高二數學(xué)知識點(diǎn)總結15篇
總結是事后對某一階段的學(xué)習、工作或其完成情況加以回顧和分析的一種書(shū)面材料,它可以促使我們思考,因此十分有必須要寫(xiě)一份總結哦。但是總結有什么要求呢?下面是小編精心整理的高二數學(xué)知識點(diǎn)總結,希望對大家有所幫助。
高二數學(xué)知識點(diǎn)總結1
等差數列
對于一個(gè)數列{an},如果任意相鄰兩項之差為一個(gè)常數,那么該數列為等差數列,且稱(chēng)這一定值差為公差,記為d;從第一項a1到第n項an的總和,記為Sn。
那么,通項公式為,其求法很重要,利用了“疊加原理”的思想:
將以上n—1個(gè)式子相加,便會(huì )接連消去很多相關(guān)的項,最終等式左邊余下an,而右邊則余下a1和n—1個(gè)d,如此便得到上述通項公式。
此外,數列前n項的和,其具體推導方式較簡(jiǎn)單,可用以上類(lèi)似的疊加的方法,也可以采取迭代的方法,在此,不再復述。
值得說(shuō)明的是,前n項的和Sn除以n后,便得到一個(gè)以a1為首項,以d/2為公差的新數列,利用這一特點(diǎn)可以使很多涉及Sn的數列問(wèn)題迎刃而解。
等比數列
對于一個(gè)數列{an},如果任意相鄰兩項之商(即二者的比)為一個(gè)常數,那么該數列為等比數列,且稱(chēng)這一定值商為公比q;從第一項a1到第n項an的總和,記為T(mén)n。
那么,通項公式為(即a1乘以q的(n—1)次方,其推導為“連乘原理”的思想:
a2=a1Xq,
a3=a2Xq,
a4=a3Xq,
````````
an=an—1Xq,
將以上(n—1)項相乘,左右消去相應項后,左邊余下an,右邊余下a1和(n—1)個(gè)q的乘積,也即得到了所述通項公式。
此外,當q=1時(shí)該數列的前n項和Tn=a1Xn
當q≠1時(shí)該數列前n項的和Tn=a1X(1—q^(n))/(1—q)。
高二數學(xué)知識點(diǎn)總結2
1、導數的定義:在點(diǎn)處的導數記作。
2。導數的幾何物理意義:曲線(xiàn)在點(diǎn)處切線(xiàn)的斜率
、賙=f/(x0)表示過(guò)曲線(xiàn)y=f(x)上P(x0,f(x0))切線(xiàn)斜率。V=s/(t)表示即時(shí)速度。a=v/(t)表示加速度。
3。常見(jiàn)函數的導數公式:
4。導數的四則運算法則:
5。導數的應用:
。1)利用導數判斷函數的單調性:設函數在某個(gè)區間內可導,如果,那么為增函數;如果,那么為減函數;
注意:如果已知為減函數求字母取值范圍,那么不等式恒成立。
。2)求極值的步驟:
、偾髮;
、谇蠓匠痰母;
、哿斜恚簷z驗在方程根的左右的符號,如果左正右負,那么函數在這個(gè)根處取得極大值;如果左負右正,那么函數在這個(gè)根處取得極小值;
。3)求可導函數值與最小值的步驟:
、∏蟮母;ⅱ把根與區間端點(diǎn)函數值比較,的為值,最小的是最小值。
高二數學(xué)知識點(diǎn)總結3
等腰直角三角形面積公式:S=a2/2,S=ch/2=c2/4(其中a為直角邊,c為斜邊,h為斜邊上的高)。
面積公式
若假設等腰直角三角形兩腰分別為a,b,底為c,則可得其面積:
S=ab/2。
且由等腰直角三角形性質(zhì)可知:底邊c上的高h=c/2,則三角面積可表示為:
S=ch/2=c2/4。
等腰直角三角形是一種特殊的三角形,具有所有三角形的性質(zhì):穩定性,兩直角邊相等直角邊夾一直角銳角45°,斜邊上中線(xiàn)角平分線(xiàn)垂線(xiàn)三線(xiàn)合一。
反正弦函數的導數:正弦函數y=sinx在[-π/2,π/2]上的反函數,叫做反正弦函數。記作arcsinx,表示一個(gè)正弦值為x的角,該角的范圍在[-π/2,π/2]區間內。定義域[-1,1],值域[-π/2,π/2]。
反函數求導方法
若F(X),G(X)互為反函數,
則:F'(X)_'(X)=1
E.G.:y=arcsin_siny
y'_'=1(arcsinx)'_siny)'=1
y'=1/(siny)'=1/(cosy)=1/根號(1-sin^2y)=1/根號(1-x^2)
其余依此類(lèi)推
高二數學(xué)知識點(diǎn)總結4
1.1柱、錐、臺、球的結構特征
1.2空間幾何體的三視圖和直觀(guān)圖
11三視圖:
正視圖:從前往后
側視圖:從左往右
俯視圖:從上往下
22畫(huà)三視圖的原則:
長(cháng)對齊、高對齊、寬相等
33直觀(guān)圖:斜二測畫(huà)法
44斜二測畫(huà)法的步驟:
(1).平行于坐標軸的線(xiàn)依然平行于坐標軸;
(2).平行于y軸的線(xiàn)長(cháng)度變半,平行于x,z軸的線(xiàn)長(cháng)度不變;
(3).畫(huà)法要寫(xiě)好。
5用斜二測畫(huà)法畫(huà)出長(cháng)方體的步驟:(1)畫(huà)軸(2)畫(huà)底面(3)畫(huà)側棱(4)成圖
1.3空間幾何體的表面積與體積
(一)空間幾何體的表面積
