合自己的教學(xué),談幾點(diǎn)體會(huì )。

 。ㄒ唬﹦(chuàng )設情景,激發(fā)興趣

  俗話(huà)說(shuō):“良好的開(kāi)端是成功的一半”。一堂課的開(kāi)頭雖然只有短短幾分鐘,但它卻往往影響一堂課的成敗。因此,教師必須根據教學(xué)內容和學(xué)生實(shí)際,精心設計每一節課的開(kāi)頭導語(yǔ),用別出心裁的導語(yǔ)來(lái)激發(fā)學(xué)生的學(xué)習興趣,讓學(xué)生主動(dòng)地投入學(xué)習。本節課先創(chuàng )設畫(huà)角質(zhì)疑的情景,當學(xué)生畫(huà)不出來(lái)含有兩個(gè)直角的三角形時(shí),學(xué)生想說(shuō)為什么又不知怎么說(shuō),學(xué)生探究的興趣因此而油然而生。

 。ǘ┙o學(xué)生空間,讓他們自主探究

  “給學(xué)生一些權利,讓他們自己選擇;給學(xué)生一個(gè)條件,讓他們自己去鍛煉;給學(xué)生一些問(wèn)題,讓他們自己去探索;給學(xué)生一片空間,讓他們自己飛翔!蔽矣洸磺暹@是誰(shuí)說(shuō)過(guò)的話(huà),但它給我留下深刻的印象。它正是新課改中學(xué)生主體性的表現,是以人為本新理念的體現。所以在本節課中我注重創(chuàng )設有助于學(xué)生自主探究的機會(huì ),通過(guò)“想辦法驗證三角形內角和是180度”這一核心問(wèn)題,引發(fā)學(xué)生去思考、去探究。我讓他們將課前準備好的三角形拿出來(lái)進(jìn)行研究,學(xué)生通過(guò)折一折、拼一拼、剪一剪等活動(dòng)找到自己的驗證方法。學(xué)生拿著(zhù)他們手中的三角形,在講臺上講述自己的驗證方法,雖然有的方法很不成熟,但也可以看出這個(gè)過(guò)程中,滲透了他們發(fā)現的樂(lè )趣。這樣,學(xué)生在經(jīng)歷“再創(chuàng )造”的過(guò)程中,完成了對新知識的構建和創(chuàng )造。

 。ㄈ┮詫W(xué)定教,注重教學(xué)的有效性

  新課表指出:數學(xué)教學(xué)活動(dòng)必須建立在學(xué)生的認知發(fā)展水平和已有的知識經(jīng)驗基礎之上。要把學(xué)生的個(gè)人知識、直接經(jīng)驗和現實(shí)世界作為數學(xué)教學(xué)的重要資源,即以學(xué)定教,注重每個(gè)教學(xué)環(huán)節的有效性。本課中當我提出“為什么一個(gè)三角形中不能有兩個(gè)角是直角”時(shí),有學(xué)生指出如果有兩個(gè)直角,它就拼不成了一個(gè)三角形;也有學(xué)生說(shuō)如果有兩個(gè)直角,它就趨向于長(cháng)方形或正方形!盀槭裁磿(huì )這樣呢”?學(xué)生沉默片刻后,忽然有個(gè)學(xué)生舉手了:“因為三角形的內角和是180度,兩個(gè)直角已經(jīng)有180度了,所以不可能有兩個(gè)角是直角!边@樣的回答把本來(lái)設計的教學(xué)環(huán)節打亂了,此時(shí)我靈機把問(wèn)題拋給學(xué)生,“你們理解他說(shuō)的話(huà)嗎、你怎么知道內角和是180度、誰(shuí)都知道三角形的內角和是180度”等,當我看到大多數的已經(jīng)知道這一知識時(shí),我就把學(xué)生直接引向主題“想不想自己研究證明一下三角形的內角和是不是180度!奔ぐl(fā)了學(xué)生探究的興趣,使學(xué)生馬上投入到探究之中。

  在練習的時(shí)候,由于形式多樣,所以學(xué)生的興趣非常高漲,效果很好。通過(guò)多邊形內角和的思考以及驗證,發(fā)展了學(xué)生的空間想象力,使課堂的知識得以延伸。<

