高中數學(xué)教學(xué)設計(實(shí)用)
作為一位優(yōu)秀的人民教師,有必要進(jìn)行細致的教學(xué)設計準備工作,教學(xué)設計是根據課程標準的要求和教學(xué)對象的特點(diǎn),將教學(xué)諸要素有序安排,確定合適的教學(xué)方案的設想和計劃。那么應當如何寫(xiě)教學(xué)設計呢?以下是小編收集整理的高中數學(xué)教學(xué)設計 ,僅供參考,大家一起來(lái)看看吧。
一、教學(xué)目標
1、在初中學(xué)過(guò)原命題、逆命題知識的基礎上,初步理解四種命題。
2、給一個(gè)比較簡(jiǎn)單的命題(原命題),可以寫(xiě)出它的逆命題、否命題和逆否命題。
3、通過(guò)對四種命題之間關(guān)系的學(xué)習,培養學(xué)生邏輯推理能力
4、初步培養學(xué)生反證法的數學(xué)思維。
二、教學(xué)分析
重點(diǎn):四種命題;難點(diǎn):四種命題的關(guān)系
1、本小節首先從初中數學(xué)的命題知識,給出四種命題的概念,接著(zhù),講述四種命題的關(guān)系,最后,在初中的基礎上,結合四種命題的知識,進(jìn)一步講解反證法。
2、教學(xué)時(shí),要注意控制教學(xué)要求。本小節的內容,只涉及比較簡(jiǎn)單的命題,不研究含有邏輯聯(lián)結詞“或”、“且”、“非”的命題的逆命題、否命題和逆否命題
3、“若p則q”形式的命題,也是一種復合命題,并且,其中的p與q,可以是命題也可以是開(kāi)語(yǔ)句,例如,命題“若,則x,y全為0”,其中的p與q,就是開(kāi)語(yǔ)句。對學(xué)生,只要求能分清命題“若p則q”中的條件與結論就可以了,不必考慮p與q是命題,還是開(kāi)語(yǔ)句。
三、教學(xué)手段和方法(演示教學(xué)法和循序漸進(jìn)導入法)
1、以故事形式入題
2、多媒體演示
四、教學(xué)過(guò)程
。ㄒ唬┮耄阂粋(gè)生活中有趣的與命題有關(guān)的笑話(huà):某人要請甲乙丙丁吃飯,時(shí)間到了,只有甲乙丙三人按時(shí)赴約。丁卻打電話(huà)說(shuō)“有事不能參加”主人聽(tīng)了隨口說(shuō)了句“該來(lái)的沒(méi)來(lái)”甲聽(tīng)了臉色一沉,一聲不吭的走了,主人愣了一下又說(shuō)了一句“哎,不該走的走了”乙聽(tīng)了大怒,拂袖即去。主人這時(shí)還沒(méi)意識到又順口說(shuō)了一句:“俺說(shuō)的又不是你”。這時(shí)丙怒火中燒不辭而別。四個(gè)客人沒(méi)來(lái)的沒(méi)來(lái),來(lái)的又走了。主人請客不成還得罪了三家。大家肯定都覺(jué)得這個(gè)人不會(huì )說(shuō)話(huà),但是你想過(guò)這里面所蘊涵的數學(xué)思想嗎?通過(guò)這節課的學(xué)習我們就能揭開(kāi)它的廬山真面,學(xué)生的興奮點(diǎn)被緊緊抓住,躍躍欲試!
設計意圖:創(chuàng )設情景,激發(fā)學(xué)生學(xué)習興趣
。ǘ⿵土曁釂(wèn):
1、命題“同位角相等,兩直線(xiàn)平行”的條件與結論各是什么?
2、把“同位角相等,兩直線(xiàn)平行”看作原命題,它的逆命題是什么?
3、原命題真,逆命題一定真嗎?
“同位角相等,兩直線(xiàn)平行”這個(gè)原命題真,逆命題也真.但“正方形的四條邊相等”的原命題真,逆命題就不真,所以原命題真,逆命題不一定真.
