高一數學(xué)知識點(diǎn)總結匯編15篇
總結是在某一特定時(shí)間段對學(xué)習和工作生活或其完成情況,包括取得的成績(jì)、存在的問(wèn)題及得到的經(jīng)驗和教訓加以回顧和分析的書(shū)面材料,它可以有效鍛煉我們的語(yǔ)言組織能力,因此十分有必須要寫(xiě)一份總結哦?偨Y怎么寫(xiě)才是正確的呢?下面是小編精心整理的高一數學(xué)知識點(diǎn)總結,希望對大家有所幫助。
高一數學(xué)知識點(diǎn)總結1
1.對于集合,一定要抓住集合的代表元素,及元素的“確定性、互異性、無(wú)序性”。
中元素各表示什么?
注重借助于數軸和文氏圖解集合問(wèn)題。
空集是一切集合的子集,是一切非空集合的真子集。
3.注意下列性質(zhì):
(3)德摩根定律:
4.你會(huì )用補集思想解決問(wèn)題嗎?(排除法、間接法)
的取值范圍。
6.命題的四種形式及其相互關(guān)系是什么?
(互為逆否關(guān)系的命題是等價(jià)命題。)
原命題與逆否命題同真、同假;逆命題與否命題同真同假。
7.對映射的概念了解嗎?映射f:A→B,是否注意到A中元素的任意性和B中與之對應元素的性,哪幾種對應能構成映射?
(一對一,多對一,允許B中有元素無(wú)原象。)
8.函數的三要素是什么?如何比較兩個(gè)函數是否相同?
(定義域、對應法則、值域)
9.求函數的定義域有哪些常見(jiàn)類(lèi)型?
10.如何求復合函數的定義域?
義域是_____________。
11.求一個(gè)函數的解析式或一個(gè)函數的反函數時(shí),注明函數的定義域了嗎?
12.反函數存在的條件是什么?
(一一對應函數)
求反函數的步驟掌握了嗎?
(①反解x;②互換x、y;③注明定義域)
13.反函數的性質(zhì)有哪些?
、倩榉春瘮档膱D象關(guān)于直線(xiàn)y=x對稱(chēng);
、诒4媪嗽瓉(lái)函數的單調性、奇函數性;
14.如何用定義證明函數的單調性?
(取值、作差、判正負)
如何判斷復合函數的單調性?
∴……)
15.如何利用導數判斷函數的單調性?
值是()
A.0B.1C.2D.3
∴a的值為3)
16.函數f(x)具有奇偶性的必要(非充分)條件是什么?
(f(x)定義域關(guān)于原點(diǎn)對稱(chēng))
注意如下結論:
(1)在公共定義域內:兩個(gè)奇函數的乘積是偶函數;兩個(gè)偶函數的乘積是偶函數;一個(gè)偶函數與奇函數的乘積是奇函數。
17.你熟悉周期函數的定義嗎?
函數,T是一個(gè)周期。)
如:
18.你掌握常用的圖象變換了嗎?
注意如下“翻折”變換:
19.你熟練掌握常用函數的圖象和性質(zhì)了嗎?
的雙曲線(xiàn)。
應用:①“三個(gè)二次”(二次函數、二次方程、二次不等式)的關(guān)系——二次方程
、谇箝]區間[m,n]上的最值。
、矍髤^間定(動(dòng)),對稱(chēng)軸動(dòng)(定)的最值問(wèn)題。
、芤辉畏匠谈姆植紗(wèn)題。
由圖象記性質(zhì)!(注意底數的限定!)
利用它的單調性求最值與利用均值不等式求最值的區別是什么?
20.你在基本運算上常出現錯誤嗎?
21.如何解抽象函數問(wèn)題?
(賦值法、結構變換法)
22.掌握求函數值域的常用方法了嗎?
(二次函數法(配方法),反函數法,換元法,均值定理法,判別式法,利用函數單調性法,導數法等。)
如求下列函數的最值:
23.你記得弧度的定義嗎?能寫(xiě)出圓心角為α,半徑為R的弧長(cháng)公式和扇形面積公式嗎?
24.熟記三角函數的定義,單位圓中三角函數線(xiàn)的定義
25.你能迅速畫(huà)出正弦、余弦、正切函數的圖象嗎?并由圖象寫(xiě)出單調區間、對稱(chēng)點(diǎn)、對稱(chēng)軸嗎?
(x,y)作圖象。
27.在三角函數中求一個(gè)角時(shí)要注意兩個(gè)方面——先求出某一個(gè)三角函數值,再判定角的范圍。
28.在解含有正、余弦函數的問(wèn)題時(shí),你注意(到)運用函數的有界性了嗎?
29.熟練掌握三角函數圖象變換了嗎?
(平移變換、伸縮變換)
平移公式:
圖象?
30.熟練掌握同角三角函數關(guān)系和誘導公式了嗎?
“奇”、“偶”指k取奇、偶數。
A.正值或負值B.負值C.非負值D.正值
31.熟練掌握兩角和、差、倍、降冪公式及其逆向應用了嗎?
理解公式之間的聯(lián)系:
應用以上公式對三角函數式化簡(jiǎn)。(化簡(jiǎn)要求:項數最少、函數種類(lèi)最少,分母中不含三角函數,能求值,盡可能求值。)
具體方法:
(2)名的變換:化弦或化切
(3)次數的變換:升、降冪公式
(4)形的變換:統一函數形式,注意運用代數運算。
32.正、余弦定理的各種表達形式你還記得嗎?如何實(shí)現邊、角轉化,而解斜三角形?
(應用:已知兩邊一夾角求第三邊;已知三邊求角。)
33.用反三角函數表示角時(shí)要注意角的范圍。
34.不等式的性質(zhì)有哪些?
答案:C
35.利用均值不等式:
值?(一正、二定、三相等)
注意如下結論:
36.不等式證明的基本方法都掌握了嗎?
(比較法、分析法、綜合法、數學(xué)歸納法等)
并注意簡(jiǎn)單放縮法的應用。
(移項通分,分子分母因式分解,x的系數變?yōu)?,穿軸法解得結果。)
38.用“穿軸法”解高次不等式——“奇穿,偶切”,從根的右上方開(kāi)始
39.解含有參數的不等式要注意對字母參數的討論
40.對含有兩個(gè)絕對值的不等式如何去解?
(找零點(diǎn),分段討論,去掉絕對值符號,最后取各段的并集。)
證明:
(按不等號方向放縮)
42.不等式恒成立問(wèn)題,常用的處理方式是什么?(可轉化為最值問(wèn)題,或“△”問(wèn)題)
43.等差數列的定義與性質(zhì)
0的二次函數)
項,即:
44.等比數列的定義與性質(zhì)
46.你熟悉求數列通項公式的常用方法嗎?
例如:(1)求差(商)法
解:
[練習]
(2)疊乘法
解:
(3)等差型遞推公式
[練習]
(4)等比型遞推公式
[練習]
(5)倒數法
47.你熟悉求數列前n項和的常用方法嗎?
例如:(1)裂項法:把數列各項拆成兩項或多項之和,使之出現成對互為相反數的項。
解:
[練習]
(2)錯位相減法:
(3)倒序相加法:把數列的各項順序倒寫(xiě),再與原來(lái)順序的數列相加。
[練習]
48.你知道儲蓄、貸款問(wèn)題嗎?
△零存整取儲蓄(單利)本利和計算模型:
若每期存入本金p元,每期利率為r,n期后,本利和為:
△若按復利,如貸款問(wèn)題——按揭貸款的每期還款計算模型(按揭貸款——分期等額歸還本息的借款種類(lèi))
若貸款(向銀行借款)p元,采用分期等額還款方式,從借款日算起,一期(如一年)后為第一次還款日,如此下去,第n次還清。如果每期利率為r(按復利),那么每期應還x元,滿(mǎn)足
p——貸款數,r——利率,n——還款期數
49.解排列、組合問(wèn)題的依據是:分類(lèi)相加,分步相乘,有序排列,無(wú)序組合。
(2)排列:從n個(gè)不同元素中,任取m(m≤n)個(gè)元素,按照一定的順序排成一
(3)組合:從n個(gè)不同元素中任取m(m≤n)個(gè)元素并組成一組,叫做從n個(gè)不
50.解排列與組合問(wèn)題的規律是:
相鄰問(wèn)題_法;相間隔問(wèn)題插空法;定位問(wèn)題優(yōu)先法;多元問(wèn)題分類(lèi)法;至多至少問(wèn)題間接法;相同元素分組可采用隔板法,數量不大時(shí)可以逐一排出結果。
如:學(xué)號為1,2,3,4的四名學(xué)生的考試成績(jì)
則這四位同學(xué)考試成績(jì)的所有可能情況是()
A.24B.15C.12D.10
解析:可分成兩類(lèi):
(2)中間兩個(gè)分數相等
相同兩數分別取90,91,92,對應的排列可以數出來(lái),分別有3,4,3種,∴有10種。
∴共有5+10=15(種)情況
51.二項式定理
性質(zhì):
(3)最值:n為偶數時(shí),n+1為奇數,中間一項的二項式系數且為第
表示)
52.你對隨機事件之間的關(guān)系熟悉嗎?
的和(并)。
(5)互斥事件(互不相容事件):“A與B不能同時(shí)發(fā)生”叫做A、B互斥。
(6)對立事件(互逆事件):
(7)獨立事件:A發(fā)生與否對B發(fā)生的概率沒(méi)有影響,這樣的兩個(gè)事件叫做相互獨立事件。
53.對某一事件概率的求法:
分清所求的是:(1)等可能事件的概率(常采用排列組合的方法,即
(5)如果在一次試驗中A發(fā)生的概率是p,那么在n次獨立重復試驗中A恰好發(fā)生
如:設10件產(chǎn)品中有4件次品,6件正品,求下列事件的概率。
(1)從中任取2件都是次品;
(2)從中任取5件恰有2件次品;
(3)從中有放回地任取3件至少有2件次品;
解析:有放回地抽取3次(每次抽1件),∴n=103
而至少有2件次品為“恰有2次品”和“三件都是次品”
(4)從中依次取5件恰有2件次品。
解析:∵一件一件抽取(有順序)
分清(1)、(2)是組合問(wèn)題,(3)是可重復排列問(wèn)題,(4)是無(wú)重復排列問(wèn)題。
54.抽樣方法主要有:簡(jiǎn)單隨機抽樣(抽簽法、隨機數表法)常常用于總體個(gè)數較少時(shí),它的特征是從總體中逐個(gè)抽取;系統抽樣,常用于總體個(gè)數較多時(shí),它的主要特征是均衡成若干部分,每部分只取一個(gè);分層抽樣,主要特征是分層按比例抽樣,主要用于總體中有明顯差異,它們的共同特征是每個(gè)個(gè)體被抽到的概率相等,體現了抽樣的客觀(guān)性和平等性。
55.對總體分布的估計——用樣本的頻率作為總體的概率,用樣本的期望(平均值)和方差去估計總體的期望和方差。
要熟悉樣本頻率直方圖的作法:
(2)決定組距和組數;
(3)決定分點(diǎn);
(4)列頻率分布表;
(5)畫(huà)頻率直方圖。
如:從10名_與5名男生中選6名學(xué)生參加比賽,如果按性別分層隨機抽樣,則組成此參賽隊的概率為_(kāi)___________。
56.你對向量的有關(guān)概念清楚嗎?
(1)向量——既有大小又有方向的量。
在此規定下向量可以在平面(或空間)平行移動(dòng)而不改變。
(6)并線(xiàn)向量(平行向量)——方向相同或相反的向量。
規定零向量與任意向量平行。
(7)向量的加、減法如圖:
(8)平面向量基本定理(向量的分解定理)
的一組基底。
(9)向量的坐標表示
表示。
57.平面向量的數量積
數量積的幾何意義:
(2)數量積的運算法則
[練習]
答案:
答案:2
答案:
58.線(xiàn)段的定比分點(diǎn)
※.你能分清三角形的重心、垂心、外心、內心及其性質(zhì)嗎?
59.立體幾何中平行、垂直關(guān)系證明的思路清楚嗎?
平行垂直的證明主要利用線(xiàn)面關(guān)系的轉化:
線(xiàn)面平行的判定:
線(xiàn)面平行的性質(zhì):
三垂線(xiàn)定理(及逆定理):
線(xiàn)面垂直:
面面垂直:
60.三類(lèi)角的定義及求法
(1)異面直線(xiàn)所成的角θ,0°<θ≤90°
(2)直線(xiàn)與平面所成的角θ,0°≤θ≤90°
(三垂線(xiàn)定理法:A∈α作或證AB⊥β于B,作BO⊥棱于O,連AO,則AO⊥棱l,∴∠AOB為所求。)
三類(lèi)角的求法:
、僬页龌蜃鞒鲇嘘P(guān)的角。
、谧C明其符合定義,并指出所求作的角。
、塾嬎愦笮(解直角三角形,或用余弦定理)。
[練習]
(1)如圖,OA為α的斜線(xiàn)OB為其在α_影,OC為α內過(guò)O點(diǎn)任一直線(xiàn)。
(2)如圖,正四棱柱ABCD—A1B1C1D1中對角線(xiàn)BD1=8,BD1與側面B1BCC1所成的為30°。
、偾驜D1和底面ABCD所成的角;
、谇螽惷嬷本(xiàn)BD1和AD所成的角;
、矍蠖娼荂1—BD1—B1的大小。
(3)如圖ABCD為菱形,∠DAB=60°,PD⊥面ABCD,且PD=AD,求面PAB與面PCD所成的銳二面角的大小。
(∵AB∥DC,P為面PAB與面PCD的公共點(diǎn),作PF∥AB,則PF為面PCD與面PAB的交線(xiàn)……)
61.空間有幾種距離?如何求距離?
點(diǎn)與點(diǎn),點(diǎn)與線(xiàn),點(diǎn)與面,線(xiàn)與線(xiàn),線(xiàn)與面,面與面間距離。
將空間距離轉化為兩點(diǎn)的距離,構造三角形,解三角形求線(xiàn)段的長(cháng)(如:三垂線(xiàn)定理法,或者用等積轉化法)。
如:正方形ABCD—A1B1C1D1中,棱長(cháng)為a,則:
(1)點(diǎn)C到面AB1C1的距離為_(kāi)__________;
(2)點(diǎn)B到面ACB1的距離為_(kāi)___________;
(3)直線(xiàn)A1D1到面AB1C1的距離為_(kāi)___________;
(4)面AB1C與面A1DC1的距離為_(kāi)___________;
(5)點(diǎn)B到直線(xiàn)A1C1的距離為_(kāi)____________。
62.你是否準確理解正棱柱、正棱錐的定義并掌握它們的性質(zhì)?
正棱柱——底面為正多邊形的直棱柱
正棱錐——底面是正多邊形,頂點(diǎn)在底面的射影是底面的中心。
正棱錐的計算集中在四個(gè)直角三角形中:
它們各包含哪些元素?
63.球有哪些性質(zhì)?
(2)球面上兩點(diǎn)的距離是經(jīng)過(guò)這兩點(diǎn)的大圓的劣弧長(cháng)。為此,要找球心角!
(3)如圖,θ為緯度角,它是線(xiàn)面成角;α為經(jīng)度角,它是面面成角。
(5)球內接長(cháng)方體的對角線(xiàn)是球的直徑。正四面體的外接球半徑R與內切球半徑r之比為R:r=3:1。
積為()
答案:A
64.熟記下列公式了嗎?
(2)直線(xiàn)方程:
65.如何判斷兩直線(xiàn)平行、垂直?
66.怎樣判斷直線(xiàn)l與圓C的位置關(guān)系?
圓心到直線(xiàn)的距離與圓的半徑比較。
直線(xiàn)與圓相交時(shí),注意利用圓的“垂徑定理”。
67.怎樣判斷直線(xiàn)與圓錐曲線(xiàn)的位置?
68.分清圓錐曲線(xiàn)的定義
70.在圓錐曲線(xiàn)與直線(xiàn)聯(lián)立求解時(shí),消元后得到的方程,要注意其二次項系數是否為零?△≥0的限制。(求交點(diǎn),弦長(cháng),中點(diǎn),斜率,對稱(chēng)存在性問(wèn)題都在△≥0下進(jìn)行。)
71.會(huì )用定義求圓錐曲線(xiàn)的焦半徑嗎?
如:
通徑是拋物線(xiàn)的所有焦點(diǎn)弦中最短者;以焦點(diǎn)弦為直徑的圓與準線(xiàn)相切。
72.有關(guān)中點(diǎn)弦問(wèn)題可考慮用“代點(diǎn)法”。
答案:
73.如何求解“對稱(chēng)”問(wèn)題?
(1)證明曲線(xiàn)C:F(x,y)=0關(guān)于點(diǎn)M(a,b)成中心對稱(chēng),設A(x,y)為曲線(xiàn)C上任意一點(diǎn),設A'(x',y')為A關(guān)于點(diǎn)M的對稱(chēng)點(diǎn)。
75.求軌跡方程的常用方法有哪些?注意討論范圍。
(直接法、定義法、轉移法、參數法)
76.對線(xiàn)性規劃問(wèn)題:作出可行域,作出以目標函數為截距的直線(xiàn),在可行域內平移直線(xiàn),求出目標函數的最值。
高一數學(xué)知識點(diǎn)總結2
1.二次函數y=ax^2,y=a(x-h)^2,y=a(x-h)^2+k,y=ax^2+bx+c(各式中,a≠0)的圖象形狀相同,只是位置不同,它們的頂點(diǎn)坐標及對稱(chēng)軸如下表:
解析式
頂點(diǎn)坐標
對稱(chēng)軸
y=ax^2
(0,0)
x=0
y=a(x-h)^2
(h,0)
x=h
y=a(x-h)^2+k
(h,k)
x=h
y=ax^2+bx+c
(-b/2a,[4ac-b^2]/4a)
x=-b/2a
當h>0時(shí),y=a(x-h)^2的圖象可由拋物線(xiàn)y=ax^2向右平行移動(dòng)h個(gè)單位得到,
當h<0時(shí),則向左平行移動(dòng)|h|個(gè)單位得到.
當h>0,k>0時(shí),將拋物線(xiàn)y=ax^2向右平行移動(dòng)h個(gè)單位,再向上移動(dòng)k個(gè)單位,就可以得到y=a(x-h)^2+k的圖象;
當h>0,k<0時(shí),將拋物線(xiàn)y=ax^2向右平行移動(dòng)h個(gè)單位,再向下移動(dòng)|k|個(gè)單位可得到y=a(x-h)^2+k的圖象;
當h<0,k>0時(shí),將拋物線(xiàn)向左平行移動(dòng)|h|個(gè)單位,再向上移動(dòng)k個(gè)單位可得到y=a(x-h)^2+k的圖象;
當h<0,k<0時(shí),將拋物線(xiàn)向左平行移動(dòng)|h|個(gè)單位,再向下移動(dòng)|k|個(gè)單位可得到y=a(x-h)^2+k的圖象;
因此,研究拋物線(xiàn)y=ax^2+bx+c(a≠0)的圖象,通過(guò)配方,將一般式化為y=a(x-h)^2+k的形式,可確定其頂點(diǎn)坐標、對稱(chēng)軸,拋物線(xiàn)的大體位置就很清楚了.這給畫(huà)圖象提供了方便.
2.拋物線(xiàn)y=ax^2+bx+c(a≠0)的圖象:當a>0時(shí),開(kāi)口向上,當a<0時(shí)開(kāi)口向下,對稱(chēng)軸是直線(xiàn)x=-b/2a,頂點(diǎn)坐標是(-b/2a,[4ac-b^2]/4a).
3.拋物線(xiàn)y=ax^2+bx+c(a≠0),若a>0,當x≤-b/2a時(shí),y隨x的增大而減小;當x≥-b/2a時(shí),y隨x的增大而增大.若a<0,當x≤-b/2a時(shí),y隨x的增大而增大;當x≥-b/2a時(shí),y隨x的增大而減小.
4.拋物線(xiàn)y=ax^2+bx+c的圖象與坐標軸的交點(diǎn):
(1)圖象與y軸一定相交,交點(diǎn)坐標為(0,c);
(2)當△=b^2-4ac>0,圖象與x軸交于兩點(diǎn)A(x?,0)和B(x?,0),其中的x1,x2是一元二次方程ax^2+bx+c=0
(a≠0)的兩根.這兩點(diǎn)間的距離AB=|x?-x?|
當△=0.圖象與x軸只有一個(gè)交點(diǎn);
當△<0.圖象與x軸沒(méi)有交點(diǎn).當a>0時(shí),圖象落在x軸的上方,x為任何實(shí)數時(shí),都有y>0;當a<0時(shí),圖象落在x軸的下方,x為任何實(shí)數時(shí),都有y<0.
5.拋物線(xiàn)y=ax^2+bx+c的最值:如果a>0(a<0),則當x=-b/2a時(shí),y最小(大)值=(4ac-b^2)/4a.
頂點(diǎn)的橫坐標,是取得最值時(shí)的自變量值,頂點(diǎn)的縱坐標,是最值的取值.
6.用待定系數法求二次函數的解析式
(1)當題給條件為已知圖象經(jīng)過(guò)三個(gè)已知點(diǎn)或已知x、y的三對對應值時(shí),可設解析式為一般形式:
y=ax^2+bx+c(a≠0).
(2)當題給條件為已知圖象的頂點(diǎn)坐標或對稱(chēng)軸時(shí),可設解析式為頂點(diǎn)式:y=a(x-h)^2+k(a≠0).
(3)當題給條件為已知圖象與x軸的兩個(gè)交點(diǎn)坐標時(shí),可設解析式為兩根式:y=a(x-x?)(x-x?)(a≠0).
7.二次函數知識很容易與其它知識綜合應用,而形成較為復雜的綜合題目。因此,以二次函數知識為主的綜合性題目是中考的熱點(diǎn)考題,往往以大題形式出現.
高一數學(xué)知識點(diǎn)總結3
一、集合及其表示
1、集合的含義:
“集合”這個(gè)詞首先讓我們想到的是上體育課或者開(kāi)會(huì )時(shí)老師經(jīng)常喊的“全體集合”。數學(xué)上的“集合”和這個(gè)意思是一樣的,只不過(guò)一個(gè)是動(dòng)詞一個(gè)是名詞而已。
所以集合的含義是:某些指定的對象集在一起就成為一個(gè)集合,簡(jiǎn)稱(chēng)集,其中每一個(gè)對象叫元素。比如高一二班集合,那么所有高一二班的同學(xué)就構成了一個(gè)集合,每一個(gè)同學(xué)就稱(chēng)為這個(gè)集合的元素。
2、集合的表示
通常用大寫(xiě)字母表示集合,用小寫(xiě)字母表示元素,如集合A={a,b,c}。a、b、c就是集合A中的元素,記作a∈A,相反,d不屬于集合A,記作d?A。
有一些特殊的集合需要記憶:
非負整數集(即自然數集)N正整數集N_或N+
整數集Z有理數集Q實(shí)數集R
集合的表示方法:列舉法與描述法。
、倭信e法:{a,b,c……}
、诿枋龇ǎ簩⒓现械脑氐墓矊傩悦枋龀鰜(lái)。如{x?R|x-3>2},{x|x-3>2},{(x,y)|y=x2+1}
、壅Z(yǔ)言描述法:例:{不是直角三角形的三角形}
例:不等式x-3>2的解集是{x?R|x-3>2}或{x|x-3>2}
強調:描述法表示集合應注意集合的代表元素
A={(x,y)|y=x2+3x+2}與B={y|y=x2+3x+2}不同。集合A中是數組元素(x,y),集合B中只有元素y。
3、集合的三個(gè)特性
(1)無(wú)序性
指集合中的元素排列沒(méi)有順序,如集合A={1,2},集合B={2,1},則集合A=B。
例題:集合A={1,2},B={a,b},若A=B,求a、b的值。
解:,A=B
注意:該題有兩組解。
(2)互異性
指集合中的元素不能重復,A={2,2}只能表示為{2}
(3)確定性
集合的確定性是指組成集合的元素的性質(zhì)必須明確,不允許有模棱兩可、含混不清的情況。
高一數學(xué)知識點(diǎn)總結4
數學(xué)是利用符號語(yǔ)言研究數量、結構、變化以及空間模型等概念的一門(mén)學(xué)科。小編準備了高一數學(xué)必修1期末考知識點(diǎn),希望你喜歡。
一、集合有關(guān)概念
1、集合的含義:某些指定的對象集在一起就成為一個(gè)集合,其中每一個(gè)對象叫元素.
2、集合的中元素的三個(gè)特性:
1.元素的確定性; 2.元素的互異性; 3.元素的無(wú)序性
說(shuō)明:(1)對于一個(gè)給定的集合,集合中的元素是確定的,任何一個(gè)對象或者是或者不是這個(gè)給定的集合的元素.
(2)任何一個(gè)給定的集合中,任何兩個(gè)元素都是不同的對象,相同的對象歸入一個(gè)集合時(shí),僅算一個(gè)元素.
(3)集合中的元素是平等的,沒(méi)有先后順序,因此判定兩個(gè)集合是否一樣,僅需比較它們的元素是否一樣,不需考查排列順序是否一樣.
(4)集合元素的三個(gè)特性使集合本身具有了確定性和整體性.
3、集合的表示:{ } 如{我校的籃球隊員},{太平洋,大西洋,印度洋,北冰洋}
1. 用拉丁字母表示集合:A={我校的籃球隊員},B={1,2,3,4,5}
2.集合的表示方法:列舉法與描述法.
注意。撼S脭导捌溆浄ǎ
非負整數集(即自然數集)記作:N
正整數集 N*或N+ 整數集Z 有理數集Q 實(shí)數集R
關(guān)于屬于的概念
集合的元素通常用小寫(xiě)的拉丁字母表示,如:a是集合A的元素,就說(shuō)a屬于集合A 記作 aA ,相反,a不屬于集合A 記作 a?A
列舉法:把集合中的元素一一列舉出來(lái),然后用一個(gè)大括號括上.
描述法:將集合中的元素的公共屬性描述出來(lái),寫(xiě)在大括號內表示集合的方法.用確定的條件表示某些對象是否屬于這個(gè)集合的方法.
、僬Z(yǔ)言描述法:例:{不是直角三角形的三角形}
、跀祵W(xué)式子描述法:例:不等式x-32的解集是{x?R| x-32}或{x| x-32}
4、集合的分類(lèi):
1.有限集 含有有限個(gè)元素的集合
2.無(wú)限集 含有無(wú)限個(gè)元素的集合
3.空集 不含任何元素的集合 例:{x|x2=-5}
二、集合間的基本關(guān)系
1.包含關(guān)系子集
注意: 有兩種可能(1)A是B的一部分,;(2)A與B是同一集合.
反之: 集合A不包含于集合B,或集合B不包含集合A,記作A B或B A
2.相等關(guān)系(55,且55,則5=5)
實(shí)例:設 A={x|x2-1=0} B={-1,1} 元素相同
結論:對于兩個(gè)集合A與B,如果集合A的任何一個(gè)元素都是集合B的元素,同時(shí),集合B的任何一個(gè)元素都是集合A的元素,我們就說(shuō)集合A等于集合B,即:A=B
、 任何一個(gè)集合是它本身的子集.AA
、谡孀蛹:如果AB,且A1 B那就說(shuō)集合A是集合B的真子集,記作A B(或B A)
、廴绻 AB, BC ,那么 AC
、 如果AB 同時(shí) BA 那么A=B
3. 不含任何元素的集合叫做空集,記為
規定: 空集是任何集合的子集, 空集是任何非空集合的真子集.
三、集合的運算
1.交集的定義:一般地,由所有屬于A(yíng)且屬于B的元素所組成的集合,叫做A,B的交集.
記作AB(讀作A交B),即AB={x|xA,且xB}.
2、并集的定義:一般地,由所有屬于集合A或屬于集合B的元素所組成的集合,叫做A,B的并集.記作:AB(讀作A并B),即AB={x|xA,或xB}.
3、交集與并集的性質(zhì):AA = A, A=, AB = BA,AA = A,
A= A ,AB = BA.
4、全集與補集
(1)補集:設S是一個(gè)集合,A是S的一個(gè)子集(即 ),由S中所有不屬于A(yíng)的元素組成的集合,叫做S中子集A的補集(或余集)
(2)全集:如果集合S含有我們所要研究的各個(gè)集合的全部元素,這個(gè)集合就可以看作一個(gè)全集.通常用U來(lái)表示.
(3)性質(zhì):⑴CU(C UA)=A ⑵(C UA) ⑶(CUA)A=U
高一數學(xué)知識點(diǎn)總結5
一、函數的概念與表示
1、映射
(1)映射:設A、B是兩個(gè)集合,如果按照某種映射法則f,對于集合A中的任一個(gè)元素,在集合B中都有唯一的元素和它對應,則這樣的對應(包括集合A、B以及A到B的對應法則f)叫做集合A到集合B的映射,記作f:A→B。
注意點(diǎn):(1)對映射定義的理解。(2)判斷一個(gè)對應是映射的方法。一對多不是映射,多對一是映射
2、函數
構成函數概念的三要素
、俣x域②對應法則③值域
兩個(gè)函數是同一個(gè)函數的條件:三要素有兩個(gè)相同
二、函數的解析式與定義域
1、求函數定義域的主要依據:
(1)分式的分母不為零;
(2)偶次方根的被開(kāi)方數不小于零,零取零次方?jīng)]有意義;
(3)對數函數的真數必須大于零;
(4)指數函數和對數函數的底數必須大于零且不等于1;
三、函數的值域
1求函數值域的方法
、僦苯臃ǎ簭淖宰兞縳的范圍出發(fā),推出y=f(x)的取值范圍,適合于簡(jiǎn)單的復合函數;
、趽Q元法:利用換元法將函數轉化為二次函數求值域,適合根式內外皆為一次式;
、叟袆e式法:運用方程思想,依據二次方程有根,求出y的取值范圍;適合分母為二次且∈R的分式;
、芊蛛x常數:適合分子分母皆為一次式(x有范圍限制時(shí)要畫(huà)圖);
、輪握{性法:利用函數的單調性求值域;
、迗D象法:二次函數必畫(huà)草圖求其值域;
、呃脤μ柡瘮
、鄮缀我饬x法:由數形結合,轉化距離等求值域。主要是含絕對值函數
四.函數的奇偶性
1.定義:設y=f(x),x∈A,如果對于任意∈A,都有,則稱(chēng)y=f(x)為偶函數。
如果對于任意∈A,都有,則稱(chēng)y=f(x)為奇
函數。
2.性質(zhì):
、賧=f(x)是偶函數y=f(x)的圖象關(guān)于軸對稱(chēng),y=f(x)是奇函數y=f(x)的圖象關(guān)于原點(diǎn)對稱(chēng),
、谌艉瘮礷(x)的定義域關(guān)于原點(diǎn)對稱(chēng),則f(0)=0
、燮妗榔=奇偶±偶=偶奇×奇=偶偶×偶=偶奇×偶=奇[兩函數的定義域D1,D2,D1∩D2要關(guān)于原點(diǎn)對稱(chēng)]
3.奇偶性的判斷
、倏炊x域是否關(guān)于原點(diǎn)對稱(chēng)②看f(x)與f(-x)的關(guān)系
五、函數的單調性
1、函數單調性的定義:
2設是定義在M上的函數,若f(x)與g(x)的單調性相反,則在M上是減函數;若f(x)與g(x)的單調性相同,則在M上是增函數。
高一數學(xué)知識點(diǎn)總結6
1、集合的概念
集合是集合論中的不定義的原始概念,教材中對集合的概念進(jìn)行了描述性說(shuō)明:“一般地,把一些能夠確定的不同的對象看成一個(gè)整體,就說(shuō)這個(gè)整體是由這些對象的全體構成的集合(或集)”。理解這句話(huà),應該把握4個(gè)關(guān)鍵詞:對象、確定的、不同的、整體。
對象――即集合中的元素。集合是由它的元素確定的。
整體――集合不是研究某一單一對象的,它關(guān)注的是這些對象的全體。
確定的――集合元素的確定性――元素與集合的“從屬”關(guān)系。
不同的――集合元素的互異性。
2、有限集、無(wú)限集、空集的意義
有限集和無(wú)限集是針對非空集合來(lái)說(shuō)的。我們理解起來(lái)并不困難。
我們把不含有任何元素的集合叫做空集,記做Φ。理解它時(shí)不妨思考一下“0與Φ”及“Φ與{Φ}”的關(guān)系。
幾個(gè)常用數集N、N_N+、Z、Q、R要記牢。
3、集合的表示方法
(1)列舉法的表示形式比較容易掌握,并不是所有的集合都能用列舉法表示,同學(xué)們需要知道能用列舉法表示的三種集合:
、僭夭惶嗟挠邢藜,如{0,1,8}
、谠剌^多但呈現一定的規律的有限集,如{1,2,3,…,100}
、鄢尸F一定規律的無(wú)限集,如{1,2,3,…,n,…}
●注意a與{a}的區別
●注意用列舉法表示集合時(shí),集合元素的“無(wú)序性”。
(2)特征性質(zhì)描述法的關(guān)鍵是把所研究的集合的“特征性質(zhì)”找準,然后適當地表示出來(lái)就行了。但關(guān)鍵點(diǎn)也是難點(diǎn)。學(xué)習時(shí)多加練習就可以了。另外,弄清“代表元素”也是非常重要的。如{x|y=x2},{y|y=x2},{(x,y)|y=x2}是三個(gè)不同的集合。
4、集合之間的關(guān)系
●注意區分“從屬”關(guān)系與“包含”關(guān)系
“從屬”關(guān)系是元素與集合之間的關(guān)系。
“包含”關(guān)系是集合與集合之間的關(guān)系。掌握子集、真子集的概念,掌握集合相等的概念,學(xué)會(huì )正確使用“”等符號,會(huì )用Venn圖描述集合之間的關(guān)系是基本要求。
●注意辨清Φ與{Φ}兩種關(guān)系。
高一數學(xué)知識點(diǎn)總結7
一、集合有關(guān)概念
1.集合的含義
2.集合的中元素的三個(gè)特性:
(1)元素的確定性如:世界上的山
(2)元素的互異性如:由HAPPY的字母組成的集合{H,A,P,Y}
(3)元素的無(wú)序性:如:{a,b,c}和{a,c,b}是表示同一個(gè)集合
3.集合的表示:{…}如:{我校的籃球隊員},{太平洋,大西洋,印度洋,北冰洋}
(1)用拉丁字母表示集合:A={我校的籃球隊員},B={1,2,3,4,5}
(2)集合的表示方法:列舉法與描述法。
注意:常用數集及其記法:
非負整數集(即自然數集)記作:N
正整數集:N_或N+
整數集:Z
有理數集:Q
實(shí)數集:R
1)列舉法:{a,b,c……}
2)描述法:將集合中的元素的公共屬性描述出來(lái),寫(xiě)在大括號內表示集合{xR|x-3>2},{x|x-3>2}
3)語(yǔ)言描述法:例:{不是直角三角形的三角形}
4)Venn圖:
4、集合的分類(lèi):
(1)有限集含有有限個(gè)元素的集合
(2)無(wú)限集含有無(wú)限個(gè)元素的集合
(3)空集不含任何元素的集合例:{x|x2=-5}
二、集合間的基本關(guān)系
1.“包含”關(guān)系—子集
注意:有兩種可能(1)A是B的一部分,;(2)A與B是同一集合。
反之:集合A不包含于集合B,或集合B不包含集合A,記作AB或BA
2.“相等”關(guān)系:A=B(5≥5,且5≤5,則5=5)
實(shí)例:設A={x|x2-1=0}B={-1,1}“元素相同則兩集合相等”
即:①任何一個(gè)集合是它本身的子集。AA
、谡孀蛹:如果AB,且AB那就說(shuō)集合A是集合B的真子集,記作AB(或BA)
、廴绻鸄B,BC,那么AC
、苋绻鸄B同時(shí)BA那么A=B
3.不含任何元素的集合叫做空集,記為Φ
規定:空集是任何集合的子集,空集是任何非空集合的真子集。
4.子集個(gè)數:
有n個(gè)元素的集合,含有2n個(gè)子集,2n-1個(gè)真子集,含有2n-1個(gè)非空子集,含有2n-1個(gè)非空真子集
三、集合的運算
運算類(lèi)型交集并集補集
定義由所有屬于A(yíng)且屬于B的元素所組成的集合,叫做A,B的交集.記作AB(讀作‘A交B’),即AB={x|xA,且xB}.
由所有屬于集合A或屬于集合B的元素所組成的集合,叫做A,B的并集.記作:AB(讀作‘A并B’),即AB={x|xA,或xB}).
設S是一個(gè)集合,A是S的一個(gè)子集,由S中所有不屬于A(yíng)的元素組成的集合,叫做S中子集A的補集(或余集)
記作,即
CSA=
AA=A
AΦ=Φ
AB=BA
ABA
ABB
AA=A
AΦ=A
AB=BA
ABA
ABB
(CuA)(CuB)
=Cu(AB)
(CuA)(CuB)
=Cu(AB)
A(CuA)=U
A(CuA)=Φ.
二、函數的有關(guān)概念
1.函數的概念
設A、B是非空的數集,如果按照某個(gè)確定的對應關(guān)系f,使對于集合A中的任意一個(gè)數x,在集合B中都有確定的數f(x)和它對應,那么就稱(chēng)f:A→B為從集合A到集合B的一個(gè)函數.記作:y=f(x),x∈A.其中,x叫做自變量,x的取值范圍A叫做函數的定義域;與x的值相對應的y值叫做函數值,函數值的集合{f(x)|x∈A}叫做函數的值域.
注意:
1.定義域:能使函數式有意義的實(shí)數x的集合稱(chēng)為函數的定義域。
求函數的定義域時(shí)列不等式組的主要依據是:
(1)分式的分母不等于零;
(2)偶次方根的被開(kāi)方數不小于零;
(3)對數式的真數必須大于零;
(4)指數、對數式的底必須大于零且不等于1.
(5)如果函數是由一些基本函數通過(guò)四則運算結合而成的那么,它的定義域是使各部分都有意義的x的值組成的集合.
(6)指數為零底不可以等于零,
(7)實(shí)際問(wèn)題中的函數的定義域還要保證實(shí)際問(wèn)題有意義.
相同函數的判斷方法:①表達式相同(與表示自變量和函數值的字母無(wú)關(guān));
、诙x域一致(兩點(diǎn)必須同時(shí)具備)
2.值域:先考慮其定義域
(1)觀(guān)察法(2)配方法(3)代換法
3.函數圖象知識歸納
(1)定義:
在平面直角坐標系中,以函數y=f(x),(x∈A)中的x為橫坐標,函數值y為縱坐標的點(diǎn)P(x,y)的集合C,叫做函數y=f(x),(x∈A)的圖象.C上每一點(diǎn)的坐標(x,y)均滿(mǎn)足函數關(guān)系y=f(x),反過(guò)來(lái),以滿(mǎn)足y=f(x)的每一組有序實(shí)數對x、y為坐標的點(diǎn)(x,y),均在C上.
(2)畫(huà)法
1.描點(diǎn)法:2.圖象變換法:常用變換方法有三種:1)平移變換2)伸縮變換3)對稱(chēng)變換
4.區間的概念
(1)區間的分類(lèi):開(kāi)區間、閉區間、半開(kāi)半閉區間(2)無(wú)窮區間(3)區間的數軸表示.
5.映射
一般地,設A、B是兩個(gè)非空的集合,如果按某一個(gè)確定的對應法則f,使對于集合A中的任意一個(gè)元素x,在集合B中都有確定的元素y與之對應,那么就稱(chēng)對應f:AB為從集合A到集合B的一個(gè)映射。記作“f(對應關(guān)系):A(原象)B(象)”
對于映射f:A→B來(lái)說(shuō),則應滿(mǎn)足:
(1)集合A中的每一個(gè)元素,在集合B中都有象,并且象是的;
(2)集合A中不同的元素,在集合B中對應的象可以是同一個(gè);
(3)不要求集合B中的每一個(gè)元素在集合A中都有原象。
6.分段函數
(1)在定義域的不同部分上有不同的解析表達式的函數。
(2)各部分的自變量的取值情況.
(3)分段函數的定義域是各段定義域的交集,值域是各段值域的并集.
補充:復合函數
如果y=f(u)(u∈M),u=g(x)(x∈A),則y=f[g(x)]=F(x)(x∈A)稱(chēng)為f、g的復合函數。
二.函數的性質(zhì)
1.函數的單調性(局部性質(zhì))
(1)增函數
設函數y=f(x)的定義域為I,如果對于定義域I內的某個(gè)區間D內的任意兩個(gè)自變量x1,x2,當x1
如果對于區間D上的任意兩個(gè)自變量的值x1,x2,當x1
注意:函數的單調性是函數的局部性質(zhì);
(2)圖象的特點(diǎn)
如果函數y=f(x)在某個(gè)區間是增函數或減函數,那么說(shuō)函數y=f(x)在這一區間上具有(嚴格的)單調性,在單調區間上增函數的圖象從左到右是上升的,減函數的圖象從左到右是下降的
(3).函數單調區間與單調性的判定方法
(A)定義法:
(1)任取x1,x2∈D,且x1
(2)作差f(x1)-f(x2);或者做商
(3)變形(通常是因式分解和配方);
(4)定號(即判斷差f(x1)-f(x2)的正負);
(5)下結論(指出函數f(x)在給定的區間D上的單調性).
(B)圖象法(從圖象上看升降)
(C)復合函數的單調性
復合函數f[g(x)]的單調性與構成它的函數u=g(x),y=f(u)的單調性密切相關(guān),其規律:“同增異減”
注意:函數的單調區間只能是其定義域的子區間,不能把單調性相同的區間和在一起寫(xiě)成其并集.
8.函數的奇偶性(整體性質(zhì))
(1)偶函數:一般地,對于函數f(x)的定義域內的任意一個(gè)x,都有f(-x)=f(x),那么f(x)就叫做偶函數.
(2)奇函數:一般地,對于函數f(x)的定義域內的任意一個(gè)x,都有f(-x)=—f(x),那么f(x)就叫做奇函數.
(3)具有奇偶性的函數的圖象的特征:偶函數的圖象關(guān)于y軸對稱(chēng);奇函數的圖象關(guān)于原點(diǎn)對稱(chēng).
9.利用定義判斷函數奇偶性的步驟:
○1首先確定函數的定義域,并判斷其是否關(guān)于原點(diǎn)對稱(chēng);
○2確定f(-x)與f(x)的關(guān)系;
○3作出相應結論:若f(-x)=f(x)或f(-x)-f(x)=0,則f(x)是偶函數;若f(-x)=-f(x)或f(-x)+f(x)=0,則f(x)是奇函數.
注意:函數定義域關(guān)于原點(diǎn)對稱(chēng)是函數具有奇偶性的必要條件.首先看函數的定義域是否關(guān)于原點(diǎn)對稱(chēng),若不對稱(chēng)則函數是非奇非偶函數.若對稱(chēng),(1)再根據定義判定;(2)由f(-x)±f(x)=0或f(x)/f(-x)=±1來(lái)判定;(3)利用定理,或借助函數的圖象判定.
10、函數的解析表達式
(1)函數的解析式是函數的一種表示方法,要求兩個(gè)變量之間的函數關(guān)系時(shí),一是要求出它們之間的對應法則,二是要求出函數的定義域.
(2)求函數的解析式的主要方法有:1.湊配法2.待定系數法3.換元法4.消參法
11.函數(小)值
○1利用二次函數的性質(zhì)(配方法)求函數的(小)值
○2利用圖象求函數的(小)值
○3利用函數單調性的判斷函數的(小)值:
如果函數y=f(x)在區間[a,b]上單調遞增,在區間[b,c]上單調遞減則函數y=f(x)在x=b處有值f(b);
如果函數y=f(x)在區間[a,b]上單調遞減,在區間[b,c]上單調遞增則函數y=f(x)在x=b處有最小值f(b);
第三章基本初等函數
一、指數函數
(一)指數與指數冪的運算
1.根式的概念:一般地,如果,那么叫做的次方根,其中>1,且∈_.
負數沒(méi)有偶次方根;0的任何次方根都是0,記作。
當是奇數時(shí),,當是偶數時(shí),
2.分數指數冪
正數的分數指數冪的意義,規定:
,
0的正分數指數冪等于0,0的負分數指數冪沒(méi)有意義
3.實(shí)數指數冪的運算性質(zhì)
(1);
(2);
(3).
(二)指數函數及其性質(zhì)
1、指數函數的概念:一般地,函數叫做指數函數,其中x是自變量,函數的定義域為R.
注意:指數函數的底數的取值范圍,底數不能是負數、零和1.
2、指數函數的圖象和性質(zhì)
a>10
定義域R定義域R
值域y>0值域y>0
在R上單調遞增在R上單調遞減
非奇非偶函數非奇非偶函數
函數圖象都過(guò)定點(diǎn)(0,1)函數圖象都過(guò)定點(diǎn)(0,1)
注意:利用函數的單調性,結合圖象還可以看出:
(1)在[a,b]上,值域是或;
(2)若,則;取遍所有正數當且僅當;
(3)對于指數函數,總有;
二、對數函數
(一)對數
1.對數的概念:
一般地,如果,那么數叫做以為底的對數,記作:(—底數,—真數,—對數式)
說(shuō)明:○1注意底數的限制,且;
○2;
○3注意對數的書(shū)寫(xiě)格式.
兩個(gè)重要對數:
○1常用對數:以10為底的對數;
○2自然對數:以無(wú)理數為底的對數的對數.
指數式與對數式的互化
冪值真數
=N=b
底數
指數對數
(二)對數的運算性質(zhì)
如果,且,,,那么:
○1+;
○2-;
○3.
注意:換底公式:(,且;,且;).
利用換底公式推導下面的結論:(1);(2).
(3)、重要的公式①、負數與零沒(méi)有對數;②、,③、對數恒等式
(二)對數函數
1、對數函數的概念:函數,且叫做對數函數,其中是自變量,函數的定義域是(0,+∞).
注意:○1對數函數的定義與指數函數類(lèi)似,都是形式定義,注意辨別。如:,都不是對數函數,而只能稱(chēng)其為對數型函數.
○2對數函數對底數的限制:,且.
2、對數函數的性質(zhì):
a>10
定義域x>0定義域x>0
值域為R值域為R
在R上遞增在R上遞減
函數圖象都過(guò)定點(diǎn)(1,0)函數圖象都過(guò)定點(diǎn)(1,0)
(三)冪函數
1、冪函數定義:一般地,形如的函數稱(chēng)為冪函數,其中為常數.
2、冪函數性質(zhì)歸納.
(1)所有的冪函數在(0,+∞)都有定義并且圖象都過(guò)點(diǎn)(1,1);
(2)時(shí),冪函數的圖象通過(guò)原點(diǎn),并且在區間上是增函數.特別地,當時(shí),冪函數的圖象下凸;當時(shí),冪函數的圖象上凸;
(3)時(shí),冪函數的圖象在區間上是減函數.在第一象限內,當從右邊趨向原點(diǎn)時(shí),圖象在軸右方無(wú)限地逼近軸正半軸,當趨于時(shí),圖象在軸上方無(wú)限地逼近軸正半軸.
第四章函數的應用
一、方程的根與函數的零點(diǎn)
1、函數零點(diǎn)的概念:對于函數,把使成立的實(shí)數叫做函數的零點(diǎn)。
2、函數零點(diǎn)的意義:函數的零點(diǎn)就是方程實(shí)數根,亦即函數的圖象與軸交點(diǎn)的橫坐標。
即:方程有實(shí)數根函數的圖象與軸有交點(diǎn)函數有零點(diǎn).
3、函數零點(diǎn)的求法:
○1(代數法)求方程的實(shí)數根;
○2(幾何法)對于不能用求根公式的方程,可以將它與函數的圖象聯(lián)系起來(lái),并利用函數的性質(zhì)找出零點(diǎn).
4、二次函數的零點(diǎn):
二次函數.
(1)△>0,方程有兩不等實(shí)根,二次函數的圖象與軸有兩個(gè)交點(diǎn),二次函數有兩個(gè)零點(diǎn).
(2)△=0,方程有兩相等實(shí)根,二次函數的圖象與軸有一個(gè)交點(diǎn),二次函數有一個(gè)二重零點(diǎn)或二階零點(diǎn).
(3)△<0,方程無(wú)實(shí)根,二次函數的圖象與軸無(wú)交點(diǎn),二次函數無(wú)零點(diǎn).
高一數學(xué)知識點(diǎn)總結8
一、指數函數
(一)指數與指數冪的運算
1.根式的概念:一般地,如果,那么叫做的次方根(nthroot),其中>1,且∈_.
當是奇數時(shí),正數的次方根是一個(gè)正數,負數的次方根是一個(gè)負數.此時(shí),的次方根用符號表示.式子叫做根式(radical),這里叫做根指數(radicalexponent),叫做被開(kāi)方數(radicand).
當是偶數時(shí),正數的次方根有兩個(gè),這兩個(gè)數互為相反數.此時(shí),正數的正的次方根用符號表示,負的次方根用符號-表示.正的次方根與負的次方根可以合并成±(>0).由此可得:負數沒(méi)有偶次方根;0的任何次方根都是0,記作。
注意:當是奇數時(shí),當是偶數時(shí),
2.分數指數冪
正數的分數指數冪的意義,規定:
0的正分數指數冪等于0,0的負分數指數冪沒(méi)有意義
指出:規定了分數指數冪的意義后,指數的概念就從整數指數推廣到了有理數指數,那么整數指數冪的運算性質(zhì)也同樣可以推廣到有理數指數冪.
3.實(shí)數指數冪的運算性質(zhì)
(二)指數函數及其性質(zhì)
1、指數函數的概念:一般地,函數叫做指數函數(exponential),其中x是自變量,函數的定義域為R.
注意:指數函數的底數的取值范圍,底數不能是負數、零和1.
2、指數函數的圖象和性質(zhì)
【第三章:第三章函數的應用】
1、函數零點(diǎn)的概念:對于函數,把使成立的實(shí)數叫做函數的零點(diǎn)。
2、函數零點(diǎn)的意義:函數的零點(diǎn)就是方程實(shí)數根,亦即函數的圖象與軸交點(diǎn)的橫坐標。即:
方程有實(shí)數根函數的圖象與軸有交點(diǎn)函數有零點(diǎn).
3、函數零點(diǎn)的求法:
求函數的零點(diǎn):
(1)(代數法)求方程的實(shí)數根;
(2)(幾何法)對于不能用求根公式的方程,可以將它與函數的圖象聯(lián)系起來(lái),并利用函數的性質(zhì)找出零點(diǎn).
4、二次函數的零點(diǎn):
二次函數.
1)△>0,方程有兩不等實(shí)根,二次函數的圖象與軸有兩個(gè)交點(diǎn),二次函數有兩個(gè)零點(diǎn). 2)△=0,方程有兩相等實(shí)根(二重根),二次函數的圖象與軸有一個(gè)交點(diǎn),二次函數有一個(gè)二重零點(diǎn)或二階零點(diǎn).
3)△<0,方程無(wú)實(shí)根,二次函數的圖象與軸無(wú)交點(diǎn),二次函數無(wú)零點(diǎn).
3.2.1幾類(lèi)不同增長(cháng)的函數模型
【課 型】新授課
【教學(xué)目標】
結合實(shí)例體會(huì )直線(xiàn)上升、指數爆炸、對數增長(cháng)等不同增長(cháng)的函數模型意義, 理解它們的增長(cháng)差異性.
【教學(xué)重點(diǎn)、難點(diǎn)】
1. 教學(xué)重點(diǎn) 將實(shí)際問(wèn)題轉化為函數模型,比較常數函數、一次函數、指數函數、對數函數模型的增長(cháng)差異,結合實(shí)例體會(huì )直線(xiàn)上升、指數爆炸、對數增長(cháng)等不同函數類(lèi)型增長(cháng)的含義.
2.教學(xué)難點(diǎn) 選擇合適的數學(xué)模型分析解決實(shí)際問(wèn)題.
【學(xué)法與教學(xué)用具】
1. 學(xué)法:學(xué)生通過(guò)閱讀教材,動(dòng)手畫(huà)圖,自主學(xué)習、思考,并相互討論,進(jìn)行探索.
2.教學(xué)用具:多媒體.
【教學(xué)過(guò)程】
(一)引入實(shí)例,創(chuàng )設情景.
教師引導學(xué)生閱讀例1,分析其中的數量關(guān)系,思考應當選擇怎樣的函數模型來(lái)描述;由學(xué)生自己根據數量關(guān)系,歸納概括出相應的函數模型,寫(xiě)出每個(gè)方案的函數解析式,教師在數量關(guān)系的分析、函數模型的選擇上作指導.
(二)互動(dòng)交流,探求新知.
1. 觀(guān)察數據,體會(huì )模型.
教師引導學(xué)生觀(guān)察例1表格中三種方案的數量變化情況,體會(huì )三種函數的增長(cháng)差異,說(shuō)出自己的發(fā)現,并進(jìn)行交流.
2. 作出圖象,描述特點(diǎn).
教師引導學(xué)生借助計算器作出三個(gè)方案的函數圖象,分析三種方案的不同變化趨勢,并進(jìn)行描述,為方案選擇提供依據.
(三)實(shí)例運用,鞏固提高.
1. 教師引導學(xué)生分析影響方案選擇的因素,使學(xué)生認識到要做出正確選擇除了考慮每天的收益,還要考慮一段時(shí)間內的總收益.學(xué)生通過(guò)自主活動(dòng),分析整理數據,并根據其中的信息做出推理判斷,獲得累計收益并給出本例的完整解答,然后全班進(jìn)行交流.
2. 教師引導學(xué)生分析例2中三種函數的不同增長(cháng)情況對于獎勵模型的影響,使學(xué)生明確問(wèn)題的實(shí)質(zhì)就是比較三個(gè)函數的增長(cháng)情況,進(jìn)一步體會(huì )三種基本函數模型在實(shí)際中廣泛應用,體會(huì )它們的增長(cháng)差異.
3.教師引導學(xué)生分析得出:要對每一個(gè)獎勵模型的獎金總額是否超出5萬(wàn)元,以及獎勵比例是否超過(guò)25%進(jìn)行分析,才能做出正確選擇,學(xué)會(huì )對數據的特點(diǎn)與作用進(jìn)行分析、判斷。
4.教師引導學(xué)生利用解析式,結合圖象,對例2的三個(gè)模型的增長(cháng)情況進(jìn)行分析比較,寫(xiě)出完整的解答過(guò)程.進(jìn)一步認識三個(gè)函數模型的增長(cháng)差異,并掌握解答的規范要求.
5.教師引導學(xué)生通過(guò)以上具體函數進(jìn)行比較分析,探究?jì)绾瘮?>0)、指數函數(>1)、對數函數(>1)在區間(0,+∞)上的增長(cháng)差異,并從函數的性質(zhì)上進(jìn)行研究、論證,同學(xué)之間進(jìn)行交流總結,形成結論性報告.教師對學(xué)生的結論進(jìn)行評析,借助信息技術(shù)手段進(jìn)行驗證演示.
6. 課堂練習
教材P98練習1、2,并由學(xué)生演示,進(jìn)行講評。
(四)歸納總結,提升認識.
教師通過(guò)計算機作圖進(jìn)行總結,使學(xué)生認識直線(xiàn)上升、指數爆炸、對數增長(cháng)等不同函數模型的含義及其差異,認識數學(xué)與現實(shí)生活、與其他學(xué)科的密切聯(lián)系,從而體會(huì )數學(xué)的實(shí)用價(jià)值和內在變化規律.
(五)布置作業(yè)
教材P107練習第2題
收集一些社會(huì )生活中普遍使用的遞增的一次函數、指數函數、對數函數的實(shí)例,對它們的增長(cháng)速度進(jìn)行比較,了解函數模型的廣泛應用,并思考。有時(shí)同一個(gè)實(shí)際問(wèn)題可以建立多個(gè)函數模型,在具體應用函數模型時(shí),應該怎樣選用合理的函數模型.
3.2.2 函數模型的應用實(shí)例(Ⅰ)
【課 型】新授課
【教學(xué)目標】
能夠找出簡(jiǎn)單實(shí)際問(wèn)題中的函數關(guān)系式,初步體會(huì )應用一次函數、二次函數模型解決實(shí)際問(wèn)題.
【教學(xué)重點(diǎn)與難點(diǎn)】
1.教學(xué)重點(diǎn):運用一次函數、二次函數模型解決一些實(shí)際問(wèn)題.
2. 教學(xué)難點(diǎn):將實(shí)際問(wèn)題轉變?yōu)閿祵W(xué)模型.
【學(xué)法與教學(xué)用具】
1. 學(xué)法:學(xué)生自主閱讀教材,采用嘗試、討論方式進(jìn)行探究.
2. 教學(xué)用具:多媒體
【教學(xué)過(guò)程】
(一)創(chuàng )設情景,揭示課題
引例:大約在一千五百年前,大數學(xué)家孫子在《孫子算經(jīng)》中記載了這樣的一道題:“今有雛兔同籠,上有三十五頭,下有九十四足,問(wèn)雛兔各幾何?”這四句的意思就是:有若干只有幾只雞和兔?你知道孫子是如何解答這個(gè)“雞兔同籠”問(wèn)題的嗎?你有什么更好的方法?老師介紹孫子的大膽解法:他假設砍去每只雞和兔一半的腳,則每只雞和兔就變成了“獨腳雞”和“雙腳兔”.這樣,“獨腳雞”和“雙腳兔”腳的數量與它們頭的數量之差,就是兔子數,即:47-35=12;雞數就是:35-12=23.
比例激發(fā)學(xué)生學(xué)習興趣,增強其求知欲望.
可引導學(xué)生運用方程的思想解答“雞兔同籠”問(wèn)題.
(二)結合實(shí)例,探求新知
例1. 某列火車(chē)眾北京西站開(kāi)往石家莊,全程277km,火車(chē)出發(fā)10min開(kāi)出13km后,以120km/h勻速行駛.試寫(xiě)出火車(chē)行駛的總路程S與勻速行駛的`時(shí)間t之間的關(guān)系式,并求火車(chē)離開(kāi)北京2h內行駛的路程.
探索:
1)本例所涉及的變量有哪些?它們的取值范圍怎樣;
2)所涉及的變量的關(guān)系如何?
3)寫(xiě)出本例的解答過(guò)程.
老師提示:路程S和自變量t的取值范圍(即函數的定義域),注意t的實(shí)際意義.
學(xué)生獨立思考,完成解答,并相互討論、交流、評析.
例2.某商店出售茶壺和茶杯,茶壺每只定價(jià)20元,茶杯每只定價(jià)5元,該商店制定了兩種優(yōu)惠辦法:
1)本例所涉及的變量之間的關(guān)系可用何種函數模型來(lái)描述?
2)本例涉及到幾個(gè)函數模型?
3)如何理解“更省錢(qián)?”;
4)寫(xiě)出具體的解答過(guò)程.
在學(xué)生自主思考,相互討論完成本例題解答之后,老師小結:通過(guò)以上兩例,數學(xué)模型是用數學(xué)語(yǔ)言模擬現實(shí)的一種模型,它把實(shí)際問(wèn)題中某些事物的主要特征和關(guān)系抽象出來(lái),并用數學(xué)語(yǔ)言來(lái)表達,這一過(guò)程稱(chēng)為建模,是解應用題的關(guān)鍵。數學(xué)模型可采用各種形式,如方程(組),函數解析式,圖形與網(wǎng)絡(luò )等.
高一數學(xué)知識點(diǎn)總結9
知識點(diǎn)1
一、集合有關(guān)概念
1、集合的含義:某些指定的對象集在一起就成為一個(gè)集合,其中每一個(gè)對象叫元素。
2、集合的中元素的三個(gè)特性:
1、元素的確定性;
2、元素的互異性;
3、元素的無(wú)序性
說(shuō)明:(1)對于一個(gè)給定的集合,集合中的元素是確定的,任何一個(gè)對象或者是或者不是這個(gè)給定的集合的元素。
。2)任何一個(gè)給定的集合中,任何兩個(gè)元素都是不同的對象,相同的對象歸入一個(gè)集合時(shí),僅算一個(gè)元素。
。3)集合中的元素是平等的,沒(méi)有先后順序,因此判定兩個(gè)集合是否一樣,僅需比較它們的元素是否一樣,不需考查排列順序是否一樣。
。4)集合元素的三個(gè)特性使集合本身具有了確定性和整體性。
3、集合的表示:{…}如{我校的籃球隊員},{太平洋,大西洋,印度洋,北冰洋}
1、用拉丁字母表示集合:A={我校的籃球隊員},B={1,2,3,4,5}
2、集合的表示方法:列舉法與描述法。
注意。撼S脭导捌溆浄ǎ
非負整數集(即自然數集)記作:N
正整數集N或N+整數集Z有理數集Q實(shí)數集R
關(guān)于“屬于”的概念
集合的元素通常用小寫(xiě)的拉丁字母表示,如:a是集合A的元素,就說(shuō)a屬于集合A記作a∈A,相反,a不屬于集合A記作a?A
列舉法:把集合中的元素一一列舉出來(lái),然后用一個(gè)大括號括上。
描述法:將集合中的元素的公共屬性描述出來(lái),寫(xiě)在大括號內表示集合的方法。用確定的條件表示某些對象是否屬于這個(gè)集合的方法。
、僬Z(yǔ)言描述法:例:{不是直角三角形的三角形}
、跀祵W(xué)式子描述法:例:不等式x—3>2的解集是{x?R|x—3>2}或{x|x—3>2}
4、集合的分類(lèi):
1、有限集含有有限個(gè)元素的集合
2、無(wú)限集含有無(wú)限個(gè)元素的集合
3、空集不含任何元素的集合例:{x|x2=—5}
知識點(diǎn)2
I、定義與定義表達式
一般地,自變量x和因變量y之間存在如下關(guān)系:y=ax^2+bx+c
。╝,b,c為常數,a≠0,且a決定函數的開(kāi)口方向,a>0時(shí),開(kāi)口方向向上,a<0時(shí),開(kāi)口方向向下,IaI還可以決定開(kāi)口大小,IaI越大開(kāi)口就越小,IaI越小開(kāi)口就越大、)
則稱(chēng)y為x的二次函數。