  《三角形的內角和》教學(xué)設計 篇18

  【教學(xué)內容】

  新課標人教版四年級下冊第五單元《三角形》

  【教材分析】

  “三角形內角和”這節課是新課標人教版四年級下冊第五單元的教學(xué)內容,是在學(xué)生學(xué)習了三角形的概念及特征之后進(jìn)行的。教材先給出了量這一思路,繼而讓學(xué)生探索驗證三角形內角和是180度這一觀(guān)點(diǎn)。在活動(dòng)過(guò)程中,先通過(guò)“畫(huà)一畫(huà)、量一量”,產(chǎn)生初步的發(fā)現和猜想,再“拼一拼、折一折”,引導學(xué)生對已有猜想進(jìn)行驗證,經(jīng)歷提出猜想——進(jìn)行驗證的的過(guò)程,滲透數學(xué)學(xué)習方法和思想。

  【學(xué)生分析】

  學(xué)生已經(jīng)掌握三角形特性和分類(lèi),熟悉了鈍角、銳角、平角這些角的知識,大多數學(xué)生已經(jīng)在課前通過(guò)不同的途徑知道“三角形的內角和是180度”的結論,但不一定清楚道理,所以本課的設計意圖不在于了解,而在于驗證,讓學(xué)生在課堂上經(jīng)歷研究問(wèn)題的過(guò)程是本節課的重點(diǎn)。四年級的學(xué)生已經(jīng)初步具備了動(dòng)手操作的意識和能力,并形成了一定的空間觀(guān)念,能夠在探究問(wèn)題的過(guò)程中,運用已有知識和經(jīng)驗,通過(guò)交流、比較、評價(jià)尋找解決問(wèn)題的途徑和策略。

  【學(xué)習目標】

  1、學(xué)生動(dòng)手操作,通過(guò)量、剪、拼、折的方法,探索并發(fā)現“三角形內角和等于180度”的規律。

  2、在探究過(guò)程中,經(jīng)歷知識產(chǎn)生、發(fā)展和變化的過(guò)程,通過(guò)交流、比較,培養策略意識和初步的空間思維能力。

  3、體驗探究的過(guò)程和方法,感受思維提升的過(guò)程,激發(fā)求知欲和探索興趣。

  【教學(xué)過(guò)程】

  一、創(chuàng )設情境,發(fā)現問(wèn)題

  1、魔術(shù)導入:把長(cháng)方形的紙剪兩刀,怎樣拼成一個(gè)三角形?

  2、你知道三角形的那些知識?(復習)

  3、小游戲:猜一猜藏在信封后面的是什么三角形。

  師:我們在猜三角形的時(shí)候,看到一個(gè)直角,就能斷定它一定是直角三角形;看到一個(gè)鈍角,就能斷定他一定是鈍角三角形;但只看到一個(gè)銳角,就判斷不出來(lái)是哪種三角形?磥(lái)在一個(gè)三角形中,只能有一個(gè)直角或一個(gè)鈍角,為什么畫(huà)不出有兩個(gè)直角或兩個(gè)鈍角的三角形呢?

  三角形的這三個(gè)角究竟存在什么奧秘呢,我們一起來(lái)研究研究。

 。▌(chuàng )設的不是生活中的情境,而是數學(xué)化的情境。有的孩子認為一個(gè)三角形中可能會(huì )有兩個(gè)鈍角,還有的提出等邊三角形中可能會(huì )有直角,這兩個(gè)問(wèn)題顯現出學(xué)生在認知上的矛盾,學(xué)生用已經(jīng)學(xué)的三角形的特征只能解釋“不能是這樣”,而不能解釋“為什么不能是這樣”。這樣引入問(wèn)題恰好可以利用學(xué)生的這種認知沖突,激發(fā)學(xué)生的學(xué)習興趣。)

  二、引導探究,解決問(wèn)題

  1、介紹內角、內角和

  師:我們現在研究三角形的三個(gè)角,都是它的內角,以后到了初中,還會(huì )接觸三角形的外角?蠢蠋熓掷锏娜切,關(guān)于它的三個(gè)內角,除了我們已經(jīng)掌握的知識外,你還知道哪方面的知識?誰(shuí)能說(shuō)一說(shuō)三角形的內角和指的是什么?

