成人免费看黄网站无遮挡,caowo999,se94se欧美综合色,a级精品九九九大片免费看,欧美首页,波多野结衣一二三级,日韩亚洲欧美综合

高三數學(xué)知識點(diǎn)總結

時(shí)間:2024-06-08 20:20:45 毅霖 知識點(diǎn)總結 我要投稿

關(guān)于高三數學(xué)知識點(diǎn)總結

  總結在一個(gè)時(shí)期、一個(gè)年度、一個(gè)階段對學(xué)習和工作生活等情況加以回顧和分析的一種書(shū)面材料,它可以幫助我們總結以往思想,發(fā)揚成績(jì),為此我們要做好回顧,寫(xiě)好總結。但是卻發(fā)現不知道該寫(xiě)些什么,以下是小編精心整理的高三數學(xué)知識點(diǎn)總結,希望能夠幫助到大家。

關(guān)于高三數學(xué)知識點(diǎn)總結

  高三數學(xué)知識點(diǎn)總結 1

  三角函數。

  注意歸一公式、誘導公式的正確性。

  數列題。

  1、證明一個(gè)數列是等差(等比)數列時(shí),最后下結論時(shí)要寫(xiě)上以誰(shuí)為首項,誰(shuí)為公差(公比)的等差(等比)數列;

  2、最后一問(wèn)證明不等式成立時(shí),如果一端是常數,另一端是含有n的式子時(shí),一般考慮用放縮法;如果兩端都是含n的式子,一般考慮數學(xué)歸納法(用數學(xué)歸納法時(shí),當n=k+1時(shí),一定利用上n=k時(shí)的假設,否則不正確。利用上假設后,如何把當前的式子轉化到目標式子,一般進(jìn)行適當的放縮,這一點(diǎn)是有難度的。簡(jiǎn)潔的方法是,用當前的式子減去目標式子,看符號,得到目標式子,下結論時(shí)一定寫(xiě)上綜上:由①②得證;

  3、證明不等式時(shí),有時(shí)構造函數,利用函數單調性很簡(jiǎn)單

  立體幾何題。

  1、證明線(xiàn)面位置關(guān)系,一般不需要去建系,更簡(jiǎn)單;

  2、求異面直線(xiàn)所成的角、線(xiàn)面角、二面角、存在性問(wèn)題、幾何體的高、表面積、體積等問(wèn)題時(shí),要建系;

  3、注意向量所成的角的余弦值(范圍)與所求角的余弦值(范圍)的關(guān)系。

  概率問(wèn)題。

  1、搞清隨機試驗包含的所有基本事件和所求事件包含的基本事件的個(gè)數;

  2、搞清是什么概率模型,套用哪個(gè)公式;

  3、記準均值、方差、標準差公式;

  4、求概率時(shí),正難則反(根據p1+p2+……+pn=1);

  5、注意計數時(shí)利用列舉、樹(shù)圖等基本方法;

  6、注意放回抽樣,不放回抽樣;

  正弦、余弦典型例題。

  1、在△ABC中,∠C=90°,a=1,c=4,則sinA的.值為

  2、已知α為銳角,且,則α的度數是()A、30°B、45°C、60°D、90°

  3、在△ABC中,若,∠A,∠B為銳角,則∠C的度數是()A、75°B、90°C、105°D、120°

  4、若∠A為銳角,且,則A=()A、15°B、30°C、45°D、60°

  5、在△ABC中,AB=AC=2,AD⊥BC,垂足為D,且AD=,E是AC中點(diǎn),EF⊥BC,垂足為F,求sin∠EBF的值。

  正弦、余弦解題訣竅。

  1、已知兩角及一邊,或兩邊及一邊的對角(對三角形是否存在要討論)用正弦定理。

  2、已知三邊,或兩邊及其夾角用余弦定理

  3、余弦定理對于確定三角形形狀非常有用,只需要知道角的余弦值為正,為負,還是為零,就可以確定是鈍角。直角還是銳角。

  高三數學(xué)知識點(diǎn)總結 2

  1、數列的定義、分類(lèi)與通項公式

 。1)數列的定義:

 、贁盗校喊凑找欢樞蚺帕械囊涣袛。

 、跀盗械捻棧簲盗兄械拿恳粋(gè)數。

 。2)數列的分類(lèi):

  分類(lèi)標準類(lèi)型滿(mǎn)足條件

  項數有窮數列項數有限

  無(wú)窮數列項數無(wú)限

  項與項間的大小關(guān)系遞增數列an+1>an其中n∈N_

  遞減數列an+1

  常數列an+1=an

 。3)數列的通項公式:

  如果數列{an}的第n項與序號n之間的關(guān)系可以用一個(gè)式子來(lái)表示,那么這個(gè)公式叫做這個(gè)數列的通項公式。

  2、數列的遞推公式

  如果已知數列{an}的首項(或前幾項),且任一項an與它的前一項an—1(n≥2)(或前幾項)間的.關(guān)系可用一個(gè)公式來(lái)表示,那么這個(gè)公式叫數列的遞推公式。

  3、對數列概念的理解

 。1)數列是按一定“順序”排列的一列數,一個(gè)數列不僅與構成它的“數”有關(guān),而且還與這些“數”的排列順序有關(guān),這有別于集合中元素的無(wú)序性。因此,若組成兩個(gè)數列的數相同而排列次序不同,那么它們就是不同的兩個(gè)數列。

 。2)數列中的數可以重復出現,而集合中的元素不能重復出現,這也是數列與數集的區別。

  4、數列的函數特征

  數列是一個(gè)定義域為正整數集N_(或它的有限子集{1,2,3,…,n})的特殊函數,數列的通項公式也就是相應的函數解析式,即f(n)=an(n∈N_)。

  高三數學(xué)知識點(diǎn)總結 3

  第一部分集合

 。1)含n個(gè)元素的集合的子集數為2^n,真子集數為2^n—1;非空真子集的數為2^n—2;

 。2)注意:討論的時(shí)候不要遺忘了的情況。

  第二部分函數與導數

  1、映射:注意①第一個(gè)集合中的元素必須有象;②一對一,或多對一。

  2、函數值域的求法:①分析法;②配方法;③判別式法;④利用函數單調性;⑤換元法;⑥利用均值不等式;⑦利用數形結合或幾何意義(斜率、距離、絕對值的意義等);⑧利用函數有界性(、、等);⑨導數法

  3、復合函數的有關(guān)問(wèn)題

 。1)復合函數定義域求法:

 、偃鬴(x)的定義域為〔a,b〕,則復合函數f[g(x)]的定義域由不等式a≤g(x)≤b解出

 、谌鬴[g(x)]的定義域為[a,b],求f(x)的定義域,相當于x∈[a,b]時(shí),求g(x)的值域。

 。2)復合函數單調性的判定:

 、偈紫葘⒃瘮捣纸鉃榛竞瘮担簝群瘮蹬c外函數;

 、诜謩e研究?jì)、外函數在各自定義域內的單調性;

 、鄹鶕巴詣t增,異性則減”來(lái)判斷原函數在其定義域內的單調性。

  注意:外函數的定義域是內函數的值域。

  4、分段函數:值域(最值)、單調性、圖象等問(wèn)題,先分段解決,再下結論。

  5、函數的奇偶性

 、藕瘮档亩x域關(guān)于原點(diǎn)對稱(chēng)是函數具有奇偶性的'必要條件;

 、剖瞧婧瘮;

 、鞘桥己瘮;

 、绕婧瘮翟谠c(diǎn)有定義,則;

 、稍陉P(guān)于原點(diǎn)對稱(chēng)的單調區間內:奇函數有相同的單調性,偶函數有相反的單調性;

 。6)若所給函數的解析式較為復雜,應先等價(jià)變形,再判斷其奇偶性;

  1、對于函數f(x),如果對于定義域內任意一個(gè)x,都有f(—x)=—f(x),那么f(x)為奇函數;

  2、對于函數f(x),如果對于定義域內任意一個(gè)x,都有f(—x)=f(x),那么f(x)為偶函數;

  3、一般地,對于函數y=f(x),定義域內每一個(gè)自變量x,都有f(a+x)=2b—f(a—x),則y=f(x)的圖象關(guān)于點(diǎn)(a,b)成中心對稱(chēng);

  4、一般地,對于函數y=f(x),定義域內每一個(gè)自變量x都有f(a+x)=f(a—x),則它的圖象關(guān)于x=a成軸對稱(chēng)。

  5、函數是奇函數或是偶函數稱(chēng)為函數的奇偶性,函數的奇偶性是函數的整體性質(zhì);

  6、由函數奇偶性定義可知,函數具有奇偶性的一個(gè)必要條件是,對于定義域內的任意一個(gè)x,則—x也一定是定義域內的一個(gè)自變量(即定義域關(guān)于原點(diǎn)對稱(chēng))。

  高三數學(xué)知識點(diǎn)總結 4

  等式的性質(zhì):

 、俨坏仁降男再|(zhì)可分為不等式基本性質(zhì)和不等式運算性質(zhì)兩部分。

  不等式基本性質(zhì)有:

 。1)a>bb

 。2)a>b,b>ca>c(傳遞性)

 。3)a>ba+c>b+c(c∈R)

 。4)c>0時(shí),a>bac>bc

  c<0時(shí),a>bac

  運算性質(zhì)有:

 。1)a>b,c>da+c>b+d。

 。2)a>b>0,c>d>0ac>bd。

 。3)a>b>0an>bn(n∈N,n>1)。

 。4)a>b>0>(n∈N,n>1)。

  應注意,上述性質(zhì)中,條件與結論的邏輯關(guān)系有兩種:“”和“”即推出關(guān)系和等價(jià)關(guān)系。一般地,證明不等式就是從條件出發(fā)施行一系列的推出變換。解不等式就是施行一系列的等價(jià)變換。因此,要正確理解和應用不等式性質(zhì)。

 、陉P(guān)于不等式的性質(zhì)的考察,主要有以下三類(lèi)問(wèn)題:

 。1)根據給定的不等式條件,利用不等式的性質(zhì),判斷不等式能否成立。

 。2)利用不等式的.性質(zhì)及實(shí)數的性質(zhì),函數性質(zhì),判斷實(shí)數值的大小。

 。3)利用不等式的性質(zhì),判斷不等式變換中條件與結論間的充分或必要關(guān)系。

  高中數學(xué)集合復習知識點(diǎn)

  任一A,B,記做AB

  AB,BA,A=B

  AB={|A|,且|B|}

  AB={|A|,或|B|}

  Card(AB)=card(A)+card(B)—card(AB)

 。1)命題

  原命題若p則q

  逆命題若q則p

  否命題若p則q

  逆否命題若q,則p

 。2)AB,A是B成立的充分條件

  BA,A是B成立的必要條件

  AB,A是B成立的充要條件

  1、集合元素具有①確定性;②互異性;③無(wú)序性

  2、集合表示方法①列舉法;②描述法;③韋恩圖;④數軸法

 。3)集合的運算

 、貯∩(B∪C)=(A∩B)∪(A∩C)

 、贑u(A∩B)=CuA∪CuB

  Cu(A∪B)=CuA∩CuB

 。4)集合的性質(zhì)

  n元集合的字集數:2n

  真子集數:2n—1;

  非空真子集數:2n—2

  高三數學(xué)知識點(diǎn)總結 5

  復數的概念:

  形如a+bi(a,b∈R)的數叫復數,其中i叫做虛數單位。全體復數所成的集合叫做復數集,用字母C表示。

  復數的表示:

  復數通常用字母z表示,即z=a+bi(a,b∈R),這一表示形式叫做復數的代數形式,其中a叫復數的實(shí)部,b叫復數的虛部。

  復數的幾何意義:

 。1)復平面、實(shí)軸、虛軸:

  點(diǎn)Z的橫坐標是a,縱坐標是b,復數z=a+bi(a、b∈R)可用點(diǎn)Z(a,b)表示,這個(gè)建立了直角坐標系來(lái)表示復數的平面叫做復平面,x軸叫做實(shí)軸,y軸叫做虛軸。顯然,實(shí)軸上的點(diǎn)都表示實(shí)數,除原點(diǎn)外,虛軸上的點(diǎn)都表示純虛數

 。2)復數的幾何意義:復數集C和復平面內所有的點(diǎn)所成的.集合是一一對應關(guān)系,即

  這是因為,每一個(gè)復數有復平面內惟一的一個(gè)點(diǎn)和它對應;反過(guò)來(lái),復平面內的每一個(gè)點(diǎn),有惟一的一個(gè)復數和它對應。

  這就是復數的一種幾何意義,也就是復數的另一種表示方法,即幾何表示方法。

  復數的模:

  復數z=a+bi(a、b∈R)在復平面上對應的點(diǎn)Z(a,b)到原點(diǎn)的距離叫復數的模,記為|Z|,即|Z|=

  虛數單位i:

 。1)它的平方等于—1,即i2=—1;

 。2)實(shí)數可以與它進(jìn)行四則運算,進(jìn)行四則運算時(shí),原有加、乘運算律仍然成立

 。3)i與—1的關(guān)系:i就是—1的一個(gè)平方根,即方程x2=—1的一個(gè)根,方程x2=—1的另一個(gè)根是—i。

 。4)i的周期性:i4n+1=i,i4n+2=—1,i4n+3=—i,i4n=1。

  復數模的性質(zhì):

  復數與實(shí)數、虛數、純虛數及0的關(guān)系:

  對于復數a+bi(a、b∈R),當且僅當b=0時(shí),復數a+bi(a、b∈R)是實(shí)數a;當b≠0時(shí),復數z=a+bi叫做虛數;當a=0且b≠0時(shí),z=bi叫做純虛數;當且僅當a=b=0時(shí),z就是實(shí)數0。

  高三數學(xué)知識點(diǎn)總結 6

  1、課前預習:首先上課前要做預習,課前預習能提前了解將要學(xué)習的知識。

  2、記筆記:指的是課堂筆記,每節課時(shí)間有限,老師一般講的都是精華部分。

  3、課后復習:通預習一樣,也是行之有效的方法。

  4、涉獵課外習題:多涉獵一些課外習題,學(xué)習它們的解題思路和方法。

  5、學(xué)會(huì )歸類(lèi)總結:學(xué)習數學(xué)記得東西很多,如果單純的'記憶每個(gè)公式,不但增加記憶量而且容易忘。

  6、建立糾錯本:把經(jīng)常出錯的題目集中在一起。

  7、寫(xiě)考試總結:考試總結可以幫助找出學(xué)習之中不足之處,以及知識的薄弱環(huán)節。

  8、培養學(xué)習興趣:興趣是最好的老師,只有有了興趣才會(huì )自主自發(fā)的進(jìn)行學(xué)習,學(xué)習效率才會(huì )提高。

  高三數學(xué)知識點(diǎn)總結 7

  必修一

  第一章:集合和函數的基本概念

  這一章的易錯點(diǎn),都集中在空集這一概念上,而每次考試基本都會(huì )在選填題上涉及這一概念,一個(gè)不小心就會(huì )丟分。次一級的知識點(diǎn)就是集合的韋恩圖、會(huì )畫(huà)圖,掌握了這些,集合的“并、補、交、非”也就解決了。

  還有函數的定義域和函數的單調性、增減性的概念,這些都是函數的基礎而且不難理解。在第一輪復習中一定要反復去記這些概念,最好的方法是寫(xiě)在筆記本上,每天至少看上一遍。

  第二章:基本初等函數

  ——指數、對數、冪函數三大函數的運算性質(zhì)及圖像

  函數的幾大要素和相關(guān)考點(diǎn)基本都在函數圖像上有所體現,單調性、增減性、極值、零點(diǎn)等等。關(guān)于這三大函數的運算公式,多記多用,多做一點(diǎn)練習,基本就沒(méi)問(wèn)題。

  函數圖像是這一章的重難點(diǎn),而且圖像問(wèn)題是不能靠記憶的,必須要理解,要會(huì )熟練的畫(huà)出函數圖像,定義域、值域、零點(diǎn)等等。對于冪函數還要搞清楚當指數冪大于一和小于一時(shí)圖像的不同及函數值的大小關(guān)系,這也是?键c(diǎn)。另外指數函數和對數函數的對立關(guān)系及其相互之間要怎樣轉化等問(wèn)題,需要著(zhù)重回看課本例題。

  第三章:函數的應用

  這一章主要考是函數與方程的結合,其實(shí)就是函數的零點(diǎn),也就是函數圖像與X軸的交點(diǎn)。這三者之間的轉化關(guān)系是這一章的重點(diǎn),要學(xué)會(huì )在這三者之間靈活轉化,以求能最簡(jiǎn)單的解決問(wèn)題。關(guān)于證明零點(diǎn)的方法,直接計算加得必有零點(diǎn),連續函數在x軸上方下方有定義則有零點(diǎn)等等,這些難點(diǎn)對應的證明方法都要記住,多練習。二次函數的零點(diǎn)的Δ判別法,這個(gè)需要你看懂定義,多畫(huà)多做題。

  必修二

  第一章:空間幾何

  三視圖和直觀(guān)圖的繪制不算難,但是從三視圖復原出實(shí)物從而計算就需要比較強的空間感,要能從三張平面圖中慢慢在腦海中畫(huà)出實(shí)物,這就要求學(xué)生特別是空間感弱的學(xué)生多看書(shū)上的例圖,把實(shí)物圖和平面圖結合起來(lái)看,先熟練地正推,再慢慢的逆推(建議用紙做一個(gè)立方體來(lái)找感覺(jué))。

  在做題時(shí)結合草圖是有必要的,不能單憑想象。后面的錐體、柱體、臺體的表面積和體積,把公式記牢問(wèn)題就不大。

  第二章:點(diǎn)、直線(xiàn)、平面之間的位置關(guān)系

  這一章除了面與面的相交外,對空間概念的`要求不強,大部分都可以直接畫(huà)圖,這就要求學(xué)生多看圖。自己畫(huà)草圖的時(shí)候要嚴格注意好實(shí)線(xiàn)虛線(xiàn),這是個(gè)規范性問(wèn)題。

  關(guān)于這一章的內容,牢記直線(xiàn)與直線(xiàn)、面與面、直線(xiàn)與面相交、垂直、平行的幾大定理及幾大性質(zhì),同時(shí)能用圖形語(yǔ)言、文字語(yǔ)言、數學(xué)表達式表示出來(lái)。只要這些全部過(guò)關(guān)這一章就解決了一大半。這一章的難點(diǎn)在于二面角這個(gè)概念,大多同學(xué)即使知道有這個(gè)概念,也無(wú)法理解怎么在二面里面做出這個(gè)角。對這種情況只有從定義入手,先要把定義記牢,再多做多看,這個(gè)沒(méi)有什么捷徑可走。

  第三章:直線(xiàn)與方程

  這一章主要講斜率與直線(xiàn)的位置關(guān)系,只要搞清楚直線(xiàn)平行、垂直的斜率表示問(wèn)題就錯不了。需要注意的是當直線(xiàn)垂直時(shí)斜率不存在的情況是考試中的?键c(diǎn)。另外直線(xiàn)方程的幾種形式所涉及到的一般公式,會(huì )用就行,要求不高。點(diǎn)與點(diǎn)的距離、點(diǎn)與直線(xiàn)的距離、直線(xiàn)與直線(xiàn)的距離,只要直接套用公式就行,沒(méi)什么難點(diǎn)。