1棱柱、棱錐的表面積:各個(gè)面面積之和
2圓柱的表面積3圓錐的表面積
4圓臺的表面積
5球的表面積
(二)空間幾何體的體積
1柱體的體積
2錐體的體積
3臺體的體積
4球體的體積
高二數學(xué)必修二知識點(diǎn):直線(xiàn)與平面的位置關(guān)系
2.1空間點(diǎn)、直線(xiàn)、平面之間的位置關(guān)系
2.1.1
1平面含義:平面是無(wú)限延展的
2平面的畫(huà)法及表示
(1)平面的畫(huà)法:水平放置的平面通常畫(huà)成一個(gè)平行四邊形,銳角畫(huà)成450,且橫邊畫(huà)成鄰邊的2倍長(cháng)(如圖)
(2)平面通常用希臘字母α、β、γ等表示,如平面α、平面β等,也可以用表示平面的平行四邊形的四個(gè)頂點(diǎn)或者相對的兩個(gè)頂點(diǎn)的大寫(xiě)字母來(lái)表示,如平面AC、平面ABCD等。
3三個(gè)公理:
(1)公理1:如果一條直線(xiàn)上的兩點(diǎn)在一個(gè)平面內,那么這條直線(xiàn)在此平面內
符號表示為
A∈L
B∈L=>Lα
A∈α
B∈α
公理1作用:判斷直線(xiàn)是否在平面內
(2)公理2:過(guò)不在一條直線(xiàn)上的三點(diǎn),有且只有一個(gè)平面。
符號表示為:A、B、C三點(diǎn)不共線(xiàn)=>有且只有一個(gè)平面α,
使A∈α、B∈α、C∈α。
公理2作用:確定一個(gè)平面的依據。
(3)公理3:如果兩個(gè)不重合的平面有一個(gè)公共點(diǎn),那么它們有且只有一條過(guò)該點(diǎn)的公共直線(xiàn)。
符號表示為:P∈α∩β=>α∩β=L,且P∈L
公理3作用:判定兩個(gè)平面是否相交的依據
2.1.2空間中直線(xiàn)與直線(xiàn)之間的位置關(guān)系
1空間的兩條直線(xiàn)有如下三種關(guān)系:
共面直線(xiàn)
相交直線(xiàn):同一平面內,有且只有一個(gè)公共點(diǎn);
平行直線(xiàn):同一平面內,沒(méi)有公共點(diǎn);
異面直線(xiàn):不同在任何一個(gè)平面內,沒(méi)有公共點(diǎn)。
2公理4:平行于同一條直線(xiàn)的兩條直線(xiàn)互相平行。
符號表示為:設a、b、c是三條直線(xiàn)
a∥b
c∥b
強調:公理4實(shí)質(zhì)上是說(shuō)平行具有傳遞性,在平面、空間這個(gè)性質(zhì)都適用。
公理4作用:判斷空間兩條直線(xiàn)平行的依據。
3等角定理:空間中如果兩個(gè)角的兩邊分別對應平行,那么這兩個(gè)角相等或互補
4注意點(diǎn):
、賏'與b'所成的角的大小只由a、b的相互位置來(lái)確定,與O的選擇無(wú)關(guān),為了簡(jiǎn)便,點(diǎn)O一般取在兩直線(xiàn)中的一條上;
、趦蓷l異面直線(xiàn)所成的角θ∈(0,);
、郛攦蓷l異面直線(xiàn)所成的角是直角時(shí),我們就說(shuō)這兩條異面直線(xiàn)互相垂直,記作a⊥b;
、軆蓷l直線(xiàn)互相垂直,有共面垂直與異面垂直兩種情形;
、萦嬎阒,通常把兩條異面直線(xiàn)所成的角轉化為兩條相交直線(xiàn)所成的角。
2.1.3—2.1.4空間中直線(xiàn)與平面、平面與平面之間的位置關(guān)系
1、直線(xiàn)與平面有三種位置關(guān)系:
(1)直線(xiàn)在平面內——有無(wú)數個(gè)公共點(diǎn)
(2)直線(xiàn)與平面相交——有且只有一個(gè)公共點(diǎn)
(3)直線(xiàn)在平面平行——沒(méi)有公共點(diǎn)
指出:直線(xiàn)與平面相交或平行的情況統稱(chēng)為直線(xiàn)在平面外,可用aα來(lái)表示
aαa∩α=Aa∥α
2.2.直線(xiàn)、平面平行的判定及其性質(zhì)
2.2.1直線(xiàn)與平面平行的判定
1、直線(xiàn)與平面平行的判定定理:平面外一條直線(xiàn)與此平面內的一條直線(xiàn)平行,則該直線(xiàn)與此平面平行。
簡(jiǎn)記為:線(xiàn)線(xiàn)平行,則線(xiàn)面平行。
符號表示:
aα
bβ=>a∥α
a∥b
2.2.2平面與平面平行的判定
1、兩個(gè)平面平行的判定定理:一個(gè)平面內的兩條交直線(xiàn)與另一個(gè)平面平行,則這兩個(gè)平面平行。
符號表示:
aβ
bβ
a∩b=Pβ∥α
a∥α
b∥α
2、判斷兩平面平行的方法有三種:
(1)用定義;
(2)判定定理;
(3)垂直于同一條直線(xiàn)的兩個(gè)平面平行。
2.2.3—2.2.4直線(xiàn)與平面、平面與平面平行的性質(zhì)
1、定理:一條直線(xiàn)與一個(gè)平面平行,則過(guò)這條直線(xiàn)的`任一平面與此平面的交線(xiàn)與該直線(xiàn)平行。
簡(jiǎn)記為:線(xiàn)面平行則線(xiàn)線(xiàn)平行。
符號表示:
a∥α
aβa∥b
α∩β=b
