成人免费看黄网站无遮挡,caowo999,se94se欧美综合色,a级精品九九九大片免费看,欧美首页,波多野结衣一二三级,日韩亚洲欧美综合

高二數學(xué)知識點(diǎn)總結

時(shí)間:2021-09-08 17:53:37 總結 我要投稿

高二數學(xué)知識點(diǎn)總結(15篇)

  總結是在一段時(shí)間內對學(xué)習和工作生活等表現加以總結和概括的一種書(shū)面材料,它是增長(cháng)才干的一種好辦法,不妨讓我們認真地完成總結吧。我們該怎么去寫(xiě)總結呢?下面是小編收集整理的高二數學(xué)知識點(diǎn)總結,希望對大家有所幫助。

高二數學(xué)知識點(diǎn)總結(15篇)

高二數學(xué)知識點(diǎn)總結1

  1、直線(xiàn)的傾斜角的概念:當直線(xiàn)l與x軸相交時(shí),取x軸作為基準,x軸正向與直線(xiàn)l向上方向之間所成的角α叫做直線(xiàn)l的傾斜角.特別地,當直線(xiàn)l與x軸平行或重合時(shí),規定α=0°.

  2、傾斜角α的取值范圍:0°≤α<180°.

  當直線(xiàn)l與x軸垂直時(shí),α=90°.

  3、直線(xiàn)的斜率:

  一條直線(xiàn)的傾斜角α(α≠90°)的正切值叫做這條直線(xiàn)的斜率,斜率常用小寫(xiě)字母k表示,也就是k=tanα

 、女斨本(xiàn)l與x軸平行或重合時(shí),α=0°,k=tan0°=0;

 、飘斨本(xiàn)l與x軸垂直時(shí),α=90°,k不存在.

  由此可知,一條直線(xiàn)l的傾斜角α一定存在,但是斜率k不一定存在.

  4、直線(xiàn)的斜率公式:

  給定兩點(diǎn)P1(x1,y1),P2(x2,y2),x1≠x2,用兩點(diǎn)的坐標來(lái)表示直線(xiàn)P1P2的斜率:

  斜率公式:

  3.1.2兩條直線(xiàn)的平行與垂直

  1、兩條直線(xiàn)都有斜率而且不重合,如果它們平行,那么它們的斜率相等;反之,如果它們的斜率相等,那么它們平行,即

  注意:上面的等價(jià)是在兩條直線(xiàn)不重合且斜率存在的前提下才成立的,缺少這個(gè)前提,結論并不成立.即如果k1=k2,那么一定有L1∥L2

  2、兩條直線(xiàn)都有斜率,如果它們互相垂直,那么它們的斜率互為負倒數;反之,如果它們的斜率互為負倒數,那么它們互相垂直,即

  3.2.1直線(xiàn)的點(diǎn)斜式方程

  1、直線(xiàn)的點(diǎn)斜式方程:直線(xiàn)經(jīng)過(guò)點(diǎn)且斜率為

  2、、直線(xiàn)的斜截式方程:已知直線(xiàn)的斜率為

  3.2.2直線(xiàn)的兩點(diǎn)式方程

  1、直線(xiàn)的兩點(diǎn)式方程:已知兩點(diǎn)

  2、直線(xiàn)的截距式方程:已知直線(xiàn)

  3.2.3直線(xiàn)的一般式方程

  1、直線(xiàn)的一般式方程:關(guān)于x、y的二元一次方程

  (A,B不同時(shí)為0)

  2、各種直線(xiàn)方程之間的互化。

  3.3直線(xiàn)的交點(diǎn)坐標與距離公式

  3.3.1兩直線(xiàn)的交點(diǎn)坐標

  1、給出例題:兩直線(xiàn)交點(diǎn)坐標

  L1:3x+4y-2=0

  L1:2x+y+2=0

  解:解方程組

  得x=-2,y=2

  所以L(fǎng)1與L2的交點(diǎn)坐標為M(-2,2)

  3.3.2兩點(diǎn)間距離

  兩點(diǎn)間的距離公式

  3.3.3點(diǎn)到直線(xiàn)的距離公式

  1.點(diǎn)到直線(xiàn)距離公式:

  2、兩平行線(xiàn)間的距離公式:

高二數學(xué)知識點(diǎn)總結2

  第一章:解三角形。掌握正弦余弦公式及其變式和推論和三角面積公式即可。

  第二章:數列?荚嚤乜。等差等比數列的通項公式、前n項和及一些性質(zhì)。這一章屬于學(xué)起來(lái)很容易,但做題卻不會(huì )做的類(lèi)型?荚囶}中,一般都是要求通項公式、前n項和,所以拿到題目之后要帶有目的的去推導。

  第三章:不等式。這一章一般用線(xiàn)性規劃的形式來(lái)考察。這種題一般是和實(shí)際問(wèn)題聯(lián)系的,所以要會(huì )讀題,從題中找不等式,畫(huà)出線(xiàn)性規劃圖。然后再根據實(shí)際問(wèn)題的限制要求求最值。

  選修中的簡(jiǎn)單邏輯用語(yǔ)、圓錐曲線(xiàn)和導數:邏輯用語(yǔ)只要弄懂充分條件和必要條件到底指的是前者還是后者,四種命題的真假性關(guān)系,邏輯連接詞,及否命題和命題的否定的區別,考試一般會(huì )用選擇題考這一知識點(diǎn),難度不大;圓錐曲線(xiàn)一般作為考試的壓軸題出現。而且有多問(wèn),一般第一問(wèn)較簡(jiǎn)單,是求曲線(xiàn)方程,只要記住圓錐曲線(xiàn)的表達式難度就不大。后面兩到三問(wèn)難打一般會(huì )很大,而且較費時(shí)間。所以不建議做。

  這一章屬于學(xué)的比較難,考試也比較難,但是考試要求不高的內容;導數,導數公式、運算法則、用導數求極值和最值的方法。一般會(huì )考察用導數求最值,會(huì )用導數公式就難度不大。

高二數學(xué)知識點(diǎn)總結3

  平面向量

  戴氏航天學(xué)校老師總結加法與減法的代數運算:

  (1)若a=(x1,y1 ),b=(x2,y2 )則a b=(x1+x2,y1+y2 ).

  向量加法與減法的幾何表示:平行四邊形法則、三角形法則。

  戴氏航天學(xué)校老師總結向量加法有如下規律:+= +(交換律); +( +c)=( + )+c (結合律);

  兩個(gè)向量共線(xiàn)的充要條件:

  (1) 向量b與非零向量共線(xiàn)的充要條件是有且僅有一個(gè)實(shí)數,使得b= .

  (2) 若=(),b=()則‖b .