  第四章:圓與方程

  能熟練地把一般式方程轉化為標準方程,通常的考試形式是等式的一邊含根號,另一邊不含,這時(shí)就要注意開(kāi)方后定義域或值域的限制。通過(guò)點(diǎn)到點(diǎn)的距離、點(diǎn)到直線(xiàn)的距離、圓半徑的大小關(guān)系來(lái)判斷點(diǎn)與圓、直線(xiàn)與圓、圓與圓的位置關(guān)系。另外注意圓的對稱(chēng)性引起的相切、相交等的多種情況,自己把幾種對稱(chēng)的形式羅列出來(lái),多思考就不難理解了。

  必修三

  總的來(lái)說(shuō)這一本書(shū)難度不大,只是比較繁瑣,需要有耐心的去畫(huà)圖去計算。

  程序框圖與三種算法語(yǔ)句的結合,及框圖的算法表示,不要用常規的語(yǔ)言來(lái)理解,否則你會(huì )在這樣的題型中栽跟頭。

  秦九韶算法是重點(diǎn),要牢記算法的公式。

  統計就是對一堆數據的處理,考試也是以計算為主,會(huì )從條形圖中計算出中位數等數字特征,對于回歸問(wèn)題,只要記住公式,也就是個(gè)計算問(wèn)題。

  概率,主要就只幾何概型、古典概型。幾何概型只要會(huì )找表示所求事件的長(cháng)度面積等,古典概型只要能表示出全部事件就可以。

  必修四

  第一章:三角函數

  考試必在這一塊出題,且題量不!誘導公式和基本三角函數圖像的一些性質(zhì),沒(méi)有太大難度,只要會(huì )畫(huà)圖就行。難度都在三角函數形函數的振幅、頻率、周期、相位、初相上,及根據最值計算A、B的值和周期,及恒等變化時(shí)的圖像及性質(zhì)變化,這部分的知識點(diǎn)內容較多,需要多花時(shí)間,不要再定義上死扣,要從圖像和例題入手。

  第二章:平面向量

  向量的運算性質(zhì)及三角形法則、平行四邊形法則的難度都不大,只要在計算的時(shí)候記住要“同起點(diǎn)的向量”這一條就OK了。向量共線(xiàn)和垂直的數學(xué)表達,是計算當中經(jīng)常用到的公式。向量的共線(xiàn)定理、基本定理、數量積公式。分點(diǎn)坐標公式是重點(diǎn)內容,也是難點(diǎn)內容,要花心思記憶。

  第三章:三角恒等變換

  這一章公式特別多,像差倍半角公式這類(lèi)內容常會(huì )出現,所以必須要記牢。由于量比較大,記憶難度大,所以建議用紙寫(xiě)好后貼在桌子上,天天都要看。要提一點(diǎn),就是三角恒等變換是有一定規律的,記憶的時(shí)候可以集合三角函數去記。

  必修五

  第一章:解三角形

  掌握正弦、余弦公式及其變式、推論、三角面積公式即可。

  第二章:數列

  等差、等比數列的通項公式、前n項及一些性質(zhì)常出現于填空、解答題中,這部分內容學(xué)起來(lái)比較簡(jiǎn)單,但考驗對其推導、計算、活用的層面較深,因此要仔細?荚囶}中,通項公式、前n項和的內容出現頻次較多,這類(lèi)題看到后要帶有目的的去推導就沒(méi)問(wèn)題了。

  第三章:不等式

  這一章一般用線(xiàn)性規劃的形式來(lái)考察學(xué)生,這種題通常是和實(shí)際問(wèn)題聯(lián)系的,所以要會(huì )讀題,從題中找不等式,畫(huà)出線(xiàn)性規劃圖,然后再根據實(shí)際問(wèn)題的限制要求來(lái)求最值。

  高三數學(xué)知識點(diǎn)總結 8

  任一x=A,x=B,記做AB

  AB,BAA=B

  AB={x|x=A,且x=B}

  AB={x|x=A,或x=B}

  Card(AB)=card(A)+card(B)—card(AB)

 。1)命題

  原命題若p則q

  逆命題若q則p

  否命題若p則q

  逆否命題若q,則p

 。2)AB,A是B成立的充分條件

  BA,A是B成立的必要條件

  AB,A是B成立的充要條件

  1、集合元素具有

 、俅_定性;

 、诨ギ愋;

 、蹮o(wú)序性

  2、集合表示方法

 、倭信e法;

 、诿枋龇;

 、垌f恩圖;

 、軘递S法

 。3)集合的運算

 、貯∩(B∪C)=(A∩B)∪(A∩C)

 、贑u(A∩B)=CuA∪CuB

  Cu(A∪B)=CuA∩CuB

 。4)集合的'性質(zhì)

  n元集合的字集數:2n

  真子集數:2n—1;

  非空真子集數:2n—2

  高三數學(xué)知識點(diǎn)總結 9

 、僬忮F各側棱相等,各側面都是全等的等腰三角形,各等腰三角形底邊上的高相等(它叫做正棱錐的斜高)。

 、谡忮F的高、斜高和斜高在底面內的射影組成一個(gè)直角三角形,正棱錐的高、側棱、側棱在底面內的射影也組成一個(gè)直角三角形。

 、翘厥饫忮F的頂點(diǎn)在底面的射影位置:

 、倮忮F的側棱長(cháng)均相等,則頂點(diǎn)在底面上的'射影為底面多邊形的外心。

 、诶忮F的側棱與底面所成的角均相等,則頂點(diǎn)在底面上的射影為底面多邊形的外心。

 、劾忮F的各側面與底面所成角均相等,則頂點(diǎn)在底面上的射影為底面多邊形內心。

 、芾忮F的頂點(diǎn)到底面各邊距離相等,則頂點(diǎn)在底面上的射影為底面多邊形內心。

 、萑忮F有兩組對棱垂直,則頂點(diǎn)在底面的射影為三角形垂心。

 、奕忮F的三條側棱兩兩垂直,則頂點(diǎn)在底面上的射影為三角形的垂心。

 、呙總(gè)四面體都有外接球,球心0是各條棱的中垂面的交點(diǎn),此點(diǎn)到各頂點(diǎn)的距離等于球半徑;

 、嗝總(gè)四面體都有內切球,球心是四面體各個(gè)二面角的平分面的交點(diǎn),到各面的距離等于半徑。

  [注]:

  i、各個(gè)側面都是等腰三角形,且底面是正方形的棱錐是正四棱錐。(×)(各個(gè)側面的等腰三角形不知是否全等)

  ii、若一個(gè)三角錐,兩條對角線(xiàn)互相垂直,則第三對角線(xiàn)必然垂直。

  簡(jiǎn)證:AB⊥CD,AC⊥BD

  BC⊥AD。令得,已知則。

  iii、空間四邊形OABC且四邊長(cháng)相等,則順次連結各邊的中點(diǎn)的四邊形一定是矩形。

  iv、若是四邊長(cháng)與對角線(xiàn)分別相等,則順次連結各邊的中點(diǎn)的四邊是一定是正方形。

  簡(jiǎn)證:取AC中點(diǎn),則平面90°易知EFGH為平行四邊形

  EFGH為長(cháng)方形。若對角線(xiàn)等,則為正方形。

  高三數學(xué)知識點(diǎn)總結 10

  1、函數的奇偶性

  (1)若f(x)是偶函數,那么f(x)=f(-x);

