成人高考數學(xué)知識點(diǎn)總結
在年少學(xué)習的日子里,不管我們學(xué)什么,都需要掌握一些知識點(diǎn),知識點(diǎn)有時(shí)候特指教科書(shū)上或考試的知識。為了幫助大家掌握重要知識點(diǎn),下面是小編為大家整理的成人高考數學(xué)知識點(diǎn)總結,僅供參考,希望能夠幫助到大家。
1、集合思想及應用
集合是高中數學(xué)的基本知識,為歷年必考內容之一,主要考查對集合基本概念的認識和理解。
例:已知集合A={(x,y)|x2+mx-y+2=0},B={(x,y)|x-y+1=0,且0≤x≤2},如果A∩B≠ ,求實(shí)數m的取值范圍。
2、充要條件的判定
充分條件、必要條件和充要條件是重要的數學(xué)概念,主要用來(lái)區分命題的條件p和結論q之間的關(guān)系。
例:已知關(guān)于x的實(shí)系數二次方程x2+ax+b=0有兩個(gè)實(shí)數根α、β,證明:|α|<2且|β|<2是2|a|<4+b且|b|<4的充要條件
3、運用向量法解題
本節內容主要是幫助考生運用向量法來(lái)分析,解決一些相關(guān)問(wèn)題。
例:三角形ABC中,A(5,-1)、B(-1,7)、C(1,2),求:(1)BC邊上的中線(xiàn)
AM的長(cháng);(2)∠CAB的平分線(xiàn)AD的長(cháng);(3)cosABC的值。
4、三個(gè)“二次”及關(guān)系
三個(gè)“二次”即一元二次函數、一元二次方程、一元二次不等式是中學(xué)數學(xué)的重要內容,具有豐富的內涵和密切的聯(lián)系,同時(shí)也是研究包含二次曲線(xiàn)在內的許多內容的工具。高考試題中近一半的試題與這三個(gè)“二次”問(wèn)題有關(guān)。
例:已知對于x的所有實(shí)數值,二次函數f(x)=x2-4ax+2a+12(a∈R)的值都是非負的,求關(guān)于x的方程 =|a-1|+2的根的取值范圍。
5、求解函數解析式
求解函數解析式是高考重點(diǎn)考查內容之一,需引起重視。
例:已知f(2-cosx)=cos2x+cosx,求f(x-1)。
例:(1)已知函數f(x)滿(mǎn)足f(logax)=(其中a>0,a≠1,x>0),求f(x)的表達式。
(2)已知二次函數f(x)=ax2+bx+c滿(mǎn)足|f(1)|=|f(-1)|=|f(0)|=1,求f(x)的表達式。
6、函數值域及求法
函數的值域及其求法是近幾年高考考查的重點(diǎn)內容之一。
例:設m是實(shí)數,記M={m|m>1},f(x)=log3(x2-4mx+4m2+m+ )。
(1)證明:當m∈M時(shí),f(x)對所有實(shí)數都有意義;反之,若f(x)對所有實(shí)數x都有意義,則m∈M。
(2)當m∈M時(shí),求函數f(x)的最小值。
(3)求證:對每個(gè)m∈M,函數f(x)的最小值都不小于1。
7、奇偶性與單調性(一)
函數的單調性、奇偶性是高考的重點(diǎn)內容之一,掌握判定方法,正確認識單調函數與奇偶函數的圖象。
例:設a>0,f(x)= 是R上的偶函數,(1)求a的值;(2)證明: f(x)在(0,+∞)上是增函數。
8、奇偶性與單調性(二)
函數的單調性、奇偶性是高考的重點(diǎn)和熱點(diǎn)內容之一,特別是兩性質(zhì)的應用更加突出。本節主要幫助考生學(xué)會(huì )怎樣利用兩性質(zhì)解題,掌握基本方法,形成應用意識。
例:已知偶函數f(x)在(0,+∞)上為增函數,且f(2)=0,解不等式f[log2(x2+5x+4)]≥0。
例:已知奇函數f(x)是定義在(-3,3)上的減函數,且滿(mǎn)足不等式f(x-3)+f(x2-3)<0,設不等式解集為A,B=A∪{x|1≤x≤ },求函數g(x)=-3x2+3x-4(x∈B)的最大值。
9、指數函數、對數函數問(wèn)題
指數函數、對數函數是高考考查的重點(diǎn)內容之一。
例:設f(x)=log2 ,F(x)= +f(x)。
(1)試判斷函數f(x)的單調性,并用函數單調性定義,給出證明;