  平面向量基本定理:

  若e1、e2是同一平面內的兩個(gè)不共線(xiàn)向量,那么對于這一平面內的任一向量,戴氏航天學(xué)校老師提醒有且只 有一對實(shí)數,,使得= e1+ e2

高二數學(xué)知識點(diǎn)總結4

  (1)必然事件:在條件S下,一定會(huì )發(fā)生的事件,叫相對于條件S的必然事件;

  (2)不可能事件:在條件S下,一定不會(huì )發(fā)生的事件,叫相對于條件S的不可能事件;

  (3)確定事件:必然事件和不可能事件統稱(chēng)為相對于條件S的確定事件;

  (4)隨機事件:在條件S下可能發(fā)生也可能不發(fā)生的事件,叫相對于條件S的隨機事件;

  (5)頻數與頻率:在相同的條件S下重復n次試驗,觀(guān)察某一事件A是否出現,稱(chēng)n次試驗中事件A出現的次數nA為事件A出現的頻數;稱(chēng)事件A出現的比例fn(A)=nnA為事件A出現的概率:對于給定的隨機事件A,如果隨著(zhù)試驗次數的增加,事件A發(fā)生的頻率fn(A)穩定在某個(gè)常數上,把這個(gè)常數記作P(A),稱(chēng)為事件A的概率。

  (6)頻率與概率的區別與聯(lián)系:隨機事件的頻率,指此事件發(fā)生的次數nA與試驗總次數n的比值nnA,它具有一定的穩定性,總在某個(gè)常數附近擺動(dòng),且隨著(zhù)試驗次數的不斷增多,這種擺動(dòng)幅度越來(lái)越小。我們把這個(gè)常數叫做隨機事件的概率,概率從數量上反映了隨機事件發(fā)生的可能性的大小。頻率在大量重復試驗的前提下可以近似地作為這個(gè)事件的概率。

  然說(shuō)難度比較大,我建議考生,采取分部得分整個(gè)試

高二數學(xué)知識點(diǎn)總結5

  一、集合、簡(jiǎn)易邏輯(14課時(shí),8個(gè))1.集合;2.子集;3.補集;4.交集;5.并集;6.邏輯連結詞;7.四種命題;8.充要條件.

  二、函數(30課時(shí),12個(gè))1.映射;2.函數;3.函數的單調性;4.反函數;5.互為反函數的函數圖象間的關(guān)系;6.指數概念的擴充;7.有理指數冪的運算;8.指數函數;9.對數;10.對數的運算性質(zhì);11.對數函數.12.函數的應用舉例.

  三、數列(12課時(shí),5個(gè))1.數列;2.等差數列及其通項公式;3.等差數列前n項和公式;4.等比數列及其通頂公式;5.等比數列前n項和公式.

  四、三角函數(46課時(shí)17個(gè))1.角的概念的推廣;2.弧度制;3.任意角的三角函數;4,單位圓中的三角函數線(xiàn);5.同角三角函數的基本關(guān)系式;6.正弦、余弦的誘導公式’7.兩角和與差的正弦、余弦、正切;8.二倍角的正弦、余弦、正切;9.正弦函數、余弦函數的圖象和性質(zhì);10.周期函數;11.函數的奇偶性;12.函數的圖象;13.正切函數的圖象和性質(zhì);14.已知三角函數值求角;15.正弦定理;16余弦定理;17斜三角形解法舉例.

  五、平面向量(12課時(shí),8個(gè))1.向量2.向量的加法與減法3.實(shí)數與向量的積;4.平面向量的坐標表示;5.線(xiàn)段的定比分點(diǎn);6.平面向量的數量積;7.平面兩點(diǎn)間的距離;8.平移.

  六、不等式(22課時(shí),5個(gè))1.不等式;2.不等式的基本性質(zhì);3.不等式的證明;4.不等式的解法;5.含絕對值的不等式.

  七、直線(xiàn)和圓的方程(22課時(shí),12個(gè))1.直線(xiàn)的傾斜角和斜率;2.直線(xiàn)方程的點(diǎn)斜式和兩點(diǎn)式;3.直線(xiàn)方程的一般式;4.兩條直線(xiàn)平行與垂直的條件;5.兩條直線(xiàn)的交角;6.點(diǎn)到直線(xiàn)的距離;7.用二元一次不等式表示平面區域;8.簡(jiǎn)單線(xiàn)性規劃問(wèn)題.9.曲線(xiàn)與方程的概念;10.由已知條件列出曲線(xiàn)方程;11.圓的標準方程和一般方程;12.圓的參數方程.

  八、圓錐曲線(xiàn)(18課時(shí),7個(gè))1橢圓及其標準方程;2.橢圓的簡(jiǎn)單幾何性質(zhì);3.橢圓的參數方程;4.雙曲線(xiàn)及其標準方程;5.雙曲線(xiàn)的簡(jiǎn)單幾何性質(zhì);6.拋物線(xiàn)及其標準方程;7.拋物線(xiàn)的簡(jiǎn)單幾何性質(zhì).九、(B)直線(xiàn)、平面、簡(jiǎn)單何體(36課時(shí),28個(gè))1.平面及基本性質(zhì);2.平面圖形直觀(guān)圖的畫(huà)法;3.平面直線(xiàn);4.直線(xiàn)和平面平行的判定與性質(zhì);5,直線(xiàn)和平面垂直的判與性質(zhì);6.三垂線(xiàn)定理及其逆定理;7.兩個(gè)平面的位置關(guān)系;8.空間向量及其加法、減法與數乘;9.空間向量的坐標表示;10.空間向量的數量積;11.直線(xiàn)的方向向量;12.異面直線(xiàn)所成的角;13.異面直線(xiàn)的公垂線(xiàn);14異面直線(xiàn)的距離;15.直線(xiàn)和平面垂直的性質(zhì);16.平面的法向量;17.點(diǎn)到平面的距離;18.直線(xiàn)和平面所成的角;19.向量在平面內的射影;20.平面與平面平行的性質(zhì);21.平行平面間的距離;22.二面角及其平面角;23.兩個(gè)平面垂直的判定和性質(zhì);24.多面體;25.棱柱;26.棱錐;27.正多面體;28.球.

  十、排列、組合、二項式定理(18課時(shí),8個(gè))1.分類(lèi)計數原理與分步計數原理.2.排列;3.排列數公式’4.組合;5.組合數公式;6.組合數的兩個(gè)性質(zhì);7.二項式定理;8.二項展開(kāi)式的性質(zhì).

  十一、概率(12課時(shí),5個(gè))1.隨機事件的概率;2.等可能事件的概率;3.互斥事件有一個(gè)發(fā)生的概率;4.相互獨立事件同時(shí)發(fā)生的概率;5.獨立重復試驗.選修Ⅱ(24個(gè))

  十二、概率與統計(14課時(shí),6個(gè))1.離散型隨機變量的分布列;2.離散型隨機變量的期望值和方差;3.抽樣方法;4.總體分布的估計;5.正態(tài)分布;6.線(xiàn)性回歸.

  十三、極限(12課時(shí),6個(gè))1.數學(xué)歸納法;2.數學(xué)歸納法應用舉例;3.數列的極限;4.函數的極限;5.極限的四則運算;6.函數的連續性.

  十四、導數(18課時(shí),8個(gè))1.導數的概念;2.導數的幾何意義;3.幾種常見(jiàn)函數的導數;4.兩個(gè)函數的和、差、積、商的導數;5.復合函數的導數;6.基本導數公式;7.利用導數研究函數的單調性和極值;8函數的最大值和最小值.