  已經(jīng)知道三角形的內角和是多少的同學(xué),可以把它寫(xiě)在本上。不知道的同學(xué)想一想,計量?jì)冉呛偷膯挝皇嵌,可以估計一下,各種各樣的三角形的內角和是不是一個(gè)固定的數,有可能會(huì )是多少度,把你的猜想也寫(xiě)在本上。

  我們這節課就來(lái)一起探究用哪些方法能知道三角形的內角和。

  2、確定研究范圍(預設約3-5分)

  師:研究三角形的內角和,是不是應該包括所有的三角形?只研究黑板上這一個(gè)行不行?那就隨便畫(huà),挨個(gè)研究吧。(學(xué)生反對)

  請你想個(gè)辦法吧!

 。ㄍㄟ^(guò)引導學(xué)生分析,“研究哪幾類(lèi)三角形,就能代表所有的三角形”這個(gè)問(wèn)題,來(lái)滲透研究問(wèn)題要全面,也就是完全歸納法的數學(xué)思想)

  3、動(dòng)手操作實(shí)踐(預設約8-10分)

  同桌組成學(xué)習小組,拿出課前制作的各種各樣的三角形,先找到三個(gè)內角,把每個(gè)角標上序號。老師提出要求:先試著(zhù)研究自己的三角形,然后再共同研究小組里其他同學(xué)的三角形,看看各種三角形內角和是不是一樣的。(學(xué)生動(dòng)手操作試驗,在小組中討論問(wèn)題)

 。榱藵M(mǎn)足學(xué)生的探究欲望,發(fā)揮學(xué)生的主觀(guān)能動(dòng)性,我在設計學(xué)具的時(shí)候,想了幾個(gè)不同的方案,最后決定課前讓學(xué)生在學(xué)習小組里分工合作制作各種不同的三角形,課上就讓學(xué)生就用自己制作的三角形,通過(guò)獨立探究和組內交流,實(shí)現對多種方法的體驗和感悟。)

  4、匯報交流(預設約15-20分)

 。1)測量的方法

  學(xué)生匯報量的方法,師請同學(xué)評價(jià)這種方法。

  師小結:直接量的方法挺好,雖然測量有誤差,不準,但我們能知道,三角形的內角和只能在180°左右,究竟是不是一定就是180度呢,誰(shuí)還有別的方法?

 。2)剪拼的方法

  學(xué)生匯報后師小結:能想到這個(gè)方法不簡(jiǎn)單,拼成的看起來(lái)像平角,到底是不是平角呢,我們一起來(lái)試試看。(教師和學(xué)生剪一剪、拼一拼)

  師:把三角形的三個(gè)內角湊到了一起,拼成了一個(gè)大角,角的兩條邊是不是在一條直線(xiàn)上呢?看起來(lái)挺象的,但在操作的過(guò)程中難免會(huì )產(chǎn)生誤差,有時(shí)會(huì )差一點(diǎn)點(diǎn),誰(shuí)還有別的方法確定三角形的內角和一定是180°?

 。3)折拼的方法

  學(xué)生匯報后師小結:我們要研究三角形的內角和,實(shí)際上就是想辦法把三角形的三個(gè)內角湊到一起,像剪和折的方法,看三個(gè)內角拼到一起是不是180度,都是借助我們學(xué)過(guò)的平角解決的問(wèn)題。

  這三種方法都不錯,在操作的過(guò)程中,有時(shí)會(huì )有誤差,不太有說(shuō)服力。想一想,你還能不能借助我們學(xué)過(guò)的哪種圖形,想辦法說(shuō)明三角形的內角和一定是180度?