(2)若f(x)的反函數為f-1(x),證明:對任意的自然數n(n≥3),都有f-1(n)> ;
(3)若F(x)的反函數F-1(x),證明:方程F-1(x)=0有惟一解。
10、函數圖象與圖象變換
函數的圖象與性質(zhì)是高考考查的重點(diǎn)內容之一,掌握函數圖象變化的一般規律,能利用函數的圖象研究函數的性質(zhì)。
例:已知函數f(x)=ax3+bx2+cx+d的圖象如圖,求b的范圍。
11、函數中的綜合問(wèn)題
函數綜合問(wèn)題是歷年高考的熱點(diǎn)和重點(diǎn)內容之一,一般難度較大。
例:設函數f(x)的定義域為R,對任意實(shí)數x、y都有f(x+y)=f(x)+f(y),當x>0時(shí)f(x)<0且f(3)=-4。
(1)求證:f(x)為奇函數;
(2)在區間[-9,9]上,求f(x)的最值。
12、三角函數的圖象和性質(zhì)
三角函數的圖象和性質(zhì)是高考的熱點(diǎn),在復習時(shí)要充分運用數形結合的思想,把圖象和性質(zhì)結合起來(lái)。本節主要幫助考生掌握圖象和性質(zhì)并會(huì )靈活運用。
例:已知α、β為銳角,且x(α+β- )>0,試證不等式f(x)= x<2對一切非零實(shí)數都成立。
例:設z1=m+(2-m2)i,z2=cosθ+(λ+sinθ)i,其中m,λ,θ∈R,已知z1=2z2,求λ的取值范圍。
13、三角函數式的化簡(jiǎn)與求值
三角函數式的化簡(jiǎn)和求值是高考考查的重點(diǎn)內容之一。通過(guò)本節的學(xué)習使考生掌握化簡(jiǎn)和求值問(wèn)題的解題規律和途徑,特別是要掌握化簡(jiǎn)和求值的一些常規技巧,以?xún)?yōu)化我們的解題效果,做到事半功倍。
例:已知 <β<α< ,cos(α-β)= ,sin(α+β)=- ,求sin2α的'值_________.
14、三角形中的三角函數式
三角形中的三角函數關(guān)系是歷年高考的重點(diǎn)內容之一。
已知△ABC的三個(gè)內角A、B、C滿(mǎn)足A+C=2B. ,求cos 的值。
15、不等式的證明策略
不等式的證明,方法靈活多樣,它可以和很多內容結合。高考解答題中,常滲透不等式證明的內容,純不等式的證明,歷來(lái)是高中數學(xué)中的一個(gè)難點(diǎn),本難點(diǎn)著(zhù)重培養考生數學(xué)式的變形能力,邏輯思維能力以及分析問(wèn)題和解決問(wèn)題的能力。
16、解不等式
不等式在生產(chǎn)實(shí)踐和相關(guān)學(xué)科的學(xué)習中應用廣泛,又是學(xué)習高等數學(xué)的重要工具,所以不等式是高考數學(xué)命題的重點(diǎn),解不等式的應用非常廣泛,如求函數的定義域、值域,求參數的取值范圍等,高考試題中對于解不等式要求較高,往往與函數概念,特別是二次函數、指數函數、對數函數等有關(guān)概念和性質(zhì)密切聯(lián)系,應重視;從歷年高考題目看,關(guān)于解不等式的內容年年都有,有的是直接考查解不等式,有的則是間接考查解不等式。
17、不等式的綜合應用
不等式是繼函數與方程之后的又一重點(diǎn)內容之一,作為解決問(wèn)題的工具,與其他知識綜合運用的特點(diǎn)比較突出。不等式的應用大致可分為兩類(lèi):一類(lèi)是建立不等式求參數的取值范圍或解決一些實(shí)際應用問(wèn)題;另一類(lèi)是建立函數關(guān)系,利用均值不等式求最值問(wèn)題、本難點(diǎn)提供相關(guān)的思想方法,使考生能夠運用不等式的性質(zhì)、定理和方法解決函數、方程、實(shí)際應用等方面的問(wèn)題。
例:設二次函數f(x)=ax2+bx+c(a>0),方程f(x)-x=0的兩個(gè)根x1、x2滿(mǎn)足0
(1)當x∈[0,x1 時(shí),證明x
(2)設函數f(x)的圖象關(guān)于直線(xiàn)x=x0對稱(chēng),證明:x0< 。
【成人高考數學(xué)知識點(diǎn)總結】相關(guān)文章: