成人免费看黄网站无遮挡,caowo999,se94se欧美综合色,a级精品九九九大片免费看,欧美首页,波多野结衣一二三级,日韩亚洲欧美综合

圓的標準方程說(shuō)課課件

時(shí)間:2024-11-22 08:54:53 詩(shī)琳 課件 我要投稿
  • 相關(guān)推薦

圓的標準方程說(shuō)課課件

  作為一位優(yōu)秀的人民教師,編寫(xiě)課件是必不可少的,課件的基本模式有練習型、指導型、咨詢(xún)型、模擬型、游戲型、問(wèn)題求解型、發(fā)現學(xué)習型等。那要怎么寫(xiě)好課件呢?以下是小編為大家收集的圓的標準方程說(shuō)課課件,歡迎大家分享。

圓的標準方程說(shuō)課課件

  圓的標準方程說(shuō)課課件 1

  教材分析

  圓是學(xué)生在初中已初步了解了圓的知識及前面學(xué)習了直線(xiàn)方程的基礎上來(lái)進(jìn)一步學(xué)習《圓的標準方程》,它既是前面圓的知識的復習延伸,又是后繼學(xué)習圓與直線(xiàn)的位置關(guān)系奠定了基礎。因此,本節課在本章中起著(zhù)承上啟下的重要作用。

  教學(xué)目標

  1. 知識與技能:探索并掌握圓的標準方程,能根據方程寫(xiě)出圓的坐標和圓的半徑。

  2. 過(guò)程與方法:通過(guò)圓的標準方程的學(xué)習,掌握求曲線(xiàn)方程的方法,領(lǐng)會(huì )數形結合的思想。

  3. 情感態(tài)度與價(jià)值觀(guān):激發(fā)學(xué)生學(xué)習數學(xué)的興趣,感受學(xué)習成功的喜悅。

  教學(xué)重點(diǎn)難點(diǎn)以及措施

  教學(xué)重點(diǎn):圓的標準方程理解及運用

  教學(xué)難點(diǎn):根據不同條件,利用待定系數求圓的標準方程。

  根據教學(xué)內容的特點(diǎn)及高一年級學(xué)生的年齡、認知特征,緊緊抓住課堂知識的結構關(guān)系,遵循“直觀(guān)認知――操作體會(huì )――感悟知識特征――應用知識”的認知過(guò)程,設計出包括:觀(guān)察、操作、思考、交流等內容的教學(xué)流程。并且充分利用現代化信息技術(shù)的教學(xué)手段提高教學(xué)效率。以此使學(xué)生獲取知識,給學(xué)生獨立操作、合作交流的機會(huì )。學(xué)法上注重讓學(xué)生參與方程的推導過(guò)程,努力拓展學(xué)生思維的空間,促其在嘗試中發(fā)現,討論中明理,合作中成功,讓學(xué)生真正體驗知識的形成過(guò)程。

  學(xué)習者分析

  高一年級的學(xué)生從知識層面上已經(jīng)掌握了圓的相關(guān)性質(zhì);從能力層面具備了一定的觀(guān)察、分析和數據處理能力,對數學(xué)問(wèn)題有自己個(gè)人的看法;從情感層面上學(xué)生思維活躍積極性高,但他們數學(xué)應用意識和語(yǔ)言表達的能力還有待加強。

  教法設計

  問(wèn)題情境引入法 啟發(fā)式教學(xué)法 講授法

  學(xué)法指導

  自主學(xué)習法 討論交流法 練習鞏固法

  教學(xué)準備

  ppt課件 導學(xué)案

  教學(xué)環(huán)節

  教學(xué)內容

  教師活動(dòng)

  學(xué)生活動(dòng)

  設計意圖

  情景引入

  回顧復習(2分鐘)

  1.觀(guān)賞生活中有關(guān)圓的圖片

  2.回顧復習圓的定義,并觀(guān)看圓的生成flash動(dòng)畫(huà)。

  提問(wèn):直線(xiàn)可以用一個(gè)方程表示,那么圓可以用一個(gè)方程表示嗎?