 。4)演繹推理的方法

 。ń柚鷮W(xué)過(guò)的長(cháng)方形,把一個(gè)長(cháng)方形沿對角線(xiàn)分成兩個(gè)三角形。)

  師:你認為這種方法好不好?我們看看是不是這么回事。

  師小結:這種方法避免了在剪拼過(guò)程中由于操作出現的誤差,非常準確的說(shuō)明了三角形的內角和一定是180度。

 。▽W(xué)生通過(guò)小組合作的方式學(xué)到方法,分享經(jīng)驗,更重要的是領(lǐng)悟到科學(xué)研究問(wèn)題的方法。就學(xué)生的發(fā)展而言,探究的過(guò)程比探究獲得的結論更有價(jià)值。)

  學(xué)生用的方法會(huì )非常多,怎樣對這些方法進(jìn)行引導,是值得思考的問(wèn)題。這些方法的思維水平不應該是平行的:直接測量的方法是學(xué)生利用已有的知識,測量出每個(gè)角的度數,再用加法求和;拼角求和法,也就是間接剪拼和折拼這兩種方法,都是通過(guò)拼成一個(gè)特殊角,也就是平角來(lái)解決問(wèn)題;而演繹推理,即把兩個(gè)完全相同的三角形合二為一,或把長(cháng)方形一分為二,成為兩個(gè)三角形,這是更深層次的思考,是一種批判的思維。前兩種方法是不完全歸納法,能使我們確定研究的范圍只能是180度左右,而不可能是其他任意猜想的度數。最后一種方法具有演繹推理的色彩,把一個(gè)長(cháng)方形沿對角線(xiàn)分成兩個(gè)完全相同的三角形后,因為兩個(gè)三角形的內角和是原來(lái)長(cháng)方形的四個(gè)內角之和360度,所以一個(gè)三角形的內角和就是360°÷2=180°,這種方法從科學(xué)證明的角度闡述了三角形的內角和,它有嚴密性和精確性;谝陨系南敕,我覺(jué)得在課上不能停留在學(xué)生對方法的描述上,而應引導學(xué)生經(jīng)歷從直觀(guān)到抽象、思維程度從低到高的過(guò)程,感悟數學(xué)的嚴謹性。所以在最后一個(gè)環(huán)節中,教師向全班同學(xué)推薦這種分的方法,大家一起來(lái)做一做,不要求全體都掌握,就想起到引導和點(diǎn)撥的作用。學(xué)生在經(jīng)歷量和拼之后,逐漸會(huì )在思維發(fā)散的過(guò)程中得到集中,集中為分的方法,最后將四邊形一分為二,五邊形一分為三,六邊形一分為四……,又會(huì )發(fā)現一些新的規律!

  5、驗證猜想

  請學(xué)生把剛才研究的三角形舉起來(lái),分別是銳角三角形、直角三角形、鈍角三角形,這三類(lèi)的三角形內角和都是180度,那就可以說(shuō),所有的三角形的內角和都是180度。

  這個(gè)結論和課前剛才知道的或猜的一樣嗎?

 。ㄔ诤芏嗤瑢W(xué)都知道三角形內角和的情況下,要引導學(xué)生領(lǐng)悟有了猜測還要去驗證,這是一種科學(xué)的研究問(wèn)題的方法,是一種求實(shí)精神。)

  6、解釋課前問(wèn)題

  用內角和的知識解釋課前的問(wèn)題,為什么在三角形中不能有兩個(gè)直角或鈍角。

  三、拓展應用,深化創(chuàng )新

  1、介紹科學(xué)家帕斯卡(出示帕斯卡的資料)

  師:帕斯卡為科學(xué)作出了巨大的貢獻,在我們以后學(xué)習的知識中,也有很多是帕斯卡發(fā)現和驗證的,他12歲就發(fā)現三角形內角和是180度,我們同學(xué)還沒(méi)到12歲,看你能不能通過(guò)自己的努力也去探索和發(fā)現。

  2、四邊形內角和及多邊形內角和(幻燈片)

  你打算用哪種方法知道四邊形的內角和?

  你覺(jué)得哪種方法更好?

 。ㄔO計求四邊形的內角和,是把這個(gè)新問(wèn)題轉化歸結為求幾個(gè)三角形內角和的問(wèn)題上,滲透化歸的數學(xué)學(xué)習方法。)

  3、總結

  我們把四邊形一分為二,用三角形內角和的知識知道了四邊形內角和,那么五邊形、六邊形……這些多邊形的內角和是多少度?有沒(méi)有什么規律可循,希望同學(xué)們能用學(xué)到的知識和方法去探究問(wèn)題,你還會(huì )有一些精彩的發(fā)現。

  《三角形的內角和》教學(xué)設計 篇19

  教學(xué)目標:

 。、知道三角形的內角和是180度,理解三角形內角和與三角形的大小無(wú)關(guān)。

 。、通過(guò)測量、計算、猜想、實(shí)驗等數學(xué)活動(dòng),積累認識圖形的方法和經(jīng)驗,逐步推理、歸納出三角形內角和。

  3、關(guān)注學(xué)生在操作活動(dòng)中遇到的真問(wèn)題,培養學(xué)生誠實(shí)嚴謹的實(shí)驗態(tài)度,實(shí)事求是的科學(xué)的態(tài)度。

  教學(xué)重點(diǎn):

  知道三角形的內角和是180度,理解三角形的內角和與三角形的大小、形狀無(wú)關(guān)。

  教學(xué)難點(diǎn):

  經(jīng)歷操作活動(dòng),推理、歸納出三角形的內角和。

  教學(xué)資源:

  多煤體課件,各種三角形,三角板,量角器,剪刀。

  教學(xué)活動(dòng):

  一、創(chuàng )設情境,導入新課。

  1、昨天我們學(xué)習了三角形的分類(lèi),三角形按角的特征怎么分類(lèi)?按邊的特征怎么分類(lèi)?

  2、信封中裝一個(gè)三角形露出一個(gè)銳角,猜一猜信封中裝的是一個(gè)什么三角形?能確定嗎?(露出一個(gè)鈍角)現在能確定了嗎?為什么現在就能確定了?(有一個(gè)鈍角,兩個(gè)銳的三角形是鈍角三角形)。

  3、三角形中還隱藏著(zhù)那些知識?三角形的三個(gè)內角的和是多少度?這節課我們研究三角形的內角和。(板書(shū)課題:三角形的內角和)

  二、合件交流,操作發(fā)現。

  1、(課件)你知道三角尺內角的度數分別是多少嗎?每個(gè)直角三角尺的內角度數之和都是多少度?我們能根據三角尺的內角和是180度,就得出三角形的內角和的結論嗎?應該怎么研究?(應該把三角形中所有的類(lèi)型銳角三角形、直角三角形、鈍角三角形都研究后,才能得出結論)(課件出示學(xué)習單)。

  2、組織學(xué)生小組合作:

  請同學(xué)們以4人為一個(gè)小組,三個(gè)人分別量一量,算一算一種三角形的內角的度數,小組長(cháng)填寫(xiě)學(xué)習單。老師巡視。①師:能不能只量出兩個(gè)角的度數,不量第三個(gè)角的度數,就開(kāi)始填表、計算?(我們的研究必須是科學(xué)的、實(shí)事求是的,測量的數據必須是真實(shí)的,來(lái)不的半點(diǎn)馬虎)。②同桌交流,你們有什么發(fā)現?

  3、組織學(xué)生匯報交流:

 、倌莻(gè)組說(shuō)一說(shuō)你們組測量的數據和計算的結果?(學(xué)生的計算不是正好180度時(shí),問(wèn):大約是多少度?)②你們有什么發(fā)現?(銳角三角形、直角三角形、鈍角三角形的內角和大約都是180度。③你能提出什么猜想?(我猜三角形的內角和是180度)老師板書(shū):三角形的內角和是180°我們的猜想對不對,(在板書(shū)后面打上“?”),就需要我們驗證,請同學(xué)們想辦法驗證我們的猜想對不對?(學(xué)生通過(guò)折的方法剪拼進(jìn)行驗證;學(xué)生通過(guò)剪、拼的方法進(jìn)行驗證。)

  4、學(xué)生展臺展示自己的難方法。通過(guò)驗證,我們發(fā)現三角形的內角和是180度。老師把“?”改為“!”。

  5、操作總會(huì )有誤差,有沒(méi)有別的方法說(shuō)明呢?(老師課件演示長(cháng)方形的四個(gè)角都是直角,所以長(cháng)方形的內角和應為:90°×4=360°。將長(cháng)方形沿對角線(xiàn)分割,可以分成兩個(gè)完全相等的直角三角形,所以直角三角形內角和應為:360°÷2=180°;沿高可以將任意三角形分成兩個(gè)直角三角形。由于前面證明了任意直角三角形的內角和是180°,因此兩個(gè)直角三角形的內角和應為:180°×2=360°。而直角三角形的兩個(gè)直角不屬于分割前三角形的內角,因此任意三角形的內角和應為:360°-180°=180°。)