  (2)若f(x)是奇函數,0在其定義域內,則f(0)=0(可用于求參數);

  (3)判斷函數奇偶性可用定義的等價(jià)形式:f(x)±f(-x)=0或(f(x)≠0);

  (4)若所給函數的解析式較為復雜,應先化簡(jiǎn),再判斷其奇偶性;

  (5)奇函數在對稱(chēng)的單調區間內有相同的單調性;偶函數在對稱(chēng)的單調區間內有相反的單調性;

  2、復合函數的有關(guān)問(wèn)題

  (1)復合函數定義域求法:若已知的定義域為[a,b],其復合函數f[g(x)]的定義域由不等式a≤g(x)≤b解出即可;若已知f[g(x)]的定義域為[a,b],求f(x)的定義域,相當于x∈[a,b]時(shí),求g(x)的值域(即f(x)的定義域);研究函數的問(wèn)題一定要注意定義域優(yōu)先的原則。

  (2)復合函數的單調性由“同增異減”判定;

  3、函數圖像(或方程曲線(xiàn)的對稱(chēng)性)

  (1)證明函數圖像的對稱(chēng)性,即證明圖像上任意點(diǎn)關(guān)于對稱(chēng)中心(對稱(chēng)軸)的對稱(chēng)點(diǎn)仍在圖像上;

  (2)證明圖像C1與C2的對稱(chēng)性,即證明C1上任意點(diǎn)關(guān)于對稱(chēng)中心(對稱(chēng)軸)的`對稱(chēng)點(diǎn)仍在C2上,反之亦然;

  (3)曲線(xiàn)C1:f(x,y)=0,關(guān)于y=x+a(y=-x+a)的對稱(chēng)曲線(xiàn)C2的方程為f(y-a,x+a)=0(或f(-y+a,-x+a)=0);

  (4)曲線(xiàn)C1:f(x,y)=0關(guān)于點(diǎn)(a,b)的對稱(chēng)曲線(xiàn)C2方程為:f(2a-x,2b-y)=0;

  (5)若函數y=f(x)對x∈R時(shí),f(a+x)=f(a-x)恒成立,則y=f(x)圖像關(guān)于直線(xiàn)x=a對稱(chēng);

  (6)函數y=f(x-a)與y=f(b-x)的圖像關(guān)于直線(xiàn)x=對稱(chēng);

  4、函數的周期性

  (1)y=f(x)對x∈R時(shí),f(x+a)=f(x-a)或f(x-2a)=f(x)(a>0)恒成立,則y=f(x)是周期為2a的周期函數;

  (2)若y=f(x)是偶函數,其圖像又關(guān)于直線(xiàn)x=a對稱(chēng),則f(x)是周期為2︱a︱的周期函數;

  (3)若y=f(x)奇函數,其圖像又關(guān)于直線(xiàn)x=a對稱(chēng),則f(x)是周期為4︱a︱的周期函數;

  (4)若y=f(x)關(guān)于點(diǎn)(a,0),(b,0)對稱(chēng),則f(x)是周期為2的周期函數;

  (5)y=f(x)的圖象關(guān)于直線(xiàn)x=a,x=b(a≠b)對稱(chēng),則函數y=f(x)是周期為2的周期函數;

  (6)y=f(x)對x∈R時(shí),f(x+a)=-f(x)(或f(x+a)=,則y=f(x)是周期為2的周期函數;

  5、方程k=f(x)有解k∈D(D為f(x)的值域);

  6、a≥f(x)恒成立a≥[f(x)]max,;a≤f(x)恒成立a≤[f(x)]min;

  7、(1)(a>0a≠1,b>0,n∈R+);

  (2)logaN=(a>0,a≠1,b>0,b≠1);

  (3)logab的符號由口訣“同正異負”記憶;

  (4)alogaN=N(a>0,a≠1,N>0);

  8、判斷對應是否為映射時(shí),抓住兩點(diǎn):

  (1)A中元素必須都有象且;

  (2)B中元素不一定都有原象,并且A中不同元素在B中可以有相同的象;

  9、能熟練地用定義證明函數的單調性,求反函數,判斷函數的奇偶性。

  10、對于反函數,應掌握以下一些結論:

  (1)定義域上的單調函數必有反函數;

  (2)奇函數的反函數也是奇函數;

  (3)定義域為非單元素集的偶函數不存在反函數;

  (4)周期函數不存在反函數;

  (5)互為反函數的兩個(gè)函數具有相同的單調性;

  (6)y=f(x)與y=f-1(x)互為反函數,設f(x)的定義域為A,值域為B,則有f[f--1(x)]=x(x∈B),f--1[f(x)]=x(x∈A);

  11、處理二次函數的問(wèn)題勿忘數形結合

  二次函數在閉區間上必有最值,求最值問(wèn)題用“兩看法”:一看開(kāi)口方向;二看對稱(chēng)軸與所給區間的相對位置關(guān)系;

  12、依據單調性

  利用一次函數在區間上的保號性可解決求一類(lèi)參數的范圍問(wèn)題;

  13、恒成立問(wèn)題的處理方法

  (1)分離參數法;

  (2)轉化為一元二次方程的根的分布列不等式(組)求解;

  a(1)=a,a(n)為公差為r的等差數列

  通項公式:

  a(n)=a(n-1)+r=a(n-2)+2r=……=a[n-(n-1)]+(n-1)r=a(1)+(n-1)r=a+(n-1)r、

  可用歸納法證明。

  n=1時(shí),a(1)=a+(1-1)r=a。成立。

  假設n=k時(shí),等差數列的通項公式成立。a(k)=a+(k-1)r

  則,n=k+1時(shí),a(k+1)=a(k)+r=a+(k-1)r+r=a+[(k+1)-1]r、

  通項公式也成立。

  因此,由歸納法知,等差數列的通項公式是正確的。

  求和公式:

  S(n)=a(1)+a(2)+……+a(n)

  =a+(a+r)+……+[a+(n-1)r]

  =na+r[1+2+……+(n-1)]

  =na+n(n-1)r/2

  同樣,可用歸納法證明求和公式。

  a(1)=a,a(n)為公比為r(r不等于0)的等比數列

  通項公式:

  a(n)=a(n-1)r=a(n-2)r^2=……=a[n-(n-1)]r^(n-1)=a(1)r^(n-1)=ar^(n-1)、

  可用歸納法證明等比數列的通項公式。

  求和公式:

  S(n)=a(1)+a(2)+……+a(n)

  =a+ar+……+ar^(n-1)

  =a[1+r+……+r^(n-1)]

  r不等于1時(shí),S(n)=a[1-r^n]/[1-r]

  r=1時(shí),S(n)=na、

  同樣,可用歸納法證明求和公式。

  高三數學(xué)知識點(diǎn)總結 11

  不等式的解集:

 、倌苁共坏仁匠闪⒌奈粗獢档闹,叫做不等式的解。

 、谝粋(gè)含有未知數的不等式的所有解,組成這個(gè)不等式的解集。

 、矍蟛坏仁浇饧倪^(guò)程叫做解不等式。

  不等式的判定:

 、俪R(jiàn)的.不等號有“>”“<”“≤”“≥”及“≠”。分別讀作“大于,小于,小于等于,大于等于,不等于”,其中“≤”又叫作不大于,“≥”叫作不小于;

 、谠诓坏仁健癮>b”或“a

 、鄄坏忍柕拈_(kāi)口所對的數較大,不等號的尖頭所對的數較小;

 、茉诹胁坏仁綍r(shí),一定要注意不等式關(guān)系的關(guān)鍵字,如:正數、非負數、不大于、小于等等。

  高三數學(xué)知識點(diǎn)總結 12

  高三年級的教學(xué)工作已經(jīng)結束,回顧一年來(lái)的工作有下面幾點(diǎn)體會(huì ),現總結如下:

  統籌安排、合理計劃搞好全年復習工作學(xué)年初首先根據學(xué)生實(shí)際、學(xué)科特點(diǎn)、教學(xué)要求及考試說(shuō)明制定了總體的復習計劃分為四個(gè)階段進(jìn)行:

 。1)系統復習階段(7個(gè)月左右);

  第一階段復習的指導思想是:面向全體學(xué)生,抓好基礎,對知識點(diǎn)要抓死抓牢,而且要全面、細致、系統;抓知識的條理化、網(wǎng)絡(luò )化;抓解題過(guò)程的規范化。在這個(gè)階段應強調學(xué)生的主體作用,變傳統的“講—練—講”的復習模式為“見(jiàn)題思法――研究探討—檢測反饋—歸納評價(jià)”。遵循“以教師為主導,學(xué)生的主體,以練習、反饋、歸納為主線(xiàn)”的原則,同時(shí)圍繞教學(xué)目的的精心設計題組式的練習,注意充分調動(dòng)學(xué)生的積極性,鼓勵學(xué)生主動(dòng)參與、實(shí)踐!耙(jiàn)題思法――研究探討—檢測反饋—歸納評價(jià)”教學(xué)模式的程序是:

 、、見(jiàn)題思法――創(chuàng )設問(wèn)題情境,出示課前練習。學(xué)生對教師精心設計的幾道有代表性且難度不大的題目進(jìn)行課前練習解答,以題為載體,反思用到的基礎知識和方法,進(jìn)行初步歸納。

 、谘芯刻接懆D―對教師精心設計的典型例題認真研究,師生共同研討,引導學(xué)生分析、嘗試和研究,鼓勵學(xué)生主動(dòng)參與、實(shí)踐,積極發(fā)表自己的意見(jiàn)和見(jiàn)解,使知識、方法逐步深化,師生共同概括基礎知識和解題的通性、通法與技巧。

 、蹤z測反饋――在前面環(huán)節的基礎上,學(xué)生利用所學(xué)知識方法進(jìn)行鞏固性練習,自我檢測掌握的程度。

 、軞w納評價(jià)――以整理筆記的方式對所學(xué)內容和方法作更深入、細致、系統的總結、歸納和分析,充分挖掘知識間的內存聯(lián)系,使知識系統化、條理化、網(wǎng)絡(luò )化,便于儲存,同時(shí)注意在今后的應用中求深化。

 。2)專(zhuān)題復習階段(1個(gè)月左右);在這一階段要進(jìn)行知識歸類(lèi)、方法歸類(lèi),加強數學(xué)思想方法的訓練,著(zhù)重提高解題能力,使學(xué)過(guò)的知識經(jīng)過(guò)整理加工、融會(huì )貫通,起到知識升華的作用。根據近幾年來(lái)高考數學(xué)試題特點(diǎn),瞄準六個(gè)解答大題所涉及十個(gè)知識塊:

  1、函數的性質(zhì)及其應用;

  2、數列問(wèn)題;

  3、三角函數的圖象及性質(zhì);

  4、平面向量;

  5、不等式及其應用;

  6、直線(xiàn)與圓錐曲線(xiàn);

  7、直線(xiàn)、平面、簡(jiǎn)單的幾何體;

  8、排列、組合及概率與統計;

  9、極限、數學(xué)歸納法及導數的應用;

  10、含參數的問(wèn)題的取值范圍等十個(gè)知識塊進(jìn)行重點(diǎn)復習。在復習過(guò)程中主要有兩個(gè)目的,其一是瞄準六個(gè)解答大題所涉知識點(diǎn)進(jìn)行重點(diǎn)復習,確保知識點(diǎn)及技能落實(shí)到位;其二訓練解答題的書(shū)寫(xiě)過(guò)程規范性要求,確保解答題過(guò)程不是分。

  通過(guò)這一階段的訓練,可以使學(xué)生進(jìn)一步加強對數學(xué)思想方法的理解和掌握。當然數學(xué)思想方法的掌握應當在平時(shí)上課時(shí)已經(jīng)滲透,此階段的訓練所起的'作用是系統和強化的作用。

 。3)強化訓練(綜合訓練)階段(1個(gè)月左右);本階段復習是鞏固前兩輪的復習效果,訓練應試技巧,提高應試心理素質(zhì),進(jìn)行模擬強化訓練,其復習模式是:“練――查――講――悟――查”。

  綜合練:用兩節課時(shí)間讓學(xué)生完成一套模擬題,套題的難度可逐漸加大,直至達到高考標準。

  單元練:用一節課時(shí)間讓學(xué)生做完一套單元的選擇、填空題,題目帶有專(zhuān)題性,重點(diǎn)是知識上查缺補漏,突出強化思想方法。

  查:自我評判。反思,找出需教師幫助的題目。

  講:教師據大多數同學(xué)出現的問(wèn)題,進(jìn)行重點(diǎn)講評。

  悟:讓學(xué)生課下重新整理,領(lǐng)悟此套題中的知識、方法及出現的各種問(wèn)題。檢查:檢查上述復習效果,以便有針對性地進(jìn)行后面的復習。

  實(shí)施上述模式時(shí),應遵循以下原則:

  1、主體性原則。要充分調動(dòng)學(xué)生學(xué)習的主動(dòng)性和積極性,提出問(wèn)題讓學(xué)生想,設計問(wèn)題讓學(xué)生做,錯誤原因讓學(xué)生找,方法與規律,讓學(xué)生歸納,教師的作用只是組織、監督、引導、促進(jìn)學(xué)生主動(dòng)積極思考、總結規律,使學(xué)生真正成為復習的評價(jià),在動(dòng)腦、動(dòng)手的活動(dòng)中,發(fā)展智力,提高能力。

  2、反思性原則:學(xué)生做完題,一定要留出足夠的時(shí)間讓學(xué)生來(lái)反思、領(lǐng)悟,可從下面四個(gè)層次反思:

 。1)經(jīng)驗性反思:旨在總結每次練習后的基本經(jīng)驗,著(zhù)重反思這套題考查了哪些知識、能力?

 。2)概括性反思:旨在同類(lèi)問(wèn)題篩選、概括,形成一種解題思路、解題方法,進(jìn)而上升到一種數學(xué)思想,形成一種“數學(xué)化”意識;

 。3)創(chuàng )造性反思:對習題的重新認識以及推廣、引申和發(fā)展。

 。4)錯誤性反思:注重對答題失誤的糾正、辨析,搞清自己解題失誤或綜合能力性失誤,找失誤之因,謀成功之道。

  總之,反思有助于弄清問(wèn)題的實(shí)質(zhì),反思有助于提高鑒賞能力,知道什么是好的解法,反思可以養成抓住關(guān)鍵、直接剖析問(wèn)題核心的好習慣,良好的題感正是通過(guò)反思總結培養起來(lái)的

  3、針對性原則:題目設計要針對學(xué)生實(shí)際,針對高考要求的實(shí)際。

  4、反饋性原則:一是教師等到學(xué)生學(xué)習效果的反饋,二是學(xué)生自己得到復習效果的反饋。以便加大教師調控力度,真正發(fā)揮教師的主導作用,學(xué)生能更大限度地利用自由支配時(shí)間在知識上查漏補缺,在能力上重點(diǎn)訓練,及時(shí)調整復習重點(diǎn),采用恰當的方式進(jìn)行有針對性的補救和矯正。

  通過(guò)這一階段的訓練,學(xué)生可以大提高選擇題和填空題的正答率和熟練程度,可以縮短解題時(shí)間,提高解答選擇題和填空題的技巧性和靈活性。也可以提高解答題解題步驟的規范性,總結重點(diǎn)題型的解題思路和方法。培養學(xué)生嚴密思維的習慣,提高學(xué)生的綜合解題能力。

  5、主動(dòng)發(fā)展階段(20天左右):此階段教師不再講課,增大學(xué)生的自主權,可以復習任一學(xué)科,教師的作用主要是輔導(包括心理指導),并及時(shí)回答學(xué)生的問(wèn)題。在此期間,學(xué)生采取的主要策略之一是“回顧”,它包括:知識回顧、方法回顧、疑點(diǎn)回顧、熱點(diǎn)回顧、結論回顧、題型回顧。對前面的復習再次查漏補缺,同時(shí)虛心接受教師、家長(cháng)乃至社會(huì )各界的指導和關(guān)愛(ài),這樣就能以最佳的身體狀態(tài)、心理狀態(tài)、知識狀態(tài)迎接高考的挑選。

  高三數學(xué)知識點(diǎn)總結 13

  復數的概念:

  形如a+bi(a,b∈R)的數叫復數,其中i叫做虛數單位。全體復數所成的集合叫做復數集,用字母C表示。

  復數的表示:

  復數通常用字母z表示,即z=a+bi(a,b∈R),這一表示形式叫做復數的代數形式,其中a叫復數的實(shí)部,b叫復數的虛部。

  復數的幾何意義:

  (1)復平面、實(shí)軸、虛軸:

  點(diǎn)Z的.橫坐標是a,縱坐標是b,復數z=a+bi(a、b∈R)可用點(diǎn)Z(a,b)表示,這個(gè)建立了直角坐標系來(lái)表示復數的平面叫做復平面,x軸叫做實(shí)軸,y軸叫做虛軸。顯然,實(shí)軸上的點(diǎn)都表示實(shí)數,除原點(diǎn)外,虛軸上的點(diǎn)都表示純虛數

  (2)復數的幾何意義:復數集C和復平面內所有的點(diǎn)所成的集合是一一對應關(guān)系,即

  這是因為,每一個(gè)復數有復平面內惟一的一個(gè)點(diǎn)和它對應;反過(guò)來(lái),復平面內的每一個(gè)點(diǎn),有惟一的一個(gè)復數和它對應。

  這就是復數的一種幾何意義,也就是復數的另一種表示方法,即幾何表示方法。

  復數的模:

  復數z=a+bi(a、b∈R)在復平面上對應的點(diǎn)Z(a,b)到原點(diǎn)的距離叫復數的模,記為|Z|,即|Z|=

  虛數單位i:

  (1)它的平方等于-1,即i2=-1;

  (2)實(shí)數可以與它進(jìn)行四則運算,進(jìn)行四則運算時(shí),原有加、乘運算律仍然成立

  (3)i與-1的關(guān)系:i就是-1的一個(gè)平方根,即方程x2=-1的一個(gè)根,方程x2=-1的另一個(gè)根是-i。

  (4)i的周期性:i4n+1=i,i4n+2=-1,i4n+3=-i,i4n=1。

  復數模的性質(zhì):

  復數與實(shí)數、虛數、純虛數及0的關(guān)系:

  對于復數a+bi(a、b∈R),當且僅當b=0時(shí),復數a+bi(a、b∈R)是實(shí)數a;當b≠0時(shí),復數z=a+bi叫做虛數;當a=0且b≠0時(shí),z=bi叫做純虛數;當且僅當a=b=0時(shí),z就是實(shí)數0。

  高三數學(xué)知識點(diǎn)總結 14

  1.不等式的定義

  在客觀(guān)世界中,量與量之間的不等關(guān)系是普遍存在的,我們用數學(xué)符號連接兩個(gè)數或代數式以表示它們之間的不等關(guān)系,含有這些不等號的式子,叫做不等式.

  2.比較兩個(gè)實(shí)數的大小

  兩個(gè)實(shí)數的大小是用實(shí)數的運算性質(zhì)來(lái)定義的,有a-b0?;a-b=0?;a-b0?.

  另外,若b0,則有1?;=1?;1?.

  概括為:作差法,作商法,中間量法等.

