成人免费看黄网站无遮挡,caowo999,se94se欧美综合色,a级精品九九九大片免费看,欧美首页,波多野结衣一二三级,日韩亚洲欧美综合

高中數學(xué)函數部分知識點(diǎn)總結

時(shí)間:2023-06-30 13:40:58 梓欣 總結 我要投稿
  • 相關(guān)推薦

高中數學(xué)函數部分知識點(diǎn)總結

  總結在一個(gè)時(shí)期、一個(gè)年度、一個(gè)階段對學(xué)習和工作生活等情況加以回顧和分析的一種書(shū)面材料,寫(xiě)總結有利于我們學(xué)習和工作能力的提高,不如立即行動(dòng)起來(lái)寫(xiě)一份總結吧。你所見(jiàn)過(guò)的總結應該是什么樣的?以下是小編整理的高中數學(xué)函數部分知識點(diǎn)總結,僅供參考,大家一起來(lái)看看吧。

高中數學(xué)函數部分知識點(diǎn)總結

  1.函數的奇偶性

 。1)若f(x)是偶函數,那么f(x)=f(-x);

 。2)若f(x)是奇函數,0在其定義域內,則f(0)=0(可用于求參數);(3)判斷函數奇偶性可用定義的等價(jià)形式:f(x)±f(-x)=0或(f(x)≠0);(4)若所給函數的解析式較為復雜,應先化簡(jiǎn),再判斷其奇偶性;

 。5)奇函數在對稱(chēng)的單調區間內有相同的單調性;偶函數在對稱(chēng)的單調區間內有相反的單調性;

  2.復合函數的有關(guān)問(wèn)題

 。1)復合函數定義域求法:若已知的定義域為[a,b],其復合函數f[g(x)]的定義域由不等式a≤g(x)≤b解出即可;若已知f[g(x)]的定義域為[a,b],求f(x)的定義域,相當于x∈[a,b]時(shí),求g(x)的值域(即f(x)的定義域);研究函數的問(wèn)題一定要注意定義域優(yōu)先的原則。(2)復合函數的單調性由“同增異減”判定;

  3.函數圖像(或方程曲線(xiàn)的對稱(chēng)性)

  (1)證明函數圖像的對稱(chēng)性,即證明圖像上任意點(diǎn)關(guān)于對稱(chēng)中心(對稱(chēng)軸)的對稱(chēng)點(diǎn)仍在圖像上;

 。2)證明圖像C1與C2的對稱(chēng)性,即證明C1上任意點(diǎn)關(guān)于對稱(chēng)中心(對稱(chēng)軸)的對稱(chēng)點(diǎn)仍在C2上,反之亦然;

 。3)曲線(xiàn)C1:f(x,y)=0,關(guān)于y=x+a(y=-x+a)的對稱(chēng)曲線(xiàn)C2的方程為f(y-a,x+a)=0(或f(-y+a,-x+a)=0);

 。4)曲線(xiàn)C1:f(x,y)=0關(guān)于點(diǎn)(a,b)的對稱(chēng)曲線(xiàn)C2方程為:f(2a-x,2b-y)=0;

 。5)若函數y=f(x)對x∈R時(shí),f(a+x)=f(a-x)恒成立,則y=f(x)圖像關(guān)于直線(xiàn)x=a對稱(chēng);

 。6)函數y=f(x-a)與y=f(b-x)的圖像關(guān)于直線(xiàn)x=對稱(chēng);

  4.函數的周期性

  (1)y=f(x)對x∈R時(shí),f(x+a)=f(x-a)或f(x-2a)=f(x)(a>0)恒成立,則y=f(x)是周期為2a的周期函數;

 。2)若y=f(x)是偶函數,其圖像又關(guān)于直線(xiàn)x=a對稱(chēng),則f(x)是周期為2a的周期函數;

 。3)若y=f(x)奇函數,其圖像又關(guān)于直線(xiàn)x=a對稱(chēng),則f(x)是周期為4a的周期函數;

 。4)若y=f(x)關(guān)于點(diǎn)(a,0),(b,0)對稱(chēng),則f(x)是周期為2的周期函數;

 。5)y=f(x)的圖象關(guān)于直線(xiàn)x=a,x=b(a≠b)對稱(chēng),則函數y=f(x)是周期為2的周期函數;