  十五、復數(4課時(shí),4個(gè))1.復數的概念;2.復數的加法和減法;3.復數的乘法和除法答案補充高中數學(xué)有130個(gè)知識點(diǎn),從前一份試卷要考查90個(gè)知識點(diǎn),覆蓋率達70%左右,而且把這一項作為衡量試卷成功與否的標準之一.這一傳統近年被打破,取而代之的是關(guān)注思維,突出能力,重視思想方法和思維能力的考查.現在的我們學(xué)數學(xué)比前人幸福啊!!相信對你的學(xué)習會(huì )有幫助的,祝你成功!答案補充一試全國高中數學(xué)聯(lián)賽的一試競賽大綱,完全按照全日制中學(xué)《數學(xué)教學(xué)大綱》中所規定的教學(xué)要求和內容,即高考所規定的知識范圍和方法,在方法的要求上略有提高,其中概率和微積分初步不考。二試1、平面幾何基本要求:掌握初中數學(xué)競賽大綱所確定的所有內容。補充要求:面積和面積方法。幾個(gè)重要定理:梅涅勞斯定理、塞瓦定理、托勒密定理、西姆松定理。幾個(gè)重要的極值:到三角形三頂點(diǎn)距離之和最小的點(diǎn)--費馬點(diǎn)。到三角形三頂點(diǎn)距離的平方和最小的點(diǎn),重心。三角形內到三邊距離之積最大的點(diǎn),重心。幾何不等式。簡(jiǎn)單的等周問(wèn)題。了解下述定理:在周長(cháng)一定的n邊形的集合中,正n邊形的面積最大。在周長(cháng)一定的簡(jiǎn)單閉曲線(xiàn)的集合中,圓的面積最大。在面積一定的n邊形的集合中,正n邊形的周長(cháng)最小。在面積一定的簡(jiǎn)單閉曲線(xiàn)的集合中,圓的周長(cháng)最小。幾何中的運動(dòng):反射、平移、旋轉。復數方法、向量方法。平面凸集、凸包及應用。答案補充第二數學(xué)歸納法。遞歸,一階、二階遞歸,特征方程法。函數迭代,求n次迭代,簡(jiǎn)單的函數方程。n個(gè)變元的平均不等式,柯西不等式,排序不等式及應用。復數的指數形式,歐拉公式,棣莫佛定理,單位根,單位根的應用。圓排列,有重復的排列與組合,簡(jiǎn)單的組合恒等式。一元n次方程(多項式)根的個(gè)數,根與系數的關(guān)系,實(shí)系數方程虛根成對定理。簡(jiǎn)單的初等數論問(wèn)題,除初中大綱中所包括的內容外,還應包括無(wú)窮遞降法,同余,歐幾里得除法,非負最小完全剩余類(lèi),高斯函數,費馬小定理,歐拉函數,孫子定理,格點(diǎn)及其性質(zhì)。3、立體幾何多面角,多面角的性質(zhì)。三面角、直三面角的基本性質(zhì)。正多面體,歐拉定理。體積證法。截面,會(huì )作截面、表面展開(kāi)圖。4、平面解析幾何直線(xiàn)的法線(xiàn)式,直線(xiàn)的極坐標方程,直線(xiàn)束及其應用。二元一次不等式表示的區域。三角形的面積公式。圓錐曲線(xiàn)的切線(xiàn)和法線(xiàn)。圓的冪和根軸。

高二數學(xué)知識點(diǎn)總結6

  直線(xiàn)的傾斜角:

  定義:x軸正向與直線(xiàn)向上方向之間所成的角叫直線(xiàn)的傾斜角。特別地,當直線(xiàn)與x軸平行或重合時(shí),我們規定它的傾斜角為0度。因此,傾斜角的取值范圍是0°≤α<180°

  直線(xiàn)的斜率:

 、俣x:傾斜角不是90°的直線(xiàn),它的傾斜角的正切叫做這條直線(xiàn)的斜率。直線(xiàn)的斜率常用k表示。即。斜率反映直線(xiàn)與軸的傾斜程度。

 、谶^(guò)兩點(diǎn)的直線(xiàn)的斜率公式。

  注意:

  (1)當時(shí),公式右邊無(wú)意義,直線(xiàn)的斜率不存在,傾斜角為90°;

  (2)k與P1、P2的順序無(wú)關(guān);

  (3)以后求斜率可不通過(guò)傾斜角而由直線(xiàn)上兩點(diǎn)的坐標直接求得;

  (4)求直線(xiàn)的傾斜角可由直線(xiàn)上兩點(diǎn)的坐標先求斜率得到。

  直線(xiàn)方程:

  1.點(diǎn)斜式:y-y0=k(x-x0)

  (x0,y0)是直線(xiàn)所通過(guò)的已知點(diǎn)的坐標,k是直線(xiàn)的已知斜率。x是自變量,直線(xiàn)上任意一點(diǎn)的橫坐標;y是因變量,直線(xiàn)上任意一點(diǎn)的縱坐標。

  2.斜截式:y=kx+b

  直線(xiàn)的斜截式方程:y=kx+b,其中k是直線(xiàn)的斜率,b是直線(xiàn)在y軸上的截距。該方程叫做直線(xiàn)的斜截式方程,簡(jiǎn)稱(chēng)斜截式。此斜截式類(lèi)似于一次函數的表達式。

  3.兩點(diǎn)式;(y-y1)/(y2-y1)=(x-x1)/(x2-x1)

  如果x1=x2,y1=y2,那么兩點(diǎn)就重合了,相當于只有一個(gè)已知點(diǎn)了,這樣不能確定一條直線(xiàn)。

  如果x1=x2,y1y2,那么此直線(xiàn)就是垂直于X軸的一條直線(xiàn),其方程為x=x1,不能表示成上面的一般式。

  如果x1x2,但y1=y2,那么此直線(xiàn)就是垂直于Y軸的一條直線(xiàn),其方程為y=y1,也不能表示成上面的一般式。

  4.截距式x/a+y/b=1

  對x的截距就是y=0時(shí),x的值,對y的截距就是x=0時(shí),y的值。x截距為a,y截距b,截距式就是:x/a+y/b=1下面由斜截式方程推導y=kx+b,-kx=b-y令x=0求出y=b,令y=0求出x=-b/k所以截距a=-b/k,b=b帶入得x/a+y/b=x/(-b/k)+y/b=-kx/b+y/b=(b-y)/b+y/b=b/b=1。

  5.一般式;Ax+By+C=0

  將ax+by+c=0變換可得y=-x/b-c/b(b不為零),其中-x/b=k(斜率),c/b=‘b’(截距)。ax+by+c=0在解析幾何中更常用,用方程處理起來(lái)比較方便。

  練習題:

  例:已知f(x+1)=x?+1,f(x+1)的定義域為[0,2],求f(x)解析式和定義域

  設x+1=t,則;x=t-1,那么用t表示自變量f的函數為:(也就是把x=t-1代入f(x+1)=x?+1中)

  f(t)=f(x+1)=(t-1)?+1

  =t?-2t+1+1

  =t?-2t+2

  所以,f(t)=t?-2t+2,則f(x)=x?-2x+2

  或者用這樣的方法——更直觀(guān):

  令f(x+1)=x?+1中的x=x-1,這樣就更直觀(guān)了,把x=x-1代入f(x+1)=x?+1,那么:

  f(x)=f[(x-1)+1]=(x-1)?+1

  =x?-2x+1+1

  =x?-2x+2

  所以,f(x)=x?-2x+2

  而f(x)與f(t)必須x與t的取值范圍相同,才是相同的函數,

  由t=x+1,f(x+1)的定義域為[0,2],可知道:t∈[1,3]

  f(x)=x?-2x+2的定義域為:x∈[1,3]

  綜上所述,f(x)=x?-2x+2(x∈[1,3]

高二數學(xué)知識點(diǎn)總結7

  1、幾何概型的定義:如果每個(gè)事件發(fā)生的概率只與構成該事件區域的長(cháng)度(面積或體積)成比例,則稱(chēng)這樣的概率模型為幾何概率模型,簡(jiǎn)稱(chēng)幾何概型。

  2、幾何概型的概率公式:P(A)=構成事件A的區域長(cháng)度(面積或體積);

  試驗的全部結果所構成的區域長(cháng)度(面積或體積)

  3、幾何概型的特點(diǎn):

  1)試驗中所有可能出現的結果(基本事件)有無(wú)限多個(gè);