  三、實(shí)踐應用,拓展延伸。

  1、這里有一條紅領(lǐng)巾,它的形狀是等腰三角形,其中∠1=110°,請計算出∠2=()°,∠3=()°。

  2、把下面這個(gè)三角形沿虛線(xiàn)剪成兩個(gè)小三角形,每個(gè)小三角形的內角和是多少度?(把一個(gè)三角形剪成兩個(gè)小三角形,雖然大小發(fā)生了變化,可是內角和依然是180度,說(shuō)明三角形的內角和與三角形大小無(wú)關(guān))。

  四、反思總結,自我建構。

  這節課你有什么收獲?

  這節課我們就研究到這兒,同學(xué)們再見(jiàn)!

  《三角形的內角和》教學(xué)設計 篇20

  教學(xué)目標:

  1、通過(guò)測量一量、拼一拼、折一折三個(gè)活動(dòng),探索和發(fā)現三角形三個(gè)內角的度數和等于180°。

  2、已知三角形兩個(gè)角的度數,會(huì )求出第三個(gè)角的度數。

  3、經(jīng)歷三角形內角和的研究方法,感受數學(xué)研究方法。

  教學(xué)重點(diǎn):

  1、探索和發(fā)現三角形三個(gè)內角的度數和等于180°。

  2、已知三角形兩個(gè)角的度數,會(huì )求出第三個(gè)角的度數。

  教學(xué)難點(diǎn):

  掌握探究方法(猜想-驗證-歸納總結),學(xué)會(huì )用“轉化”的數學(xué)思想探究三角形內角和。

  教學(xué)用具:

  表格、課件。

  學(xué)具準備:

  各種三角形、剪刀、量角器。

  一、創(chuàng )設情境揭示課題。

  1、一天兩個(gè)三角形發(fā)生了爭執,他們請你們來(lái)評評理。大三角形說(shuō):“我的個(gè)頭大,所以我的內角和一定比你大!毙∪切魏懿桓市牡卣f(shuō):“我有一個(gè)鈍角,我的內角和一定比你大!。誰(shuí)說(shuō)得有道理呢?今天讓我們來(lái)做一回裁判吧。

  生1:大三角形大(個(gè)子大)

  生2:小三角形大(有鈍角)

 。ń處煵蛔雠袛,讓學(xué)生帶著(zhù)問(wèn)題進(jìn)入新課)

  2、什么是三角形的內角和?(板書(shū):內角和)

  講解:三角形內兩條邊所夾的角就叫做這個(gè)三角形的內角。每個(gè)三角形都有三個(gè)內角,這三個(gè)內角的度數加起來(lái)就是三角形的內角和。

  二、自主探究,合作交流。

 。ㄒ唬┨岢鰡(wèn)題:

  1、你認為誰(shuí)說(shuō)得對?你是怎么想的?

  2、你有什么辦法可以比較一下這兩個(gè)三角形的內角和呢?

  生1:用量角器量一量三個(gè)內角各是多少度,把它們加起來(lái),再比較。

  生2:用拼一拼的辦法把三個(gè)角拼到一起看它們能不能組成平角。

  生3:用折一折的辦法把三個(gè)角折到一起看它們能不能組成平角

 。ǘ┨剿髋c發(fā)現

  活動(dòng)一:量一量

 。1)①了解活動(dòng)要求:(屏幕顯示)

  A、在練習本上畫(huà)一個(gè)三角形,量一量三角形三個(gè)內角的度數并標注。(測量時(shí)要認真,力求準確)

  B、把測量結果記錄在表格中,并計算三角形內角和。

  C、討論:從剛才的測量和計算結果中,你發(fā)現了什么?

 。ㄒ龑仡櫥顒(dòng)要求)

 、谛〗M合作。

 、蹍R報交流。

  你們測量了幾個(gè)三角形?它們的內角和分別是多少?從測量和計算結果中你們發(fā)現了什么?