  教師創(chuàng )設情景,引領(lǐng)學(xué)生感受圓。

  教師提出問(wèn)題。引導學(xué)生思考,引出本節主旨。

  學(xué)生觀(guān)賞圓的圖片和動(dòng)畫(huà),思考如何表示圓的方程。

  生活中的圖片展示,調動(dòng)學(xué)生學(xué)習的積極性,讓學(xué)生體會(huì )到園在日常生活中的廣泛應用

  自主學(xué)習(5分鐘)

  1.介紹動(dòng)點(diǎn)軌跡方程的求解步驟:

  (1)建系:在圖形中建立適當的坐標系;

  (2)設點(diǎn):用有序實(shí)數對(x,y)表示曲 線(xiàn)上任意一點(diǎn)M的坐標;

  (3)列式:用坐標表示條件P(M)的方程 ;

  (4)化簡(jiǎn):對P(M)方程化簡(jiǎn)到最簡(jiǎn)形式;

  2.學(xué)生自主學(xué)習圓的方程推導,并完成相應學(xué)案內容,

  教師介紹求軌跡方程的步驟后,引導學(xué)生自學(xué)圓的標準方程

  自主學(xué)習課本中圓的標準方程的推導過(guò)程,并完成導學(xué)案的內容,并當堂展示。

  培養學(xué)生自主學(xué)習,獲取知識的能力

  合作探究(10分鐘)

  1.根據圓的標準方程說(shuō)明確定圓的方程的條件有哪些?

  2.點(diǎn)M(x0,y0)與圓(x-a)2+(y-b)2=r2的關(guān)系的`判斷方法:

  (1)點(diǎn)在圓上

  (2)點(diǎn)在圓外

  (3)點(diǎn)在圓內

  教師引導學(xué)生分組探討,從旁巡視指導學(xué)生在自學(xué)和探討中遇到的問(wèn)題,并鼓勵學(xué)生以小組為單位展示探究成果。

  學(xué)生展開(kāi)合作性的探討,并陳述自己的研究成果。通過(guò)合作探究和自我的展示,鼓勵學(xué)生合作學(xué)習的品質(zhì)

  當堂訓練(18分鐘)

  1.求下列圓的圓心坐標和半徑

  C1: x2+y2=5

  C2: (x-3)2+y2=4

  C3: x2+(y+1)2=a2(a≠0)

  2. 以C(4,-6)為圓心,半徑等于3的圓的標準方程

  3. 設圓(x-a)2+(y-b)2=r2

  則坐標原點(diǎn)的位置是( )

  A.在圓外 B.在圓上

  C.在圓內 D.與a的取值有關(guān)

  4.寫(xiě)出下列各圓的標準方程(1)圓心在原點(diǎn),半徑等于5

  (2)經(jīng)過(guò)點(diǎn)P(5,1),圓心在點(diǎn)C(6,-2);

  (3)以A(2,5),B(0,-1)為直徑的圓.

  5.下列方程分別表示什么圖形

  (1) x2+y2=0

  (2) (x-1)2 =8-(y+2)2

  (3) 《圓的標準方程》教學(xué)設計-賈偉

  6.鞏固提升:已知圓心為C的圓經(jīng)過(guò)點(diǎn)A(1,1)和B(2,-2),且圓心在直線(xiàn)l:x-y+1=0上,求圓C的標準方程并作圖

  指導學(xué)生就不同條件下給出的圓心和半徑關(guān)系,求解圓的標準方程這兩個(gè)要素展開(kāi)訓練。

  學(xué)生自主開(kāi)展訓練,并糾正學(xué)習中所遇到的問(wèn)題,鞏固所學(xué)知識,并查缺補漏。

  回顧小結(1分鐘)

  1.你學(xué)到了哪些知識?

  2.你掌握了哪些技能?

  3.你體會(huì )到了哪些數學(xué)思想?