作用:利用該定理可解決直線(xiàn)間的平行問(wèn)題。
2、定理:如果兩個(gè)平面同時(shí)與第三個(gè)平面相交,那么它們的交線(xiàn)平行。
符號表示:
α∥β
α∩γ=aa∥b
β∩γ=b
作用:可以由平面與平面平行得出直線(xiàn)與直線(xiàn)平行
2.3直線(xiàn)、平面垂直的判定及其性質(zhì)
2.3.1直線(xiàn)與平面垂直的判定
1、定義
如果直線(xiàn)L與平面α內的任意一條直線(xiàn)都垂直,我們就說(shuō)直線(xiàn)L與平面α互相垂直,記作L⊥α,直線(xiàn)L叫做平面α的垂線(xiàn),平面α叫做直線(xiàn)L的垂面。直線(xiàn)與平面垂直時(shí),它們公共點(diǎn)P叫做垂足。
2、判定定理:一條直線(xiàn)與一個(gè)平面內的兩條相交直線(xiàn)都垂直,則該直線(xiàn)與此平面垂直。
注意點(diǎn):a)定理中的“兩條相交直線(xiàn)”這一條件不可忽視;
b)定理體現了“直線(xiàn)與平面垂直”與“直線(xiàn)與直線(xiàn)垂直”互相轉化的數學(xué)思想。
2.3.2平面與平面垂直的判定
1、二面角的概念:表示從空間一直線(xiàn)出發(fā)的兩個(gè)半平面所組成的圖形
2、二面角的記法:二面角α-l-β或α-AB-β
3、兩個(gè)平面互相垂直的判定定理:一個(gè)平面過(guò)另一個(gè)平面的垂線(xiàn),則這兩個(gè)平面垂直。
2.3.3—2.3.4直線(xiàn)與平面、平面與平面垂直的性質(zhì)
1、定理:垂直于同一個(gè)平面的兩條直線(xiàn)平行。
2性質(zhì)定理:兩個(gè)平面垂直,則一個(gè)平面內垂直于交線(xiàn)的直線(xiàn)與另一個(gè)平面垂直。
高二數學(xué)知識點(diǎn)總結5
第一章:集合和函數的基本概念,錯誤基本都集中在空集這一概念上,而每次考試基本都會(huì )在選填題上涉及這一概念,一個(gè)不小心就是五分沒(méi)了。次一級的知識點(diǎn)就是集合的韋恩圖,會(huì )畫(huà)圖,集合的“并、補、交、非”也就解決了,還有函數的定義域和函數的單調性、增減性的概念,這些都是函數的基礎而且不難理解。在第一輪復習中一定要反復去記這些概念,的方法是寫(xiě)在筆記本上,每天至少看上一遍。
第二章:基本初等函數:指數、對數、冪函數三大函數的運算性質(zhì)及圖像。函數的幾大要素和相關(guān)考點(diǎn)基本都在函數圖像上有所體現,單調性、增減性、極值、零點(diǎn)等等。關(guān)于這三大函數的運算公式,多記多用,多做一點(diǎn)練習基本就沒(méi)多大問(wèn)題。函數圖像是這一章的重難點(diǎn),而且圖像問(wèn)題是不能靠記憶的,必須要理解,要會(huì )熟練的畫(huà)出函數圖像,定義域、值域、零點(diǎn)等等。對于冪函數還要搞清楚當指數冪大于一和小于一時(shí)圖像的不同及函數值的大小關(guān)系,這也是?汲ee點(diǎn)。另外指數函數和對數函數的對立關(guān)系及其相互之間要怎樣轉化問(wèn)題也要了解清楚。
第三章:函數的應用。主要就是函數與方程的結合。其實(shí)就是的實(shí)根,即函數的零點(diǎn),也就是函數圖像與X軸的交點(diǎn)。這三者之間的轉化關(guān)系是這一章的重點(diǎn),要學(xué)會(huì )在這三者之間的靈活轉化,以求能最簡(jiǎn)單的解決問(wèn)題。關(guān)于證明零點(diǎn)的方法,直接計算加得必有零點(diǎn),連續函數在x軸上方下方有定義則有零點(diǎn)等等,這是這一章的難點(diǎn),這幾種證明方法都要記得,多練習強化。這二次函數的零點(diǎn)的Δ判別法,這個(gè)倒不算難。
高二數學(xué)知識點(diǎn)總結6
用樣本的數字特征估計總體的數字特征
1、本均值:
2、樣本標準差:
3.用樣本估計總體時(shí),如果抽樣的方法比較合理,那么樣本可以反映總體的信息,但從樣本得到的信息會(huì )有偏差。在隨機抽樣中,這種偏差是不可避免的。
雖然我們用樣本數據得到的分布、均值和標準差并不是總體的真正的分布、均值和標準差,而只是一個(gè)估計,但這種估計是合理的,特別是當樣本量很大時(shí),它們確實(shí)反映了總體的信息。
4.(1)如果把一組數據中的每一個(gè)數據都加上或減去同一個(gè)共同的常數,標準差不變
(2)如果把一組數據中的每一個(gè)數據乘以一個(gè)共同的常數k,標準差變?yōu)樵瓉?lái)的k倍
(3)一組數據中的值和最小值對標準差的影響,區間的應用;
“去掉一個(gè)分,去掉一個(gè)最低分”中的科學(xué)道理
高二數學(xué)知識點(diǎn)總結7
1.有向線(xiàn)段的定義
線(xiàn)段的端點(diǎn)A為始點(diǎn),端點(diǎn)B為終點(diǎn),這時(shí)線(xiàn)段AB具有射線(xiàn)AB的方向.像這樣,具有方向的線(xiàn)段叫做有向線(xiàn)段.記作:.