  2)每個(gè)基本事件出現的可能性相等、

  4、幾何概型與古典概型的比較:一方面,古典概型具有有限性,即試驗結果是可數的;而幾何概型則是在試驗中出現無(wú)限多個(gè)結果,且與事件的區域長(cháng)度(或面積、體積等)有關(guān),即試驗結果具有無(wú)限性,是不可數的。這是二者的不同之處;另一方面,古典概型與幾何概型的試驗結果都具有等可能性,這是二者的共性。

  通過(guò)以上對于幾何概型的基本知識點(diǎn)的梳理,我們不難看出其要核是:要抓住幾何概型具有無(wú)限性和等可能性?xún)蓚(gè)特點(diǎn),無(wú)限性是指在一次試驗中,基本事件的個(gè)數可以是無(wú)限的,這是區分幾何概型與古典概型的關(guān)鍵所在;等可能性是指每一個(gè)基本事件發(fā)生的可能性是均等的,這是解題的基本前提。因此,用幾何概型求解的概率問(wèn)題和古典概型的基本思路是相同的,同屬于“比例法”,即隨機事件A的概率可以用“事件A包含的基本事件所占的圖形的長(cháng)度、面積(體積)和角度等”與“試驗的基本事件所占總長(cháng)度、面積(體積)和角度等”之比來(lái)表示。下面就幾何概型常見(jiàn)類(lèi)型題作一歸納梳理。

高二數學(xué)知識點(diǎn)總結8

  1、向量的加法

  向量的加法滿(mǎn)足平行四邊形法則和三角形法則。

  AB+BC=AC。

  a+b=(x+x',y+y')。

  a+0=0+a=a。

  向量加法的運算律:

  交換律:a+b=b+a;

  結合律:(a+b)+c=a+(b+c)。

  2、向量的減法

  如果a、b是互為相反的向量,那么a=-b,b=-a,a+b=0. 0的反向量為0

  AB-AC=CB. 即“共同起點(diǎn),指向被減”

  a=(x,y) b=(x',y') 則 a-b=(x-x',y-y').

  3、數乘向量

  實(shí)數λ和向量a的乘積是一個(gè)向量,記作λa,且∣λa∣=∣λ∣·∣a∣。

  當λ>0時(shí),λa與a同方向;

  當λ<0時(shí),λa與a反方向;

  當λ=0時(shí),λa=0,方向任意。

  當a=0時(shí),對于任意實(shí)數λ,都有λa=0。

  注:按定義知,如果λa=0,那么λ=0或a=0。

  實(shí)數λ叫做向量a的系數,乘數向量λa的幾何意義就是將表示向量a的有向線(xiàn)段伸長(cháng)或壓縮。

  當∣λ∣>1時(shí),表示向量a的有向線(xiàn)段在原方向(λ>0)或反方向(λ<0)上伸長(cháng)為原來(lái)的∣λ∣倍;

  當∣λ∣<1時(shí),表示向量a的有向線(xiàn)段在原方向(λ>0)或反方向(λ<0)上縮短為原來(lái)的∣λ∣倍。

  數與向量的乘法滿(mǎn)足下面的運算律

  結合律:(λa)·b=λ(a·b)=(a·λb)。

  向量對于數的分配律(第一分配律):(λ+μ)a=λa+μa.

  數對于向量的分配律(第二分配律):λ(a+b)=λa+λb.

  數乘向量的消去律:① 如果實(shí)數λ≠0且λa=λb,那么a=b。② 如果a≠0且λa=μa,那么λ=μ。

  4、向量的的數量積

  定義:兩個(gè)非零向量的夾角記為〈a,b〉,且〈a,b〉∈[0,π]。

  定義:兩個(gè)向量的數量積(內積、點(diǎn)積)是一個(gè)數量,記作a·b。若a、b不共線(xiàn),則a·b=|a|·|b|·cos〈a,b〉;若a、b共線(xiàn),則a·b=+-∣a∣∣b∣。

  向量的數量積的坐標表示:a·b=x·x'+y·y'。

  向量的數量積的運算率

  a·b=b·a(交換率);

  (a+b)·c=a·c+b·c(分配率);

  向量的數量積的性質(zhì)

  a·a=|a|的平方。

  a⊥b 〈=〉a·b=0。

  |a·b|≤|a|·|b|。

高二數學(xué)知識點(diǎn)總結9

  一、集合、簡(jiǎn)易邏輯(14課時(shí),8個(gè))

  1.集合;2.子集;3.補集;4.交集;5.并集;6.邏輯連結詞;7.四種命題;8.充要條件。

  二、函數(30課時(shí),12個(gè))

  1.映射;2.函數;3.函數的單調性;4.反函數;5.互為反函數的函數圖象間的關(guān)系;6.指數概念的擴充;7.有理指數冪的運算;8.指數函數;9.對數;10.對數的運算性質(zhì);11.對數函數.12.函數的應用舉例。

  三、數列(12課時(shí),5個(gè))

  1.數列;2.等差數列及其通項公式;3.等差數列前n項和公式;4.等比數列及其通頂公式;5.等比數列前n項和公式。

  四、三角函數(46課時(shí),17個(gè))

  1.角的概念的推廣;2.弧度制;3.任意角的三角函數;4.單位圓中的三角函數線(xiàn);5.同角三角函數的基本關(guān)系式;6.正弦、余弦的誘導公式;7.兩角和與差的正弦、余弦、正切;8.二倍角的正弦、余弦、正切;9.正弦函數、余弦函數的圖象和性質(zhì);10.周期函數;11.函數的奇偶性;12.函數的圖象;13.正切函數的圖象和性質(zhì);14.已知三角函數值求角;15.正弦定理;16.余弦定理;17.斜三角形解法舉例。

  五、平面向量(12課時(shí),8個(gè))

  1.向量;2.向量的加法與減法;3.實(shí)數與向量的積;4.平面向量的坐標表示;5.線(xiàn)段的定比分點(diǎn);6.平面向量的數量積;7.平面兩點(diǎn)間的距離;8.平移。

  六、不等式(22課時(shí),5個(gè))

  1.不等式;2.不等式的基本性質(zhì);3.不等式的證明;4.不等式的解法;5.含絕對值的不等式。

  七、直線(xiàn)和圓的方程(22課時(shí),12個(gè))

  1.直線(xiàn)的傾斜角和斜率;2.直線(xiàn)方程的點(diǎn)斜式和兩點(diǎn)式;3.直線(xiàn)方程的一般式;4.兩條直線(xiàn)平行與垂直的條件;5.兩條直線(xiàn)的交角;6.點(diǎn)到直線(xiàn)的距離;7.用二元一次不等式表示平面區域;8.簡(jiǎn)單線(xiàn)性規劃問(wèn)題;9.曲線(xiàn)與方程的概念;10.由已知條件列出曲線(xiàn)方程;11.圓的標準方程和一般方程;12.圓的參數方程。

  八、圓錐曲線(xiàn)(18課時(shí),7個(gè))

  1.橢圓及其標準方程;2.橢圓的簡(jiǎn)單幾何性質(zhì);3.橢圓的參數方程;4.雙曲線(xiàn)及其標準方程;5.雙曲線(xiàn)的簡(jiǎn)單幾何性質(zhì);6.拋物線(xiàn)及其標準方程;7.拋物線(xiàn)的簡(jiǎn)單幾何性質(zhì)。

  九、直線(xiàn)、平面、簡(jiǎn)單何體(36課時(shí),28個(gè))