  采用提問(wèn)的形式幫助學(xué)生回顧和分析本節所學(xué)。

  學(xué)生思考并從知識、技能和思想方法上回顧總結。

  培養學(xué)生歸納總結能力

  作業(yè)布置(1分鐘)

  課本87頁(yè)習題2-2

  A組的第1道題

  布置訓練任務(wù)

  標記并完成相應的任務(wù)

  檢測學(xué)生掌握知識情況。

  教學(xué)反思

  本節教學(xué)主要遵循“回-導-學(xué)-展-講-練-結”的高效課堂教學(xué)模式,遵循學(xué)生學(xué)習的主體地位,鼓勵學(xué)生自主思考和探討。

  教學(xué)中要積極鼓勵學(xué)生多思考總結,在判斷點(diǎn)與圓的位置關(guān)系中,要遵從學(xué)生個(gè)性化的發(fā)展思路,鼓勵學(xué)生創(chuàng )造性的解決問(wèn)題。

  圓的標準方程說(shuō)課課件 2

  教學(xué)目標:

  1、掌握圓的標準方程,能根據圓心、半徑寫(xiě)出圓的標準方程。

  2、會(huì )用待定系數法求圓的標準方程。

  教學(xué)重點(diǎn):

  圓的標準方程

  教學(xué)難點(diǎn):

  會(huì )根據不同的已知條件,利用待定系數法求圓的標準方程。

  教學(xué)過(guò)程:

 。ㄒ唬、情境設置:

  在直角坐標系中,確定直線(xiàn)的基本要素是什么?圓作為平面幾何中的基本圖形,確定它的要素又是什么呢?什么叫圓?在平面直角坐標系中,任何一條直線(xiàn)都可用一個(gè)二元一次方程來(lái)表示,那么,圓是否也可用一個(gè)方程來(lái)表示呢?如果能,這個(gè)方程又有什么特征呢?

  探索研究:

 。ǘ、探索研究:

  確定圓的基本條件為圓心和半徑,設圓的圓心坐標為A(a,b),半徑為r。(其中a、b、r都是常數,r>0)設M(x,y)為這個(gè)圓上任意一點(diǎn),那么點(diǎn)M滿(mǎn)足的條件是(引導學(xué)生自己列出)P={M||MA|=r},由兩點(diǎn)間的距離公式讓學(xué)生寫(xiě)出點(diǎn)M適合的條件①

  化簡(jiǎn)可得:②

  引導學(xué)生自己證明為圓的方程,得出結論。

  方程②就是圓心為A(a,b),半徑為r的圓的方程,我們把它叫做圓的標準方程。

 。ㄈ、知識應用與解題研究

  例1.(課本例1)寫(xiě)出圓心為,半徑長(cháng)等于5的圓的方程,并判斷點(diǎn)是否在這個(gè)圓上。

  分析探求:可以從計算點(diǎn)到圓心的距離入手。

  探究:點(diǎn)與圓的關(guān)系的判斷方法:

 。1)>,點(diǎn)在圓外

 。2)=,點(diǎn)在圓上

 。3)<,點(diǎn)在圓內

  解:

  例2.(課本例2)的三個(gè)頂點(diǎn)的坐標是求它的外接圓的方程。

  師生共同分析:不在同一條直線(xiàn)上的三個(gè)點(diǎn)可以確定一個(gè)圓,三角形有唯一的.外接圓。從圓的標準方程可知,要確定圓的標準方程,可用待定系數法確定三個(gè)參數。

  解:

  例3.(課本例3)已知圓心為的圓經(jīng)過(guò)點(diǎn)和,且圓心在上,求圓心為的圓的標準方程。

  師生共同分析:如圖,確定一個(gè)圓只需確定圓心位置與半徑大小。圓心為的圓經(jīng)過(guò)點(diǎn)和,由于圓心與A,B兩點(diǎn)的距離相等,所以圓心在線(xiàn)段AB的垂直平分線(xiàn)m上,又圓心在直線(xiàn)上,因此圓心是直線(xiàn)與直線(xiàn)m的交點(diǎn),半徑長(cháng)等于或。

  解:

  總結歸納:(教師啟發(fā),學(xué)生自己比較、歸納)比較例2、例3可得出圓的標準方程的兩種求法:

  1、根據題設條件,列出關(guān)于的方程組,解方程組得到的值,寫(xiě)出圓的標準方程。

 、讴p根據確定圓的要素,以及題設條件,分別求出圓心坐標和半徑大小,然后再寫(xiě)出圓的標準方程。

 。ㄋ模、課堂練習(課本P120練習1,2,3,4)

  歸納小結:

  1、圓的標準方程。

  2、點(diǎn)與圓的位置關(guān)系的判斷方法。

  3、根據已知條件求圓的標準方程的方法。

  作業(yè)布置:課本習題4.1A組第2,3,4題。

  課后記:

  圓的標準方程說(shuō)課課件 3

  教學(xué)目的:

  掌握圓的標準方程,并能解決與之有關(guān)的問(wèn)題

  教學(xué)重點(diǎn):

  圓的'標準方程及有關(guān)運用

  教學(xué)難點(diǎn):

  標準方程的靈活運用

  教學(xué)過(guò)程:

  一、導入新課,探究標準方程

  二、掌握知識,鞏固練習

  練習:

 、闭f(shuō)出下列圓的方程

 、艌A心(3,-2)半徑為5⑵圓心(0,3)半徑為3

 、仓赋鱿铝袌A的圓心和半徑

 、牛▁-2)2+(y+3)2=3

 、苮2+y2=2

 、莤2+y2-6x+4y+12=0

 、撑袛3x-4y-10=0和x2+y2=4的位置關(guān)系

 、磮A心為(1,3),并與3x-4y-7=0相切,求這個(gè)圓的方程

  三、引伸提高,講解例題

  例1、圓心在y=-2x上,過(guò)p(2,-1)且與x-y=1相切求圓的方程(突出待定系數的數學(xué)方法)

  練習:

  1、某圓過(guò)(-2,1)、(2,3),圓心在x軸上,求其方程。

  2、某圓過(guò)A(-10,0)、B(10,0)、C(0,4),求圓的方程。

  例2:某圓拱橋的跨度為20米,拱高為4米,在建造時(shí)每隔4米加一個(gè)支柱支撐,求A2P2的長(cháng)度。

  例3、點(diǎn)M(x0,y0)在x2+y2=r2上,求過(guò)M的圓的切線(xiàn)方程(一題多解,訓練思維)

  四、小結練習P771,2,3,4

  五、作業(yè)P811,2,3,4

  圓的標準方程說(shuō)課課件 4

  教學(xué)目標

  (一)知識目標

  1.掌握圓的標準方程:根據圓心坐標、半徑熟練地寫(xiě)出圓的標準方程,能從圓的標準方程中熟練地求出圓心坐標和半徑;

  2.理解并掌握切線(xiàn)方程的探求過(guò)程和方法。

  (二)能力目標

  1.進(jìn)一步培養學(xué)生用坐標法研究幾何問(wèn)題的能力;

  2. 通過(guò)教學(xué),使學(xué)生學(xué)習運用觀(guān)察、類(lèi)比、聯(lián)想、猜測、證明等合情推理方法,提高學(xué)生運算能力、邏輯思維能力;

  3. 通過(guò)運用圓的標準方程解決實(shí)際問(wèn)題的學(xué)習,培養學(xué)生觀(guān)察問(wèn)題、發(fā)現問(wèn)題及分析、解決問(wèn)題的能力。

  (三)情感目標

  通過(guò)運用圓的知識解決實(shí)際問(wèn)題的學(xué)習,理解理論來(lái)源于實(shí)踐,充分調動(dòng)學(xué)生學(xué)習數學(xué)的熱情,激發(fā)學(xué)生自主探究問(wèn)題的興趣,同時(shí)培養學(xué)生勇于探索、堅忍不拔的意志品質(zhì)。

  教學(xué)重、難點(diǎn)

  (一)教學(xué)重點(diǎn)

  圓的標準方程的理解、掌握。

  (二)教學(xué)難點(diǎn)

  圓的標準方程的應用。

  教學(xué)方法

  選用引導?探究式的教學(xué)方法。

  教學(xué)手段

  借助多媒體進(jìn)行輔助教學(xué)。

  教學(xué)過(guò)程

 、.復習提問(wèn)、引入課題

  師:前面我們學(xué)習了曲線(xiàn)和方程的關(guān)系及求曲線(xiàn)方程的方法。請同學(xué)們考慮:如何求適合某種條件的點(diǎn)的軌跡?

