- 相關(guān)推薦
勾股定理復習課說(shuō)課稿(精選5篇)
作為一位兢兢業(yè)業(yè)的人民教師,時(shí)常需要用到說(shuō)課稿,認真擬定說(shuō)課稿,那么問(wèn)題來(lái)了,說(shuō)課稿應該怎么寫(xiě)?下面是小編收集整理的勾股定理復習課說(shuō)課稿(精選5篇),歡迎大家分享。
勾股定理復習課說(shuō)課稿1
一、教材分析:
。ㄒ唬┙滩牡牡匚慌c作用
從知識結構上看,勾股定理揭示了直角三角形三條邊之間的數量關(guān)系,為后續學(xué)習解直角三角形提供重要的理論依據,在現實(shí)生活中有著(zhù)廣泛的應用。
從學(xué)生認知結構上看,它把形的特征轉化成數量關(guān)系,架起了幾何與代數之間的橋梁;勾股定理又是對學(xué)生進(jìn)行愛(ài)國主義教育的良好素材,因此具有相當重要的地位和作用。
根據數學(xué)新課程標準以及八年級學(xué)生的認知水平我確定如下學(xué)習目標:知識技能、數學(xué)思考、問(wèn)題解決、情感態(tài)度。其中情感態(tài)度方面,以我國數學(xué)文化為主線(xiàn),激發(fā)學(xué)生熱愛(ài)祖國悠久文化的情感。
。ǘ┲攸c(diǎn)與難點(diǎn)
為變被動(dòng)接受為主動(dòng)探究,我確定本節課的重點(diǎn)為:勾股定理的探索過(guò)程。限于八年級學(xué)生的思維水平,我將面積法(拼圖法)發(fā)現勾股定理確定為本節課的難點(diǎn),我將引導學(xué)生動(dòng)手實(shí)驗突出重點(diǎn),合作交流突破難點(diǎn)。
二、教學(xué)與學(xué)法分析
教學(xué)方法葉圣陶說(shuō)過(guò)"教師之為教,不在全盤(pán)授予,而在相機誘導。"因此教師利用幾何直觀(guān)提出問(wèn)題,引導學(xué)生由淺入深的探索,設計實(shí)驗讓學(xué)生進(jìn)行驗證,感悟其中所蘊涵的思想方法。
學(xué)法指導為把學(xué)習的主動(dòng)權還給學(xué)生,教師鼓勵學(xué)生采用動(dòng)手實(shí)踐,自主探索、合作交流的學(xué)習方法,讓學(xué)生親自感知體驗知識的形成過(guò)程。
三、教學(xué)過(guò)程
我國數學(xué)文化源遠流長(cháng)、博大精深,為了使學(xué)生感受其傳承的魅力,我將本節課設計為以下五個(gè)環(huán)節。
首先,情境導入古韻今風(fēng)
給出《七巧八分圖》中的一組圖片,讓學(xué)生利用兩組七巧板進(jìn)行合作拼圖。讓學(xué)生觀(guān)察并思考三個(gè)正方形面積之間的關(guān)系?它們圍成了怎么樣三角形,反映在三邊上,又蘊含著(zhù)怎么樣數學(xué)奧秘呢?寓教于樂(lè ),激發(fā)學(xué)生好奇、探究的欲望。
第二步追溯歷史解密真相
勾股定理的探索過(guò)程是本節課的重點(diǎn),依照數學(xué)知識的循序漸進(jìn)、螺旋上升的原則,我設計如下三個(gè)活動(dòng)。
從上面低起點(diǎn)的問(wèn)題入手,有利于學(xué)生參與探索。學(xué)生很容易發(fā)現,在等腰三角形中存在如下關(guān)系。巧妙的將面積之間的關(guān)系轉化為邊長(cháng)之間的關(guān)系,體現了轉化的思想。觀(guān)察發(fā)現雖然直觀(guān),但面積計算更具說(shuō)服力。將圖形轉化為邊在格線(xiàn)上的圖形,以便于計算圖形面積,體現了數形結合的思想。學(xué)生會(huì )想到用"數格子"的方法,這種方法雖然簡(jiǎn)單易行,但對于下一步探索一般直角三角形并不適用,具有局限性。因此教師應引導學(xué)生利用"割"和"補"的方法求正方形C的面積,為下一步探索復雜圖形的面積做鋪墊。
突破等腰直角三角形的束縛,探索在一般情況下的直角三角形是否也存在這一結論呢?體現了"從特殊到一般"的認知規律。教師給出邊長(cháng)單位長(cháng)度分別為3、4、5的直角三角形,避免了學(xué)生因作圖不準確而產(chǎn)生的錯誤,也為下面"勾三股四弦五"的提出埋下伏筆。有了上一環(huán)節的鋪墊,有效地分散了難點(diǎn)。在求正方形C的.面積時(shí),學(xué)生將展示"割"的方法,"補"的方法,有的學(xué)生可能會(huì )發(fā)現平移的方法,旋轉的方法,對于這兩種新方法教師應給于表?yè)P,肯定學(xué)生的研究成果,培養學(xué)生的類(lèi)比、遷移以及探索問(wèn)題的能力。
