高二數學(xué)知識點(diǎn)精選總結【五篇】
總結是指社會(huì )團體、企業(yè)單位和個(gè)人對某一階段的學(xué)習、工作或其完成情況加以回顧和分析,得出教訓和一些規律性認識的一種書(shū)面材料,它能幫我們理順知識結構,突出重點(diǎn),突破難點(diǎn),是時(shí)候寫(xiě)一份總結了。如何把總結做到重點(diǎn)突出呢?以下是小編為大家整理的高二數學(xué)知識點(diǎn)精選總結【五篇】,希望能夠幫助到大家。
高二數學(xué)知識點(diǎn)精選總結【五篇】1
圓柱、圓錐、圓臺和球的表面積
(1)圓柱、圓錐、圓臺和多面體一樣都是可以平面展開(kāi)的。
、賵A柱、圓錐、圓臺的側面展開(kāi)圖,是求其側面積的基本依據。
圓柱的側面展開(kāi)圖,是由底面圖的周長(cháng)和母線(xiàn)長(cháng)組成的一個(gè)矩形。
、趫A錐和側面展開(kāi)圖是一個(gè)由兩條母線(xiàn)長(cháng)和底面圓的周長(cháng)組成的扇形,其扇形的圓心角為
、蹐A臺的側面展開(kāi)圖是一個(gè)由兩條母線(xiàn)長(cháng)和上、下底面周長(cháng)組成的扇環(huán),其扇環(huán)的圓心角為
這個(gè)公式有利于空間幾何體和其側面展開(kāi)圖的互化
顯然,當r=0時(shí),這個(gè)公式就是圓錐側面展開(kāi)圖扇形的圓心角公式,所以,圓錐側面展開(kāi)圖扇形的圓心角公式是圓臺相關(guān)角的特例。
(2)圓柱、圓錐和圓臺的側面公式為
S側=π(r+R)l
當r=R時(shí),S側=2πRl,即圓柱的側面積公式。
當r=0時(shí),S側=rRl,即圓錐的面積公式。
要重視,側面積間的這種關(guān)系。
(3)球面是不能平面展開(kāi)的圖形,所以,求它的面積的方法與柱、錐、臺的方法完全不同。
推導出來(lái),要用“微積分”等高等數學(xué)的知識,課本上不能算是一種證明。
求不規則圓形的度量屬性的常用方法是“細分——求和——取極限”,這種方法,在學(xué)完“微積分”的相關(guān)內容后,不證自明,這里從略。
畫(huà)圓柱、圓錐、圓臺和球的直觀(guān)圖的方法——正等測
(1)正等測畫(huà)直觀(guān)圖的要求:
、佼(huà)正等測的X、Y、Z三個(gè)軸時(shí),z軸畫(huà)成鉛直方向,X軸和Y軸各與Z軸成120°。
、谠谕队皥D上取線(xiàn)段長(cháng)度的方法是:在三軸上或平行于三軸的線(xiàn)段都取實(shí)長(cháng)。
這里與斜二測畫(huà)直觀(guān)圖的方法不同,要注意它們的區別。
(2)正等測圓柱、圓錐、圓臺的直觀(guān)圖的區別主要是水平放置的平面圖形。
用正等測畫(huà)水平放置的平面圓形時(shí),將X軸畫(huà)成水平位置,Y軸畫(huà)成與X軸成120°,在投影圖上,X軸和Y軸上,或與X軸、Y軸平行的線(xiàn)段都取實(shí)長(cháng),在Z軸上或與Z軸平行的線(xiàn)段的畫(huà)法與斜二測相同,也都取實(shí)長(cháng)。
關(guān)于幾何體表面內兩點(diǎn)間的最短距離問(wèn)題
柱、錐、臺的表面都可以平面展開(kāi),這些幾何體表面內兩點(diǎn)間最短距離,就是其平面內展開(kāi)圖內兩點(diǎn)間的線(xiàn)段長(cháng)。
由于球面不能平面展開(kāi),所以求球面內兩點(diǎn)間的球面距離是一個(gè)全新的方法,這個(gè)最短距離是過(guò)這兩點(diǎn)大圓的劣弧長(cháng)。
高二數學(xué)知識點(diǎn)精選總結【五篇】2
1.不等式證明的依據
(2)不等式的性質(zhì)(略)
(3)重要不等式:①|(zhì)a|≥0;a2≥0;(a-b)2≥0(a、b∈R)
、赼2+b2≥2ab(a、b∈R,當且僅當a=b時(shí)取“=”號)
2.不等式的證明方法
(1)比較法:要證明a>b(a0(a-b<0),這種證明不等式的方法叫做比較法.
用比較法證明不等式的步驟是:作差——變形——判斷符號.
(2)綜合法:從已知條件出發(fā),依據不等式的性質(zhì)和已證明過(guò)的不等式,推導出所要證明的不等式成立,這種證明不等式的方法叫做綜合法.
(3)分析法:從欲證的不等式出發(fā),逐步分析使這不等式成立的`充分條件,直到所需條件已判斷為正確時(shí),從而斷定原不等式成立,這種證明不等式的方法叫做分析法.
證明不等式除以上三種基本方法外,還有反證法、數學(xué)歸納法等.