  生:①建立適當的直角坐標系,設曲線(xiàn)上任一點(diǎn)M的坐標為(x,y);②寫(xiě)出適合某種條件p的點(diǎn)M的集合P={M ?p(M)};③用坐標表示條件,列出方程f(x,y)=0;④化簡(jiǎn)方程f(x,y)=0為最簡(jiǎn)形式。⑤證明以化簡(jiǎn)后方程的解為坐標的點(diǎn)都是曲線(xiàn)上的點(diǎn)(一般省略)。[多媒體演示]

  師:這就是建系、設點(diǎn)、列式、化簡(jiǎn)四步曲。用這四步曲我們可以求適合某種條件的任何曲線(xiàn)方程,今天我們來(lái)看圓這種曲線(xiàn)的方程。[給出標題]

  師:前面我們曾證明過(guò)圓心在原點(diǎn),半徑為5的圓的方程:x2+y2=52 即x2+y2=25.

  若半徑發(fā)生變化,圓的方程又是怎樣的?能否寫(xiě)出圓心在原點(diǎn),半徑為r的圓的方程?

  生:x2+y2=r2.

  師:你是怎樣得到的?(引導啟發(fā))圓上的點(diǎn)滿(mǎn)足什么條件?

  生:圓上的任一點(diǎn)到圓心的距離等于半徑。即 ,亦即 x2+y2=r2.

  師:x2+y2=r2 表示的圓的位置比較特殊:圓心在原點(diǎn),半徑為r.有時(shí)圓心不在原點(diǎn),若此圓的圓心移至C(a,b)點(diǎn)(如圖),方程又是怎樣的?

  生:此圓是到點(diǎn)C(a,b)的距離等于半徑r的點(diǎn)的集合,

  由兩點(diǎn)間的距離公式得

  即:(x-a)2+(y-b)2= r2

 、.講授新課、嘗試練習

  師:方程(x-a)2+(y-b)2= r2 叫做圓的標準方程.

  特別:當圓心在原點(diǎn),半徑為r時(shí),圓的標準方程為:x2+y2=r2.

  師:圓的標準方程由哪些量決定?

  生:由圓心坐標(a,b)及半徑r決定。

  師:很好!實(shí)際上圓心和半徑分別決定圓的位置和大小。由此可見(jiàn),要確定圓的方程,只需確定a、b、r這三個(gè)獨立變量即可。

  1、 寫(xiě)出下列各圓的標準方程:[多媒體演示]

 、 圓心在原點(diǎn),半徑是3 :________________________

 、 圓心在點(diǎn)C(3,4),半徑是 :______________________

 、 經(jīng)過(guò)點(diǎn)P(5,1),圓心在點(diǎn)C(8,-3):_______________________

  2、 變式題[多媒體演示]

 、 求以C(1,3)為圓心,并且和直線(xiàn)3x-4y-7=0相切的圓的方程。

  答案:(x-1)2 + (y-3)2 =

 、 已知圓的方程是 (x-a)2 +y2 = a2 ,寫(xiě)出圓心坐標和半徑。

  答案: C(a,0), r=|a|

 、.例題分析、鞏固應用

  師:下面我們通過(guò)例題來(lái)看看圓的標準方程的應用.

 。劾1] 已知圓的方程是 x2+y2=17,求經(jīng)過(guò)圓上一點(diǎn)P(,)的切線(xiàn)的方程。

  師:你打算怎樣求過(guò)P點(diǎn)的切線(xiàn)方程?

  生:要求經(jīng)過(guò)一點(diǎn)的直線(xiàn)方程,可利用直線(xiàn)的點(diǎn)斜式來(lái)求。

  師: 斜率怎樣求?

  生:。

  師:已知條件有哪些?能利用嗎?不妨結合圖形來(lái)看看(如圖)

  生:切線(xiàn)與過(guò)切點(diǎn)的半徑垂直,故斜率互為負倒數

  半徑OP的斜率 K1=, 所以切線(xiàn)的斜率 K=-=-

  所以所求切線(xiàn)方程:y-= -(x-)

  即:x+y=17 (教師板書(shū))

  師:對照圓的方程x2+y2=17和經(jīng)過(guò)點(diǎn)P(,)的切線(xiàn)方程x+y=17,你能作出怎樣的猜想?

  生:。

  師:由x2+y2=17怎樣寫(xiě)出切線(xiàn)方程x+y=17,與已知點(diǎn)P(,)有何關(guān)系?