使用幾何畫(huà)板動(dòng)態(tài)演示,使幾何與代數之間的關(guān)系可視化。當為直角三角形時(shí),改變三邊長(cháng)度三邊關(guān)系不變,當∠α為銳角或鈍角時(shí),三邊關(guān)系就改變了,進(jìn)而強調了命題成立的前提條件必須是直角三角形。加深學(xué)生對勾股定理理解的同時(shí)也拓展了學(xué)生的視野。
以上三個(gè)環(huán)節層層深入步步引導,學(xué)生歸納得到命題1,從而培養學(xué)生的合情推理能力以及語(yǔ)言表達能力。
感性認識未必是正確的,推理驗證證實(shí)我們的猜想。
第三步推陳出新借古鼎新
教材中直接給出"趙爽弦圖"的證法對學(xué)生的思維是一種禁錮,教師創(chuàng )新使用教材,利用拼圖活動(dòng)解放學(xué)生的大腦,讓學(xué)生發(fā)揮自己的聰明才智證明勾股定理。這是教學(xué)的難點(diǎn)也是重點(diǎn),教師應給學(xué)生充分的自主探索的時(shí)間與空間,讓學(xué)生的思維在相互討論中碰撞、在相互學(xué)習中完善。教師深入到學(xué)生中間,觀(guān)察學(xué)生探究方法接受學(xué)生的質(zhì)疑,對于不同的拼圖方案給予肯定。從而體現出"學(xué)生是學(xué)習的主體,教師是組織者、引導者與合作者"這一教學(xué)理念。學(xué)生會(huì )發(fā)現兩種證明方案。
方案1為趙爽弦圖,學(xué)生講解論證過(guò)程,再現古代數學(xué)家的探索方法。方案2為學(xué)生自己探索的結果,論證之巧較方案1有異曲同工之妙。整個(gè)探索過(guò)程,讓學(xué)生經(jīng)歷由表面到本質(zhì),由合情推理到演繹推理的發(fā)掘過(guò)程,體會(huì )數學(xué)的嚴謹性。對比"古"、"今"兩種證法,讓學(xué)生體會(huì )"吹盡黃沙始到金"的喜悅,感受到"青出于藍而勝于藍"的自豪感。板書(shū)勾股定理,進(jìn)而給出字母表示,培養學(xué)生的符號意識。
教師對"勾、股、弦"的含義以及古今中外對勾股定理的研究做一個(gè)介紹,使學(xué)生感受數學(xué)文化,培養民族自豪感和愛(ài)國主義精神。利用勾股樹(shù)動(dòng)態(tài)演示,讓學(xué)生欣賞數學(xué)的精巧、優(yōu)美。
第四步取其精華古為今用
我按照"理解—掌握—運用"的梯度設計了如下三組習題。
。1)對應難點(diǎn),鞏固所學(xué)。
。2)考查重點(diǎn),深化新知。
。3)解決問(wèn)題,感受應用。
第五步溫故反思任務(wù)后延
在課堂接近尾聲時(shí),我鼓勵學(xué)生從"四基"的要求對本節課進(jìn)行小結。進(jìn)而總結出一個(gè)定理、二個(gè)方案、三種思想、四種經(jīng)驗。
然后布置作業(yè),分層作業(yè)體現了教育面向全體學(xué)生的理念。
勾股定理復習課說(shuō)課稿2
一、教材分析
。ㄒ唬┙滩牡匚慌c作用
勾股定理它揭示的是直角三角形中三邊的數量關(guān)系。它在數學(xué)的發(fā)展中起過(guò)重要的作用,在現時(shí)世界中也有著(zhù)廣泛的作用。學(xué)生通過(guò)對勾股定理的學(xué)習,可以在原有的基礎上對直角三角形有進(jìn)一步的認識和理解。
。ǘ┙虒W(xué)目標知識與能力:掌握勾股定理,并能運用勾股定理解決一些簡(jiǎn)單實(shí)際問(wèn)題。過(guò)程與方法:經(jīng)歷探索及驗證勾股定理的過(guò)程,了解利用拼圖驗證勾股定理的方法,發(fā)展學(xué)生的合情推理意識、主動(dòng)探究的習慣,感受數形結合和從特殊到一般的思想。情感態(tài)度與價(jià)值觀(guān):激發(fā)愛(ài)國熱情,體驗自己努力得到結論的成就感,體驗數學(xué)充滿(mǎn)探索和創(chuàng )造,體驗數學(xué)的美感,從而了解數學(xué),喜歡數學(xué)。