2.有向線(xiàn)段的三要素:有向線(xiàn)段包含三個(gè)要素:始點(diǎn)、方向和長(cháng)度.
3.向量的定義:(1)具有大小和方向的量叫做向量.向量有兩個(gè)要素:大小和方向.
(2)向量的表示方法:①用兩個(gè)大寫(xiě)的英文字母及前頭表示,有向線(xiàn)段來(lái)表示向量時(shí),也稱(chēng)其為向量.書(shū)寫(xiě)時(shí),則用帶箭頭的小寫(xiě)字母,,,來(lái)表示.
4.向量的長(cháng)度(模):如果向量=,那么有向線(xiàn)段的長(cháng)度表示向量的大小,叫做向量的長(cháng)度(或模),記作||.
5.相等向量:如果兩個(gè)向量和的方向相同且長(cháng)度相等,則稱(chēng)和相等,記作:=.
6.相反向量:與向量等長(cháng)且方向相反的向量叫做的相反向量,記作:-.
7.向量平行(共線(xiàn)):如果兩個(gè)向量方向相同或相反,則稱(chēng)這兩個(gè)向量平行,向量平行也稱(chēng)向量共線(xiàn).向量平行于向量,記作//.規定: //.
8.零向量:長(cháng)度等于零的向量叫做零向量,記作:.零向量的方向是不確定的,是任意的.由于零向量方向的特殊性,解答問(wèn)題時(shí),一定要看清題目中是零向量還是非零向量.
9.單位向量:長(cháng)度等于1的向量叫做單位向量.
10.向量的加法運算:
(1)向量加法的三角形法則
11.向量的減法運算
12、兩向量的和差的模與兩向量模的和差之間的關(guān)系
對于任意兩個(gè)向量,,都有|||-|||||+||.
13.數乘向量的定義:
實(shí)數和向量的乘積是一個(gè)向量,這種運算叫做數乘向量,記作.
向量的長(cháng)度與方向規定為:(1)||=|
(2)當0時(shí),與方向相同;當0時(shí),與方向相反.
(3)當=0時(shí),當=時(shí),=.
14.數乘向量的運算律:(1))= (結合律)
(2)(+) =+(第一分配律)(3)(+)=+.(第二分配律)
15.平行向量基本定理
如果向量,則//的充分必要條件是,存在唯一的實(shí)數,使得=.
如果與不共線(xiàn),若m=n,則m=n=0.
16.非零向量的單位向量:非零向量的單位向量是指與同向的單位向量,通常記作.
=||,即==(,)
17.線(xiàn)段中點(diǎn)的向量表達式
點(diǎn)M是線(xiàn)段AB的中點(diǎn),O是平面內任意一點(diǎn),則=(+).
18.平面向量的直角坐標運算:如果=(a1,a2),=(b1,b2),則
+=(a1+b1,a2+b2);-=(a1-b1,a2-b2);=(a1,a2).
19.利用兩點(diǎn)表示向量:如果A(x1,y1),B(x2,y2),則=(x2-x1,y2-y1).
20.兩向量相等和平行的條件:若=(a1,a2),=(b1,b2) ,則
=a1=b1且a2=b2.
//a1b2-a2b1=0.特別地,如果b10,b20,則// =.
21.向量的長(cháng)度公式:若=(a1,a2),則||=.
22.平面上兩點(diǎn)間的距離公式:若A(x1,y1),B(x2,y2),則||=.
23.中點(diǎn)公式
若點(diǎn)A(x1,y1),點(diǎn)B(x2,y2),點(diǎn)M(x,y)是線(xiàn)段AB的中點(diǎn),則x=,y= .
24.重心公式
在△ABC中,若A(x1,y1),B(x2,y2),A(x3,y3),,△ABC的重心為G(x,y),則
x=,y=
25.(1)兩個(gè)向量夾角的取值范圍是[0,p],即0,p.
當=0時(shí),與同向;當=p時(shí),與反向
當= 時(shí),與垂直,記作.