學(xué)生活動(dòng):
口答:(1)若同位角相等,則兩直線(xiàn)平行;(2)若一個(gè)四邊形是正方形,則它的四條邊相等.
設計意圖: 通過(guò)復習舊知識,打下學(xué)習否命題、逆否命題的基礎.
。ㄈ┬抡n講解:
1、命題“同位角相等,兩直線(xiàn)平行”的條件是“同位角相等”,結論是“兩直線(xiàn)平行”;如果把“同位角相等,兩直線(xiàn)平行”看作原命題,它的逆命題就是“兩直線(xiàn)平行,同位角相等”。也就是說(shuō),把原命題的結論作為條件,條件作為結論,得到的命題就叫做原命題的逆命題。
2、把命題“同位角相等,兩直線(xiàn)平行”的條件與結論同時(shí)否定,就得到新命題“同位角不相等,兩直線(xiàn)不平行”,這個(gè)新命題就叫做原命題的否命題。
3、把命題“同位角相等,兩直線(xiàn)平行”的條件與結論互相交換并同時(shí)否定,就得到新命題“兩直線(xiàn)不平行,同位角不相等”,這個(gè)新命題就叫做原命題的逆否命題。
。ㄋ模┙M織討論:
讓學(xué)生歸納什么是否命題,什么是逆否命題。
例1及例2
。ㄎ澹┱n堂探究:“兩條直線(xiàn)不平行,則同位角不相等”是否真?“若一個(gè)四邊形的四條邊不相等,則不是正方形”是否真?若原命題真,逆否命題是否也真?
學(xué)生活動(dòng):
討論后回答
這兩個(gè)逆否命題都真.
原命題真,逆否命題也真
引導學(xué)生討論原命題的真假與其他三種命題的真
假有什么關(guān)系?舉例加以說(shuō)明,同學(xué)們踴躍發(fā)言。
。┱n堂小結:
1、一般地,用p和q分別表示原命題的條件和結論,用¬p和¬q分別表示p和q否定時(shí),四種命題的形式就是:
原命題若p則q;
逆命題若q則p;(交換原命題的條件和結論)
否命題,若¬p則¬q;(同時(shí)否定原命題的條件和結論)
逆否命題若¬q則¬p。(交換原命題的條件和結論,并且同時(shí)否定)
2、四種命題的關(guān)系
。1)原命題為真,它的逆命題不一定為真.
。2)原命題為真,它的否命題不一定為真.
。3)原命題為真,它的逆否命題一定為真
。ㄆ撸┗乜垡
分析引入中的笑話(huà),先討論,后總結:現在我們來(lái)分析一下主人說(shuō)的四句話(huà):
第一句:“該來(lái)的沒(méi)來(lái)”
其逆否命題是“不該來(lái)的來(lái)了”,甲認為自己是不該來(lái)的,所以甲走了。
第二句:“不該走的走了”,其逆否命題為“該走的沒(méi)走”,乙認為自己該走,所以乙也走了。
第三句:“俺說(shuō)的不是你(指乙)”其值為真其非命題:“俺說(shuō)的是你”為假,則說(shuō)的是他(指丙)為真。所以,丙認為說(shuō)的是自己,所以丙也走了。
同學(xué)們,生活中處處是數學(xué),期待我們善于發(fā)現的眼睛
五、作業(yè)
1、設原命題是“若
斷它們的真假,則 ”,寫(xiě)出它的逆命題、否命題與逆否命題,并分別判
2、設原命題是“當 時(shí),若 ,則 ”,寫(xiě)出它的逆命題、否定命與逆否命題,并分別判斷它們的真假。
【高中數學(xué)教學(xué)設計】相關(guān)文章:
高中數學(xué)教學(xué)設計06-09
高中數學(xué)教學(xué)設計09-13
高中數學(xué)教學(xué)設計01-17
高中數學(xué)教學(xué)設計03-25
【優(yōu)選】高中數學(xué)教學(xué)設計10-17
高中數學(xué)概念教學(xué)設計07-14