 。ㄒ龑W(xué)生發(fā)現每個(gè)三角形的三個(gè)內角和都在180°,左右。)

 。2)提出猜想

  剛才我們通過(guò)測量和計算發(fā)現了三角形內角和都在180度左右,那你能不能大膽的猜測一下:三角形內角和是否相等?三角形的內角和等于多少度呢?(板書(shū):猜測)

  活動(dòng)二:拼一拼,驗證猜想

  這個(gè)猜想是否成立呢?我們要想辦法來(lái)驗證一下。(板書(shū)驗證)

  引導:180°,跟我們學(xué)過(guò)的什么角有關(guān)?我們課前準備了各種三角形紙片,你能不能利用這些三角形紙片,想辦法把三角形的三個(gè)內角轉換成一個(gè)平角呢?

 。1)小組合作,討論驗證方法。(把三個(gè)角撕下來(lái),拼在一起,3個(gè)角拼成了一個(gè)平角,所以三角形內角和就是180°)。

 。2)討論:銳角三角形、直角三角形、鈍角三角形是否都能得出相同的結論呢?

 。3)分組匯報,討論質(zhì)疑

 。4)課件演示,驗證結果

  活動(dòng)三:折一折

  師生一起活動(dòng),教師先讓學(xué)生看課件演示,然后拿出準備好的三角形紙艮老師一起折一折。

 。ò讶切蔚慕1折向它的對邊,使頂點(diǎn)落在對邊上,然后另外兩個(gè)角相向對折,使它們的頂點(diǎn)與角1的頂點(diǎn)互相重合,也證明了三角形內角和等于180°,)。

  討論:銳角三角形、直角三角形、鈍角三角形能否得到相同的結論?

  提問(wèn):還有沒(méi)有其它的方法?

  3、回顧兩種方法,歸納總結,得出結論。

 。1)引導學(xué)生得出結論。

  孩子們,三角形內角和到底等于多少度呢?”

  學(xué)生答:“180°!”

 。2)總結方法,齊讀結論

  我們通過(guò)動(dòng)作操作,折一折,拼一拼,把三角形的三個(gè)內角轉換成了一個(gè)平角,成功的得到了這個(gè)結論,讓我們?yōu)樽约旱某晒恼!齊讀結論。(板書(shū):得到結論)

 。3)解釋測量誤差

  為什么我們剛才通過(guò)測量,計算出來(lái)的三角形內角和不是180°呢?

  那是因為我們在測量時(shí),由于測量工具、測量操作等各方面的原因,使我們的測量結果存在一定的誤差。實(shí)際上,三角形內角和就等于180°

 。ㄈ┗仡檰(wèn)題:

  現在你知道這兩個(gè)三角形誰(shuí)說(shuō)得對了嗎?(都不對。

  為什么?請大家一起,自信肯定的告訴我。

  生:因為三角形內角和等于1800180°。(齊讀)

  三、鞏固深化,加深理解。

  1、試一試:數學(xué)書(shū)28頁(yè)第3題

  ∠A=180°-90°-30°

  2、練一練:數學(xué)書(shū)29頁(yè)第一題(生獨立解決)

  ∠A=180°-75°-28°

  3、小法官:數學(xué)書(shū)29頁(yè)第二題

  四、回顧課堂,滲透數學(xué)方法。

  1、總結:猜想—驗證—歸納—應用的數學(xué)方法。

  2、介紹:三角形內角和等于180度這個(gè)結論的由來(lái);數學(xué)領(lǐng)域里還未被證明的其它猜想,如哥德巴赫猜想、霍啟猜想、龐加萊猜想等。

  3、課堂延伸活動(dòng):探索——多邊形內角和

  板書(shū)設計:

  探索與發(fā)現(一)

  三角形內角和等于180°

【《三角形的內角和》教學(xué)設計】相關(guān)文章:

三角形內角和教學(xué)設計11-01

《三角形內角和》教學(xué)設計07-08

三角形的內角和的教學(xué)設計05-17

《三角形的內角和》教學(xué)設計07-29

《三角形內角和》的教學(xué)設計05-11

三角形內角和教學(xué)設計06-28

三角形的內角和的教學(xué)設計01-22

三角形的內角和教學(xué)設計09-11

三角形內角和教學(xué)設計11-18

《三角形的內角和》教學(xué)設計08-19