  1.平面及基本性質(zhì);2.平面圖形直觀(guān)圖的畫(huà)法;3.平面直線(xiàn);4.直線(xiàn)和平面平行的判定與性質(zhì);5.直線(xiàn)和平面垂直的判定與性質(zhì);6.三垂線(xiàn)定理及其逆定理;7.兩個(gè)平面的位置關(guān)系;8.空間向量及其加法、減法與數乘;9.空間向量的坐標表示;10.空間向量的數量積;11.直線(xiàn)的方向向量;12.異面直線(xiàn)所成的角;13.異面直線(xiàn)的公垂線(xiàn);14.異面直線(xiàn)的距離;15.直線(xiàn)和平面垂直的性質(zhì);16.平面的法向量;17.點(diǎn)到平面的距離;18.直線(xiàn)和平面所成的角;19.向量在平面內的射影;20.平面與平面平行的性質(zhì);21.平行平面間的距離;22.二面角及其平面角;23.兩個(gè)平面垂直的判定和性質(zhì);24.多面體;25.棱柱;26.棱錐;27.正多面體;28.球。

  十、排列、組合、二項式定理(18課時(shí),8個(gè))

  1.分類(lèi)計數原理與分步計數原理;2.排列;3.排列數公式;4.組合;5.組合數公式;6.組合數的兩個(gè)性質(zhì);7.二項式定理;8.二項展開(kāi)式的性質(zhì)。

  十一、概率(12課時(shí),5個(gè))

  1.隨機事件的概率;2.等可能事件的概率;3.互斥事件有一個(gè)發(fā)生的概率;4.相互獨立事件同時(shí)發(fā)生的概率;5.獨立重復試驗。

  選修Ⅱ(24個(gè))

  十二、概率與統計(14課時(shí),6個(gè))

  1.離散型隨機變量的分布列;2.離散型隨機變量的期望值和方差;3.抽樣方法;4.總體分布的估計;5.正態(tài)分布;6.線(xiàn)性回歸。

  十三、極限(12課時(shí),6個(gè))

  1.數學(xué)歸納法;2.數學(xué)歸納法應用舉例;3.數列的極限;4.函數的極限;5.極限的四則運算;6.函數的連續性。

  十四、導數(18課時(shí),8個(gè))

  1.導數的概念;2.導數的幾何意義;3.幾種常見(jiàn)函數的導數;4.兩個(gè)函數的和、差、積、商的導數;5.復合函數的導數;6.基本導數公式;7.利用導數研究函數的單調性和極值;8.函數的值和最小值。

  十五、復數(4課時(shí),4個(gè))

  1.復數的概念;2.復數的加法和減法;3.復數的乘法和除法;4.復數的一元二次方程和二項方程的解法。

高二數學(xué)知識點(diǎn)總結10

  一、理解集合中的有關(guān)概念

  (1)集合中元素的特征: 確定性 , 互異性 , 無(wú)序性 。

  (2)集合與元素的關(guān)系用符號=表示。

  (3)常用數集的符號表示:自然數集 ;正整數集 ;整數集 ;有理數集 、實(shí)數集 。

  (4)集合的表示法: 列舉法 , 描述法 , 韋恩圖 。

  (5)空集是指不含任何元素的集合。

  空集是任何集合的子集,是任何非空集合的真子集。

  二、函數

  一、映射與函數:

  (1)映射的概念: (2)一一映射:(3)函數的.概念:

  二、函數的三要素:

  相同函數的判斷方法:①對應法則 ;②定義域 (兩點(diǎn)必須同時(shí)具備)

  (1)函數解析式的求法:

 、俣x法(拼湊):②換元法:③待定系數法:④賦值法:

  (2)函數定義域的求法:

 、俸瑓(wèn)題的定義域要分類(lèi)討論;

 、趯τ趯(shí)際問(wèn)題,在求出函數解析式后;必須求出其定義域,此時(shí)的定義域要根據實(shí)際意義來(lái)確定。

  (3)函數值域的求法:

 、倥浞椒:轉化為二次函數,利用二次函數的特征來(lái)求值;常轉化為型如: 的形式;

 、谀媲蠓(反求法):通過(guò)反解,用 來(lái)表示 ,再由 的取值范圍,通過(guò)解不等式,得出 的取值范圍;常用來(lái)解,型如: ;

 、軗Q元法:通過(guò)變量代換轉化為能求值域的函數,化歸思想;

 、萑怯薪绶:轉化為只含正弦、余弦的函數,運用三角函數有界性來(lái)求值域;

 、藁静坏仁椒:轉化成型如: ,利用平均值不等式公式來(lái)求值域;

 、邌握{性法:函數為單調函數,可根據函數的單調性求值域。

 、鄶敌谓Y合:根據函數的幾何圖形,利用數型結合的方法來(lái)求值域。

  三、函數的性質(zhì)

  函數的單調性、奇偶性、周期性

  單調性:定義:注意定義是相對與某個(gè)具體的區間而言。

  判定方法有:定義法(作差比較和作商比較)

  導數法(適用于多項式函數)

  復合函數法和圖像法。

  應用:比較大小,證明不等式,解不等式。

  奇偶性:定義:注意區間是否關(guān)于原點(diǎn)對稱(chēng),比較f(x) 與f(-x)的關(guān)系。f(x) -f(-x)=0 f(x) =f(-x) f(x)為偶函數;

  f(x)+f(-x)=0 f(x) =-f(-x) f(x)為奇函數。

  判別方法:定義法, 圖像法 ,復合函數法

  應用:把函數值進(jìn)行轉化求解。

  周期性:定義:若函數f(x)對定義域內的任意x滿(mǎn)足:f(x+T)=f(x),則T為函數f(x)的周期。

  其他:若函數f(x)對定義域內的任意x滿(mǎn)足:f(x+a)=f(x-a),則2a為函數f(x)的周期.

  應用:求函數值和某個(gè)區間上的函數解析式。

  四、圖形變換:函數圖像變換:(重點(diǎn))要求掌握常見(jiàn)基本函數的圖像,掌握函數圖像變換的一般規律。

  常見(jiàn)圖像變化規律:(注意平移變化能夠用向量的語(yǔ)言解釋?zhuān)桶聪蛄科揭坡?lián)系起來(lái)思考)

  平移變換 y=f(x)→y=f(x+a),y=f(x)+b

  注意:(ⅰ)有系數,要先提取系數。如:把函數y=f(2x)經(jīng)過(guò) 平移得到函數y=f(2x+4)的圖象。

  (ⅱ)會(huì )結合向量的平移,理解按照向量 (m,n)平移的意義。

  對稱(chēng)變換 y=f(x)→y=f(-x),關(guān)于y軸對稱(chēng)

  y=f(x)→y=-f(x) ,關(guān)于x軸對稱(chēng)

  y=f(x)→y=f|x|,把x軸上方的圖象保留,x軸下方的圖象關(guān)于x軸對稱(chēng)

  y=f(x)→y=|f(x)|把y軸右邊的圖象保留,然后將y軸右邊部分關(guān)于y軸對稱(chēng)。(注意:它是一個(gè)偶函數)

  伸縮變換:y=f(x)→y=f(ωx),

  y=f(x)→y=Af(ωx+φ)具體參照三角函數的圖象變換。

  一個(gè)重要結論:若f(a-x)=f(a+x),則函數y=f(x)的圖像關(guān)于直線(xiàn)x=a對稱(chēng);

高二數學(xué)知識點(diǎn)總結11

  一、直線(xiàn)與圓:

  1、直線(xiàn)的傾斜角的范圍是在平面直角坐標系中,對于一條與軸相交的直線(xiàn),如果把軸繞著(zhù)交點(diǎn)按逆時(shí)針?lè )较蜣D到和直線(xiàn)重合時(shí)所轉的最小正角記為,就叫做直線(xiàn)的傾斜角。當直線(xiàn)與軸重合或平行時(shí),規定傾斜角為0;

  2、斜率:已知直線(xiàn)的傾斜角為α,且α≠90°,則斜率k=tanα.過(guò)兩點(diǎn)(x1,y1),(x2,y2)的直線(xiàn)的斜率k=(y2-y1)/(x2-x1),另外切線(xiàn)的斜率用求導的方法。

  3、直線(xiàn)方程:

 。1)點(diǎn)斜式:直線(xiàn)過(guò)點(diǎn)斜率為,則直線(xiàn)方程為

 。2)斜截式:直線(xiàn)在軸上的截距為和斜率,則直線(xiàn)方程為

  4、直線(xiàn)與直線(xiàn)的位置關(guān)系:

 。1)平行A1/A2=B1/B2注意檢驗

 。2)垂直A1A2+B1B2=0

  5、點(diǎn)到直線(xiàn)的距離公式;

  兩條平行線(xiàn)與的距離是

  6、圓的標準方程:圓的一般方程:注意能將標準方程化為一般方程

  7、過(guò)圓外一點(diǎn)作圓的切線(xiàn),一定有兩條,如果只求出了一條,那么另外一條就是與軸垂直的直線(xiàn).

  8、直線(xiàn)與圓的位置關(guān)系,通常轉化為圓心距與半徑的關(guān)系,或者利用垂徑定理,構造直角三角形解決弦長(cháng)問(wèn)題.①相離②相切③相交

  9、解決直線(xiàn)與圓的關(guān)系問(wèn)題時(shí),要充分發(fā)揮圓的平面幾何性質(zhì)的作用(如半徑、半弦長(cháng)、弦心距構成直角三角形)直線(xiàn)與圓相交所得弦長(cháng)

  二、圓錐曲線(xiàn)方程:

  1、橢圓:①方程(a>b>0)注意還有一個(gè);②定義:|PF1|+|PF2|=2a>2c;③e=④長(cháng)軸長(cháng)為2a,短軸長(cháng)為2b,焦距為2c;a2=b2+c2;

  2、雙曲線(xiàn):①方程(a,b>0)注意還有一個(gè);②定義:||PF1|-|PF2||=2a<2c;③e=;④實(shí)軸長(cháng)為2a,虛軸長(cháng)為2b,焦距為2c;漸進(jìn)線(xiàn)或c2=a2+b2

  3、拋物線(xiàn):①方程y2=2px注意還有三個(gè),能區別開(kāi)口方向;②定義:|PF|=d焦點(diǎn)F(,0),準線(xiàn)x=-;③焦半徑;焦點(diǎn)弦=x1+x2+p;

  4、直線(xiàn)被圓錐曲線(xiàn)截得的弦長(cháng)公式:

  三、直線(xiàn)、平面、簡(jiǎn)單幾何體:

  1、學(xué)會(huì )三視圖的分析:

  2、斜二測畫(huà)法應注意的地方:

 。1)在已知圖形中取互相垂直的軸Ox、Oy。畫(huà)直觀(guān)圖時(shí),把它畫(huà)成對應軸o'x'、o'y'、使∠x(chóng)'o'y'=45°(或135°);

 。2)平行于x軸的線(xiàn)段長(cháng)不變,平行于y軸的線(xiàn)段長(cháng)減半.

 。3)直觀(guān)圖中的45度原圖中就是90度,直觀(guān)圖中的90度原圖一定不是90度.

  3、表(側)面積與體積公式:

 。1)柱體:①表面積:S=S側+2S底;②側面積:S側=;③體積:V=S底h

 。2)錐體:①表面積:S=S側+S底;②側面積:S側=;③體積:V=S底h:

 。3)臺體①表面積:S=S側+S上底S下底②側面積:S側=

 。4)球體:①表面積:S=;②體積:V=

  4、位置關(guān)系的證明(主要方法):注意立體幾何證明的書(shū)寫(xiě)

 。1)直線(xiàn)與平面平行:①線(xiàn)線(xiàn)平行線(xiàn)面平行;②面面平行線(xiàn)面平行。

 。2)平面與平面平行:①線(xiàn)面平行面面平行。

 。3)垂直問(wèn)題:線(xiàn)線(xiàn)垂直線(xiàn)面垂直面面垂直。核心是線(xiàn)面垂直:垂直平面內的兩條相交直線(xiàn)

  5、求角:(步驟-------Ⅰ.找或作角;Ⅱ.求角)

 。1)異面直線(xiàn)所成角的求法:平移法:平移直線(xiàn),構造三角形;

 。2)直線(xiàn)與平面所成的角:直線(xiàn)與射影所成的角

  四、導數:導數的意義-導數公式-導數應用(極值最值問(wèn)題、曲線(xiàn)切線(xiàn)問(wèn)題)

  1、導數的定義:在點(diǎn)處的導數記作.

  2、導數的幾何物理意義:曲線(xiàn)在點(diǎn)處切線(xiàn)的斜率

 、賙=f/(x0)表示過(guò)曲線(xiàn)y=f(x)上P(x0,f(x0))切線(xiàn)斜率。V=s/(t)表示即時(shí)速度。a=v/(t)表示加速度。

  3.常見(jiàn)函數的導數公式:①;②;③;

 、;⑥;⑦;⑧。

  4.、導數的四則運算法則:

  5、導數的應用:

 。1)利用導數判斷函數的單調性:設函數在某個(gè)區間內可導,如果,那么為增函數;如果,那么為減函數;

  注意:如果已知為減函數求字母取值范圍,那么不等式恒成立。

 。2)求極值的步驟:

 、偾髮;

 、谇蠓匠痰母;

 、哿斜恚簷z驗在方程根的左右的符號,如果左正右負,那么函數在這個(gè)根處取得極大值;如果左負右正,那么函數在這個(gè)根處取得極小值;

 。3)求可導函數值與最小值的步驟:

 、∏蟮母;ⅱ把根與區間端點(diǎn)函數值比較,的為值,最小的是最小值。

  五、常用邏輯用語(yǔ):

  1、四種命題:

 、旁}:若p則q;⑵逆命題:若q則p;⑶否命題:若p則q;⑷逆否命題:若q則p

  注:1、原命題與逆否命題等價(jià);逆命題與否命題等價(jià)。判斷命題真假時(shí)注意轉化。

  2、注意命題的否定與否命題的區別:命題否定形式是;否命題是.命題“或”的否定是“且”;“且”的否定是“或”.