。ㄈ┙虒W(xué)重點(diǎn):經(jīng)歷探索及驗證勾股定理的過(guò)程,并能用它來(lái)解決一些簡(jiǎn)單的實(shí)際問(wèn)題。
教學(xué)難點(diǎn):用面積法(拼圖法)發(fā)現勾股定理。
突出重點(diǎn)、突破難點(diǎn)的辦法:發(fā)揮學(xué)生的主體作用,通過(guò)學(xué)生動(dòng)手實(shí)驗,讓學(xué)生在實(shí)驗中探索、在探索中領(lǐng)悟、在領(lǐng)悟中理解。
二、教法與學(xué)法分析:
學(xué)情分析:七年級學(xué)生已經(jīng)具備一定的觀(guān)察、歸納、猜想和推理的能力。他們在小學(xué)已學(xué)習了一些幾何圖形的面積計算方法(包括割補、拼接),但運用面積法和割補思想來(lái)解決問(wèn)題的意識和能力還不夠。另外,學(xué)生普遍學(xué)習積極性較高,課堂活動(dòng)參與較主動(dòng),但合作交流的能力還有待加強。
教法分析:結合七年級學(xué)生和本節教材的特點(diǎn),在教學(xué)中采用“問(wèn)題情境----建立模型----解釋?xiě)?--拓展鞏固”的模式,選擇引導探索法。把教學(xué)過(guò)程轉化為學(xué)生親身觀(guān)察,大膽猜想,自主探究,合作交流,歸納總結的過(guò)程。
學(xué)法分析:在教師的組織引導下,學(xué)生采用自主探究合作交流的研討式學(xué)習方式,使學(xué)生真正成為學(xué)習的主人。
三、教學(xué)過(guò)程設計
1、創(chuàng )設情境,提出問(wèn)題
2、實(shí)驗操作,模型構建
3、回歸生活,應用新知
4、知識拓展,鞏固深化
5、感悟收獲,布置作業(yè)
。ㄒ唬﹦(chuàng )設情境提出問(wèn)題
(1)圖片欣賞:勾股定理數形圖1955年希臘發(fā)行。美麗的勾股樹(shù)2002年國際數學(xué)的一枚紀念郵票。
設計意圖:通過(guò)圖形欣賞,感受數學(xué)美,感受勾股定理的文化價(jià)值。
(2)某樓房三樓失火,消防隊員趕來(lái)救火,了解到每層樓高3米,消防隊員取來(lái)6.5米長(cháng)的云梯,如果梯子的.底部離墻基的距離是2.5米,請問(wèn)消防隊員能否進(jìn)入三樓滅火?
設計意圖:以實(shí)際問(wèn)題為切入點(diǎn)引入新課,反映了數學(xué)來(lái)源于實(shí)際生活,產(chǎn)生于人的需要,也體現了知識的發(fā)生過(guò)程,解決問(wèn)題的過(guò)程也是一個(gè)“數學(xué)化”的過(guò)程,從而引出下面的環(huán)節。
。ǘ⿲(shí)驗操作模型構建
1、等腰直角三角形(數格子)
2、一般直角三角形(割補)
問(wèn)題一:對于等腰直角三角形,正方形Ⅰ、Ⅱ、Ⅲ的面積有何關(guān)系?設計意圖:這樣做利于學(xué)生參與探索,利于培養學(xué)生的語(yǔ)言表達能力,體會(huì )數形結合的思想。
問(wèn)題二:對于一般的直角三角形,正方形Ⅰ、Ⅱ、Ⅲ的面積也有這個(gè)關(guān)系嗎?(割補法是本節的難點(diǎn),組織學(xué)生合作交流)
設計意圖:不僅有利于突破難點(diǎn),而且為歸納結論打下基礎,讓學(xué)生的分析問(wèn)題解決問(wèn)題的能力在無(wú)形中得到提高。
通過(guò)以上實(shí)驗歸納總結勾股定理。
設計意圖:學(xué)生通過(guò)合作交流,歸納出勾股定理的雛形,培養學(xué)生抽象、概括的能力,同時(shí)發(fā)揮了學(xué)生的主體作用,體驗了從特殊——一般的認知規律。
三、回歸生活應用新知
讓學(xué)生解決開(kāi)頭情景中的問(wèn)題,前呼后應,增強學(xué)生學(xué)數學(xué)、用數學(xué)的意識,增加學(xué)以致用的樂(lè )趣和信心。
四、知識拓展鞏固深化
基礎題,情境題,探索題。
設計意圖:給出一組題目,分三個(gè)梯度,由淺入深層層練習,照顧學(xué)生的個(gè)體差異,關(guān)注學(xué)生的個(gè)性發(fā)展。知識的運用得到升華。
基礎題:直角三角形的一直角邊長(cháng)為3,斜邊為5,另一直角邊長(cháng)為X,你可以根據條件提出多少個(gè)數學(xué)問(wèn)題?你能解決所提出的問(wèn)題嗎?