二次函數表達式的右邊通常為二次三項式。
II、二次函數的三種表達式
一般式:y=ax^2+bx+c(a,b,c為常數,a≠0)
頂點(diǎn)式:y=a(x—h)^2+k[拋物線(xiàn)的頂點(diǎn)P(h,k)]
交點(diǎn)式:y=a(x—x?)(x—x?)[僅限于與x軸有交點(diǎn)A(x?,0)和B(x?,0)的拋物線(xiàn)]
注:在3種形式的互相轉化中,有如下關(guān)系:
h=—b/2ak=(4ac—b^2)/4ax?,x?=(—b±√b^2—4ac)/2a
III、二次函數的圖像
在平面直角坐標系中作出二次函數y=x^2的圖像,可以看出,二次函數的圖像是一條拋物線(xiàn)。
IV、拋物線(xiàn)的性質(zhì)
1、拋物線(xiàn)是軸對稱(chēng)圖形。對稱(chēng)軸為直線(xiàn)x=—b/2a。對稱(chēng)軸與拋物線(xiàn)的交點(diǎn)為拋物線(xiàn)的頂點(diǎn)P。
特別地,當b=0時(shí),拋物線(xiàn)的對稱(chēng)軸是y軸(即直線(xiàn)x=0)
2、拋物線(xiàn)有一個(gè)頂點(diǎn)P,坐標為
P(—b/2a,(4ac—b^2)/4a)
當—b/2a=0時(shí),P在y軸上;當Δ=b^2—4ac=0時(shí),P在x軸上。
3、二次項系數a決定拋物線(xiàn)的開(kāi)口方向和大小。
當a>0時(shí),拋物線(xiàn)向上開(kāi)口;當a<0時(shí),拋物線(xiàn)向下開(kāi)口。
|a|越大,則拋物線(xiàn)的開(kāi)口越小。
知識點(diǎn)3
1、拋物線(xiàn)是軸對稱(chēng)圖形。對稱(chēng)軸為直線(xiàn)
x=—b/2a。
對稱(chēng)軸與拋物線(xiàn)的交點(diǎn)為拋物線(xiàn)的頂點(diǎn)P。
特別地,當b=0時(shí),拋物線(xiàn)的對稱(chēng)軸是y軸(即直線(xiàn)x=0)
2、拋物線(xiàn)有一個(gè)頂點(diǎn)P,坐標為
P(—b/2a,(4ac—b’2)/4a)
當—b/2a=0時(shí),P在y軸上;當Δ=b’2—4ac=0時(shí),P在x軸上。
3、二次項系數a決定拋物線(xiàn)的開(kāi)口方向和大小。
當a>0時(shí),拋物線(xiàn)向上開(kāi)口;當a<0時(shí),拋物線(xiàn)向下開(kāi)口。
|a|越大,則拋物線(xiàn)的開(kāi)口越小。
4、一次項系數b和二次項系數a共同決定對稱(chēng)軸的位置。
當a與b同號時(shí)(即ab>0),對稱(chēng)軸在y軸左;
當a與b異號時(shí)(即ab<0),對稱(chēng)軸在y軸右。
5、常數項c決定拋物線(xiàn)與y軸交點(diǎn)。
拋物線(xiàn)與y軸交于(0,c)
6、拋物線(xiàn)與x軸交點(diǎn)個(gè)數
Δ=b’2—4ac>0時(shí),拋物線(xiàn)與x軸有2個(gè)交點(diǎn)。
Δ=b’2—4ac=0時(shí),拋物線(xiàn)與x軸有1個(gè)交點(diǎn)。
Δ=b’2—4ac<0時(shí),拋物線(xiàn)與x軸沒(méi)有交點(diǎn)。X的取值是虛數(x=—b±√b’2—4ac的值的相反數,乘上虛數i,整個(gè)式子除以2a)
知識點(diǎn)4
對數函數
對數函數的一般形式為,它實(shí)際上就是指數函數的反函數。因此指數函數里對于a的規定,同樣適用于對數函數。
右圖給出對于不同大小a所表示的函數圖形:
可以看到對數函數的圖形只不過(guò)的指數函數的圖形的關(guān)于直線(xiàn)y=x的對稱(chēng)圖形,因為它們互為反函數。
。1)對數函數的定義域為大于0的實(shí)數集合。
。2)對數函數的值域為全部實(shí)數集合。
。3)函數總是通過(guò)(1,0)這點(diǎn)。
。4)a大于1時(shí),為單調遞增函數,并且上凸;a小于1大于0時(shí),函數為單調遞減函數,并且下凹。
。5)顯然對數函數。
知識點(diǎn)5
方程的根與函數的零點(diǎn)
1、函數零點(diǎn)的概念:對于函數,把使成立的實(shí)數叫做函數的零點(diǎn)。
2、函數零點(diǎn)的意義:函數的零點(diǎn)就是方程實(shí)數根,亦即函數的圖象與軸交點(diǎn)的橫坐標。即:方程有實(shí)數根,函數的圖象與坐標軸有交點(diǎn),函數有零點(diǎn)。
3、函數零點(diǎn)的求法:
。1)(代數法)求方程的實(shí)數根;
。2)(幾何法)對于不能用求根公式的方程,可以將它與函數的圖象聯(lián)系起來(lái),并利用函數的性質(zhì)找出零點(diǎn)。
4、二次函數的零點(diǎn):
。1)△>0,方程有兩不等實(shí)根,二次函數的圖象與軸有兩個(gè)交點(diǎn),二次函數有兩個(gè)零點(diǎn)。
。2)△=0,方程有兩相等實(shí)根(二重根),二次函數的圖象與軸有一個(gè)交點(diǎn),二次函數有一個(gè)二重零點(diǎn)或二階零點(diǎn)。
。3)△<0,方程無(wú)實(shí)根,二次函數的圖象與軸無(wú)交點(diǎn),二次函數無(wú)零點(diǎn)。
高一數學(xué)知識點(diǎn)總結10
1.函數的概念:設A、B是非空的數集,如果按照某個(gè)確定的對應關(guān)系f,使對于集合A中的任意一個(gè)數x,在集合B中都有唯一確定的數f(x)和它對應,那么就稱(chēng)f:A→B為從集合A到集合B的一個(gè)函數.記作:y=f(x),x∈A.其中,x叫做自變量,x的取值范圍A叫做函數的定義域;與x的值相對應的y值叫做函數值,函數值的集合{f(x)|x∈A}叫做函數的值域.
注意:2如果只給出解析式y=f(x),而沒(méi)有指明它的定義域,則函數的定義域即是指能使這個(gè)式子有意義的實(shí)數的集合;3函數的定義域、值域要寫(xiě)成集合或區間的形式.
定義域補充
能使函數式有意義的實(shí)數x的集合稱(chēng)為函數的定義域,求函數的定義域時(shí)列不等式組的主要依據是:(1)分式的分母不等于零;(2)偶次方根的被開(kāi)方數不小于零;(3)對數式的真數必須大于零;(4)指數、對數式的底必須大于零且不等于1.(5)如果函數是由一些基本函數通過(guò)四則運算結合而成的.那么,它的定義域是使各部分都有意義的x的值組成的集合.(6)指數為零底不可以等于零(6)實(shí)際問(wèn)題中的函數的定義域還要保證實(shí)際問(wèn)題有意義.
構成函數的三要素:定義域、對應關(guān)系和值域
再注意:(1)構成函數三個(gè)要素是定義域、對應關(guān)系和值域.由于值域是由定義域和對應關(guān)系決定的,所以,如果兩個(gè)函數的定義域和對應關(guān)系完全一致,即稱(chēng)這兩個(gè)函數相等(或為同一函數)(2)兩個(gè)函數相等當且僅當它們的定義域和對應關(guān)系完全一致,而與表示自變量和函數值的字母無(wú)關(guān)。相同函數的判斷方法:①表達式相同;②定義域一致(兩點(diǎn)必須同時(shí)具備)
值域補充
(1)、函數的值域取決于定義域和對應法則,不論采取什么方法求函數的值域都應先考慮其定義域.(2).應熟悉掌握一次函數、二次函數、指數、對數函數及各三角函數的值域,它是求解復雜函數值域的基礎。
3.函數圖象知識歸納
(1)定義:在平面直角坐標系中,以函數y=f(x),(x∈A)中的x為橫坐標,函數值y為縱坐標的點(diǎn)P(x,y)的集合C,叫做函數y=f(x),(x∈A)的圖象.
C上每一點(diǎn)的坐標(x,y)均滿(mǎn)足函數關(guān)系y=f(x),反過(guò)來(lái),以滿(mǎn)足y=f(x)的每一組有序實(shí)數對x、y為坐標的點(diǎn)(x,y),均在C上.即記為C={P(x,y)|y=f(x),x∈A}
圖象C一般的是一條光滑的連續曲線(xiàn)(或直線(xiàn)),也可能是由與任意平行與Y軸的直線(xiàn)最多只有一個(gè)交點(diǎn)的若干條曲線(xiàn)或離散點(diǎn)組成。
(2)畫(huà)法
A、描點(diǎn)法:根據函數解析式和定義域,求出x,y的一些對應值并列表,以(x,y)為坐標在坐標系內描出相應的點(diǎn)P(x,y),最后用平滑的曲線(xiàn)將這些點(diǎn)連接起來(lái).