 。6)y=f(x)對x∈R時(shí),f(x+a)=-f(x)(或f(x+a)=,則y=f(x)是周期為2的周期函數;

  5.方程k=f(x)有解k∈D(D為f(x)的值域);

  6.a≥f(x)恒成立a≥[f(x)]max,;a≤f(x)恒成立a≤[f(x)]min;

  7.(1)(a>0,a≠1,b>0,n∈R+);

  (2)logaN=(a>0,a≠1,b>0,b≠1);

  (3)logab的符號由口訣“同正異負”記憶;(4)alogaN=N(a>0,a≠1,N>0);

  8.判斷對應是否為映射時(shí),抓住兩點(diǎn):

 。1)A中元素必須都有象且唯一;

 。2)B中元素不一定都有原象,并且A中不同元素在B中可以有相同的象;

  9.能熟練地用定義證明函數的單調性,求反函數,判斷函數的奇偶性。

  10.對于反函數,應掌握以下一些結論:

 。1)定義域上的單調函數必有反函數;

 。2)奇函數的反函數也是奇函數;

 。3)定義域為非單元素集的偶函數不存在反函數;

 。4)周期函數不存在反函數;

 。5)互為反函數的兩個(gè)函數具有相同的單調性;

  (5)y=f(x)與y=f-1(x)互為反函數,設f(x)的定義域為A,值域為B,則有f[f--1(x)]=x(x∈B),f--1[f(x)]=x(x∈A).

  11.處理二次函數的問(wèn)題勿忘數形結合;二次函數在閉區間上必有最值,求最值問(wèn)題用“兩看法”:一看開(kāi)口方向;二看對稱(chēng)軸與所給區間的相對位置關(guān)系;

  12.依據單調性,利用一次函數在區間上的保號性可解決求一類(lèi)參數的范圍問(wèn)題

  13.恒成立問(wèn)題的處理方法:

 。1)分離參數法;

 。2)轉化為一元二次方程的根的分布列不等式(組)求解;

  函數的定義域的常用求法:

  1、分式的分母不等于零;

  2、偶次方根的被開(kāi)方數大于等于零;

  3、對數的真數大于零;

  4、指數函數和對數函數的底數大于零且不等于1;

  5、三角函數正切函數y=tanx中x≠kπ+π/2;

  6、如果函數是由實(shí)際意義確定的解析式,應依據自變量的實(shí)際意義確定其取值范圍。

  函數的解析式的常用求法:

  1、定義法;

  2、換元法;

  3、待定系數法;

  4、函數方程法;

  5、參數法;

  6、配方法

  函數的值域的常用求法:

  1、換元法;

  2、配方法;

  3、判別式法;

  4、幾何法;

  5、不等式法;

  6、單調性法;

  7、直接法

  函數的最值的常用求法:

  1、配方法;

  2、換元法;

  3、不等式法;

  4、幾何法;

  5、單調性法

  函數單調性的常用結論:

  1、若f(x),g(x)均為某區間上的增(減)函數,則f(x)+g(x)在這個(gè)區間上也為增(減)函數

  2、若f(x)為增(減)函數,則-f(x)為減(增)函數

  3、若f(x)與g(x)的單調性相同,則f[g(x)]是增函數;若f(x)與g(x)的單調性不同,則f[g(x)]是減函數。

  4、奇函數在對稱(chēng)區間上的單調性相同,偶函數在對稱(chēng)區間上的單調性相反。

  5、常用函數的單調性解答:比較大小、求值域、求最值、解不等式、證不等式、作函數圖象。

  六、函數奇偶性的常用結論:

  1、如果一個(gè)奇函數在x=0處有定義,則f(0)=0,如果一個(gè)函數y=f(x)既是奇函數又是偶函數,則f(x)=0(反之不成立)

  2、兩個(gè)奇(偶)函數之和(差)為奇(偶)函數;之積(商)為偶函數。

  3、一個(gè)奇函數與一個(gè)偶函數的積(商)為奇函數。

  4、兩個(gè)函數y=f(u)和u=g(x)復合而成的函數,只要其中有一個(gè)是偶函數,那么該復合函數就是偶函數;當兩個(gè)函數都是奇函數時(shí),該復合函數是奇函數。