  3、邏輯聯(lián)結詞:

 。1)且(and):命題形式pq;pqpqpqp

 。2)或(or):命題形式pq;真真真真假

 。3)非(not):命題形式p.真假假真假

  假真假真真

  假假假假真

  “或命題”的真假特點(diǎn)是“一真即真,要假全假”;

  “且命題”的真假特點(diǎn)是“一假即假,要真全真”;

  “非命題”的真假特點(diǎn)是“一真一假”

  4、充要條件

  由條件可推出結論,條件是結論成立的充分條件;由結論可推出條件,則條件是結論成立的必要條件。

  5、全稱(chēng)命題與特稱(chēng)命題:

  短語(yǔ)“所有”在陳述中表示所述事物的全體,邏輯中通常叫做全稱(chēng)量詞,并用符號表示。含有全體量詞的命題,叫做全稱(chēng)命題。

  短語(yǔ)“有一個(gè)”或“有些”或“至少有一個(gè)”在陳述中表示所述事物的個(gè)體或部分,邏輯中通常叫做存在量詞,并用符號表示,含有存在量詞的命題,叫做存在性命題。

高二數學(xué)知識點(diǎn)總結12

  復數的概念:

  形如a+bi(a,b∈R)的數叫復數,其中i叫做虛數單位。全體復數所成的集合叫做復數集,用字母C表示。

  復數的表示:

  復數通常用字母z表示,即z=a+bi(a,b∈R),這一表示形式叫做復數的代數形式,其中a叫復數的實(shí)部,b叫復數的虛部。

  復數的幾何意義:

  (1)復平面、實(shí)軸、虛軸:

  點(diǎn)Z的橫坐標是a,縱坐標是b,復數z=a+bi(a、b∈R)可用點(diǎn)Z(a,b)表示,這個(gè)建立了直角坐標系來(lái)表示復數的平面叫做復平面,x軸叫做實(shí)軸,y軸叫做虛軸。顯然,實(shí)軸上的點(diǎn)都表示實(shí)數,除原點(diǎn)外,虛軸上的點(diǎn)都表示純虛數

  (2)復數的幾何意義:復數集C和復平面內所有的點(diǎn)所成的集合是一一對應關(guān)系,即

  這是因為,每一個(gè)復數有復平面內惟一的一個(gè)點(diǎn)和它對應;反過(guò)來(lái),復平面內的每一個(gè)點(diǎn),有惟一的一個(gè)復數和它對應。

  這就是復數的一種幾何意義,也就是復數的另一種表示方法,即幾何表示方法。

  復數的模:

  復數z=a+bi(a、b∈R)在復平面上對應的點(diǎn)Z(a,b)到原點(diǎn)的距離叫復數的模,記為|Z|,即|Z|=

  虛數單位i:

  (1)它的平方等于-1,即i2=-1;

  (2)實(shí)數可以與它進(jìn)行四則運算,進(jìn)行四則運算時(shí),原有加、乘運算律仍然成立

  (3)i與-1的關(guān)系:i就是-1的一個(gè)平方根,即方程x2=-1的一個(gè)根,方程x2=-1的另一個(gè)根是-i。

  (4)i的周期性:i4n+1=i,i4n+2=-1,i4n+3=-i,i4n=1。

  復數模的性質(zhì):

  復數與實(shí)數、虛數、純虛數及0的關(guān)系:

  對于復數a+bi(a、b∈R),當且僅當b=0時(shí),復數a+bi(a、b∈R)是實(shí)數a;當b≠0時(shí),復數z=a+bi叫做虛數;當a=0且b≠0時(shí),z=bi叫做純虛數;當且僅當a=b=0時(shí),z就是實(shí)數0。

高二數學(xué)知識點(diǎn)總結13

  (1)總體和樣本:

 、僭诮y計學(xué)中,把研究對象的全體叫做總體.

 、诎衙總(gè)研究對象叫做個(gè)體.

 、郯芽傮w中個(gè)體的總數叫做總體容量.

 、転榱搜芯靠傮w的有關(guān)性質(zhì),一般從總體中隨機抽取一部分:x1,x2,....,_研究,我們稱(chēng)它為樣本.其中個(gè)體的個(gè)數稱(chēng)為樣本容量.

 。2)簡(jiǎn)單隨機抽樣,也叫純隨機抽樣。

  就是從總體中不加任何分組、劃類(lèi)、排隊等,完全隨機地抽取調查單位。特點(diǎn)是:每個(gè)樣本單位被抽中的可能性相同(概率相等),樣本的每個(gè)單位完全獨立,彼此間無(wú)一定的關(guān)聯(lián)性和排斥性。簡(jiǎn)單隨機抽樣是其它各種抽樣形式的基礎。通常只是在總體單位之間差異程度較小和數目較少時(shí),才采用這種方法。

 。3)簡(jiǎn)單隨機抽樣常用的方法:

 、俪楹灧

 、陔S機數表法

 、塾嬎銠C模擬法

  在簡(jiǎn)單隨機抽樣的樣本容量設計中,主要考慮:

 、倏傮w變異情況;

 、谠试S誤差范圍;

 、鄹怕时WC程度。

 。4)抽簽法:

 、俳o調查對象群體中的每一個(gè)對象編號;

 、跍蕚涑楹灥墓ぞ,實(shí)施抽簽;

 、蹖颖局械拿恳粋(gè)個(gè)體進(jìn)行測量或調查

高二數學(xué)知識點(diǎn)總結14

  已知函數有零點(diǎn)(方程有根)求參數取值常用的方法

  1、直接法:

  直接根據題設條件構建關(guān)于參數的不等式,再通過(guò)解不等式確定參數范圍。

  2、分離參數法:

  先將參數分離,轉化成求函數值域問(wèn)題加以解決。

  3、數形結合法:

  先對解析式變形,在同一平面直角坐標系中,畫(huà)出函數的圖象,然后數形結合求解。

高二數學(xué)知識點(diǎn)總結15

  一、導數的應用

  1.用導數研究函數的最值

  確定函數在其確定的定義域內可導(通常為開(kāi)區間),求出導函數在定義域內的零點(diǎn),研究在零點(diǎn)左、右的函數的單調性,若左增,右減,則在該零點(diǎn)處,函數去極大值;若左邊減少,右邊增加,則該零點(diǎn)處函數取極小值。學(xué)習了如何用導數研究函數的最值之后,可以做一個(gè)有關(guān)導數和函數的綜合題來(lái)檢驗下學(xué)習成果。

  2.生活中常見(jiàn)的函數優(yōu)化問(wèn)題

  1)費用、成本最省問(wèn)題

  2)利潤、收益最大問(wèn)題

  3)面積、體積最(大)問(wèn)題

  二、推理與證明

  1.歸納推理:歸納推理是高二數學(xué)的一個(gè)重點(diǎn)內容,其難點(diǎn)就是有部分結論得到一般結論,破解的方法是充分考慮部分結論提供的信息,從中發(fā)現一般規律;類(lèi)比推理的難點(diǎn)是發(fā)現兩類(lèi)對象的相似特征,由其中一類(lèi)對象的特征得出另一類(lèi)對象的特征,破解的方法是利用已經(jīng)掌握的數學(xué)知識,分析兩類(lèi)對象之間的關(guān)系,通過(guò)兩類(lèi)對象已知的相似特征得出所需要的相似特征。

  2.類(lèi)比推理:由兩類(lèi)對象具有某些類(lèi)似特征和其中一類(lèi)對象的某些已知特征,推出另一類(lèi)對象也具有這些特征的推理稱(chēng)為類(lèi)比推理,簡(jiǎn)而言之,類(lèi)比推理是由特殊到特殊的推理。

  三、不等式

  對于含有參數的一元二次不等式解的討論

  1)二次項系數:如果二次項系數含有字母,要分二次項系數是正數、零和負數三種情況進(jìn)行討論。

  2)不等式對應方程的根:如果一元二次不等式對應的方程的根能夠通過(guò)因式分解的方法求出來(lái),則根據這兩個(gè)根的大小進(jìn)行分類(lèi)討論,這時(shí),兩個(gè)根的大小關(guān)系就是分類(lèi)標準,如果一元二次不等式對應的方程根不能通過(guò)因式分解的方法求出來(lái),則根據方程的判別式進(jìn)行分類(lèi)討論。通過(guò)不等式練習題能夠幫助你更加熟練的運用不等式的知識點(diǎn),例如用放縮法證明不等式這種技巧以及利用均值不等式求最值的九種技巧這樣的解題思路需要再做題的過(guò)程中總結出來(lái)。