(3)向量的內積定義:=||||cos.
其中,||cos叫做向量在向量方向上的正射影的數量.規定=0.
(4)內積的幾何意義
與的內積的幾何意義是的模與在方向上的正射影的數量,或的模與在 方向上的正射影數量的乘積
當0,90時(shí),0;=90時(shí),
90時(shí),0.
26.向量?jì)确e的運算律:
(1)交換率
(2)數乘結合律
(3)分配律
(4)不滿(mǎn)足組合律
27.向量?jì)确e滿(mǎn)足乘法公式
29.向量?jì)确e的應用:
高二數學(xué)知識點(diǎn)總結8
一、理解集合中的有關(guān)概念
(1)集合中元素的特征: 確定性 , 互異性 , 無(wú)序性 。
(2)集合與元素的關(guān)系用符號=表示。
(3)常用數集的符號表示:自然數集 ;正整數集 ;整數集 ;有理數集 、實(shí)數集 。
(4)集合的表示法: 列舉法 , 描述法 , 韋恩圖 。
(5)空集是指不含任何元素的集合。
空集是任何集合的子集,是任何非空集合的真子集。
二、函數
一、映射與函數:
(1)映射的概念: (2)一一映射:(3)函數的概念:
二、函數的三要素:
相同函數的判斷方法:①對應法則 ;②定義域 (兩點(diǎn)必須同時(shí)具備)
(1)函數解析式的求法:
、俣x法(拼湊):②換元法:③待定系數法:④賦值法:
(2)函數定義域的求法:
、俸瑓(wèn)題的定義域要分類(lèi)討論;
、趯τ趯(shí)際問(wèn)題,在求出函數解析式后;必須求出其定義域,此時(shí)的定義域要根據實(shí)際意義來(lái)確定。
(3)函數值域的求法:
、倥浞椒:轉化為二次函數,利用二次函數的特征來(lái)求值;常轉化為型如: 的形式;
、谀媲蠓(反求法):通過(guò)反解,用 來(lái)表示 ,再由 的取值范圍,通過(guò)解不等式,得出 的取值范圍;常用來(lái)解,型如: ;
、軗Q元法:通過(guò)變量代換轉化為能求值域的函數,化歸思想;
、萑怯薪绶:轉化為只含正弦、余弦的函數,運用三角函數有界性來(lái)求值域;
、藁静坏仁椒:轉化成型如: ,利用平均值不等式公式來(lái)求值域;
、邌握{性法:函數為單調函數,可根據函數的單調性求值域。
、鄶敌谓Y合:根據函數的幾何圖形,利用數型結合的方法來(lái)求值域。
三、函數的性質(zhì)
函數的單調性、奇偶性、周期性
單調性:定義:注意定義是相對與某個(gè)具體的區間而言。
判定方法有:定義法(作差比較和作商比較)
導數法(適用于多項式函數)
復合函數法和圖像法。
應用:比較大小,證明不等式,解不等式。
奇偶性:定義:注意區間是否關(guān)于原點(diǎn)對稱(chēng),比較f(x) 與f(-x)的關(guān)系。f(x) -f(-x)=0 f(x) =f(-x) f(x)為偶函數;
f(x)+f(-x)=0 f(x) =-f(-x) f(x)為奇函數。
判別方法:定義法, 圖像法 ,復合函數法
應用:把函數值進(jìn)行轉化求解。
周期性:定義:若函數f(x)對定義域內的任意x滿(mǎn)足:f(x+T)=f(x),則T為函數f(x)的周期。
其他:若函數f(x)對定義域內的任意x滿(mǎn)足:f(x+a)=f(x-a),則2a為函數f(x)的周期.
應用:求函數值和某個(gè)區間上的函數解析式。
四、圖形變換:函數圖像變換:(重點(diǎn))要求掌握常見(jiàn)基本函數的圖像,掌握函數圖像變換的一般規律。
常見(jiàn)圖像變化規律:(注意平移變化能夠用向量的語(yǔ)言解釋?zhuān)桶聪蛄科揭坡?lián)系起來(lái)思考)
平移變換 y=f(x)→y=f(x+a),y=f(x)+b
注意:(ⅰ)有系數,要先提取系數。如:把函數y=f(2x)經(jīng)過(guò) 平移得到函數y=f(2x+4)的圖象。
(ⅱ)會(huì )結合向量的平移,理解按照向量 (m,n)平移的意義。
對稱(chēng)變換 y=f(x)→y=f(-x),關(guān)于y軸對稱(chēng)
y=f(x)→y=-f(x) ,關(guān)于x軸對稱(chēng)
y=f(x)→y=f|x|,把x軸上方的圖象保留,x軸下方的圖象關(guān)于x軸對稱(chēng)
y=f(x)→y=|f(x)|把y軸右邊的圖象保留,然后將y軸右邊部分關(guān)于y軸對稱(chēng)。(注意:它是一個(gè)偶函數)
伸縮變換:y=f(x)→y=f(ωx),
y=f(x)→y=Af(ωx+φ)具體參照三角函數的圖象變換。
一個(gè)重要結論:若f(a-x)=f(a+x),則函數y=f(x)的圖像關(guān)于直線(xiàn)x=a對稱(chēng);
高二數學(xué)知識點(diǎn)總結9
分層抽樣
先將總體中的所有單位按照某種特征或標志(性別、年齡等)劃分成若干類(lèi)型或層次,然后再在各個(gè)類(lèi)型或層次中采用簡(jiǎn)單隨機抽樣或系用抽樣的辦法抽取一個(gè)子樣本,最后,將這些子樣本合起來(lái)構成總體的樣本。
兩種方法