  5、若函數f(x)的定義域關(guān)于原點(diǎn)對稱(chēng),則f(x)可以表示為f(x)=1/2[f(x)+f(-x)]+1/2[f(x)+f(-x)],該式的特點(diǎn)是:右端為一個(gè)奇函數和一個(gè)偶函數的和。

  冪函數

  定義:

  形如y=x^a(a為常數)的函數,即以底數為自變量?jì)鐬橐蜃兞,指數為常量的函數稱(chēng)為冪函數。

  定義域和值域:

  當a為不同的數值時(shí),冪函數的定義域的不同情況如下:如果a為任意實(shí)數,則函數的定義域為大于0的所有實(shí)數;如果a為負數,則x肯定不能為0,不過(guò)這時(shí)函數的定義域還必須根[據q的奇偶性來(lái)確定,即如果同時(shí)q為偶數,則x不能小于0,這時(shí)函數的定義域為大于0的所有實(shí)數;如果同時(shí)q為奇數,則函數的定義域為不等于0的所有實(shí)數。當x為不同的數值時(shí),冪函數的值域的不同情況如下:在x大于0時(shí),函數的值域總是大于0的實(shí)數。在x小于0時(shí),則只有同時(shí)q為奇數,函數的值域為非零的實(shí)數。而只有a為正數,0才進(jìn)入函數的值域

  性質(zhì):

  對于a的取值為非零有理數,有必要分成幾種情況來(lái)討論各自的特性:

  首先我們知道如果a=p/q,q和p都是整數,則x^(p/q)=q次根號(x的p次方),如果q是奇數,函數的定義域是R,如果q是偶數,函數的定義域是[0,+∞)。當指數n是負整數時(shí),設a=-k,則x=1/(x^k),顯然x≠0,函數的定義域是(-∞,0)∪(0,+∞).因此可以看到x所受到的限制來(lái)源于兩點(diǎn),一是有可能作為分母而不能是0,一是有可能在偶數次的根號下而不能為負數,那么我們就可以知道:

  排除了為0與負數兩種可能,即對于x>0,則a可以是任意實(shí)數;

  排除了為0這種可能,即對于x<0 x="">0的所有實(shí)數,q不能是偶數;

  排除了為負數這種可能,即對于x為大于且等于0的所有實(shí)數,a就不能是負數。

  總結起來(lái),就可以得到當a為不同的數值時(shí),冪函數的定義域的不同情況如下:

  如果a為任意實(shí)數,則函數的定義域為大于0的所有實(shí)數;

  如果a為負數,則x肯定不能為0,不過(guò)這時(shí)函數的定義域還必須根據q的奇偶性來(lái)確定,即如果同時(shí)q為偶數,則x不能小于0,這時(shí)函數的定義域為大于0的所有實(shí)數;如果同時(shí)q為奇數,則函數的定義域為不等于0的所有實(shí)數。

  在x大于0時(shí),函數的值域總是大于0的實(shí)數。

  在x小于0時(shí),則只有同時(shí)q為奇數,函數的值域為非零的實(shí)數。

  而只有a為正數,0才進(jìn)入函數的值域。

  由于x大于0是對a的任意取值都有意義的,因此下面給出冪函數在第一象限的各自情況.

  可以看到:

  (1)所有的圖形都通過(guò)(1,1)這點(diǎn)。

  (2)當a大于0時(shí),冪函數為單調遞增的,而a小于0時(shí),冪函數為單調遞減函數。

  (3)當a大于1時(shí),冪函數圖形下凹;當a小于1大于0時(shí),冪函數圖形上凸。

  (4)當a小于0時(shí),a越小,圖形傾斜程度越大。

  (5)a大于0,函數過(guò)(0,0);a小于0,函數不過(guò)(0,0)點(diǎn)。

  (6)顯然冪函數無(wú)界。

【高中數學(xué)函數部分知識點(diǎn)總結】相關(guān)文章:

高中數學(xué)函數知識點(diǎn)歸納總結09-30

函數知識點(diǎn)總結02-10

函數與導數知識點(diǎn)總結07-11

冪函數知識點(diǎn)總結07-11

高考函數知識點(diǎn)總結07-11

高一函數知識點(diǎn)總結01-14

【精選】高中冪函數知識點(diǎn)總結12-02

關(guān)于高中函數的知識點(diǎn)總結03-30

初二函數知識點(diǎn)總結04-22