  拓展閱讀

  說(shuō)明:以下內容為本文主關(guān)鍵詞的百科內容,一詞可能多意,僅作為參考閱讀內容,下載的文檔不包含此內容。每個(gè)關(guān)鍵詞后面會(huì )隨機推薦一個(gè)搜索引擎工具,方便用戶(hù)從多個(gè)垂直領(lǐng)域了解更多與本文相似的內容。

  1、數學(xué):數學(xué),是研究數量、結構、變化、空間以及信息等概念的一門(mén)學(xué)科。數學(xué)是人類(lèi)對事物的抽象結構與模式進(jìn)行嚴格描述的一種通用手段,可以應用于現實(shí)世界的任何問(wèn)題,所有的數學(xué)對象本質(zhì)上都是人為定義的。從這個(gè)意義上,數學(xué)屬于形式科學(xué),而不是自然科學(xué)。不同的數學(xué)家和哲學(xué)家對數學(xué)的確切范圍和定義有一系列的看法。在人類(lèi)歷史發(fā)展和社會(huì )生活中,數學(xué)發(fā)揮著(zhù)不可替代的作用,同時(shí)也是學(xué)習和研究現代科學(xué)技術(shù)必不可少的基本工具。數學(xué)史數理邏輯與數學(xué)基礎a:演繹邏輯學(xué)(也稱(chēng)符號邏輯學(xué)),b:證明論(也稱(chēng)元數學(xué)),c:遞歸論,d:模型論,e:公理集合論,f:數學(xué)基礎,g:數理邏輯與數學(xué)基礎其他學(xué)科。數論a:初等數論,b:解析數論,c:代數數論,d:超越數論,e:丟番圖逼近,f:數的幾何,g:概率數論,h:計算數論,i:數論其他學(xué)科。代數學(xué)a:線(xiàn)性代數,b:群論,c:域論,d:李群,e:李代數,f:Kac-Moody代數,g:環(huán)論(包括交換環(huán)與交換代數,...頭條搜索更多高二數學(xué)下冊知識點(diǎn)總結

  2、類(lèi)比推理:類(lèi)比推理亦稱(chēng)“類(lèi)推”。推理的一種形式。根據兩個(gè)對象在某些屬性上相同或相似,通過(guò)比較而推斷出它們在其他屬性上也相同的推理過(guò)程。它是從觀(guān)察個(gè)別現象開(kāi)始的,因而近似歸納推理。但它又不是由特殊到一般,而是由特殊到特殊,因而又不同于歸納推理。分完全類(lèi)推和不完全類(lèi)推兩種形式。完全類(lèi)推是兩個(gè)或兩類(lèi)事物在進(jìn)行比較的方面完全相同時(shí)的類(lèi)推;不完全類(lèi)推是兩個(gè)或兩類(lèi)事物在進(jìn)行比較的方面不完全相同時(shí)的類(lèi)推。這是科學(xué)研究中常用的方法之一。它是從特殊推向特殊的推理。類(lèi)比推理是根據兩個(gè)或兩類(lèi)對象有部分屬性相同,從而推出它們的其他屬性也相同的推理。簡(jiǎn)稱(chēng)類(lèi)推、類(lèi)比。以關(guān)于兩個(gè)事物某些屬性相同的判斷為前提,推出兩個(gè)事物的其他屬性相同的結論的推理。如聲和光有不少屬性相同--直線(xiàn)傳播,有反射、折射和干擾等現象;由此推出:既然聲有波動(dòng)性質(zhì),光也有波動(dòng)性質(zhì)。這就是類(lèi)比推理。類(lèi)比推理具有或然性。如果前提中確認的共同屬性很少,而且共同屬性和推出來(lái)的屬性沒(méi)有什么關(guān)系,這樣的類(lèi)比推...谷歌搜索更多高二數學(xué)下冊知識點(diǎn)總結

  3、總結:總結是事后對某一階段的工作或某項工作的完成情況,包括取得的成績(jì)、存在的問(wèn)題及得到的經(jīng)驗和教訓加以回顧和分析,為今后的工作提供幫助和借鑒的一種書(shū)面材料。(1)自身性?偨Y都是以第一人稱(chēng),從自身出發(fā)。它是單位或個(gè)人自身實(shí)踐活動(dòng)的反映,其內容行文來(lái)自自身實(shí)踐,其結論也為指導今后自身實(shí)踐。(2)指導性?偨Y以回顧思考的方式對自身以往實(shí)踐做理性認識,找出事物本質(zhì)和發(fā)展規律,取得經(jīng)驗,避免失誤,以指導未來(lái)工作。(3)理論性?偨Y是理論的升華,是對前一階段工作的經(jīng)驗、教訓的分析研究,借此上升到理論的高度,并從中提煉出有規律性的東西,從而提高認識,以正確的認識來(lái)把握客觀(guān)事物,更好地指導今后的實(shí)際工作。(4)客觀(guān)性?偨Y是對實(shí)際工作再認識的過(guò)程,是對前一階段工作的回顧?偨Y的內容必須要完全忠于自身的客觀(guān)實(shí)踐,其材料必須以客觀(guān)事實(shí)為依據,不允許東拼西湊,要真實(shí)、客觀(guān)地分析情況、總結經(jīng)驗。(1)綜合性總結。對某一單位、某一部門(mén)工作進(jìn)行全面性總結,既反...頭條搜索更多高二數學(xué)下冊知識點(diǎn)總結

  4、因式分解:把一個(gè)多項式在一個(gè)范圍(如實(shí)數范圍內分解,即所有項均為實(shí)數)化為幾個(gè)整式的積的形式,這種式子變形叫做這個(gè)多項式的因式分解,也叫作把這個(gè)多項式分解因式。把一個(gè)多項式在一個(gè)范圍化為幾個(gè)整式的積的形式,這種式子變形叫做這個(gè)多項式的因式分解,也叫作把這個(gè)多項式分解因式。因式分解是中學(xué)數學(xué)中最重要的恒等變形之一,它被廣泛地應用于初等數學(xué)之中,在數學(xué)求根作圖、解一元二次方程方面也有很廣泛的應用,是解決許多數學(xué)問(wèn)題的有力工具。因式分解方法靈活,技巧性強。學(xué)習這些方法與技巧,不僅是掌握因式分解內容所需的,而且對于培養解題技能、發(fā)展思維能力都有著(zhù)十分獨特的作用。學(xué)習它,既可以復習整式的四則運算,又為學(xué)習分式打好基礎;學(xué)好它,既可以培養學(xué)生的觀(guān)察、思維發(fā)展性、運算能力,又可以提高綜合分析和解決問(wèn)題的能力;窘Y論:分解因式為整式乘法的逆過(guò)程。高級結論:在高等代數上,因式分解有一些重要結論,在初等代數層面上證明很困難,但是理解很容易。

【高二數學(xué)知識點(diǎn)總結(15篇)】相關(guān)文章:

高二化學(xué)知識點(diǎn)總結01-14

高二物理知識點(diǎn)總結05-04

高考數學(xué)知識點(diǎn)總結05-18

高二生物知識點(diǎn)總結12-12

高二地理知識點(diǎn)總結07-22

高一數學(xué)知識點(diǎn)總結07-20

高一數學(xué)必修一知識點(diǎn)總結08-09

高中數學(xué)必修四知識點(diǎn)總結12-03

高二上學(xué)期數學(xué)教學(xué)總結01-17

高二數學(xué)學(xué)習計劃01-17