  3.不等式的性質(zhì)

  (1)對稱(chēng)性:ab?;

  (2)傳遞性:ab,bc?;

  (3)可加性:ab?a+cb+c,ab,cd?a+cb+d;

  (4)可乘性:ab,c0?acbc;ab0,cd0?;

  (5)可乘方:ab0?(n∈N,n≥2);

  (6)可開(kāi)方:ab0?(n∈N,n≥2).

  復習指導

  1.“一個(gè)技巧”作差法變形的技巧:作差法中變形是關(guān)鍵,常進(jìn)行因式分解或配方.

  2.“一種方法”待定系數法:求代數式的'范圍時(shí),先用已知的代數式表示目標式,再利用多項式相等的法則求出參數,最后利用不等式的性質(zhì)求出目標式的范圍.

  3.“兩條常用性質(zhì)”

  (1)倒數性質(zhì):

 、賏b,ab0?;

 、赼0

 、踑b0,0;

 、0

  (2)若ab0,m0,則

 、僬娣謹档男再|(zhì):(b-m0);

  高三數學(xué)知識點(diǎn)總結 15

  考點(diǎn)一:集合與簡(jiǎn)易邏輯

  集合部分一般以選擇題出現,屬容易題。重點(diǎn)考查集合間關(guān)系的理解和認識。近年的試題加強了對集合計算化簡(jiǎn)能力的考查,并向無(wú)限集發(fā)展,考查抽象思維能力。在解決這些問(wèn)題時(shí),要注意利用幾何的直觀(guān)性,并注重集合表示方法的轉換與化簡(jiǎn)。簡(jiǎn)易邏輯考查有兩種形式:一是在選擇題和填空題中直接考查命題及其關(guān)系、邏輯聯(lián)結詞、“充要關(guān)系”、命題真偽的判斷、全稱(chēng)命題和特稱(chēng)命題的否定等,二是在解答題中深層次考查常用邏輯用語(yǔ)表達數學(xué)解題過(guò)程和邏輯推理。

  考點(diǎn)二:函數與導數

  函數是高考的重點(diǎn)內容,以選擇題和填空題的為載體針對性考查函數的定義域與值域、函數的性質(zhì)、函數與方程、基本初等函數(一次和二次函數、指數、對數、冪函數)的應用等,分值約為10分,解答題與導數交匯在一起考查函數的.性質(zhì)。導數部分一方面考查導數的運算與導數的幾何意義,另一方面考查導數的簡(jiǎn)單應用,如求函數的單調區間、極值與最值等,通常以客觀(guān)題的形式出現,屬于容易題和中檔題,三是導數的綜合應用,主要是和函數、不等式、方程等聯(lián)系在一起以解答題的形式出現,如一些不等式恒成立問(wèn)題、參數的取值范圍問(wèn)題、方程根的個(gè)數問(wèn)題、不等式的證明等問(wèn)題。

  考點(diǎn)三:三角函數與平面向量

  一般是2道小題,1道綜合解答題。小題一道考查平面向量有關(guān)概念及運算等,另一道對三角知識點(diǎn)的補充。大題中如果沒(méi)有涉及正弦定理、余弦定理的應用,可能就是一道和解答題相互補充的三角函數的圖像、性質(zhì)或三角恒等變換的題目,也可能是考查平面向量為主的試題,要注意數形結合思想在解題中的應用。向量重點(diǎn)考查平面向量數量積的概念及應用,向量與直線(xiàn)、圓錐曲線(xiàn)、數列、不等式、三角函數等結合,解決角度、垂直、共線(xiàn)等問(wèn)題是“新熱點(diǎn)”題型。

  考點(diǎn)四:數列與不等式

  不等式主要考查一元二次不等式的解法、一元二次不等式組和簡(jiǎn)單線(xiàn)性規劃問(wèn)題、基本不等式的應用等,通常會(huì )在小題中設置1到2道題。對不等式的工具性穿插在數列、解析幾何、函數導數等解答題中進(jìn)行考查、在選擇、填空題中考查等差或等比數列的概念、性質(zhì)、通項公式、求和公式等的靈活應用,一道解答題大多凸顯以數列知識為工具,綜合運用函數、方程、不等式等解決問(wèn)題的能力,它們都屬于中、高檔題目。

  考點(diǎn)五:立體幾何與空間向量

  一是考查空間幾何體的結構特征、直觀(guān)圖與三視圖;二是考查空間點(diǎn)、線(xiàn)、面之間的位置關(guān)系;三是考查利用空間向量解決立體幾何問(wèn)題:利用空間向量證明線(xiàn)面平行與垂直、求空間角等(文科不要求)、在高考試卷中,一般有1~2個(gè)客觀(guān)題和一個(gè)解答題,多為中檔題。

  考點(diǎn)六:解析幾何

  一般有1~2個(gè)客觀(guān)題和1個(gè)解答題,其中客觀(guān)題主要考查直線(xiàn)斜率、直線(xiàn)方程、圓的方程、直線(xiàn)與圓的位置關(guān)系、圓錐曲線(xiàn)的定義應用、標準方程的求解、離心率的計算等,解答題則主要考查直線(xiàn)與橢圓、拋物線(xiàn)等的位置關(guān)系問(wèn)題,經(jīng)常與平面向量、函數與不等式交匯,考查一些存在性問(wèn)題、證明問(wèn)題、定點(diǎn)與定值、最值與范圍問(wèn)題等。

  考點(diǎn)七:算法復數推理與證明

  高考對算法的考查以選擇題或填空題的形式出現,或給解答題披層“外衣”、考查的熱點(diǎn)是流程圖的識別與算法語(yǔ)言的閱讀理解、算法與數列知識的網(wǎng)絡(luò )交匯命題是考查的主流、復數考查的重點(diǎn)是復數的有關(guān)概念、復數的代數形式、運算及運算的幾何意義,一般是選擇題、填空題,難度不大、推理證明部分命題的方向主要會(huì )在函數、三角、數列、立體幾何、解析幾何等方面,單獨出題的可能性較小。對于理科,數學(xué)歸納法可能作為解答題的一小問(wèn)。

【高三數學(xué)知識點(diǎn)總結】相關(guān)文章:

高三數學(xué)知識點(diǎn)總結04-27

高三數學(xué)知識點(diǎn)總結03-08

高三數學(xué)知識點(diǎn)總結06-12

高三數學(xué)復習知識點(diǎn)總結06-08

高三數學(xué)知識點(diǎn)總結08-24

高三數學(xué)復習知識點(diǎn)總結范文12-12

高三數學(xué)知識點(diǎn)歸納總結08-13

高三數學(xué)的知識點(diǎn)總結(精選13章)06-10

[優(yōu)秀]高三數學(xué)知識點(diǎn)總結06-12