1.先以分層變量將總體劃分為若干層,再按照各層在總體中的比例從各層中抽取。
2.先以分層變量將總體劃分為若干層,再將各層中的元素按分層的順序整齊排列,最后用系統抽樣的方法抽取樣本。
2.分層抽樣是把異質(zhì)性較強的總體分成一個(gè)個(gè)同質(zhì)性較強的子總體,再抽取不同的子總體中的樣本分別代表該子總體,所有的樣本進(jìn)而代表總體。
分層標準
(1)以調查所要分析和研究的主要變量或相關(guān)的變量作為分層的標準。
(2)以保證各層內部同質(zhì)性強、各層之間異質(zhì)性強、突出總體內在結構的變量作為分層變量。
(3)以那些有明顯分層區分的變量作為分層變量。
分層的比例問(wèn)題
(1)按比例分層抽樣:根據各種類(lèi)型或層次中的單位數目占總體單位數目的比重來(lái)抽取子樣本的方法。
(2)不按比例分層抽樣:有的層次在總體中的比重太小,其樣本量就會(huì )非常少,此時(shí)采用該方法,主要是便于對不同層次的子總體進(jìn)行專(zhuān)門(mén)研究或進(jìn)行相互比較。如果要用樣本資料推斷總體時(shí),則需要先對各層的數據資料進(jìn)行加權處理,調整樣本中各層的比例,使數據恢復到總體中各層實(shí)際的比例結構。
(1)定義:
對于函數y=f(x)(x∈D),把使f(x)=0成立的實(shí)數x叫做函數y=f(x)(x∈D)的零點(diǎn)。
(2)函數的零點(diǎn)與相應方程的根、函數的圖象與x軸交點(diǎn)間的關(guān)系:
方程f(x)=0有實(shí)數根?函數y=f(x)的圖象與x軸有交點(diǎn)?函數y=f(x)有零點(diǎn)。
(3)函數零點(diǎn)的判定(零點(diǎn)存在性定理):
如果函數y=f(x)在區間[a,b]上的圖象是連續不斷的一條曲線(xiàn),并且有f(a)·f(b)<0,那么,函數y=f(x)在區間(a,b)內有零點(diǎn),即存在c∈(a,b),使得f(c)=0,這個(gè)c也就是方程f(x)=0的根。
二二次函數y=ax2+bx+c(a>0)的圖象與零點(diǎn)的關(guān)系
三二分法
對于在區間[a,b]上連續不斷且f(a)·f(b)<0的函數y=f(x),通過(guò)不斷地把函數f(x)的零點(diǎn)所在的區間一分為二,使區間的兩個(gè)端點(diǎn)逐步逼近零點(diǎn),進(jìn)而得到零點(diǎn)近似值的方法叫做二分法。
1、函數的零點(diǎn)不是點(diǎn):
函數y=f(x)的零點(diǎn)就是方程f(x)=0的實(shí)數根,也就是函數y=f(x)的圖象與x軸交點(diǎn)的橫坐標,所以函數的零點(diǎn)是一個(gè)數,而不是一個(gè)點(diǎn).在寫(xiě)函數零點(diǎn)時(shí),所寫(xiě)的一定是一個(gè)數字,而不是一個(gè)坐標。
2、對函數零點(diǎn)存在的判斷中,必須強調:
(1)、f(x)在[a,b]上連續;
(2)、f(a)·f(b)<0;
(3)、在(a,b)內存在零點(diǎn)。
這是零點(diǎn)存在的一個(gè)充分條件,但不必要。
3、對于定義域內連續不斷的函數,其相鄰兩個(gè)零點(diǎn)之間的所有函數值保持同號。
利用函數零點(diǎn)的存在性定理判斷零點(diǎn)所在的區間時(shí),首先看函數y=f(x)在區間[a,b]上的圖象是否連續不斷,再看是否有f(a)·f(b)<0.若有,則函數y=f(x)在區間(a,b)內必有零點(diǎn)。
四判斷函數零點(diǎn)個(gè)數的常用方法
1、解方程法:
令f(x)=0,如果能求出解,則有幾個(gè)解就有幾個(gè)零點(diǎn)。
2、零點(diǎn)存在性定理法:
利用定理不僅要判斷函數在區間[a,b]上是連續不斷的曲線(xiàn),且f(a)·f(b)<0,還必須結合函數的圖象與性質(zhì)(如單調性、奇偶性、周期性、對稱(chēng)性)才能確定函數有多少個(gè)零點(diǎn)。
3、數形結合法:
轉化為兩個(gè)函數的圖象的交點(diǎn)個(gè)數問(wèn)題.先畫(huà)出兩個(gè)函數的圖象,看其交點(diǎn)的個(gè)數,其中交點(diǎn)的個(gè)數,就是函數零點(diǎn)的個(gè)數。
已知函數有零點(diǎn)(方程有根)求參數取值常用的方法
1、直接法:
直接根據題設條件構建關(guān)于參數的不等式,再通過(guò)解不等式確定參數范圍。
2、分離參數法:
先將參數分離,轉化成求函數值域問(wèn)題加以解決。
3、數形結合法:
先對解析式變形,在同一平面直角坐標系中,畫(huà)出函數的圖象,然后數形結合求解。
高二數學(xué)知識點(diǎn)總結10
數列
1、數列的定義及數列的通項公式:
、 an?f(n),數列是定義域為N
的函數f(n),當n依次取1,2,???時(shí)的一列函數值② i。歸納法
若S0?0,則an不分段;若S0?0,則an分段iii。若an?1?pan?q,則可設an?1?m?p(an?m)解得m,得等比數列?an?m?