 。ㄈ艨床怀鰜(lái),再看一例)

 。劾1/] 圓的`方程是x2+y2=13,求過(guò)此圓上一點(diǎn)(2,3)的切線(xiàn)方程。

  答案:2x+3y=13 即:2x+3y-13=0

  師:發(fā)現規律了嗎?(學(xué)生紛紛舉手回答)

  生:分別用切點(diǎn)的橫坐標和縱坐標代替圓方程中的一個(gè)x和一個(gè)y,便得到了切線(xiàn)方程。

  師:若將已知條件中圓半徑改為r,點(diǎn)改為圓上任一點(diǎn)(xo,yo),則結論將會(huì )發(fā)生怎樣的變化?大膽地猜一猜!

  生:xox+yoy=r2.

  師:這個(gè)猜想對不對?若對,可否給出證明?

  生:。

 。劾2]已知圓的方程是 x2+y2=r2,求經(jīng)過(guò)圓上一點(diǎn)P(xo,yo)的切線(xiàn)的方程。

  解:如圖(上一頁(yè)),因為切線(xiàn)與過(guò)切點(diǎn)的半徑垂直,故半徑OP的斜率與切線(xiàn)的斜率互為負倒數

  ∵半徑OP的斜率 K1=,∴切線(xiàn)的斜率 K=-=-

  ∴所求切線(xiàn)方程:y-yo= - (x-xo)

  即:xox+yoy=xo2+yo2 亦即:xox+yoy=r2. (教師板書(shū))

  當點(diǎn)P在坐標軸上時(shí),可以驗證上面方程同樣適用。

  歸納總結:圓的方程可看成 x.x+y.y=r2,將其中一個(gè)x、y用切點(diǎn)的坐標xo、yo 替換,可得到切線(xiàn)方程

 。劾3]右圖為某圓拱橋的一孔圓拱的示意圖.該圓拱跨度AB=20M,拱高OP=4M,在建造時(shí)每隔4M需用一個(gè)支柱支撐,求支柱A2P2的長(cháng)度。(精確到0.01M)

  引導學(xué)生分析,共同完成解答。

  師生分析:①建系; ②設圓的標準方程(待定系數);③求系數(求出圓的標準方程);④利用方程求A2P2的長(cháng)度。

  解:以AB所在直線(xiàn)為X軸,O為坐標原點(diǎn),建立如圖所示的坐標系。則圓心在Y軸上,設為

 。0,b),半徑為r,那么圓的方程是 x2+(y-b)2=r2.

  ∵P(0,4),B(10,0)都在圓上,于是得到方程組:

  解得:b=-10.5 ,r2=14.52

  ∴圓的方程為 x2+(y+10.5)2=14.52.

  將P2的橫坐標x=-2代入圓的標準方程

  且取y>0

  得:y=

  ≈14.36-10.5=3.86 (M)

  答:支柱A2P2的長(cháng)度約為3.86M。

 、.課堂練習、課時(shí)小結

  課本P77練習2,3

  師:通過(guò)本節學(xué)習,要求大家掌握圓的標準方程,理解并掌握切線(xiàn)方程的探求過(guò)程和方法,能運用圓的方程解決實(shí)際問(wèn)題.

 、.問(wèn)題延伸、課后作業(yè)

  (一)若P(xo,yo)在圓(x-a)2+(y-b)2= r2上時(shí),?求過(guò)P點(diǎn)的圓的切線(xiàn)方程。

  課本P81習題7.7 : 1,2,3,4

  (二)預習課本P77~P79

【圓的標準方程說(shuō)課課件】相關(guān)文章:

圓與方程教案圓與方程課件03-23

關(guān)于《圓的標準方程》說(shuō)課稿10-04

有關(guān)圓的標準方程說(shuō)課稿09-16

圓的標準方程優(yōu)秀教案10-09

圓的標準方程教案范本06-22

有關(guān)圓的標準方程說(shuō)課稿范文10-03

《圓標準方程》說(shuō)課稿(精選10篇)07-22

圓的標準方程教案設計08-24

《圓的標準方程》說(shuō)課稿(精選10篇)11-02

關(guān)于圓的標準方程教學(xué)反思06-11