B、圖象變換法(請參考必修4三角函數)
常用變換方法有三種,即平移變換、伸縮變換和對稱(chēng)變換
(3)作用:
1、直觀(guān)的看出函數的性質(zhì);2、利用數形結合的方法分析解題的思路。提高解題的速度。
高一數學(xué)知識點(diǎn)總結11
冪函數的性質(zhì):
對于a的取值為非零有理數,有必要分成幾種情況來(lái)討論各自的特性:
首先我們知道如果a=p/q,q和p都是整數,則x^(p/q)=q次根號(x的p次方),如果q是奇數,函數的定義域是R,如果q是偶數,函數的定義域是[0,+∞)。當指數n是負整數時(shí),設a=—k,則x=1/(x^k),顯然x≠0,函數的定義域是(—∞,0)∪(0,+∞)。因此可以看到x所受到的限制來(lái)源于兩點(diǎn),一是有可能作為分母而不能是0,一是有可能在偶數次的根號下而不能為負數,那么我們就可以知道:
排除了為0與負數兩種可能,即對于x>0,則a可以是任意實(shí)數;
排除了為0這種可能,即對于x<0x="">0的所有實(shí)數,q不能是偶數;
排除了為負數這種可能,即對于x為大于且等于0的所有實(shí)數,a就不能是負數。
總結起來(lái),就可以得到當a為不同的數值時(shí),冪函數的定義域的不同情況如下:如果a為任意實(shí)數,則函數的定義域為大于0的所有實(shí)數;
如果a為負數,則x肯定不能為0,不過(guò)這時(shí)函數的定義域還必須根據q的奇偶性來(lái)確定,即如果同時(shí)q為偶數,則x不能小于0,這時(shí)函數的定義域為大于0的所有實(shí)數;如果同時(shí)q為奇數,則函數的定義域為不等于0的所有實(shí)數。
在x大于0時(shí),函數的值域總是大于0的實(shí)數。
在x小于0時(shí),則只有同時(shí)q為奇數,函數的值域為非零的實(shí)數。
而只有a為正數,0才進(jìn)入函數的值域。
由于x大于0是對a的任意取值都有意義的,因此下面給出冪函數在第一象限的各自情況。
可以看到:
。1)所有的圖形都通過(guò)(1,1)這點(diǎn)。
。2)當a大于0時(shí),冪函數為單調遞增的,而a小于0時(shí),冪函數為單調遞減函數。
。3)當a大于1時(shí),冪函數圖形下凹;當a小于1大于0時(shí),冪函數圖形上凸。
。4)當a小于0時(shí),a越小,圖形傾斜程度越大。
。5)a大于0,函數過(guò)(0,0);a小于0,函數不過(guò)(0,0)點(diǎn)。
。6)顯然冪函數。
解題方法:換元法
解數學(xué)題時(shí),把某個(gè)式子看成一個(gè)整體,用一個(gè)變量去代替它,從而使問(wèn)題得到簡(jiǎn)化,這種方法叫換元法。換元的實(shí)質(zhì)是轉化,關(guān)鍵是構造元和設元,理論依據是等量代換,目的是變換研究對象,將問(wèn)題移至新對象的知識背景中去研究,從而使非標準型問(wèn)題標準化、復雜問(wèn)題簡(jiǎn)單化,變得容易處理。
換元法又稱(chēng)輔助元素法、變量代換法。通過(guò)引進(jìn)新的變量,可以把分散的條件聯(lián)系起來(lái),隱含的條件顯露出來(lái),或者把條件與結論聯(lián)系起來(lái);蛘咦?yōu)槭煜さ男问,把復雜的計算和推證簡(jiǎn)化。
它可以化高次為低次、化分式為整式、化無(wú)理式為有理式、化超越式為代數式,在研究方程、不等式、函數、數列、三角等問(wèn)題中有廣泛的應用。
練習題:
1、若f(x)=x2—x+b,且f(log2a)=b,log2[f(a)]=2(a≠1)。
。1)求f(log2x)的最小值及對應的x值;
。2)x取何值時(shí),f(log2x)>f(1)且log2[f(x)]
2、已知函數f(x)=3x+k(k為常數),A(—2k,2)是函數y=f—1(x)圖象上的點(diǎn)。
。1)求實(shí)數k的值及函數f—1(x)的解析式;
。2)將y=f—1(x)的圖象按向量a=(3,0)平移,得到函數y=g(x)的圖象,若2f—1(x+—3)—g(x)≥1恒成立,試求實(shí)數m的取值范圍。
高一數學(xué)知識點(diǎn)總結12
棱錐
棱錐的定義:有一個(gè)面是多邊形,其余各面都是有一個(gè)公共頂點(diǎn)的三角形,這些面圍成的幾何體叫做棱錐
棱錐的的性質(zhì):
(1)側棱交于一點(diǎn)。側面都是三角形
(2)平行于底面的截面與底面是相似的多邊形。且其面積比等于截得的棱錐的高與遠棱錐高的比的平方
正棱錐
正棱錐的定義:如果一個(gè)棱錐底面是正多邊形,并且頂點(diǎn)在底面內的射影是底面的中心,這樣的棱錐叫做正棱錐。
正棱錐的性質(zhì):
(1)各側棱交于一點(diǎn)且相等,各側面都是全等的等腰三角形。各等腰三角形底邊上的高相等,它叫做正棱錐的斜高。
(3)多個(gè)特殊的直角三角形
esp:
a、相鄰兩側棱互相垂直的正三棱錐,由三垂線(xiàn)定理可得頂點(diǎn)在底面的射影為底面三角形的垂心。
b、四面體中有三對異面直線(xiàn),若有兩對互相垂直,則可得第三對也互相垂直。且頂點(diǎn)在底面的射影為底面三角形的垂心。
高一數學(xué)知識點(diǎn)總結13
集合間的基本關(guān)系
1.“包含”關(guān)系—子集
注意: 有兩種可能(1)A是B的一部分,;(2)A與B是同一集合。 反之: 集合A不包含于集合B,或集合B不包含集合A,記作A B或B A
2.“相等”關(guān)系(5≥5,且5≤5,則5=5)
實(shí)例:設 A={x|x2-1=0} B={-1,1} “元素相同”
結論:對于兩個(gè)集合A與B,如果集合A的任何一個(gè)元素都是集合B的元素,同時(shí),集合B的任何一個(gè)元素都是集合A的元素,我們就說(shuō)集合A等于集合B,即:A=B
A?① 任何一個(gè)集合是它本身的子集。A
B那就說(shuō)集合A是集合B的真子集,記作A B(或B A)?B,且A?②真子集:如果A
C?C ,那么 A?B, B?③如果 A
A 那么A=B?B 同時(shí) B?④ 如果A
3. 不含任何元素的集合叫做空集,記為Φ
規定: 空集是任何集合的子集, 空集是任何非空集合的真子集。
集合的運算
1.交集的定義:一般地,由所有屬于A(yíng)且屬于B的元素所組成的集合,叫做A,B的交集.
記作A∩B(讀作”A交B”),即A∩B={x|x∈A,且x∈B}.
2、并集的定義:一般地,由所有屬于集合A或屬于集合B的元素所組成的集合,叫做A,B的并集。記作:A∪B(讀作”A并B”),即A∪B={x|x∈A,或x∈B}.
3、交集與并集的性質(zhì):A∩A = A, A∩φ= φ, A∩B = B∩A,A∪A = A, A∪φ= A ,A∪B = B∪A.
4、全集與補集
(1)補集:設S是一個(gè)集合,A是S的一個(gè)子集(即 ),由S中所有不屬于A(yíng)的元素組成的集合,叫做S中子集A的補集(或余集)
A}?S且 x? x?記作: CSA 即 CSA ={x
(2)全集:如果集合S含有我們所要研究的各個(gè)集合的全部元素,這個(gè)集合就可以看作一個(gè)全集。通常用U來(lái)表示。
(3)性質(zhì):⑴CU(C UA)=A ⑵(C UA)∩A=Φ ⑶(CUA)∪A=U
高一數學(xué)知識點(diǎn)總結14
直線(xiàn)和平面垂直
直線(xiàn)和平面垂直的定義:如果一條直線(xiàn)a和一個(gè)平面內的任意一條直線(xiàn)都垂直,我們就說(shuō)直線(xiàn)a和平面互相垂直.直線(xiàn)a叫做平面的垂線(xiàn),平面叫做直線(xiàn)a的垂面。
直線(xiàn)與平面垂直的判定定理:如果一條直線(xiàn)和一個(gè)平面內的兩條相交直線(xiàn)都垂直,那么這條直線(xiàn)垂直于這個(gè)平面。
直線(xiàn)與平面垂直的性質(zhì)定理:如果兩條直線(xiàn)同垂直于一個(gè)平面,那么這兩條直線(xiàn)平行。③直線(xiàn)和平面平行——沒(méi)有公共點(diǎn)
直線(xiàn)和平面平行的定義:如果一條直線(xiàn)和一個(gè)平面沒(méi)有公共點(diǎn),那么我們就說(shuō)這條直線(xiàn)和這個(gè)平面平行。
直線(xiàn)和平面平行的判定定理:如果平面外一條直線(xiàn)和這個(gè)平面內的一條直線(xiàn)平行,那么這條直線(xiàn)和這個(gè)平面平行。
直線(xiàn)和平面平行的性質(zhì)定理:如果一條直線(xiàn)和一個(gè)平面平行,經(jīng)過(guò)這條直線(xiàn)的平面和這個(gè)平面相交,那么這條直線(xiàn)和交線(xiàn)平行。
多面體
1、棱柱
棱柱的定義:有兩個(gè)面互相平行,其余各面都是四邊形,并且每?jì)蓚(gè)四邊形的公共邊都互相平行,這些面圍成的幾何體叫做棱柱。
棱柱的性質(zhì)
(1)側棱都相等,側面是平行四邊形
(2)兩個(gè)底面與平行于底面的截面是全等的多邊形
(3)過(guò)不相鄰的兩條側棱的截面(對角面)是平行四邊形
2、棱錐
棱錐的定義:有一個(gè)面是多邊形,其余各面都是有一個(gè)公共頂點(diǎn)的三角形,這些面圍成的幾何體叫做棱錐
棱錐的性質(zhì):
(1)側棱交于一點(diǎn)。側面都是三角形
(2)平行于底面的截面與底面是相似的多邊形。且其面積比等于截得的棱錐的高與遠棱錐高的比的平方
3、正棱錐
正棱錐的定義:如果一個(gè)棱錐底面是正多邊形,并且頂點(diǎn)在底面內的射影是底面的中心,這樣的棱錐叫做正棱錐。
正棱錐的性質(zhì):
(1)各側棱交于一點(diǎn)且相等,各側面都是全等的等腰三角形。各等腰三角形底邊上的高相等,它叫做正棱錐的斜高。
(3)多個(gè)特殊的直角三角形
a、相鄰兩側棱互相垂直的正三棱錐,由三垂線(xiàn)定理可得頂點(diǎn)在底面的射影為底面三角形的垂心。
b、四面體中有三對異面直線(xiàn),若有兩對互相垂直,則可得第三對也互相垂直。且頂點(diǎn)在底面的射影為底面三角形的垂心。
高一數學(xué)知識點(diǎn)總結15
一:函數及其表示
知識點(diǎn)詳解文檔包含函數的概念、映射、函數關(guān)系的判斷原則、函數區間、函數的三要素、函數的定義域、求具體或抽象數值的函數值、求函數值域、函數的表示方法等
1. 函數與映射的區別:
2. 求函數定義域
常見(jiàn)的用解析式表示的函數f(x)的定義域可以歸納如下:
、佼攆(x)為整式時(shí),函數的定義域為R.
、诋攆(x)為分式時(shí),函數的定義域為使分式分母不為零的實(shí)數集合。
、郛攆(x)為偶次根式時(shí),函數的定義域是使被開(kāi)方數不小于0的實(shí)數集合。
、墚攆(x)為對數式時(shí),函數的定義域是使真數為正、底數為正且不為1的實(shí)數集合。
、萑绻鹒(x)是由幾個(gè)部分的數學(xué)式子構成的,那么函數定義域是使各部分式子都有意義的實(shí)數集合,即求各部分有意義的實(shí)數集合的交集。
、迯秃虾瘮档亩x域是復合的各基本的函數定義域的交集。
、邔τ谟蓪(shí)際問(wèn)題的背景確定的函數,其定義域除上述外,還要受實(shí)際問(wèn)題的制約。
3. 求函數值域
(1)、觀(guān)察法:通過(guò)對函數定義域、性質(zhì)的觀(guān)察,結合函數的解析式,求得函數的值域;
(2)、配方法;如果一個(gè)函數是二次函數或者經(jīng)過(guò)換元可以寫(xiě)成二次函數的形式,那么將這個(gè)函數的右邊配方,通過(guò)自變量的范圍可以求出該函數的值域;
(3)、判別式法:
(4)、數形結合法;通過(guò)觀(guān)察函數的圖象,運用數形結合的方法得到函數的值域;
(5)、換元法;以新變量代替函數式中的某些量,使函數轉化為以新變量為自變量的函數形式,進(jìn)而求出值域;
(6)、利用函數的單調性;如果函數在給出的定義域區間上是嚴格單調的,那么就可以利用端點(diǎn)的函數值來(lái)求出值域;
(7)、利用基本不等式:對于一些特殊的分式函數、高于二次的函數可以利用重要不等式求出函數的值域;
(8)、最值法:對于閉區間[a,b]上的連續函數y=f(x),可求出y=f(x)在區間[a,b]內的極值,并與邊界值f(a).f(b)作比較,求出函數的最值,可得到函數y的值域;
(9)、反函數法:如果函數在其定義域內存在反函數,那么求函數的值域可以轉化為求反函數的定義域。
【高一數學(xué)知識點(diǎn)總結】相關(guān)文章:
高一數學(xué)知識點(diǎn)總結09-08
高一數學(xué)知識點(diǎn)總結11-19
高一數學(xué)知識點(diǎn)總結11-03