?Sn?f(an)
iv。若Sn?f(an),先求a
1?得到關(guān)于an?1和an的遞推關(guān)系式
S?f(a)n?1?n?1?Sn?2an?1
例如:Sn?2an?1先求a1,再構造方程組:??(下減上)an?1?2an?1?2an
?Sn?1?2an?1?1
2、等差數列:
、俣x:a
n?1?an=d(常數),證明數列是等差數列的重要工具。 ②通項d?0時(shí),an為關(guān)于n的一次函數;
d>0時(shí),an為單調遞增數列;d<0時(shí),a
n為單調遞減數列。
n(n?1)2
、矍皀?na1?
d,
d?0時(shí),Sn是關(guān)于n的不含常數項的一元二次函數,反之也成立。
、苄再|(zhì):ii。若?an?為等差數列,則am,am?k,am?2k,…仍為等差數列。 iii。若?an?為等差數列,則Sn,S2n?Sn,S3n?S2n,…仍為等差數列。 iv若A為a,b的等差中項,則有A?3。等比數列:
、俣x:
an?1an
?q(常數),是證明數列是等比數列的重要工具。
a?b2
、谕棔r(shí)為常數列)。
、。前n項和
需特別注意,公比為字母時(shí)要討論。
高二數學(xué)知識點(diǎn)總結11
(一)解三角形:
1、正弦定理:在中,、、分別為角、、的對邊,,則有
(為的外接圓的半徑)
2、正弦定理的變形公式:①,,;
、,,;③;
3、三角形面積公式:.
4、余弦定理:在中,有,推論:
(二)數列:
1.數列的有關(guān)概念:
(1)數列:按照一定次序排列的一列數。數列是有序的。數列是定義在自然數N_它的有限子集{1,2,3,…,n}上的函數。
(2)通項公式:數列的第n項an與n之間的函數關(guān)系用一個(gè)公式來(lái)表示,這個(gè)公式即是該數列的通項公式。如:。
(3)遞推公式:已知數列{an}的第1項(或前幾項),且任一項an與他的前一項an-1(或前幾項)可以用一個(gè)公式來(lái)表示,這個(gè)公式即是該數列的遞推公式。
如:。
2.數列的表示方法:
(1)列舉法:如1,3,5,7,9,…(2)圖象法:用(n,an)孤立點(diǎn)表示。
(3)解析法:用通項公式表示。(4)遞推法:用遞推公式表示。
3.數列的分類(lèi):
4.數列{an}及前n項和之間的關(guān)系:
高二數學(xué)知識點(diǎn)總結12
●不等式
1、不等式你會(huì )解么?你會(huì )解么?如果是寫(xiě)解集不要忘記寫(xiě)成集合形式!
2、的解集是(1,3),那么的解集是什么?
3、兩類(lèi)恒成立問(wèn)題圖象法——恒成立,則=?
★★★★分離變量法——在[1,3]恒成立,則=?(必考題)
4、線(xiàn)性規劃問(wèn)題
。1)可行域怎么作(一定要用直尺和鉛筆)定界——定域——邊界
。2)目標函數改寫(xiě):(注意分析截距與z的關(guān)系)
。3)平行直線(xiàn)系去畫(huà)
5、基本不等式的形式和變形形式
如a,b為正數,a,b滿(mǎn)足,則ab的范圍是
6、運用基本不等式求最值要注意:一正二定三相等!
如的最小值是的最小值(不要忘記交代是什么時(shí)候取到=。。
一個(gè)非常重要的函數——對勾函數的圖象是什么?
運用對勾函數來(lái)處理下面問(wèn)題的最小值是
7、★★兩種題型:
和——倒數和(1的代換),如x,y為正數,且,求的最小值?
和——積(直接用基本不等式),如x,y為正數,,則的范圍是?
不要忘記x,xy,x2+y2這三者的關(guān)系!如x,y為正數,,則的范圍是?
高二數學(xué)知識點(diǎn)總結13
在中國古代把數學(xué)叫算術(shù),又稱(chēng)算學(xué),最后才改為數學(xué)。
1.任意角
。1)角的分類(lèi):
、侔葱D方向不同分為正角、負角、零角。
、诎唇K邊位置不同分為象限角和軸線(xiàn)角。
。2)終邊相同的角:
終邊與角相同的角可寫(xiě)成+k360(kZ)。
。3)弧度制:
、1弧度的角:把長(cháng)度等于半徑長(cháng)的弧所對的圓心角叫做1弧度的角。
、谝幎ǎ赫堑幕《葦禐檎龜,負角的弧度數為負數,零角的弧度數為零,||=,l是以角作為圓心角時(shí)所對圓弧的長(cháng),r為半徑。
、塾没《茸鰡挝粊(lái)度量角的制度叫做弧度制。比值與所取的r的大小無(wú)關(guān),僅與角的大小有關(guān)。
、芑《扰c角度的換算:360弧度;180弧度。
、莼¢L(cháng)公式:l=||r,扇形面積公式:S扇形=lr=||r2.