設計意圖:這道題立足于雙基。通過(guò)學(xué)生自己創(chuàng )設情境,鍛煉了發(fā)散思維。
情境題:小明媽媽買(mǎi)了一部29英寸(74厘米)的電視機。小明量了電視機的屏幕后,發(fā)現屏幕只有58厘米長(cháng)和46厘米寬,他覺(jué)得一定是售貨員搞錯了。你同意他的想法嗎?
設計意圖:增加學(xué)生的生活常識,也體現了數學(xué)源于生活,并用于生活。
探索題:做一個(gè)長(cháng),寬,高分別為50厘米,40厘米,30厘米的木箱,一根長(cháng)為70厘米的木棒能否放入,為什么?試用今天學(xué)過(guò)的知識說(shuō)明。
設計意圖:探索題的難度相對大了些,但教師利用教學(xué)模型和學(xué)生合作交流的方式,拓展學(xué)生的思維、發(fā)展空間想象能力。
五、感悟收獲布置作業(yè):這節課你的收獲是什么?
作業(yè):
1、課本習題2、1
2、搜集有關(guān)勾股定理證明的資料。
板書(shū)設計探索勾股定理
如果直角三角形兩直角邊分別為a,b,斜邊為c,那么a2、b2、c2。
設計說(shuō)明:
1、探索定理采用面積法,為學(xué)生創(chuàng )設一個(gè)和諧、寬松的情境,讓學(xué)生體會(huì )數形結合及從特殊到一般的思想方法。
2、讓學(xué)生人人參與,注重對學(xué)生活動(dòng)的評價(jià),一是學(xué)生在活動(dòng)中的投入程度;二是學(xué)生在活動(dòng)中表現出來(lái)的思維水平、表達水平。
勾股定理復習課說(shuō)課稿3
一、教材分析:
勾股定理是學(xué)生在已經(jīng)掌握了直角三角形的有關(guān)性質(zhì)的基礎上進(jìn)行學(xué)習的,它是直角三角形的一條非常重要的性質(zhì),是幾何中最重要的定理之一,它揭示了一個(gè)三角形三條邊之間的數量關(guān)系,它可以解決直角三角形中的計算問(wèn)題,是解直角三角形的主要根據之一,在實(shí)際生活中用途很大。
教材在編寫(xiě)時(shí)注意培養學(xué)生的動(dòng)手操作能力和分析問(wèn)題的能力,通過(guò)實(shí)際分析、拼圖等活動(dòng),使學(xué)生獲得較為直觀(guān)的印象;通過(guò)聯(lián)系和比較,理解勾股定理,以利于正確的進(jìn)行運用。
據此,制定教學(xué)目標如下:
1、理解并掌握勾股定理及其證明。
2、能夠靈活地運用勾股定理及其計算。
3、培養學(xué)生觀(guān)察、比較、分析、推理的能力。
4、通過(guò)介紹中國古代勾股方面的成就,激發(fā)學(xué)生熱愛(ài)祖國與熱愛(ài)祖國悠久文化的思想感情,培養他們的民族自豪感和鉆研精神。
二、教學(xué)重點(diǎn):
勾股定理的證明和應用。
三、教學(xué)難點(diǎn):
勾股定理的證明。
四、教法和學(xué)法:
教法和學(xué)法是體現在整個(gè)教學(xué)過(guò)程中的,本課的教法和學(xué)法體現如下特點(diǎn):
以自學(xué)輔導為主,充分發(fā)揮教師的主導作用,運用各種手段激發(fā)學(xué)生學(xué)習欲望和興趣,組織學(xué)生活動(dòng),讓學(xué)生主動(dòng)參與學(xué)習全過(guò)程。
切實(shí)體現學(xué)生的主體地位,讓學(xué)生通過(guò)觀(guān)察、分析、討論、操作、歸納,理解定理,提高學(xué)生動(dòng)手操作能力,以及分析問(wèn)題和解決問(wèn)題的能力。
通過(guò)演示實(shí)物,引導學(xué)生觀(guān)察、操作、分析、證明,使學(xué)生得到獲得新知的成功感受,從而激發(fā)學(xué)生鉆研新知的欲望。
五、教學(xué)程序:
本節內容的教學(xué)主要體現在學(xué)生動(dòng)手、動(dòng)腦方面,根據學(xué)生的認知規律和學(xué)習心理,教學(xué)程序設計如下:
。ㄒ唬﹦(chuàng )設情境以古引新
1、由故事引入,3000多年前有個(gè)叫商高的人對周公說(shuō),把一根直尺折成直角,兩端連接得到一個(gè)直角三角形,如果勾是3,股是4,那么弦等于5。這樣引起學(xué)生學(xué)習興趣,激發(fā)學(xué)生求知欲。
2、是不是所有的直角三角形都有這個(gè)性質(zhì)呢?教師要善于激疑,使學(xué)生進(jìn)入樂(lè )學(xué)狀態(tài)。
3、板書(shū)課題,出示學(xué)習目標。
。ǘ┏醪礁兄斫饨滩
教師指導學(xué)生自學(xué)教材,通過(guò)自學(xué)感悟理解新知,體現了學(xué)生的自主學(xué)習意識,鍛煉學(xué)生主動(dòng)探究知識,養成良好的自學(xué)習慣。
。ㄈ┵|(zhì)疑解難、討論歸納:
1、教師設疑或學(xué)生提疑。如:怎樣證明勾股定理?學(xué)生通過(guò)自學(xué),中等以上的`學(xué)生基本掌握,這時(shí)能激發(fā)學(xué)生的表現欲。
2、教師引導學(xué)生按照要求進(jìn)行拼圖,觀(guān)察并分析;
。1)這兩個(gè)圖形有什么特點(diǎn)?
。2)你能寫(xiě)出這兩個(gè)圖形的面積嗎?
。3)如何運用勾股定理?是否還有其他形式?
這時(shí)教師組織學(xué)生分組討論,調動(dòng)全體學(xué)生的積極性,達到人人參與的效果,接著(zhù)全班交流。先有某一組代表發(fā)言,說(shuō)明本組對問(wèn)題的理解程度,其他各組作評價(jià)和補充。教師及時(shí)進(jìn)行富有啟發(fā)性的點(diǎn)撥,最后,師生共同歸納,形成一致意見(jiàn),最終解決疑難。
。ㄋ模╈柟叹毩,強化提高
1、出示練習,學(xué)生分組解答,并由學(xué)生總結解題規律。課堂教學(xué)中動(dòng)靜結合,以免引起學(xué)生的疲勞。
2、出示例1學(xué)生試解,師生共同評價(jià),以加深對例題的理解與運用。針對例題再次出現鞏固練習,進(jìn)一步提高學(xué)生運用知識的能力,對練習中出現的情況可采取互評、互議的形式,在互評互議中出現的具有代表性的問(wèn)題,教師可以采取全班討論的形式予以解決,以此突出教學(xué)重點(diǎn)。
。ㄎ澹w納總結,練習反饋
引導學(xué)生對知識要點(diǎn)進(jìn)行總結,梳理學(xué)習思路。分發(fā)自我反饋練習,學(xué)生獨立完成。
本課意在創(chuàng )設愉悅和諧的樂(lè )學(xué)氣氛,優(yōu)化教學(xué)手段,借助多媒體提高課堂教學(xué)效率,建立平等、民主、和諧的師生關(guān)系。加強師生間的合作,營(yíng)造一種學(xué)生敢想、感說(shuō)、感問(wèn)的課堂氣氛,讓全體學(xué)生都能生動(dòng)活潑、積極主動(dòng)地教學(xué)活動(dòng),在學(xué)習中創(chuàng )新精神和實(shí)踐能力得到培養。
勾股定理復習課說(shuō)課稿4
一、說(shuō)教材分析
1。教材的地位和作用
華師大版八年級上直角三角形三邊關(guān)系是學(xué)生在學(xué)習數的開(kāi)方和整式的乘除后的一段內容,它是學(xué)生在已經(jīng)掌握了直角三角形的有關(guān)性質(zhì)的基礎上進(jìn)行學(xué)習的,它揭示了一個(gè)直角三角形三條邊之間的數量關(guān)系,為后面解直角三角形的作好鋪墊,它也是幾何中最重要的定理,它將形和數密切聯(lián)系起來(lái),在數學(xué)的發(fā)展中起著(zhù)重要的作用。
因此他的教育教學(xué)價(jià)值就具體體現在如下三維目標中:
知識與技能:
1、經(jīng)歷勾股定理的探索過(guò)程,體會(huì )數形結合思想。
2、理解直角三角形三邊的關(guān)系,會(huì )應用勾股定理解決一些簡(jiǎn)單的實(shí)際問(wèn)題。
過(guò)程與方法:
1、經(jīng)歷觀(guān)察—猜想—歸納—驗證等一系列過(guò)程,體會(huì )數學(xué)定理發(fā)現的過(guò)程,由特殊到一般的解決問(wèn)題的方法。
2、在觀(guān)察、猜想、歸納、驗證等過(guò)程中培養學(xué)生的數學(xué)語(yǔ)言表達能力和初步的邏輯推理能力。
情感、態(tài)度與價(jià)值觀(guān):
1、通過(guò)對勾股定理歷史的了解,感受數學(xué)文化,激發(fā)學(xué)習興趣。
2、在探究活動(dòng)中,體驗解決問(wèn)題方法的多樣性,培養學(xué)生的合作意識和然所精神。
3、讓學(xué)生通過(guò)動(dòng)手實(shí)踐,增強探究和創(chuàng )新意識,體驗研究過(guò)程,學(xué)習研究方法,逐步養成一種積極的生動(dòng)的,自助合作探究的學(xué)習方式。
由于八年級的學(xué)生具有一定分析能力,但活動(dòng)經(jīng)驗不足,所以本節課教學(xué)重點(diǎn):勾股定理的探索過(guò)程,并掌握和運用它。
教學(xué)難點(diǎn):分割,補全法證面積相等,探索勾股定理。
二、說(shuō)教法學(xué)法分析:
要上好一堂課,就是要把所確定的三維目標有機地溶入到教學(xué)過(guò)程中去,所以我采用了“引導探究式”的教學(xué)方法:
先從學(xué)生熟知的生活實(shí)例出發(fā),以生活實(shí)踐為依托,將生活圖形數學(xué)化,然后由特殊到一般地提出問(wèn)題,引導學(xué)生在自主探究與合作交流中解決問(wèn)題,同時(shí)也真正體現了數學(xué)課堂是學(xué)生自己的課堂。
學(xué)法:我想通過(guò)“操作+思考”這樣方式,有效地讓學(xué)生在動(dòng)手、動(dòng)腦、自主探究與合作交流中來(lái)發(fā)現新知,同時(shí)讓學(xué)生感悟到:學(xué)習任何知識的最好方法就是自己去探究。
三、說(shuō)教學(xué)程序設計
1、故事引入新課,激起學(xué)生學(xué)習興趣。
牛頓,瓦特的故事,讓學(xué)生科學(xué)家的偉大成就多數都是在看似平淡無(wú)奇的現象中發(fā)現和研究出來(lái)的;生活中處處有數學(xué),我們應該學(xué)會(huì )觀(guān)察、思考,將學(xué)習與生活緊密結合起來(lái)。畢達哥拉斯的發(fā)現引入新課。
2、探索新知
在這里我設計了四個(gè)內容:
、偬剿鞯妊苯侨切稳叺年P(guān)系
、谶呴L(cháng)為3、4、5為邊長(cháng)的直角三角形的三邊關(guān)系
、蹖W(xué)生畫(huà)兩直角邊為2,6的直角三角形,探索三邊的關(guān)系
、苋厼閍、b、c的直角三角形的`三邊的關(guān)系,(證明)
、莨垂啥ɡ須v史介紹,讓學(xué)生體會(huì )勾股定理的文化價(jià)值。
體現從特殊到一般的發(fā)現問(wèn)題的過(guò)程。
3、新知運用:
、倥e出勾股定理在生活中的運用。(老師講解勾股定理在生活中的運用)
、谠谥苯侨切沃,已知∠B=90°,AB=6,BC=8,求AC。
、垡鲆粋(gè)人字梯,要求人字梯的跨度為6米,高為4米,請問(wèn)怎么做?
、苋鐖D,學(xué)校有一塊長(cháng)方形花鋪,有極少數人為了避開(kāi)拐角走“捷徑”,在花鋪內走出了一條“路”。他們僅僅少走了步路(假設2步為1米),卻踩傷了花草。
4、小結本課:
學(xué)完了這節課,你有什么收獲?
老師補充:科學(xué)家的偉大成就多數都是在看似平淡無(wú)奇的現象中發(fā)現和研究出來(lái)的;生活中處處有數學(xué),我們應該學(xué)會(huì )觀(guān)察、思考,將學(xué)習與生活緊密結合起來(lái)。數學(xué)來(lái)源于實(shí)踐,而又應用于實(shí)踐。解決一個(gè)問(wèn)題的方法是多樣性的,我們要多思考。勾股定是數學(xué)史上的明珠,證明方法有很多種,我們將在下一節課學(xué)習它。
反思:
教學(xué)設計主要是體現從特殊到一般的知識形成過(guò)程,探索問(wèn)題的設計上有點(diǎn)難,第二個(gè)問(wèn)題應加個(gè)3,3為直角邊的等腰直角三角形讓學(xué)生分割或者補全,這樣過(guò)度,降低3,4為直角邊的探索探索;在2,6為直角邊時(shí),這個(gè)問(wèn)題可以不用設計進(jìn)去,就為后面的練習留足時(shí)間。探索時(shí)間較長(cháng),整個(gè)課程推行進(jìn)度較慢,練習較少。
對學(xué)生的啟發(fā)不夠,對學(xué)生的關(guān)注不夠,學(xué)生對問(wèn)題的思考不能及時(shí)想出來(lái),沒(méi)有及時(shí)很好的引導,啟發(fā),應讓學(xué)生多一些思考的空間,并及時(shí)交給思考的方法。學(xué)生反應不是太好,能力差,也或許是因為問(wèn)題設計的較難,沒(méi)有很好的體現出探究。
預期的目標沒(méi)有很好的達成,學(xué)生雖然掌握了勾股定理,但探索熱情沒(méi)有點(diǎn)燃,思維能力,動(dòng)手能力,探索精神沒(méi)有很好的得到發(fā)展。
勾股定理復習課說(shuō)課稿5
一、教材分析
。ㄒ唬┙滩乃幍牡匚
這節課是九年制義務(wù)教育課程標準實(shí)驗教科書(shū)八年級第一章第一節探索勾股定理第一課時(shí),勾股定理是幾何中幾個(gè)重要定理之一,它揭示的是直角三角形中三邊的數量關(guān)系。它在數學(xué)的發(fā)展中起過(guò)重要的作用,在現時(shí)世界中也有著(zhù)廣泛的作用。學(xué)生通過(guò)對勾股定理的學(xué)習,可以在原有的基礎上對直角三角形有進(jìn)一步的認識和理解。
。ǘ└鶕n程標準,本課的教學(xué)目標是:
1、能說(shuō)出勾股定理的內容。
2、會(huì )初步運用勾股定理進(jìn)行簡(jiǎn)單的計算和實(shí)際運用。
3、在探索勾股定理的過(guò)程中,讓學(xué)生經(jīng)歷“觀(guān)察—猜想—歸納—驗證”的數學(xué)思想,并體會(huì )數形結合和特殊到一般的思想方法。
4、通過(guò)介紹勾股定理在中國古代的研究,激發(fā)學(xué)生熱愛(ài)祖國,熱愛(ài)祖國悠久文化的.思想,激勵學(xué)生發(fā)奮學(xué)習。
。ㄈ┍菊n的教學(xué)重點(diǎn):探索勾股定理
本課的教學(xué)難點(diǎn):以直角三角形為邊的正方形面積的計算。
二、教法與學(xué)法分析:
教法分析:針對初二年級學(xué)生的知識結構和心理特征,本節課可選擇引導探索法,由淺入深,由特殊到一般地提出問(wèn)題。引導學(xué)生自主探索,合作交流,這種教學(xué)理念反映了時(shí)代精神,有利于提高學(xué)生的思維能力,能有效地激發(fā)學(xué)生的思維積極性,基本教學(xué)流程是:提出問(wèn)題—實(shí)驗操作—歸納驗證—問(wèn)題解決—課堂小結—布置作業(yè)六部分。
學(xué)法分析:在教師的組織引導下,采用自主探索、合作交流的研討式學(xué)習方式,讓學(xué)生思考問(wèn)題,獲取知識,掌握方法,借此培養學(xué)生動(dòng)手、動(dòng)腦、動(dòng)口的能力,使學(xué)生真正成為學(xué)習的主體。
三、教學(xué)過(guò)程設計
。ㄒ唬┨岢鰡(wèn)題:
首先創(chuàng )設這樣一個(gè)問(wèn)題情境:某樓房三樓失火,消防隊員趕來(lái)救火,了解到每層樓高3米,消防隊員取來(lái)6.5米長(cháng)的云梯,如果梯子的底部離墻基的距離是2.5米,請問(wèn)消防隊員能否進(jìn)入三樓滅火?問(wèn)題設計具有一定的挑戰性,目的是激發(fā)學(xué)生的探究欲望,教師引導學(xué)生將實(shí)際問(wèn)題轉化成數學(xué)問(wèn)題,也就是“已知一直角三角形的兩邊,如何求第三邊?”的問(wèn)題。學(xué)生會(huì )感到困難,從而教師指出學(xué)習了今天這一課后就有辦法解決了。這種以實(shí)際問(wèn)題為切入點(diǎn)引入新課,不僅自然,而且反映了數學(xué)來(lái)源于實(shí)際生活,數學(xué)是從人的需要中產(chǎn)生這一認識的基本觀(guān)點(diǎn),同時(shí)也體現了知識的發(fā)生過(guò)程,而且解決問(wèn)題的過(guò)程也是一個(gè)“數學(xué)化”的過(guò)程。
。ǘ⿲(shí)驗操作:
1、投影課本圖1—1,圖1—2的有關(guān)直角三角形問(wèn)題,讓學(xué)生計算正方形A,B,C的面積,學(xué)生可能有不同的方法,不管是通過(guò)直接數小方格的個(gè)數,還是將C劃分為4個(gè)全等的等腰直角三角形來(lái)求等等,各種方法都應予于肯定,并鼓勵學(xué)生用語(yǔ)言進(jìn)行表達,引導學(xué)生發(fā)現正方形A,B,C的面積之間的數量關(guān)系,從而學(xué)生通過(guò)正方形面積之間的關(guān)系容易發(fā)現對于等腰直角三角形而言滿(mǎn)足兩直角邊的平方和等于斜邊的平方。這樣做有利于學(xué)生參與探索,感受數學(xué)學(xué)習的過(guò)程,也有利于培養學(xué)生的語(yǔ)言表達能力,體會(huì )數形結合的思想。
2、給出一個(gè)邊長(cháng)為0.5,1.2,1.3,這種含小數的直角三角形,讓學(xué)生計算是否也滿(mǎn)足這個(gè)結論,設計的目的是讓學(xué)生體會(huì )到結論更具有一般性。
。ㄈw納驗證:
1、歸納通過(guò)對邊長(cháng)為整數的等腰直角三角形到一般直角三角形再到邊長(cháng)含小數的直角三角形三邊關(guān)系的研究,讓學(xué)生用數學(xué)語(yǔ)言概括出一般的結論,盡管學(xué)生可能講的不完全正確,但對于培養學(xué)生運用數學(xué)語(yǔ)言進(jìn)行抽象、概括的能力是有益的,同時(shí)發(fā)揮了學(xué)生的主體作用,也便于記憶和理解,這比教師直接教給學(xué)生一個(gè)結論要好的多。
2、驗證為了讓學(xué)生確信結論的正確性,引導學(xué)生在紙上任意作一個(gè)直角三角形,通過(guò)測量、計算來(lái)驗證結論的正確性。這一過(guò)程有利于培養學(xué)生嚴謹、科學(xué)的學(xué)習態(tài)度。然后引導學(xué)生用符號語(yǔ)言表示,因為將文字語(yǔ)言轉化為數學(xué)語(yǔ)言是學(xué)習數學(xué)學(xué)習的一項基本能力。接著(zhù)教師向學(xué)生介紹“勾,股,弦”的含義、勾股定理,進(jìn)行點(diǎn)題,并指出勾股定理只適用于直角三角形。最后向學(xué)生介紹古今中外對勾股定理的研究,對學(xué)生進(jìn)行愛(ài)國主義教育。
。ㄋ模﹩(wèn)題解決:
讓學(xué)生解決開(kāi)頭的實(shí)際問(wèn)題,前后呼應,學(xué)生從中能體會(huì )到成功的喜悅。完完成課本“想一想”進(jìn)一步體會(huì )勾股定理在實(shí)際生活中的應用,數學(xué)是與實(shí)際生活緊密相連的。
【勾股定理復習課說(shuō)課稿】相關(guān)文章:
勾股定理說(shuō)課稿,勾股定理說(shuō)課稿范文08-16
關(guān)于勾股定理說(shuō)課稿 勾股定理第一課時(shí)說(shuō)課稿04-20
《勾股定理》的說(shuō)課稿01-18
《勾股定理》說(shuō)課稿12-16
勾股定理說(shuō)課稿05-22
勾股定理說(shuō)課稿11-12
《勾股定理》說(shuō)課稿01-05
勾股定理說(shuō)課稿優(yōu)秀05-05
勾股定理說(shuō)課稿精選15篇12-16