高二數學(xué)知識點(diǎn)精選總結【五篇】3
第一章:集合和函數的基本概念,錯誤基本都集中在空集這一概念上,而每次考試基本都會(huì )在選填題上涉及這一概念,一個(gè)不小心就是五分沒(méi)了。次一級的知識點(diǎn)就是集合的韋恩圖,會(huì )畫(huà)圖,集合的“并、補、交、非”也就解決了,還有函數的定義域和函數的單調性、增減性的概念,這些都是函數的基礎而且不難理解。在第一輪復習中一定要反復去記這些概念,的方法是寫(xiě)在筆記本上,每天至少看上一遍。
第二章:基本初等函數:指數、對數、冪函數三大函數的運算性質(zhì)及圖像。函數的幾大要素和相關(guān)考點(diǎn)基本都在函數圖像上有所體現,單調性、增減性、極值、零點(diǎn)等等。關(guān)于這三大函數的運算公式,多記多用,多做一點(diǎn)練習基本就沒(méi)多大問(wèn)題。函數圖像是這一章的重難點(diǎn),而且圖像問(wèn)題是不能靠記憶的,必須要理解,要會(huì )熟練的畫(huà)出函數圖像,定義域、值域、零點(diǎn)等等。對于冪函數還要搞清楚當指數冪大于一和小于一時(shí)圖像的不同及函數值的大小關(guān)系,這也是?汲ee點(diǎn)。另外指數函數和對數函數的對立關(guān)系及其相互之間要怎樣轉化問(wèn)題也要了解清楚。
第三章:函數的應用。主要就是函數與方程的結合。其實(shí)就是的實(shí)根,即函數的零點(diǎn),也就是函數圖像與X軸的交點(diǎn)。這三者之間的轉化關(guān)系是這一章的重點(diǎn),要學(xué)會(huì )在這三者之間的靈活轉化,以求能最簡(jiǎn)單的解決問(wèn)題。關(guān)于證明零點(diǎn)的方法,直接計算加得必有零點(diǎn),連續函數在x軸上方下方有定義則有零點(diǎn)等等,這是這一章的難點(diǎn),這幾種證明方法都要記得,多練習強化。這二次函數的零點(diǎn)的Δ判別法,這個(gè)倒不算難。
高二數學(xué)知識點(diǎn)精選總結【五篇】4
導數是微積分中的重要基礎概念。當函數y=f(x)的自變量x在一點(diǎn)x0上產(chǎn)生一個(gè)增量Δx時(shí),函數輸出值的增量Δy與自變量增量Δx的比值在Δx趨于0時(shí)的極限a如果存在,a即為在x0處的導數,記作f'(x0)或df(x0)/dx。
導數是函數的局部性質(zhì)。一個(gè)函數在某一點(diǎn)的導數描述了這個(gè)函數在這一點(diǎn)附近的變化率。如果函數的自變量和取值都是實(shí)數的話(huà),函數在某一點(diǎn)的導數就是該函數所代表的曲線(xiàn)在這一點(diǎn)上的切線(xiàn)斜率。導數的本質(zhì)是通過(guò)極限的概念對函數進(jìn)行局部的線(xiàn)性逼近。例如在運動(dòng)學(xué)中,物體的位移對于時(shí)間的導數就是物體的瞬時(shí)速度。
不是所有的函數都有導數,一個(gè)函數也不一定在所有的點(diǎn)上都有導數。若某函數在某一點(diǎn)導數存在,則稱(chēng)其在這一點(diǎn)可導,否則稱(chēng)為不可導。然而,可導的函數一定連續;不連續的函數一定不可導。
對于可導的函數f(x),x?f'(x)也是一個(gè)函數,稱(chēng)作f(x)的導函數。尋找已知的函數在某點(diǎn)的導數或其導函數的過(guò)程稱(chēng)為求導。實(shí)質(zhì)上,求導就是一個(gè)求極限的過(guò)程,導數的四則運算法則也來(lái)源于極限的四則運算法則。反之,已知導函數也可以倒過(guò)來(lái)求原來(lái)的函數,即不定積分。微積分基本定理說(shuō)明了求原函數與積分是等價(jià)的。求導和積分是一對互逆的操作,它們都是微積分學(xué)中最為基礎的概念。
高二數學(xué)知識點(diǎn)精選總結【五篇】5
導數:導數的意義-導數公式-導數應用(極值最值問(wèn)題、曲線(xiàn)切線(xiàn)問(wèn)題)
1、導數的定義:在點(diǎn)處的導數記作.
2.導數的幾何物理意義:曲線(xiàn)在點(diǎn)處切線(xiàn)的斜率
、賙=f/(x0)表示過(guò)曲線(xiàn)y=f(x)上P(x0,f(x0))切線(xiàn)斜率。V=s/(t)表示即時(shí)速度。a=v/(t)表示加速度。
3.常見(jiàn)函數的導數公式:①;②;③;
、;⑥;⑦;⑧。
4.導數的四則運算法則:
5.導數的應用:
(1)利用導數判斷函數的單調性:設函數在某個(gè)區間內可導,如果,那么為增函數;如果,那么為減函數;
注意:如果已知為減函數求字母取值范圍,那么不等式恒成立。
(2)求極值的步驟:
、偾髮;
、谇蠓匠痰母;
、哿斜:檢驗在方程根的左右的符號,如果左正右負,那么函數在這個(gè)根處取得極大值;如果左負右正,那么函數在這個(gè)根處取得極小值;
(3)求可導函數值與最小值的步驟:
、∏蟮母;ⅱ把根與區間端點(diǎn)函數值比較,的為值,最小的是最小值。
【高二數學(xué)知識點(diǎn)精選總結【五篇】】相關(guān)文章:
高二化學(xué)知識點(diǎn)總結01-14
高二物理知識點(diǎn)總結08-30
高考數學(xué)知識點(diǎn)總結09-03
高二生物知識點(diǎn)總結12-12
高二地理知識點(diǎn)總結07-22
高一數學(xué)知識點(diǎn)總結07-20