2.任意角的三角函數
。1)任意角的三角函數定義:
設是一個(gè)任意角,角的終邊與單位圓交于點(diǎn)P(x,y),那么角的正弦、余弦、正切分別是:sin =y,cos =x,tan =,它們都是以角為自變量,以單位圓上點(diǎn)的坐標或坐標的比值為函數值的函數。
。2)三角函數在各象限內的符號口訣是:一全正、二正弦、三正切、四余弦。
3.三角函數線(xiàn)
設角的頂點(diǎn)在坐標原點(diǎn),始邊與x軸非負半軸重合,終邊與單位圓相交于點(diǎn)P,過(guò)P作PM垂直于x軸于M。由三角函數的定義知,點(diǎn)P的坐標為(cos_,sin_),即P(cos_,sin_),其中cos =OM,sin =MP,單位圓與x軸的正半軸交于點(diǎn)A,單位圓在A(yíng)點(diǎn)的切線(xiàn)與的終邊或其反向延長(cháng)線(xiàn)相交于點(diǎn)T,則tan =AT。我們把有向線(xiàn)段OM、MP、AT叫做的余弦線(xiàn)、正弦線(xiàn)、正切線(xiàn)。
高二數學(xué)知識點(diǎn)總結14
(1)必然事件:在條件S下,一定會(huì )發(fā)生的事件,叫相對于條件S的必然事件;
(2)不可能事件:在條件S下,一定不會(huì )發(fā)生的事件,叫相對于條件S的不可能事件;
(3)確定事件:必然事件和不可能事件統稱(chēng)為相對于條件S的確定事件;
(4)隨機事件:在條件S下可能發(fā)生也可能不發(fā)生的事件,叫相對于條件S的隨機事件;
(5)頻數與頻率:在相同的條件S下重復n次試驗,觀(guān)察某一事件A是否出現,稱(chēng)n次試驗中事件A出現的次數nA為事件A出現的頻數;稱(chēng)事件A出現的比例fn(A)=nnA為事件A出現的概率:對于給定的隨機事件A,如果隨著(zhù)試驗次數的增加,事件A發(fā)生的頻率fn(A)穩定在某個(gè)常數上,把這個(gè)常數記作P(A),稱(chēng)為事件A的概率。
(6)頻率與概率的區別與聯(lián)系:隨機事件的頻率,指此事件發(fā)生的次數nA與試驗總次數n的比值nnA,它具有一定的穩定性,總在某個(gè)常數附近擺動(dòng),且隨著(zhù)試驗次數的不斷增多,這種擺動(dòng)幅度越來(lái)越小。我們把這個(gè)常數叫做隨機事件的概率,概率從數量上反映了隨機事件發(fā)生的可能性的大小。頻率在大量重復試驗的前提下可以近似地作為這個(gè)事件的概率。
然說(shuō)難度比較大,我建議考生,采取分部得分整個(gè)試
高二數學(xué)知識點(diǎn)總結15
(1)總體和樣本:
、僭诮y計學(xué)中,把研究對象的全體叫做總體.
、诎衙總(gè)研究對象叫做個(gè)體.
、郯芽傮w中個(gè)體的總數叫做總體容量.
、転榱搜芯靠傮w的有關(guān)性質(zhì),一般從總體中隨機抽取一部分:x1,x2,....,_研究,我們稱(chēng)它為樣本.其中個(gè)體的個(gè)數稱(chēng)為樣本容量.
。2)簡(jiǎn)單隨機抽樣,也叫純隨機抽樣。
就是從總體中不加任何分組、劃類(lèi)、排隊等,完全隨機地抽取調查單位。特點(diǎn)是:每個(gè)樣本單位被抽中的可能性相同(概率相等),樣本的每個(gè)單位完全獨立,彼此間無(wú)一定的關(guān)聯(lián)性和排斥性。簡(jiǎn)單隨機抽樣是其它各種抽樣形式的基礎。通常只是在總體單位之間差異程度較小和數目較少時(shí),才采用這種方法。
。3)簡(jiǎn)單隨機抽樣常用的方法:
、俪楹灧
、陔S機數表法
、塾嬎銠C模擬法
在簡(jiǎn)單隨機抽樣的樣本容量設計中,主要考慮:
、倏傮w變異情況;
、谠试S誤差范圍;
、鄹怕时WC程度。
。4)抽簽法:
、俳o調查對象群體中的每一個(gè)對象編號;
、跍蕚涑楹灥墓ぞ,實(shí)施抽簽;
、蹖颖局械拿恳粋(gè)個(gè)體進(jìn)行測量或調查
【高二數學(xué)知識點(diǎn)總結】相關(guān)文章:
數學(xué)高二知識點(diǎn)總結04-22
高二數學(xué)知識點(diǎn)總結08-04
高二數學(xué)知識點(diǎn)總結02-19
高二數學(xué)知識點(diǎn)總結12-04